xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 83268fa6)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32 
33 #include "posix-timers.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37 
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:		Lock for syncrhonized access to the base
41  * @timerqueue:		Timerqueue head managing the list of events
42  * @gettime:		Function to read the time correlating to the base
43  * @base_clockid:	clockid for the base
44  */
45 static struct alarm_base {
46 	spinlock_t		lock;
47 	struct timerqueue_head	timerqueue;
48 	ktime_t			(*gettime)(void);
49 	clockid_t		base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51 
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59 
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62 
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer		rtctimer;
65 static struct rtc_device	*rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67 
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77 	unsigned long flags;
78 	struct rtc_device *ret;
79 
80 	spin_lock_irqsave(&rtcdev_lock, flags);
81 	ret = rtcdev;
82 	spin_unlock_irqrestore(&rtcdev_lock, flags);
83 
84 	return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87 
88 static int alarmtimer_rtc_add_device(struct device *dev,
89 				struct class_interface *class_intf)
90 {
91 	unsigned long flags;
92 	struct rtc_device *rtc = to_rtc_device(dev);
93 	struct wakeup_source *__ws;
94 
95 	if (rtcdev)
96 		return -EBUSY;
97 
98 	if (!rtc->ops->set_alarm)
99 		return -1;
100 	if (!device_may_wakeup(rtc->dev.parent))
101 		return -1;
102 
103 	__ws = wakeup_source_register("alarmtimer");
104 
105 	spin_lock_irqsave(&rtcdev_lock, flags);
106 	if (!rtcdev) {
107 		if (!try_module_get(rtc->owner)) {
108 			spin_unlock_irqrestore(&rtcdev_lock, flags);
109 			return -1;
110 		}
111 
112 		rtcdev = rtc;
113 		/* hold a reference so it doesn't go away */
114 		get_device(dev);
115 		ws = __ws;
116 		__ws = NULL;
117 	}
118 	spin_unlock_irqrestore(&rtcdev_lock, flags);
119 
120 	wakeup_source_unregister(__ws);
121 
122 	return 0;
123 }
124 
125 static inline void alarmtimer_rtc_timer_init(void)
126 {
127 	rtc_timer_init(&rtctimer, NULL, NULL);
128 }
129 
130 static struct class_interface alarmtimer_rtc_interface = {
131 	.add_dev = &alarmtimer_rtc_add_device,
132 };
133 
134 static int alarmtimer_rtc_interface_setup(void)
135 {
136 	alarmtimer_rtc_interface.class = rtc_class;
137 	return class_interface_register(&alarmtimer_rtc_interface);
138 }
139 static void alarmtimer_rtc_interface_remove(void)
140 {
141 	class_interface_unregister(&alarmtimer_rtc_interface);
142 }
143 #else
144 struct rtc_device *alarmtimer_get_rtcdev(void)
145 {
146 	return NULL;
147 }
148 #define rtcdev (NULL)
149 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150 static inline void alarmtimer_rtc_interface_remove(void) { }
151 static inline void alarmtimer_rtc_timer_init(void) { }
152 #endif
153 
154 /**
155  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156  * @base: pointer to the base where the timer is being run
157  * @alarm: pointer to alarm being enqueued.
158  *
159  * Adds alarm to a alarm_base timerqueue
160  *
161  * Must hold base->lock when calling.
162  */
163 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164 {
165 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166 		timerqueue_del(&base->timerqueue, &alarm->node);
167 
168 	timerqueue_add(&base->timerqueue, &alarm->node);
169 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170 }
171 
172 /**
173  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174  * @base: pointer to the base where the timer is running
175  * @alarm: pointer to alarm being removed
176  *
177  * Removes alarm to a alarm_base timerqueue
178  *
179  * Must hold base->lock when calling.
180  */
181 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182 {
183 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184 		return;
185 
186 	timerqueue_del(&base->timerqueue, &alarm->node);
187 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188 }
189 
190 
191 /**
192  * alarmtimer_fired - Handles alarm hrtimer being fired.
193  * @timer: pointer to hrtimer being run
194  *
195  * When a alarm timer fires, this runs through the timerqueue to
196  * see which alarms expired, and runs those. If there are more alarm
197  * timers queued for the future, we set the hrtimer to fire when
198  * when the next future alarm timer expires.
199  */
200 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201 {
202 	struct alarm *alarm = container_of(timer, struct alarm, timer);
203 	struct alarm_base *base = &alarm_bases[alarm->type];
204 	unsigned long flags;
205 	int ret = HRTIMER_NORESTART;
206 	int restart = ALARMTIMER_NORESTART;
207 
208 	spin_lock_irqsave(&base->lock, flags);
209 	alarmtimer_dequeue(base, alarm);
210 	spin_unlock_irqrestore(&base->lock, flags);
211 
212 	if (alarm->function)
213 		restart = alarm->function(alarm, base->gettime());
214 
215 	spin_lock_irqsave(&base->lock, flags);
216 	if (restart != ALARMTIMER_NORESTART) {
217 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218 		alarmtimer_enqueue(base, alarm);
219 		ret = HRTIMER_RESTART;
220 	}
221 	spin_unlock_irqrestore(&base->lock, flags);
222 
223 	trace_alarmtimer_fired(alarm, base->gettime());
224 	return ret;
225 
226 }
227 
228 ktime_t alarm_expires_remaining(const struct alarm *alarm)
229 {
230 	struct alarm_base *base = &alarm_bases[alarm->type];
231 	return ktime_sub(alarm->node.expires, base->gettime());
232 }
233 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234 
235 #ifdef CONFIG_RTC_CLASS
236 /**
237  * alarmtimer_suspend - Suspend time callback
238  * @dev: unused
239  * @state: unused
240  *
241  * When we are going into suspend, we look through the bases
242  * to see which is the soonest timer to expire. We then
243  * set an rtc timer to fire that far into the future, which
244  * will wake us from suspend.
245  */
246 static int alarmtimer_suspend(struct device *dev)
247 {
248 	ktime_t min, now, expires;
249 	int i, ret, type;
250 	struct rtc_device *rtc;
251 	unsigned long flags;
252 	struct rtc_time tm;
253 
254 	spin_lock_irqsave(&freezer_delta_lock, flags);
255 	min = freezer_delta;
256 	expires = freezer_expires;
257 	type = freezer_alarmtype;
258 	freezer_delta = 0;
259 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
260 
261 	rtc = alarmtimer_get_rtcdev();
262 	/* If we have no rtcdev, just return */
263 	if (!rtc)
264 		return 0;
265 
266 	/* Find the soonest timer to expire*/
267 	for (i = 0; i < ALARM_NUMTYPE; i++) {
268 		struct alarm_base *base = &alarm_bases[i];
269 		struct timerqueue_node *next;
270 		ktime_t delta;
271 
272 		spin_lock_irqsave(&base->lock, flags);
273 		next = timerqueue_getnext(&base->timerqueue);
274 		spin_unlock_irqrestore(&base->lock, flags);
275 		if (!next)
276 			continue;
277 		delta = ktime_sub(next->expires, base->gettime());
278 		if (!min || (delta < min)) {
279 			expires = next->expires;
280 			min = delta;
281 			type = i;
282 		}
283 	}
284 	if (min == 0)
285 		return 0;
286 
287 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289 		return -EBUSY;
290 	}
291 
292 	trace_alarmtimer_suspend(expires, type);
293 
294 	/* Setup an rtc timer to fire that far in the future */
295 	rtc_timer_cancel(rtc, &rtctimer);
296 	rtc_read_time(rtc, &tm);
297 	now = rtc_tm_to_ktime(tm);
298 	now = ktime_add(now, min);
299 
300 	/* Set alarm, if in the past reject suspend briefly to handle */
301 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302 	if (ret < 0)
303 		__pm_wakeup_event(ws, MSEC_PER_SEC);
304 	return ret;
305 }
306 
307 static int alarmtimer_resume(struct device *dev)
308 {
309 	struct rtc_device *rtc;
310 
311 	rtc = alarmtimer_get_rtcdev();
312 	if (rtc)
313 		rtc_timer_cancel(rtc, &rtctimer);
314 	return 0;
315 }
316 
317 #else
318 static int alarmtimer_suspend(struct device *dev)
319 {
320 	return 0;
321 }
322 
323 static int alarmtimer_resume(struct device *dev)
324 {
325 	return 0;
326 }
327 #endif
328 
329 static void
330 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331 	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332 {
333 	timerqueue_init(&alarm->node);
334 	alarm->timer.function = alarmtimer_fired;
335 	alarm->function = function;
336 	alarm->type = type;
337 	alarm->state = ALARMTIMER_STATE_INACTIVE;
338 }
339 
340 /**
341  * alarm_init - Initialize an alarm structure
342  * @alarm: ptr to alarm to be initialized
343  * @type: the type of the alarm
344  * @function: callback that is run when the alarm fires
345  */
346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348 {
349 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350 		     HRTIMER_MODE_ABS);
351 	__alarm_init(alarm, type, function);
352 }
353 EXPORT_SYMBOL_GPL(alarm_init);
354 
355 /**
356  * alarm_start - Sets an absolute alarm to fire
357  * @alarm: ptr to alarm to set
358  * @start: time to run the alarm
359  */
360 void alarm_start(struct alarm *alarm, ktime_t start)
361 {
362 	struct alarm_base *base = &alarm_bases[alarm->type];
363 	unsigned long flags;
364 
365 	spin_lock_irqsave(&base->lock, flags);
366 	alarm->node.expires = start;
367 	alarmtimer_enqueue(base, alarm);
368 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
369 	spin_unlock_irqrestore(&base->lock, flags);
370 
371 	trace_alarmtimer_start(alarm, base->gettime());
372 }
373 EXPORT_SYMBOL_GPL(alarm_start);
374 
375 /**
376  * alarm_start_relative - Sets a relative alarm to fire
377  * @alarm: ptr to alarm to set
378  * @start: time relative to now to run the alarm
379  */
380 void alarm_start_relative(struct alarm *alarm, ktime_t start)
381 {
382 	struct alarm_base *base = &alarm_bases[alarm->type];
383 
384 	start = ktime_add_safe(start, base->gettime());
385 	alarm_start(alarm, start);
386 }
387 EXPORT_SYMBOL_GPL(alarm_start_relative);
388 
389 void alarm_restart(struct alarm *alarm)
390 {
391 	struct alarm_base *base = &alarm_bases[alarm->type];
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&base->lock, flags);
395 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396 	hrtimer_restart(&alarm->timer);
397 	alarmtimer_enqueue(base, alarm);
398 	spin_unlock_irqrestore(&base->lock, flags);
399 }
400 EXPORT_SYMBOL_GPL(alarm_restart);
401 
402 /**
403  * alarm_try_to_cancel - Tries to cancel an alarm timer
404  * @alarm: ptr to alarm to be canceled
405  *
406  * Returns 1 if the timer was canceled, 0 if it was not running,
407  * and -1 if the callback was running
408  */
409 int alarm_try_to_cancel(struct alarm *alarm)
410 {
411 	struct alarm_base *base = &alarm_bases[alarm->type];
412 	unsigned long flags;
413 	int ret;
414 
415 	spin_lock_irqsave(&base->lock, flags);
416 	ret = hrtimer_try_to_cancel(&alarm->timer);
417 	if (ret >= 0)
418 		alarmtimer_dequeue(base, alarm);
419 	spin_unlock_irqrestore(&base->lock, flags);
420 
421 	trace_alarmtimer_cancel(alarm, base->gettime());
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425 
426 
427 /**
428  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429  * @alarm: ptr to alarm to be canceled
430  *
431  * Returns 1 if the timer was canceled, 0 if it was not active.
432  */
433 int alarm_cancel(struct alarm *alarm)
434 {
435 	for (;;) {
436 		int ret = alarm_try_to_cancel(alarm);
437 		if (ret >= 0)
438 			return ret;
439 		cpu_relax();
440 	}
441 }
442 EXPORT_SYMBOL_GPL(alarm_cancel);
443 
444 
445 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446 {
447 	u64 overrun = 1;
448 	ktime_t delta;
449 
450 	delta = ktime_sub(now, alarm->node.expires);
451 
452 	if (delta < 0)
453 		return 0;
454 
455 	if (unlikely(delta >= interval)) {
456 		s64 incr = ktime_to_ns(interval);
457 
458 		overrun = ktime_divns(delta, incr);
459 
460 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
461 							incr*overrun);
462 
463 		if (alarm->node.expires > now)
464 			return overrun;
465 		/*
466 		 * This (and the ktime_add() below) is the
467 		 * correction for exact:
468 		 */
469 		overrun++;
470 	}
471 
472 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473 	return overrun;
474 }
475 EXPORT_SYMBOL_GPL(alarm_forward);
476 
477 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478 {
479 	struct alarm_base *base = &alarm_bases[alarm->type];
480 
481 	return alarm_forward(alarm, base->gettime(), interval);
482 }
483 EXPORT_SYMBOL_GPL(alarm_forward_now);
484 
485 #ifdef CONFIG_POSIX_TIMERS
486 
487 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488 {
489 	struct alarm_base *base;
490 	unsigned long flags;
491 	ktime_t delta;
492 
493 	switch(type) {
494 	case ALARM_REALTIME:
495 		base = &alarm_bases[ALARM_REALTIME];
496 		type = ALARM_REALTIME_FREEZER;
497 		break;
498 	case ALARM_BOOTTIME:
499 		base = &alarm_bases[ALARM_BOOTTIME];
500 		type = ALARM_BOOTTIME_FREEZER;
501 		break;
502 	default:
503 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504 		return;
505 	}
506 
507 	delta = ktime_sub(absexp, base->gettime());
508 
509 	spin_lock_irqsave(&freezer_delta_lock, flags);
510 	if (!freezer_delta || (delta < freezer_delta)) {
511 		freezer_delta = delta;
512 		freezer_expires = absexp;
513 		freezer_alarmtype = type;
514 	}
515 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
516 }
517 
518 /**
519  * clock2alarm - helper that converts from clockid to alarmtypes
520  * @clockid: clockid.
521  */
522 static enum alarmtimer_type clock2alarm(clockid_t clockid)
523 {
524 	if (clockid == CLOCK_REALTIME_ALARM)
525 		return ALARM_REALTIME;
526 	if (clockid == CLOCK_BOOTTIME_ALARM)
527 		return ALARM_BOOTTIME;
528 	return -1;
529 }
530 
531 /**
532  * alarm_handle_timer - Callback for posix timers
533  * @alarm: alarm that fired
534  *
535  * Posix timer callback for expired alarm timers.
536  */
537 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538 							ktime_t now)
539 {
540 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541 					    it.alarm.alarmtimer);
542 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543 	unsigned long flags;
544 	int si_private = 0;
545 
546 	spin_lock_irqsave(&ptr->it_lock, flags);
547 
548 	ptr->it_active = 0;
549 	if (ptr->it_interval)
550 		si_private = ++ptr->it_requeue_pending;
551 
552 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553 		/*
554 		 * Handle ignored signals and rearm the timer. This will go
555 		 * away once we handle ignored signals proper.
556 		 */
557 		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558 		++ptr->it_requeue_pending;
559 		ptr->it_active = 1;
560 		result = ALARMTIMER_RESTART;
561 	}
562 	spin_unlock_irqrestore(&ptr->it_lock, flags);
563 
564 	return result;
565 }
566 
567 /**
568  * alarm_timer_rearm - Posix timer callback for rearming timer
569  * @timr:	Pointer to the posixtimer data struct
570  */
571 static void alarm_timer_rearm(struct k_itimer *timr)
572 {
573 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
574 
575 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576 	alarm_start(alarm, alarm->node.expires);
577 }
578 
579 /**
580  * alarm_timer_forward - Posix timer callback for forwarding timer
581  * @timr:	Pointer to the posixtimer data struct
582  * @now:	Current time to forward the timer against
583  */
584 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585 {
586 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
587 
588 	return alarm_forward(alarm, timr->it_interval, now);
589 }
590 
591 /**
592  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593  * @timr:	Pointer to the posixtimer data struct
594  * @now:	Current time to calculate against
595  */
596 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597 {
598 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
599 
600 	return ktime_sub(now, alarm->node.expires);
601 }
602 
603 /**
604  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605  * @timr:	Pointer to the posixtimer data struct
606  */
607 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608 {
609 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610 }
611 
612 /**
613  * alarm_timer_arm - Posix timer callback to arm a timer
614  * @timr:	Pointer to the posixtimer data struct
615  * @expires:	The new expiry time
616  * @absolute:	Expiry value is absolute time
617  * @sigev_none:	Posix timer does not deliver signals
618  */
619 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620 			    bool absolute, bool sigev_none)
621 {
622 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
623 	struct alarm_base *base = &alarm_bases[alarm->type];
624 
625 	if (!absolute)
626 		expires = ktime_add_safe(expires, base->gettime());
627 	if (sigev_none)
628 		alarm->node.expires = expires;
629 	else
630 		alarm_start(&timr->it.alarm.alarmtimer, expires);
631 }
632 
633 /**
634  * alarm_clock_getres - posix getres interface
635  * @which_clock: clockid
636  * @tp: timespec to fill
637  *
638  * Returns the granularity of underlying alarm base clock
639  */
640 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641 {
642 	if (!alarmtimer_get_rtcdev())
643 		return -EINVAL;
644 
645 	tp->tv_sec = 0;
646 	tp->tv_nsec = hrtimer_resolution;
647 	return 0;
648 }
649 
650 /**
651  * alarm_clock_get - posix clock_get interface
652  * @which_clock: clockid
653  * @tp: timespec to fill.
654  *
655  * Provides the underlying alarm base time.
656  */
657 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658 {
659 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660 
661 	if (!alarmtimer_get_rtcdev())
662 		return -EINVAL;
663 
664 	*tp = ktime_to_timespec64(base->gettime());
665 	return 0;
666 }
667 
668 /**
669  * alarm_timer_create - posix timer_create interface
670  * @new_timer: k_itimer pointer to manage
671  *
672  * Initializes the k_itimer structure.
673  */
674 static int alarm_timer_create(struct k_itimer *new_timer)
675 {
676 	enum  alarmtimer_type type;
677 
678 	if (!alarmtimer_get_rtcdev())
679 		return -ENOTSUPP;
680 
681 	if (!capable(CAP_WAKE_ALARM))
682 		return -EPERM;
683 
684 	type = clock2alarm(new_timer->it_clock);
685 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686 	return 0;
687 }
688 
689 /**
690  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691  * @alarm: ptr to alarm that fired
692  *
693  * Wakes up the task that set the alarmtimer
694  */
695 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696 								ktime_t now)
697 {
698 	struct task_struct *task = (struct task_struct *)alarm->data;
699 
700 	alarm->data = NULL;
701 	if (task)
702 		wake_up_process(task);
703 	return ALARMTIMER_NORESTART;
704 }
705 
706 /**
707  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708  * @alarm: ptr to alarmtimer
709  * @absexp: absolute expiration time
710  *
711  * Sets the alarm timer and sleeps until it is fired or interrupted.
712  */
713 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714 				enum alarmtimer_type type)
715 {
716 	struct restart_block *restart;
717 	alarm->data = (void *)current;
718 	do {
719 		set_current_state(TASK_INTERRUPTIBLE);
720 		alarm_start(alarm, absexp);
721 		if (likely(alarm->data))
722 			schedule();
723 
724 		alarm_cancel(alarm);
725 	} while (alarm->data && !signal_pending(current));
726 
727 	__set_current_state(TASK_RUNNING);
728 
729 	destroy_hrtimer_on_stack(&alarm->timer);
730 
731 	if (!alarm->data)
732 		return 0;
733 
734 	if (freezing(current))
735 		alarmtimer_freezerset(absexp, type);
736 	restart = &current->restart_block;
737 	if (restart->nanosleep.type != TT_NONE) {
738 		struct timespec64 rmt;
739 		ktime_t rem;
740 
741 		rem = ktime_sub(absexp, alarm_bases[type].gettime());
742 
743 		if (rem <= 0)
744 			return 0;
745 		rmt = ktime_to_timespec64(rem);
746 
747 		return nanosleep_copyout(restart, &rmt);
748 	}
749 	return -ERESTART_RESTARTBLOCK;
750 }
751 
752 static void
753 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754 		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755 {
756 	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757 			      HRTIMER_MODE_ABS);
758 	__alarm_init(alarm, type, function);
759 }
760 
761 /**
762  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763  * @restart: ptr to restart block
764  *
765  * Handles restarted clock_nanosleep calls
766  */
767 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768 {
769 	enum  alarmtimer_type type = restart->nanosleep.clockid;
770 	ktime_t exp = restart->nanosleep.expires;
771 	struct alarm alarm;
772 
773 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
774 
775 	return alarmtimer_do_nsleep(&alarm, exp, type);
776 }
777 
778 /**
779  * alarm_timer_nsleep - alarmtimer nanosleep
780  * @which_clock: clockid
781  * @flags: determins abstime or relative
782  * @tsreq: requested sleep time (abs or rel)
783  * @rmtp: remaining sleep time saved
784  *
785  * Handles clock_nanosleep calls against _ALARM clockids
786  */
787 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788 			      const struct timespec64 *tsreq)
789 {
790 	enum  alarmtimer_type type = clock2alarm(which_clock);
791 	struct restart_block *restart = &current->restart_block;
792 	struct alarm alarm;
793 	ktime_t exp;
794 	int ret = 0;
795 
796 	if (!alarmtimer_get_rtcdev())
797 		return -ENOTSUPP;
798 
799 	if (flags & ~TIMER_ABSTIME)
800 		return -EINVAL;
801 
802 	if (!capable(CAP_WAKE_ALARM))
803 		return -EPERM;
804 
805 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806 
807 	exp = timespec64_to_ktime(*tsreq);
808 	/* Convert (if necessary) to absolute time */
809 	if (flags != TIMER_ABSTIME) {
810 		ktime_t now = alarm_bases[type].gettime();
811 
812 		exp = ktime_add_safe(now, exp);
813 	}
814 
815 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
816 	if (ret != -ERESTART_RESTARTBLOCK)
817 		return ret;
818 
819 	/* abs timers don't set remaining time or restart */
820 	if (flags == TIMER_ABSTIME)
821 		return -ERESTARTNOHAND;
822 
823 	restart->fn = alarm_timer_nsleep_restart;
824 	restart->nanosleep.clockid = type;
825 	restart->nanosleep.expires = exp;
826 	return ret;
827 }
828 
829 const struct k_clock alarm_clock = {
830 	.clock_getres		= alarm_clock_getres,
831 	.clock_get		= alarm_clock_get,
832 	.timer_create		= alarm_timer_create,
833 	.timer_set		= common_timer_set,
834 	.timer_del		= common_timer_del,
835 	.timer_get		= common_timer_get,
836 	.timer_arm		= alarm_timer_arm,
837 	.timer_rearm		= alarm_timer_rearm,
838 	.timer_forward		= alarm_timer_forward,
839 	.timer_remaining	= alarm_timer_remaining,
840 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
841 	.nsleep			= alarm_timer_nsleep,
842 };
843 #endif /* CONFIG_POSIX_TIMERS */
844 
845 
846 /* Suspend hook structures */
847 static const struct dev_pm_ops alarmtimer_pm_ops = {
848 	.suspend = alarmtimer_suspend,
849 	.resume = alarmtimer_resume,
850 };
851 
852 static struct platform_driver alarmtimer_driver = {
853 	.driver = {
854 		.name = "alarmtimer",
855 		.pm = &alarmtimer_pm_ops,
856 	}
857 };
858 
859 /**
860  * alarmtimer_init - Initialize alarm timer code
861  *
862  * This function initializes the alarm bases and registers
863  * the posix clock ids.
864  */
865 static int __init alarmtimer_init(void)
866 {
867 	struct platform_device *pdev;
868 	int error = 0;
869 	int i;
870 
871 	alarmtimer_rtc_timer_init();
872 
873 	/* Initialize alarm bases */
874 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
875 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
876 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
877 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
878 	for (i = 0; i < ALARM_NUMTYPE; i++) {
879 		timerqueue_init_head(&alarm_bases[i].timerqueue);
880 		spin_lock_init(&alarm_bases[i].lock);
881 	}
882 
883 	error = alarmtimer_rtc_interface_setup();
884 	if (error)
885 		return error;
886 
887 	error = platform_driver_register(&alarmtimer_driver);
888 	if (error)
889 		goto out_if;
890 
891 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
892 	if (IS_ERR(pdev)) {
893 		error = PTR_ERR(pdev);
894 		goto out_drv;
895 	}
896 	return 0;
897 
898 out_drv:
899 	platform_driver_unregister(&alarmtimer_driver);
900 out_if:
901 	alarmtimer_rtc_interface_remove();
902 	return error;
903 }
904 device_initcall(alarmtimer_init);
905