xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 615c36f5)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @timer: 		hrtimer used to schedule events while running
34  * @gettime:		Function to read the time correlating to the base
35  * @base_clockid:	clockid for the base
36  */
37 static struct alarm_base {
38 	spinlock_t		lock;
39 	struct timerqueue_head	timerqueue;
40 	struct hrtimer		timer;
41 	ktime_t			(*gettime)(void);
42 	clockid_t		base_clockid;
43 } alarm_bases[ALARM_NUMTYPE];
44 
45 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
46 static ktime_t freezer_delta;
47 static DEFINE_SPINLOCK(freezer_delta_lock);
48 
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer		rtctimer;
52 static struct rtc_device	*rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54 
55 /**
56  * alarmtimer_get_rtcdev - Return selected rtcdevice
57  *
58  * This function returns the rtc device to use for wakealarms.
59  * If one has not already been chosen, it checks to see if a
60  * functional rtc device is available.
61  */
62 static struct rtc_device *alarmtimer_get_rtcdev(void)
63 {
64 	unsigned long flags;
65 	struct rtc_device *ret;
66 
67 	spin_lock_irqsave(&rtcdev_lock, flags);
68 	ret = rtcdev;
69 	spin_unlock_irqrestore(&rtcdev_lock, flags);
70 
71 	return ret;
72 }
73 
74 
75 static int alarmtimer_rtc_add_device(struct device *dev,
76 				struct class_interface *class_intf)
77 {
78 	unsigned long flags;
79 	struct rtc_device *rtc = to_rtc_device(dev);
80 
81 	if (rtcdev)
82 		return -EBUSY;
83 
84 	if (!rtc->ops->set_alarm)
85 		return -1;
86 	if (!device_may_wakeup(rtc->dev.parent))
87 		return -1;
88 
89 	spin_lock_irqsave(&rtcdev_lock, flags);
90 	if (!rtcdev) {
91 		rtcdev = rtc;
92 		/* hold a reference so it doesn't go away */
93 		get_device(dev);
94 	}
95 	spin_unlock_irqrestore(&rtcdev_lock, flags);
96 	return 0;
97 }
98 
99 static struct class_interface alarmtimer_rtc_interface = {
100 	.add_dev = &alarmtimer_rtc_add_device,
101 };
102 
103 static int alarmtimer_rtc_interface_setup(void)
104 {
105 	alarmtimer_rtc_interface.class = rtc_class;
106 	return class_interface_register(&alarmtimer_rtc_interface);
107 }
108 static void alarmtimer_rtc_interface_remove(void)
109 {
110 	class_interface_unregister(&alarmtimer_rtc_interface);
111 }
112 #else
113 static inline struct rtc_device *alarmtimer_get_rtcdev(void)
114 {
115 	return NULL;
116 }
117 #define rtcdev (NULL)
118 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
119 static inline void alarmtimer_rtc_interface_remove(void) { }
120 #endif
121 
122 /**
123  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
124  * @base: pointer to the base where the timer is being run
125  * @alarm: pointer to alarm being enqueued.
126  *
127  * Adds alarm to a alarm_base timerqueue and if necessary sets
128  * an hrtimer to run.
129  *
130  * Must hold base->lock when calling.
131  */
132 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
133 {
134 	timerqueue_add(&base->timerqueue, &alarm->node);
135 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
136 
137 	if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
138 		hrtimer_try_to_cancel(&base->timer);
139 		hrtimer_start(&base->timer, alarm->node.expires,
140 				HRTIMER_MODE_ABS);
141 	}
142 }
143 
144 /**
145  * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
146  * @base: pointer to the base where the timer is running
147  * @alarm: pointer to alarm being removed
148  *
149  * Removes alarm to a alarm_base timerqueue and if necessary sets
150  * a new timer to run.
151  *
152  * Must hold base->lock when calling.
153  */
154 static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
155 {
156 	struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
157 
158 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 		return;
160 
161 	timerqueue_del(&base->timerqueue, &alarm->node);
162 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 
164 	if (next == &alarm->node) {
165 		hrtimer_try_to_cancel(&base->timer);
166 		next = timerqueue_getnext(&base->timerqueue);
167 		if (!next)
168 			return;
169 		hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
170 	}
171 }
172 
173 
174 /**
175  * alarmtimer_fired - Handles alarm hrtimer being fired.
176  * @timer: pointer to hrtimer being run
177  *
178  * When a alarm timer fires, this runs through the timerqueue to
179  * see which alarms expired, and runs those. If there are more alarm
180  * timers queued for the future, we set the hrtimer to fire when
181  * when the next future alarm timer expires.
182  */
183 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
184 {
185 	struct alarm_base *base = container_of(timer, struct alarm_base, timer);
186 	struct timerqueue_node *next;
187 	unsigned long flags;
188 	ktime_t now;
189 	int ret = HRTIMER_NORESTART;
190 	int restart = ALARMTIMER_NORESTART;
191 
192 	spin_lock_irqsave(&base->lock, flags);
193 	now = base->gettime();
194 	while ((next = timerqueue_getnext(&base->timerqueue))) {
195 		struct alarm *alarm;
196 		ktime_t expired = next->expires;
197 
198 		if (expired.tv64 >= now.tv64)
199 			break;
200 
201 		alarm = container_of(next, struct alarm, node);
202 
203 		timerqueue_del(&base->timerqueue, &alarm->node);
204 		alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
205 
206 		alarm->state |= ALARMTIMER_STATE_CALLBACK;
207 		spin_unlock_irqrestore(&base->lock, flags);
208 		if (alarm->function)
209 			restart = alarm->function(alarm, now);
210 		spin_lock_irqsave(&base->lock, flags);
211 		alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
212 
213 		if (restart != ALARMTIMER_NORESTART) {
214 			timerqueue_add(&base->timerqueue, &alarm->node);
215 			alarm->state |= ALARMTIMER_STATE_ENQUEUED;
216 		}
217 	}
218 
219 	if (next) {
220 		hrtimer_set_expires(&base->timer, next->expires);
221 		ret = HRTIMER_RESTART;
222 	}
223 	spin_unlock_irqrestore(&base->lock, flags);
224 
225 	return ret;
226 
227 }
228 
229 #ifdef CONFIG_RTC_CLASS
230 /**
231  * alarmtimer_suspend - Suspend time callback
232  * @dev: unused
233  * @state: unused
234  *
235  * When we are going into suspend, we look through the bases
236  * to see which is the soonest timer to expire. We then
237  * set an rtc timer to fire that far into the future, which
238  * will wake us from suspend.
239  */
240 static int alarmtimer_suspend(struct device *dev)
241 {
242 	struct rtc_time tm;
243 	ktime_t min, now;
244 	unsigned long flags;
245 	struct rtc_device *rtc;
246 	int i;
247 
248 	spin_lock_irqsave(&freezer_delta_lock, flags);
249 	min = freezer_delta;
250 	freezer_delta = ktime_set(0, 0);
251 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
252 
253 	rtc = alarmtimer_get_rtcdev();
254 	/* If we have no rtcdev, just return */
255 	if (!rtc)
256 		return 0;
257 
258 	/* Find the soonest timer to expire*/
259 	for (i = 0; i < ALARM_NUMTYPE; i++) {
260 		struct alarm_base *base = &alarm_bases[i];
261 		struct timerqueue_node *next;
262 		ktime_t delta;
263 
264 		spin_lock_irqsave(&base->lock, flags);
265 		next = timerqueue_getnext(&base->timerqueue);
266 		spin_unlock_irqrestore(&base->lock, flags);
267 		if (!next)
268 			continue;
269 		delta = ktime_sub(next->expires, base->gettime());
270 		if (!min.tv64 || (delta.tv64 < min.tv64))
271 			min = delta;
272 	}
273 	if (min.tv64 == 0)
274 		return 0;
275 
276 	/* XXX - Should we enforce a minimum sleep time? */
277 	WARN_ON(min.tv64 < NSEC_PER_SEC);
278 
279 	/* Setup an rtc timer to fire that far in the future */
280 	rtc_timer_cancel(rtc, &rtctimer);
281 	rtc_read_time(rtc, &tm);
282 	now = rtc_tm_to_ktime(tm);
283 	now = ktime_add(now, min);
284 
285 	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
286 
287 	return 0;
288 }
289 #else
290 static int alarmtimer_suspend(struct device *dev)
291 {
292 	return 0;
293 }
294 #endif
295 
296 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
297 {
298 	ktime_t delta;
299 	unsigned long flags;
300 	struct alarm_base *base = &alarm_bases[type];
301 
302 	delta = ktime_sub(absexp, base->gettime());
303 
304 	spin_lock_irqsave(&freezer_delta_lock, flags);
305 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
306 		freezer_delta = delta;
307 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
308 }
309 
310 
311 /**
312  * alarm_init - Initialize an alarm structure
313  * @alarm: ptr to alarm to be initialized
314  * @type: the type of the alarm
315  * @function: callback that is run when the alarm fires
316  */
317 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
318 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
319 {
320 	timerqueue_init(&alarm->node);
321 	alarm->function = function;
322 	alarm->type = type;
323 	alarm->state = ALARMTIMER_STATE_INACTIVE;
324 }
325 
326 /**
327  * alarm_start - Sets an alarm to fire
328  * @alarm: ptr to alarm to set
329  * @start: time to run the alarm
330  */
331 void alarm_start(struct alarm *alarm, ktime_t start)
332 {
333 	struct alarm_base *base = &alarm_bases[alarm->type];
334 	unsigned long flags;
335 
336 	spin_lock_irqsave(&base->lock, flags);
337 	if (alarmtimer_active(alarm))
338 		alarmtimer_remove(base, alarm);
339 	alarm->node.expires = start;
340 	alarmtimer_enqueue(base, alarm);
341 	spin_unlock_irqrestore(&base->lock, flags);
342 }
343 
344 /**
345  * alarm_try_to_cancel - Tries to cancel an alarm timer
346  * @alarm: ptr to alarm to be canceled
347  *
348  * Returns 1 if the timer was canceled, 0 if it was not running,
349  * and -1 if the callback was running
350  */
351 int alarm_try_to_cancel(struct alarm *alarm)
352 {
353 	struct alarm_base *base = &alarm_bases[alarm->type];
354 	unsigned long flags;
355 	int ret = -1;
356 	spin_lock_irqsave(&base->lock, flags);
357 
358 	if (alarmtimer_callback_running(alarm))
359 		goto out;
360 
361 	if (alarmtimer_is_queued(alarm)) {
362 		alarmtimer_remove(base, alarm);
363 		ret = 1;
364 	} else
365 		ret = 0;
366 out:
367 	spin_unlock_irqrestore(&base->lock, flags);
368 	return ret;
369 }
370 
371 
372 /**
373  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
374  * @alarm: ptr to alarm to be canceled
375  *
376  * Returns 1 if the timer was canceled, 0 if it was not active.
377  */
378 int alarm_cancel(struct alarm *alarm)
379 {
380 	for (;;) {
381 		int ret = alarm_try_to_cancel(alarm);
382 		if (ret >= 0)
383 			return ret;
384 		cpu_relax();
385 	}
386 }
387 
388 
389 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
390 {
391 	u64 overrun = 1;
392 	ktime_t delta;
393 
394 	delta = ktime_sub(now, alarm->node.expires);
395 
396 	if (delta.tv64 < 0)
397 		return 0;
398 
399 	if (unlikely(delta.tv64 >= interval.tv64)) {
400 		s64 incr = ktime_to_ns(interval);
401 
402 		overrun = ktime_divns(delta, incr);
403 
404 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
405 							incr*overrun);
406 
407 		if (alarm->node.expires.tv64 > now.tv64)
408 			return overrun;
409 		/*
410 		 * This (and the ktime_add() below) is the
411 		 * correction for exact:
412 		 */
413 		overrun++;
414 	}
415 
416 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
417 	return overrun;
418 }
419 
420 
421 
422 
423 /**
424  * clock2alarm - helper that converts from clockid to alarmtypes
425  * @clockid: clockid.
426  */
427 static enum alarmtimer_type clock2alarm(clockid_t clockid)
428 {
429 	if (clockid == CLOCK_REALTIME_ALARM)
430 		return ALARM_REALTIME;
431 	if (clockid == CLOCK_BOOTTIME_ALARM)
432 		return ALARM_BOOTTIME;
433 	return -1;
434 }
435 
436 /**
437  * alarm_handle_timer - Callback for posix timers
438  * @alarm: alarm that fired
439  *
440  * Posix timer callback for expired alarm timers.
441  */
442 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
443 							ktime_t now)
444 {
445 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
446 						it.alarm.alarmtimer);
447 	if (posix_timer_event(ptr, 0) != 0)
448 		ptr->it_overrun++;
449 
450 	/* Re-add periodic timers */
451 	if (ptr->it.alarm.interval.tv64) {
452 		ptr->it_overrun += alarm_forward(alarm, now,
453 						ptr->it.alarm.interval);
454 		return ALARMTIMER_RESTART;
455 	}
456 	return ALARMTIMER_NORESTART;
457 }
458 
459 /**
460  * alarm_clock_getres - posix getres interface
461  * @which_clock: clockid
462  * @tp: timespec to fill
463  *
464  * Returns the granularity of underlying alarm base clock
465  */
466 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
467 {
468 	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
469 
470 	if (!alarmtimer_get_rtcdev())
471 		return -ENOTSUPP;
472 
473 	return hrtimer_get_res(baseid, tp);
474 }
475 
476 /**
477  * alarm_clock_get - posix clock_get interface
478  * @which_clock: clockid
479  * @tp: timespec to fill.
480  *
481  * Provides the underlying alarm base time.
482  */
483 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
484 {
485 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
486 
487 	if (!alarmtimer_get_rtcdev())
488 		return -ENOTSUPP;
489 
490 	*tp = ktime_to_timespec(base->gettime());
491 	return 0;
492 }
493 
494 /**
495  * alarm_timer_create - posix timer_create interface
496  * @new_timer: k_itimer pointer to manage
497  *
498  * Initializes the k_itimer structure.
499  */
500 static int alarm_timer_create(struct k_itimer *new_timer)
501 {
502 	enum  alarmtimer_type type;
503 	struct alarm_base *base;
504 
505 	if (!alarmtimer_get_rtcdev())
506 		return -ENOTSUPP;
507 
508 	if (!capable(CAP_WAKE_ALARM))
509 		return -EPERM;
510 
511 	type = clock2alarm(new_timer->it_clock);
512 	base = &alarm_bases[type];
513 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
514 	return 0;
515 }
516 
517 /**
518  * alarm_timer_get - posix timer_get interface
519  * @new_timer: k_itimer pointer
520  * @cur_setting: itimerspec data to fill
521  *
522  * Copies the itimerspec data out from the k_itimer
523  */
524 static void alarm_timer_get(struct k_itimer *timr,
525 				struct itimerspec *cur_setting)
526 {
527 	memset(cur_setting, 0, sizeof(struct itimerspec));
528 
529 	cur_setting->it_interval =
530 			ktime_to_timespec(timr->it.alarm.interval);
531 	cur_setting->it_value =
532 		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
533 	return;
534 }
535 
536 /**
537  * alarm_timer_del - posix timer_del interface
538  * @timr: k_itimer pointer to be deleted
539  *
540  * Cancels any programmed alarms for the given timer.
541  */
542 static int alarm_timer_del(struct k_itimer *timr)
543 {
544 	if (!rtcdev)
545 		return -ENOTSUPP;
546 
547 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
548 		return TIMER_RETRY;
549 
550 	return 0;
551 }
552 
553 /**
554  * alarm_timer_set - posix timer_set interface
555  * @timr: k_itimer pointer to be deleted
556  * @flags: timer flags
557  * @new_setting: itimerspec to be used
558  * @old_setting: itimerspec being replaced
559  *
560  * Sets the timer to new_setting, and starts the timer.
561  */
562 static int alarm_timer_set(struct k_itimer *timr, int flags,
563 				struct itimerspec *new_setting,
564 				struct itimerspec *old_setting)
565 {
566 	if (!rtcdev)
567 		return -ENOTSUPP;
568 
569 	if (old_setting)
570 		alarm_timer_get(timr, old_setting);
571 
572 	/* If the timer was already set, cancel it */
573 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
574 		return TIMER_RETRY;
575 
576 	/* start the timer */
577 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
578 	alarm_start(&timr->it.alarm.alarmtimer,
579 			timespec_to_ktime(new_setting->it_value));
580 	return 0;
581 }
582 
583 /**
584  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
585  * @alarm: ptr to alarm that fired
586  *
587  * Wakes up the task that set the alarmtimer
588  */
589 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
590 								ktime_t now)
591 {
592 	struct task_struct *task = (struct task_struct *)alarm->data;
593 
594 	alarm->data = NULL;
595 	if (task)
596 		wake_up_process(task);
597 	return ALARMTIMER_NORESTART;
598 }
599 
600 /**
601  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
602  * @alarm: ptr to alarmtimer
603  * @absexp: absolute expiration time
604  *
605  * Sets the alarm timer and sleeps until it is fired or interrupted.
606  */
607 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
608 {
609 	alarm->data = (void *)current;
610 	do {
611 		set_current_state(TASK_INTERRUPTIBLE);
612 		alarm_start(alarm, absexp);
613 		if (likely(alarm->data))
614 			schedule();
615 
616 		alarm_cancel(alarm);
617 	} while (alarm->data && !signal_pending(current));
618 
619 	__set_current_state(TASK_RUNNING);
620 
621 	return (alarm->data == NULL);
622 }
623 
624 
625 /**
626  * update_rmtp - Update remaining timespec value
627  * @exp: expiration time
628  * @type: timer type
629  * @rmtp: user pointer to remaining timepsec value
630  *
631  * Helper function that fills in rmtp value with time between
632  * now and the exp value
633  */
634 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
635 			struct timespec __user *rmtp)
636 {
637 	struct timespec rmt;
638 	ktime_t rem;
639 
640 	rem = ktime_sub(exp, alarm_bases[type].gettime());
641 
642 	if (rem.tv64 <= 0)
643 		return 0;
644 	rmt = ktime_to_timespec(rem);
645 
646 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
647 		return -EFAULT;
648 
649 	return 1;
650 
651 }
652 
653 /**
654  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
655  * @restart: ptr to restart block
656  *
657  * Handles restarted clock_nanosleep calls
658  */
659 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
660 {
661 	enum  alarmtimer_type type = restart->nanosleep.clockid;
662 	ktime_t exp;
663 	struct timespec __user  *rmtp;
664 	struct alarm alarm;
665 	int ret = 0;
666 
667 	exp.tv64 = restart->nanosleep.expires;
668 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
669 
670 	if (alarmtimer_do_nsleep(&alarm, exp))
671 		goto out;
672 
673 	if (freezing(current))
674 		alarmtimer_freezerset(exp, type);
675 
676 	rmtp = restart->nanosleep.rmtp;
677 	if (rmtp) {
678 		ret = update_rmtp(exp, type, rmtp);
679 		if (ret <= 0)
680 			goto out;
681 	}
682 
683 
684 	/* The other values in restart are already filled in */
685 	ret = -ERESTART_RESTARTBLOCK;
686 out:
687 	return ret;
688 }
689 
690 /**
691  * alarm_timer_nsleep - alarmtimer nanosleep
692  * @which_clock: clockid
693  * @flags: determins abstime or relative
694  * @tsreq: requested sleep time (abs or rel)
695  * @rmtp: remaining sleep time saved
696  *
697  * Handles clock_nanosleep calls against _ALARM clockids
698  */
699 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
700 		     struct timespec *tsreq, struct timespec __user *rmtp)
701 {
702 	enum  alarmtimer_type type = clock2alarm(which_clock);
703 	struct alarm alarm;
704 	ktime_t exp;
705 	int ret = 0;
706 	struct restart_block *restart;
707 
708 	if (!alarmtimer_get_rtcdev())
709 		return -ENOTSUPP;
710 
711 	if (!capable(CAP_WAKE_ALARM))
712 		return -EPERM;
713 
714 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
715 
716 	exp = timespec_to_ktime(*tsreq);
717 	/* Convert (if necessary) to absolute time */
718 	if (flags != TIMER_ABSTIME) {
719 		ktime_t now = alarm_bases[type].gettime();
720 		exp = ktime_add(now, exp);
721 	}
722 
723 	if (alarmtimer_do_nsleep(&alarm, exp))
724 		goto out;
725 
726 	if (freezing(current))
727 		alarmtimer_freezerset(exp, type);
728 
729 	/* abs timers don't set remaining time or restart */
730 	if (flags == TIMER_ABSTIME) {
731 		ret = -ERESTARTNOHAND;
732 		goto out;
733 	}
734 
735 	if (rmtp) {
736 		ret = update_rmtp(exp, type, rmtp);
737 		if (ret <= 0)
738 			goto out;
739 	}
740 
741 	restart = &current_thread_info()->restart_block;
742 	restart->fn = alarm_timer_nsleep_restart;
743 	restart->nanosleep.clockid = type;
744 	restart->nanosleep.expires = exp.tv64;
745 	restart->nanosleep.rmtp = rmtp;
746 	ret = -ERESTART_RESTARTBLOCK;
747 
748 out:
749 	return ret;
750 }
751 
752 
753 /* Suspend hook structures */
754 static const struct dev_pm_ops alarmtimer_pm_ops = {
755 	.suspend = alarmtimer_suspend,
756 };
757 
758 static struct platform_driver alarmtimer_driver = {
759 	.driver = {
760 		.name = "alarmtimer",
761 		.pm = &alarmtimer_pm_ops,
762 	}
763 };
764 
765 /**
766  * alarmtimer_init - Initialize alarm timer code
767  *
768  * This function initializes the alarm bases and registers
769  * the posix clock ids.
770  */
771 static int __init alarmtimer_init(void)
772 {
773 	struct platform_device *pdev;
774 	int error = 0;
775 	int i;
776 	struct k_clock alarm_clock = {
777 		.clock_getres	= alarm_clock_getres,
778 		.clock_get	= alarm_clock_get,
779 		.timer_create	= alarm_timer_create,
780 		.timer_set	= alarm_timer_set,
781 		.timer_del	= alarm_timer_del,
782 		.timer_get	= alarm_timer_get,
783 		.nsleep		= alarm_timer_nsleep,
784 	};
785 
786 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
787 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
788 
789 	/* Initialize alarm bases */
790 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
791 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
792 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
793 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
794 	for (i = 0; i < ALARM_NUMTYPE; i++) {
795 		timerqueue_init_head(&alarm_bases[i].timerqueue);
796 		spin_lock_init(&alarm_bases[i].lock);
797 		hrtimer_init(&alarm_bases[i].timer,
798 				alarm_bases[i].base_clockid,
799 				HRTIMER_MODE_ABS);
800 		alarm_bases[i].timer.function = alarmtimer_fired;
801 	}
802 
803 	error = alarmtimer_rtc_interface_setup();
804 	if (error)
805 		return error;
806 
807 	error = platform_driver_register(&alarmtimer_driver);
808 	if (error)
809 		goto out_if;
810 
811 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
812 	if (IS_ERR(pdev)) {
813 		error = PTR_ERR(pdev);
814 		goto out_drv;
815 	}
816 	return 0;
817 
818 out_drv:
819 	platform_driver_unregister(&alarmtimer_driver);
820 out_if:
821 	alarmtimer_rtc_interface_remove();
822 	return error;
823 }
824 device_initcall(alarmtimer_init);
825