xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 82003e04)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @gettime:		Function to read the time correlating to the base
34  * @base_clockid:	clockid for the base
35  */
36 static struct alarm_base {
37 	spinlock_t		lock;
38 	struct timerqueue_head	timerqueue;
39 	ktime_t			(*gettime)(void);
40 	clockid_t		base_clockid;
41 } alarm_bases[ALARM_NUMTYPE];
42 
43 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
44 static ktime_t freezer_delta;
45 static DEFINE_SPINLOCK(freezer_delta_lock);
46 
47 static struct wakeup_source *ws;
48 
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer		rtctimer;
52 static struct rtc_device	*rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54 
55 /**
56  * alarmtimer_get_rtcdev - Return selected rtcdevice
57  *
58  * This function returns the rtc device to use for wakealarms.
59  * If one has not already been chosen, it checks to see if a
60  * functional rtc device is available.
61  */
62 struct rtc_device *alarmtimer_get_rtcdev(void)
63 {
64 	unsigned long flags;
65 	struct rtc_device *ret;
66 
67 	spin_lock_irqsave(&rtcdev_lock, flags);
68 	ret = rtcdev;
69 	spin_unlock_irqrestore(&rtcdev_lock, flags);
70 
71 	return ret;
72 }
73 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
74 
75 static int alarmtimer_rtc_add_device(struct device *dev,
76 				struct class_interface *class_intf)
77 {
78 	unsigned long flags;
79 	struct rtc_device *rtc = to_rtc_device(dev);
80 
81 	if (rtcdev)
82 		return -EBUSY;
83 
84 	if (!rtc->ops->set_alarm)
85 		return -1;
86 	if (!device_may_wakeup(rtc->dev.parent))
87 		return -1;
88 
89 	spin_lock_irqsave(&rtcdev_lock, flags);
90 	if (!rtcdev) {
91 		rtcdev = rtc;
92 		/* hold a reference so it doesn't go away */
93 		get_device(dev);
94 	}
95 	spin_unlock_irqrestore(&rtcdev_lock, flags);
96 	return 0;
97 }
98 
99 static inline void alarmtimer_rtc_timer_init(void)
100 {
101 	rtc_timer_init(&rtctimer, NULL, NULL);
102 }
103 
104 static struct class_interface alarmtimer_rtc_interface = {
105 	.add_dev = &alarmtimer_rtc_add_device,
106 };
107 
108 static int alarmtimer_rtc_interface_setup(void)
109 {
110 	alarmtimer_rtc_interface.class = rtc_class;
111 	return class_interface_register(&alarmtimer_rtc_interface);
112 }
113 static void alarmtimer_rtc_interface_remove(void)
114 {
115 	class_interface_unregister(&alarmtimer_rtc_interface);
116 }
117 #else
118 struct rtc_device *alarmtimer_get_rtcdev(void)
119 {
120 	return NULL;
121 }
122 #define rtcdev (NULL)
123 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124 static inline void alarmtimer_rtc_interface_remove(void) { }
125 static inline void alarmtimer_rtc_timer_init(void) { }
126 #endif
127 
128 /**
129  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130  * @base: pointer to the base where the timer is being run
131  * @alarm: pointer to alarm being enqueued.
132  *
133  * Adds alarm to a alarm_base timerqueue
134  *
135  * Must hold base->lock when calling.
136  */
137 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
138 {
139 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
140 		timerqueue_del(&base->timerqueue, &alarm->node);
141 
142 	timerqueue_add(&base->timerqueue, &alarm->node);
143 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
144 }
145 
146 /**
147  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
148  * @base: pointer to the base where the timer is running
149  * @alarm: pointer to alarm being removed
150  *
151  * Removes alarm to a alarm_base timerqueue
152  *
153  * Must hold base->lock when calling.
154  */
155 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
156 {
157 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
158 		return;
159 
160 	timerqueue_del(&base->timerqueue, &alarm->node);
161 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
162 }
163 
164 
165 /**
166  * alarmtimer_fired - Handles alarm hrtimer being fired.
167  * @timer: pointer to hrtimer being run
168  *
169  * When a alarm timer fires, this runs through the timerqueue to
170  * see which alarms expired, and runs those. If there are more alarm
171  * timers queued for the future, we set the hrtimer to fire when
172  * when the next future alarm timer expires.
173  */
174 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
175 {
176 	struct alarm *alarm = container_of(timer, struct alarm, timer);
177 	struct alarm_base *base = &alarm_bases[alarm->type];
178 	unsigned long flags;
179 	int ret = HRTIMER_NORESTART;
180 	int restart = ALARMTIMER_NORESTART;
181 
182 	spin_lock_irqsave(&base->lock, flags);
183 	alarmtimer_dequeue(base, alarm);
184 	spin_unlock_irqrestore(&base->lock, flags);
185 
186 	if (alarm->function)
187 		restart = alarm->function(alarm, base->gettime());
188 
189 	spin_lock_irqsave(&base->lock, flags);
190 	if (restart != ALARMTIMER_NORESTART) {
191 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
192 		alarmtimer_enqueue(base, alarm);
193 		ret = HRTIMER_RESTART;
194 	}
195 	spin_unlock_irqrestore(&base->lock, flags);
196 
197 	return ret;
198 
199 }
200 
201 ktime_t alarm_expires_remaining(const struct alarm *alarm)
202 {
203 	struct alarm_base *base = &alarm_bases[alarm->type];
204 	return ktime_sub(alarm->node.expires, base->gettime());
205 }
206 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
207 
208 #ifdef CONFIG_RTC_CLASS
209 /**
210  * alarmtimer_suspend - Suspend time callback
211  * @dev: unused
212  * @state: unused
213  *
214  * When we are going into suspend, we look through the bases
215  * to see which is the soonest timer to expire. We then
216  * set an rtc timer to fire that far into the future, which
217  * will wake us from suspend.
218  */
219 static int alarmtimer_suspend(struct device *dev)
220 {
221 	struct rtc_time tm;
222 	ktime_t min, now;
223 	unsigned long flags;
224 	struct rtc_device *rtc;
225 	int i;
226 	int ret;
227 
228 	spin_lock_irqsave(&freezer_delta_lock, flags);
229 	min = freezer_delta;
230 	freezer_delta = ktime_set(0, 0);
231 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
232 
233 	rtc = alarmtimer_get_rtcdev();
234 	/* If we have no rtcdev, just return */
235 	if (!rtc)
236 		return 0;
237 
238 	/* Find the soonest timer to expire*/
239 	for (i = 0; i < ALARM_NUMTYPE; i++) {
240 		struct alarm_base *base = &alarm_bases[i];
241 		struct timerqueue_node *next;
242 		ktime_t delta;
243 
244 		spin_lock_irqsave(&base->lock, flags);
245 		next = timerqueue_getnext(&base->timerqueue);
246 		spin_unlock_irqrestore(&base->lock, flags);
247 		if (!next)
248 			continue;
249 		delta = ktime_sub(next->expires, base->gettime());
250 		if (!min.tv64 || (delta.tv64 < min.tv64))
251 			min = delta;
252 	}
253 	if (min.tv64 == 0)
254 		return 0;
255 
256 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
257 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
258 		return -EBUSY;
259 	}
260 
261 	/* Setup an rtc timer to fire that far in the future */
262 	rtc_timer_cancel(rtc, &rtctimer);
263 	rtc_read_time(rtc, &tm);
264 	now = rtc_tm_to_ktime(tm);
265 	now = ktime_add(now, min);
266 
267 	/* Set alarm, if in the past reject suspend briefly to handle */
268 	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
269 	if (ret < 0)
270 		__pm_wakeup_event(ws, MSEC_PER_SEC);
271 	return ret;
272 }
273 
274 static int alarmtimer_resume(struct device *dev)
275 {
276 	struct rtc_device *rtc;
277 
278 	rtc = alarmtimer_get_rtcdev();
279 	if (rtc)
280 		rtc_timer_cancel(rtc, &rtctimer);
281 	return 0;
282 }
283 
284 #else
285 static int alarmtimer_suspend(struct device *dev)
286 {
287 	return 0;
288 }
289 
290 static int alarmtimer_resume(struct device *dev)
291 {
292 	return 0;
293 }
294 #endif
295 
296 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
297 {
298 	ktime_t delta;
299 	unsigned long flags;
300 	struct alarm_base *base = &alarm_bases[type];
301 
302 	delta = ktime_sub(absexp, base->gettime());
303 
304 	spin_lock_irqsave(&freezer_delta_lock, flags);
305 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
306 		freezer_delta = delta;
307 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
308 }
309 
310 
311 /**
312  * alarm_init - Initialize an alarm structure
313  * @alarm: ptr to alarm to be initialized
314  * @type: the type of the alarm
315  * @function: callback that is run when the alarm fires
316  */
317 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
318 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
319 {
320 	timerqueue_init(&alarm->node);
321 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
322 			HRTIMER_MODE_ABS);
323 	alarm->timer.function = alarmtimer_fired;
324 	alarm->function = function;
325 	alarm->type = type;
326 	alarm->state = ALARMTIMER_STATE_INACTIVE;
327 }
328 EXPORT_SYMBOL_GPL(alarm_init);
329 
330 /**
331  * alarm_start - Sets an absolute alarm to fire
332  * @alarm: ptr to alarm to set
333  * @start: time to run the alarm
334  */
335 void alarm_start(struct alarm *alarm, ktime_t start)
336 {
337 	struct alarm_base *base = &alarm_bases[alarm->type];
338 	unsigned long flags;
339 
340 	spin_lock_irqsave(&base->lock, flags);
341 	alarm->node.expires = start;
342 	alarmtimer_enqueue(base, alarm);
343 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
344 	spin_unlock_irqrestore(&base->lock, flags);
345 }
346 EXPORT_SYMBOL_GPL(alarm_start);
347 
348 /**
349  * alarm_start_relative - Sets a relative alarm to fire
350  * @alarm: ptr to alarm to set
351  * @start: time relative to now to run the alarm
352  */
353 void alarm_start_relative(struct alarm *alarm, ktime_t start)
354 {
355 	struct alarm_base *base = &alarm_bases[alarm->type];
356 
357 	start = ktime_add(start, base->gettime());
358 	alarm_start(alarm, start);
359 }
360 EXPORT_SYMBOL_GPL(alarm_start_relative);
361 
362 void alarm_restart(struct alarm *alarm)
363 {
364 	struct alarm_base *base = &alarm_bases[alarm->type];
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&base->lock, flags);
368 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
369 	hrtimer_restart(&alarm->timer);
370 	alarmtimer_enqueue(base, alarm);
371 	spin_unlock_irqrestore(&base->lock, flags);
372 }
373 EXPORT_SYMBOL_GPL(alarm_restart);
374 
375 /**
376  * alarm_try_to_cancel - Tries to cancel an alarm timer
377  * @alarm: ptr to alarm to be canceled
378  *
379  * Returns 1 if the timer was canceled, 0 if it was not running,
380  * and -1 if the callback was running
381  */
382 int alarm_try_to_cancel(struct alarm *alarm)
383 {
384 	struct alarm_base *base = &alarm_bases[alarm->type];
385 	unsigned long flags;
386 	int ret;
387 
388 	spin_lock_irqsave(&base->lock, flags);
389 	ret = hrtimer_try_to_cancel(&alarm->timer);
390 	if (ret >= 0)
391 		alarmtimer_dequeue(base, alarm);
392 	spin_unlock_irqrestore(&base->lock, flags);
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
396 
397 
398 /**
399  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not active.
403  */
404 int alarm_cancel(struct alarm *alarm)
405 {
406 	for (;;) {
407 		int ret = alarm_try_to_cancel(alarm);
408 		if (ret >= 0)
409 			return ret;
410 		cpu_relax();
411 	}
412 }
413 EXPORT_SYMBOL_GPL(alarm_cancel);
414 
415 
416 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
417 {
418 	u64 overrun = 1;
419 	ktime_t delta;
420 
421 	delta = ktime_sub(now, alarm->node.expires);
422 
423 	if (delta.tv64 < 0)
424 		return 0;
425 
426 	if (unlikely(delta.tv64 >= interval.tv64)) {
427 		s64 incr = ktime_to_ns(interval);
428 
429 		overrun = ktime_divns(delta, incr);
430 
431 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
432 							incr*overrun);
433 
434 		if (alarm->node.expires.tv64 > now.tv64)
435 			return overrun;
436 		/*
437 		 * This (and the ktime_add() below) is the
438 		 * correction for exact:
439 		 */
440 		overrun++;
441 	}
442 
443 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
444 	return overrun;
445 }
446 EXPORT_SYMBOL_GPL(alarm_forward);
447 
448 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
449 {
450 	struct alarm_base *base = &alarm_bases[alarm->type];
451 
452 	return alarm_forward(alarm, base->gettime(), interval);
453 }
454 EXPORT_SYMBOL_GPL(alarm_forward_now);
455 
456 
457 /**
458  * clock2alarm - helper that converts from clockid to alarmtypes
459  * @clockid: clockid.
460  */
461 static enum alarmtimer_type clock2alarm(clockid_t clockid)
462 {
463 	if (clockid == CLOCK_REALTIME_ALARM)
464 		return ALARM_REALTIME;
465 	if (clockid == CLOCK_BOOTTIME_ALARM)
466 		return ALARM_BOOTTIME;
467 	return -1;
468 }
469 
470 /**
471  * alarm_handle_timer - Callback for posix timers
472  * @alarm: alarm that fired
473  *
474  * Posix timer callback for expired alarm timers.
475  */
476 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
477 							ktime_t now)
478 {
479 	unsigned long flags;
480 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
481 						it.alarm.alarmtimer);
482 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
483 
484 	spin_lock_irqsave(&ptr->it_lock, flags);
485 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
486 		if (posix_timer_event(ptr, 0) != 0)
487 			ptr->it_overrun++;
488 	}
489 
490 	/* Re-add periodic timers */
491 	if (ptr->it.alarm.interval.tv64) {
492 		ptr->it_overrun += alarm_forward(alarm, now,
493 						ptr->it.alarm.interval);
494 		result = ALARMTIMER_RESTART;
495 	}
496 	spin_unlock_irqrestore(&ptr->it_lock, flags);
497 
498 	return result;
499 }
500 
501 /**
502  * alarm_clock_getres - posix getres interface
503  * @which_clock: clockid
504  * @tp: timespec to fill
505  *
506  * Returns the granularity of underlying alarm base clock
507  */
508 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
509 {
510 	if (!alarmtimer_get_rtcdev())
511 		return -EINVAL;
512 
513 	tp->tv_sec = 0;
514 	tp->tv_nsec = hrtimer_resolution;
515 	return 0;
516 }
517 
518 /**
519  * alarm_clock_get - posix clock_get interface
520  * @which_clock: clockid
521  * @tp: timespec to fill.
522  *
523  * Provides the underlying alarm base time.
524  */
525 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
526 {
527 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
528 
529 	if (!alarmtimer_get_rtcdev())
530 		return -EINVAL;
531 
532 	*tp = ktime_to_timespec(base->gettime());
533 	return 0;
534 }
535 
536 /**
537  * alarm_timer_create - posix timer_create interface
538  * @new_timer: k_itimer pointer to manage
539  *
540  * Initializes the k_itimer structure.
541  */
542 static int alarm_timer_create(struct k_itimer *new_timer)
543 {
544 	enum  alarmtimer_type type;
545 
546 	if (!alarmtimer_get_rtcdev())
547 		return -ENOTSUPP;
548 
549 	if (!capable(CAP_WAKE_ALARM))
550 		return -EPERM;
551 
552 	type = clock2alarm(new_timer->it_clock);
553 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
554 	return 0;
555 }
556 
557 /**
558  * alarm_timer_get - posix timer_get interface
559  * @new_timer: k_itimer pointer
560  * @cur_setting: itimerspec data to fill
561  *
562  * Copies out the current itimerspec data
563  */
564 static void alarm_timer_get(struct k_itimer *timr,
565 				struct itimerspec *cur_setting)
566 {
567 	ktime_t relative_expiry_time =
568 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
569 
570 	if (ktime_to_ns(relative_expiry_time) > 0) {
571 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
572 	} else {
573 		cur_setting->it_value.tv_sec = 0;
574 		cur_setting->it_value.tv_nsec = 0;
575 	}
576 
577 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
578 }
579 
580 /**
581  * alarm_timer_del - posix timer_del interface
582  * @timr: k_itimer pointer to be deleted
583  *
584  * Cancels any programmed alarms for the given timer.
585  */
586 static int alarm_timer_del(struct k_itimer *timr)
587 {
588 	if (!rtcdev)
589 		return -ENOTSUPP;
590 
591 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
592 		return TIMER_RETRY;
593 
594 	return 0;
595 }
596 
597 /**
598  * alarm_timer_set - posix timer_set interface
599  * @timr: k_itimer pointer to be deleted
600  * @flags: timer flags
601  * @new_setting: itimerspec to be used
602  * @old_setting: itimerspec being replaced
603  *
604  * Sets the timer to new_setting, and starts the timer.
605  */
606 static int alarm_timer_set(struct k_itimer *timr, int flags,
607 				struct itimerspec *new_setting,
608 				struct itimerspec *old_setting)
609 {
610 	ktime_t exp;
611 
612 	if (!rtcdev)
613 		return -ENOTSUPP;
614 
615 	if (flags & ~TIMER_ABSTIME)
616 		return -EINVAL;
617 
618 	if (old_setting)
619 		alarm_timer_get(timr, old_setting);
620 
621 	/* If the timer was already set, cancel it */
622 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
623 		return TIMER_RETRY;
624 
625 	/* start the timer */
626 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
627 	exp = timespec_to_ktime(new_setting->it_value);
628 	/* Convert (if necessary) to absolute time */
629 	if (flags != TIMER_ABSTIME) {
630 		ktime_t now;
631 
632 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
633 		exp = ktime_add(now, exp);
634 	}
635 
636 	alarm_start(&timr->it.alarm.alarmtimer, exp);
637 	return 0;
638 }
639 
640 /**
641  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
642  * @alarm: ptr to alarm that fired
643  *
644  * Wakes up the task that set the alarmtimer
645  */
646 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
647 								ktime_t now)
648 {
649 	struct task_struct *task = (struct task_struct *)alarm->data;
650 
651 	alarm->data = NULL;
652 	if (task)
653 		wake_up_process(task);
654 	return ALARMTIMER_NORESTART;
655 }
656 
657 /**
658  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
659  * @alarm: ptr to alarmtimer
660  * @absexp: absolute expiration time
661  *
662  * Sets the alarm timer and sleeps until it is fired or interrupted.
663  */
664 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
665 {
666 	alarm->data = (void *)current;
667 	do {
668 		set_current_state(TASK_INTERRUPTIBLE);
669 		alarm_start(alarm, absexp);
670 		if (likely(alarm->data))
671 			schedule();
672 
673 		alarm_cancel(alarm);
674 	} while (alarm->data && !signal_pending(current));
675 
676 	__set_current_state(TASK_RUNNING);
677 
678 	return (alarm->data == NULL);
679 }
680 
681 
682 /**
683  * update_rmtp - Update remaining timespec value
684  * @exp: expiration time
685  * @type: timer type
686  * @rmtp: user pointer to remaining timepsec value
687  *
688  * Helper function that fills in rmtp value with time between
689  * now and the exp value
690  */
691 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
692 			struct timespec __user *rmtp)
693 {
694 	struct timespec rmt;
695 	ktime_t rem;
696 
697 	rem = ktime_sub(exp, alarm_bases[type].gettime());
698 
699 	if (rem.tv64 <= 0)
700 		return 0;
701 	rmt = ktime_to_timespec(rem);
702 
703 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
704 		return -EFAULT;
705 
706 	return 1;
707 
708 }
709 
710 /**
711  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
712  * @restart: ptr to restart block
713  *
714  * Handles restarted clock_nanosleep calls
715  */
716 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
717 {
718 	enum  alarmtimer_type type = restart->nanosleep.clockid;
719 	ktime_t exp;
720 	struct timespec __user  *rmtp;
721 	struct alarm alarm;
722 	int ret = 0;
723 
724 	exp.tv64 = restart->nanosleep.expires;
725 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
726 
727 	if (alarmtimer_do_nsleep(&alarm, exp))
728 		goto out;
729 
730 	if (freezing(current))
731 		alarmtimer_freezerset(exp, type);
732 
733 	rmtp = restart->nanosleep.rmtp;
734 	if (rmtp) {
735 		ret = update_rmtp(exp, type, rmtp);
736 		if (ret <= 0)
737 			goto out;
738 	}
739 
740 
741 	/* The other values in restart are already filled in */
742 	ret = -ERESTART_RESTARTBLOCK;
743 out:
744 	return ret;
745 }
746 
747 /**
748  * alarm_timer_nsleep - alarmtimer nanosleep
749  * @which_clock: clockid
750  * @flags: determins abstime or relative
751  * @tsreq: requested sleep time (abs or rel)
752  * @rmtp: remaining sleep time saved
753  *
754  * Handles clock_nanosleep calls against _ALARM clockids
755  */
756 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
757 		     struct timespec *tsreq, struct timespec __user *rmtp)
758 {
759 	enum  alarmtimer_type type = clock2alarm(which_clock);
760 	struct alarm alarm;
761 	ktime_t exp;
762 	int ret = 0;
763 	struct restart_block *restart;
764 
765 	if (!alarmtimer_get_rtcdev())
766 		return -ENOTSUPP;
767 
768 	if (flags & ~TIMER_ABSTIME)
769 		return -EINVAL;
770 
771 	if (!capable(CAP_WAKE_ALARM))
772 		return -EPERM;
773 
774 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
775 
776 	exp = timespec_to_ktime(*tsreq);
777 	/* Convert (if necessary) to absolute time */
778 	if (flags != TIMER_ABSTIME) {
779 		ktime_t now = alarm_bases[type].gettime();
780 		exp = ktime_add(now, exp);
781 	}
782 
783 	if (alarmtimer_do_nsleep(&alarm, exp))
784 		goto out;
785 
786 	if (freezing(current))
787 		alarmtimer_freezerset(exp, type);
788 
789 	/* abs timers don't set remaining time or restart */
790 	if (flags == TIMER_ABSTIME) {
791 		ret = -ERESTARTNOHAND;
792 		goto out;
793 	}
794 
795 	if (rmtp) {
796 		ret = update_rmtp(exp, type, rmtp);
797 		if (ret <= 0)
798 			goto out;
799 	}
800 
801 	restart = &current->restart_block;
802 	restart->fn = alarm_timer_nsleep_restart;
803 	restart->nanosleep.clockid = type;
804 	restart->nanosleep.expires = exp.tv64;
805 	restart->nanosleep.rmtp = rmtp;
806 	ret = -ERESTART_RESTARTBLOCK;
807 
808 out:
809 	return ret;
810 }
811 
812 
813 /* Suspend hook structures */
814 static const struct dev_pm_ops alarmtimer_pm_ops = {
815 	.suspend = alarmtimer_suspend,
816 	.resume = alarmtimer_resume,
817 };
818 
819 static struct platform_driver alarmtimer_driver = {
820 	.driver = {
821 		.name = "alarmtimer",
822 		.pm = &alarmtimer_pm_ops,
823 	}
824 };
825 
826 /**
827  * alarmtimer_init - Initialize alarm timer code
828  *
829  * This function initializes the alarm bases and registers
830  * the posix clock ids.
831  */
832 static int __init alarmtimer_init(void)
833 {
834 	struct platform_device *pdev;
835 	int error = 0;
836 	int i;
837 	struct k_clock alarm_clock = {
838 		.clock_getres	= alarm_clock_getres,
839 		.clock_get	= alarm_clock_get,
840 		.timer_create	= alarm_timer_create,
841 		.timer_set	= alarm_timer_set,
842 		.timer_del	= alarm_timer_del,
843 		.timer_get	= alarm_timer_get,
844 		.nsleep		= alarm_timer_nsleep,
845 	};
846 
847 	alarmtimer_rtc_timer_init();
848 
849 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
850 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
851 
852 	/* Initialize alarm bases */
853 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
854 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
855 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
856 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
857 	for (i = 0; i < ALARM_NUMTYPE; i++) {
858 		timerqueue_init_head(&alarm_bases[i].timerqueue);
859 		spin_lock_init(&alarm_bases[i].lock);
860 	}
861 
862 	error = alarmtimer_rtc_interface_setup();
863 	if (error)
864 		return error;
865 
866 	error = platform_driver_register(&alarmtimer_driver);
867 	if (error)
868 		goto out_if;
869 
870 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
871 	if (IS_ERR(pdev)) {
872 		error = PTR_ERR(pdev);
873 		goto out_drv;
874 	}
875 	ws = wakeup_source_register("alarmtimer");
876 	return 0;
877 
878 out_drv:
879 	platform_driver_unregister(&alarmtimer_driver);
880 out_if:
881 	alarmtimer_rtc_interface_remove();
882 	return error;
883 }
884 device_initcall(alarmtimer_init);
885