xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 5303b8d3)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 
32 #include "posix-timers.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/alarmtimer.h>
36 
37 /**
38  * struct alarm_base - Alarm timer bases
39  * @lock:		Lock for syncrhonized access to the base
40  * @timerqueue:		Timerqueue head managing the list of events
41  * @gettime:		Function to read the time correlating to the base
42  * @base_clockid:	clockid for the base
43  */
44 static struct alarm_base {
45 	spinlock_t		lock;
46 	struct timerqueue_head	timerqueue;
47 	ktime_t			(*gettime)(void);
48 	clockid_t		base_clockid;
49 } alarm_bases[ALARM_NUMTYPE];
50 
51 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
52 /* freezer information to handle clock_nanosleep triggered wakeups */
53 static enum alarmtimer_type freezer_alarmtype;
54 static ktime_t freezer_expires;
55 static ktime_t freezer_delta;
56 static DEFINE_SPINLOCK(freezer_delta_lock);
57 #endif
58 
59 static struct wakeup_source *ws;
60 
61 #ifdef CONFIG_RTC_CLASS
62 /* rtc timer and device for setting alarm wakeups at suspend */
63 static struct rtc_timer		rtctimer;
64 static struct rtc_device	*rtcdev;
65 static DEFINE_SPINLOCK(rtcdev_lock);
66 
67 /**
68  * alarmtimer_get_rtcdev - Return selected rtcdevice
69  *
70  * This function returns the rtc device to use for wakealarms.
71  * If one has not already been chosen, it checks to see if a
72  * functional rtc device is available.
73  */
74 struct rtc_device *alarmtimer_get_rtcdev(void)
75 {
76 	unsigned long flags;
77 	struct rtc_device *ret;
78 
79 	spin_lock_irqsave(&rtcdev_lock, flags);
80 	ret = rtcdev;
81 	spin_unlock_irqrestore(&rtcdev_lock, flags);
82 
83 	return ret;
84 }
85 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
86 
87 static int alarmtimer_rtc_add_device(struct device *dev,
88 				struct class_interface *class_intf)
89 {
90 	unsigned long flags;
91 	struct rtc_device *rtc = to_rtc_device(dev);
92 
93 	if (rtcdev)
94 		return -EBUSY;
95 
96 	if (!rtc->ops->set_alarm)
97 		return -1;
98 	if (!device_may_wakeup(rtc->dev.parent))
99 		return -1;
100 
101 	spin_lock_irqsave(&rtcdev_lock, flags);
102 	if (!rtcdev) {
103 		rtcdev = rtc;
104 		/* hold a reference so it doesn't go away */
105 		get_device(dev);
106 	}
107 	spin_unlock_irqrestore(&rtcdev_lock, flags);
108 	return 0;
109 }
110 
111 static inline void alarmtimer_rtc_timer_init(void)
112 {
113 	rtc_timer_init(&rtctimer, NULL, NULL);
114 }
115 
116 static struct class_interface alarmtimer_rtc_interface = {
117 	.add_dev = &alarmtimer_rtc_add_device,
118 };
119 
120 static int alarmtimer_rtc_interface_setup(void)
121 {
122 	alarmtimer_rtc_interface.class = rtc_class;
123 	return class_interface_register(&alarmtimer_rtc_interface);
124 }
125 static void alarmtimer_rtc_interface_remove(void)
126 {
127 	class_interface_unregister(&alarmtimer_rtc_interface);
128 }
129 #else
130 struct rtc_device *alarmtimer_get_rtcdev(void)
131 {
132 	return NULL;
133 }
134 #define rtcdev (NULL)
135 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
136 static inline void alarmtimer_rtc_interface_remove(void) { }
137 static inline void alarmtimer_rtc_timer_init(void) { }
138 #endif
139 
140 /**
141  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
142  * @base: pointer to the base where the timer is being run
143  * @alarm: pointer to alarm being enqueued.
144  *
145  * Adds alarm to a alarm_base timerqueue
146  *
147  * Must hold base->lock when calling.
148  */
149 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
150 {
151 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
152 		timerqueue_del(&base->timerqueue, &alarm->node);
153 
154 	timerqueue_add(&base->timerqueue, &alarm->node);
155 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
156 }
157 
158 /**
159  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
160  * @base: pointer to the base where the timer is running
161  * @alarm: pointer to alarm being removed
162  *
163  * Removes alarm to a alarm_base timerqueue
164  *
165  * Must hold base->lock when calling.
166  */
167 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
168 {
169 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
170 		return;
171 
172 	timerqueue_del(&base->timerqueue, &alarm->node);
173 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
174 }
175 
176 
177 /**
178  * alarmtimer_fired - Handles alarm hrtimer being fired.
179  * @timer: pointer to hrtimer being run
180  *
181  * When a alarm timer fires, this runs through the timerqueue to
182  * see which alarms expired, and runs those. If there are more alarm
183  * timers queued for the future, we set the hrtimer to fire when
184  * when the next future alarm timer expires.
185  */
186 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
187 {
188 	struct alarm *alarm = container_of(timer, struct alarm, timer);
189 	struct alarm_base *base = &alarm_bases[alarm->type];
190 	unsigned long flags;
191 	int ret = HRTIMER_NORESTART;
192 	int restart = ALARMTIMER_NORESTART;
193 
194 	spin_lock_irqsave(&base->lock, flags);
195 	alarmtimer_dequeue(base, alarm);
196 	spin_unlock_irqrestore(&base->lock, flags);
197 
198 	if (alarm->function)
199 		restart = alarm->function(alarm, base->gettime());
200 
201 	spin_lock_irqsave(&base->lock, flags);
202 	if (restart != ALARMTIMER_NORESTART) {
203 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
204 		alarmtimer_enqueue(base, alarm);
205 		ret = HRTIMER_RESTART;
206 	}
207 	spin_unlock_irqrestore(&base->lock, flags);
208 
209 	trace_alarmtimer_fired(alarm, base->gettime());
210 	return ret;
211 
212 }
213 
214 ktime_t alarm_expires_remaining(const struct alarm *alarm)
215 {
216 	struct alarm_base *base = &alarm_bases[alarm->type];
217 	return ktime_sub(alarm->node.expires, base->gettime());
218 }
219 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
220 
221 #ifdef CONFIG_RTC_CLASS
222 /**
223  * alarmtimer_suspend - Suspend time callback
224  * @dev: unused
225  * @state: unused
226  *
227  * When we are going into suspend, we look through the bases
228  * to see which is the soonest timer to expire. We then
229  * set an rtc timer to fire that far into the future, which
230  * will wake us from suspend.
231  */
232 static int alarmtimer_suspend(struct device *dev)
233 {
234 	ktime_t min, now, expires;
235 	int i, ret, type;
236 	struct rtc_device *rtc;
237 	unsigned long flags;
238 	struct rtc_time tm;
239 
240 	spin_lock_irqsave(&freezer_delta_lock, flags);
241 	min = freezer_delta;
242 	expires = freezer_expires;
243 	type = freezer_alarmtype;
244 	freezer_delta = 0;
245 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
246 
247 	rtc = alarmtimer_get_rtcdev();
248 	/* If we have no rtcdev, just return */
249 	if (!rtc)
250 		return 0;
251 
252 	/* Find the soonest timer to expire*/
253 	for (i = 0; i < ALARM_NUMTYPE; i++) {
254 		struct alarm_base *base = &alarm_bases[i];
255 		struct timerqueue_node *next;
256 		ktime_t delta;
257 
258 		spin_lock_irqsave(&base->lock, flags);
259 		next = timerqueue_getnext(&base->timerqueue);
260 		spin_unlock_irqrestore(&base->lock, flags);
261 		if (!next)
262 			continue;
263 		delta = ktime_sub(next->expires, base->gettime());
264 		if (!min || (delta < min)) {
265 			expires = next->expires;
266 			min = delta;
267 			type = i;
268 		}
269 	}
270 	if (min == 0)
271 		return 0;
272 
273 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
274 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
275 		return -EBUSY;
276 	}
277 
278 	trace_alarmtimer_suspend(expires, type);
279 
280 	/* Setup an rtc timer to fire that far in the future */
281 	rtc_timer_cancel(rtc, &rtctimer);
282 	rtc_read_time(rtc, &tm);
283 	now = rtc_tm_to_ktime(tm);
284 	now = ktime_add(now, min);
285 
286 	/* Set alarm, if in the past reject suspend briefly to handle */
287 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
288 	if (ret < 0)
289 		__pm_wakeup_event(ws, MSEC_PER_SEC);
290 	return ret;
291 }
292 
293 static int alarmtimer_resume(struct device *dev)
294 {
295 	struct rtc_device *rtc;
296 
297 	rtc = alarmtimer_get_rtcdev();
298 	if (rtc)
299 		rtc_timer_cancel(rtc, &rtctimer);
300 	return 0;
301 }
302 
303 #else
304 static int alarmtimer_suspend(struct device *dev)
305 {
306 	return 0;
307 }
308 
309 static int alarmtimer_resume(struct device *dev)
310 {
311 	return 0;
312 }
313 #endif
314 
315 /**
316  * alarm_init - Initialize an alarm structure
317  * @alarm: ptr to alarm to be initialized
318  * @type: the type of the alarm
319  * @function: callback that is run when the alarm fires
320  */
321 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
322 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
323 {
324 	timerqueue_init(&alarm->node);
325 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
326 			HRTIMER_MODE_ABS);
327 	alarm->timer.function = alarmtimer_fired;
328 	alarm->function = function;
329 	alarm->type = type;
330 	alarm->state = ALARMTIMER_STATE_INACTIVE;
331 }
332 EXPORT_SYMBOL_GPL(alarm_init);
333 
334 /**
335  * alarm_start - Sets an absolute alarm to fire
336  * @alarm: ptr to alarm to set
337  * @start: time to run the alarm
338  */
339 void alarm_start(struct alarm *alarm, ktime_t start)
340 {
341 	struct alarm_base *base = &alarm_bases[alarm->type];
342 	unsigned long flags;
343 
344 	spin_lock_irqsave(&base->lock, flags);
345 	alarm->node.expires = start;
346 	alarmtimer_enqueue(base, alarm);
347 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
348 	spin_unlock_irqrestore(&base->lock, flags);
349 
350 	trace_alarmtimer_start(alarm, base->gettime());
351 }
352 EXPORT_SYMBOL_GPL(alarm_start);
353 
354 /**
355  * alarm_start_relative - Sets a relative alarm to fire
356  * @alarm: ptr to alarm to set
357  * @start: time relative to now to run the alarm
358  */
359 void alarm_start_relative(struct alarm *alarm, ktime_t start)
360 {
361 	struct alarm_base *base = &alarm_bases[alarm->type];
362 
363 	start = ktime_add_safe(start, base->gettime());
364 	alarm_start(alarm, start);
365 }
366 EXPORT_SYMBOL_GPL(alarm_start_relative);
367 
368 void alarm_restart(struct alarm *alarm)
369 {
370 	struct alarm_base *base = &alarm_bases[alarm->type];
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(&base->lock, flags);
374 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
375 	hrtimer_restart(&alarm->timer);
376 	alarmtimer_enqueue(base, alarm);
377 	spin_unlock_irqrestore(&base->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(alarm_restart);
380 
381 /**
382  * alarm_try_to_cancel - Tries to cancel an alarm timer
383  * @alarm: ptr to alarm to be canceled
384  *
385  * Returns 1 if the timer was canceled, 0 if it was not running,
386  * and -1 if the callback was running
387  */
388 int alarm_try_to_cancel(struct alarm *alarm)
389 {
390 	struct alarm_base *base = &alarm_bases[alarm->type];
391 	unsigned long flags;
392 	int ret;
393 
394 	spin_lock_irqsave(&base->lock, flags);
395 	ret = hrtimer_try_to_cancel(&alarm->timer);
396 	if (ret >= 0)
397 		alarmtimer_dequeue(base, alarm);
398 	spin_unlock_irqrestore(&base->lock, flags);
399 
400 	trace_alarmtimer_cancel(alarm, base->gettime());
401 	return ret;
402 }
403 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
404 
405 
406 /**
407  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
408  * @alarm: ptr to alarm to be canceled
409  *
410  * Returns 1 if the timer was canceled, 0 if it was not active.
411  */
412 int alarm_cancel(struct alarm *alarm)
413 {
414 	for (;;) {
415 		int ret = alarm_try_to_cancel(alarm);
416 		if (ret >= 0)
417 			return ret;
418 		cpu_relax();
419 	}
420 }
421 EXPORT_SYMBOL_GPL(alarm_cancel);
422 
423 
424 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
425 {
426 	u64 overrun = 1;
427 	ktime_t delta;
428 
429 	delta = ktime_sub(now, alarm->node.expires);
430 
431 	if (delta < 0)
432 		return 0;
433 
434 	if (unlikely(delta >= interval)) {
435 		s64 incr = ktime_to_ns(interval);
436 
437 		overrun = ktime_divns(delta, incr);
438 
439 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
440 							incr*overrun);
441 
442 		if (alarm->node.expires > now)
443 			return overrun;
444 		/*
445 		 * This (and the ktime_add() below) is the
446 		 * correction for exact:
447 		 */
448 		overrun++;
449 	}
450 
451 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
452 	return overrun;
453 }
454 EXPORT_SYMBOL_GPL(alarm_forward);
455 
456 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
457 {
458 	struct alarm_base *base = &alarm_bases[alarm->type];
459 
460 	return alarm_forward(alarm, base->gettime(), interval);
461 }
462 EXPORT_SYMBOL_GPL(alarm_forward_now);
463 
464 #ifdef CONFIG_POSIX_TIMERS
465 
466 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
467 {
468 	struct alarm_base *base;
469 	unsigned long flags;
470 	ktime_t delta;
471 
472 	switch(type) {
473 	case ALARM_REALTIME:
474 		base = &alarm_bases[ALARM_REALTIME];
475 		type = ALARM_REALTIME_FREEZER;
476 		break;
477 	case ALARM_BOOTTIME:
478 		base = &alarm_bases[ALARM_BOOTTIME];
479 		type = ALARM_BOOTTIME_FREEZER;
480 		break;
481 	default:
482 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
483 		return;
484 	}
485 
486 	delta = ktime_sub(absexp, base->gettime());
487 
488 	spin_lock_irqsave(&freezer_delta_lock, flags);
489 	if (!freezer_delta || (delta < freezer_delta)) {
490 		freezer_delta = delta;
491 		freezer_expires = absexp;
492 		freezer_alarmtype = type;
493 	}
494 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
495 }
496 
497 /**
498  * clock2alarm - helper that converts from clockid to alarmtypes
499  * @clockid: clockid.
500  */
501 static enum alarmtimer_type clock2alarm(clockid_t clockid)
502 {
503 	if (clockid == CLOCK_REALTIME_ALARM)
504 		return ALARM_REALTIME;
505 	if (clockid == CLOCK_BOOTTIME_ALARM)
506 		return ALARM_BOOTTIME;
507 	return -1;
508 }
509 
510 /**
511  * alarm_handle_timer - Callback for posix timers
512  * @alarm: alarm that fired
513  *
514  * Posix timer callback for expired alarm timers.
515  */
516 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
517 							ktime_t now)
518 {
519 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
520 					    it.alarm.alarmtimer);
521 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
522 	unsigned long flags;
523 	int si_private = 0;
524 
525 	spin_lock_irqsave(&ptr->it_lock, flags);
526 
527 	ptr->it_active = 0;
528 	if (ptr->it_interval)
529 		si_private = ++ptr->it_requeue_pending;
530 
531 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
532 		/*
533 		 * Handle ignored signals and rearm the timer. This will go
534 		 * away once we handle ignored signals proper.
535 		 */
536 		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
537 		++ptr->it_requeue_pending;
538 		ptr->it_active = 1;
539 		result = ALARMTIMER_RESTART;
540 	}
541 	spin_unlock_irqrestore(&ptr->it_lock, flags);
542 
543 	return result;
544 }
545 
546 /**
547  * alarm_timer_rearm - Posix timer callback for rearming timer
548  * @timr:	Pointer to the posixtimer data struct
549  */
550 static void alarm_timer_rearm(struct k_itimer *timr)
551 {
552 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
553 
554 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
555 	alarm_start(alarm, alarm->node.expires);
556 }
557 
558 /**
559  * alarm_timer_forward - Posix timer callback for forwarding timer
560  * @timr:	Pointer to the posixtimer data struct
561  * @now:	Current time to forward the timer against
562  */
563 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
564 {
565 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
566 
567 	return (int) alarm_forward(alarm, timr->it_interval, now);
568 }
569 
570 /**
571  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
572  * @timr:	Pointer to the posixtimer data struct
573  * @now:	Current time to calculate against
574  */
575 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
576 {
577 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
578 
579 	return ktime_sub(now, alarm->node.expires);
580 }
581 
582 /**
583  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
584  * @timr:	Pointer to the posixtimer data struct
585  */
586 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
587 {
588 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
589 }
590 
591 /**
592  * alarm_timer_arm - Posix timer callback to arm a timer
593  * @timr:	Pointer to the posixtimer data struct
594  * @expires:	The new expiry time
595  * @absolute:	Expiry value is absolute time
596  * @sigev_none:	Posix timer does not deliver signals
597  */
598 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
599 			    bool absolute, bool sigev_none)
600 {
601 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
602 	struct alarm_base *base = &alarm_bases[alarm->type];
603 
604 	if (!absolute)
605 		expires = ktime_add_safe(expires, base->gettime());
606 	if (sigev_none)
607 		alarm->node.expires = expires;
608 	else
609 		alarm_start(&timr->it.alarm.alarmtimer, expires);
610 }
611 
612 /**
613  * alarm_clock_getres - posix getres interface
614  * @which_clock: clockid
615  * @tp: timespec to fill
616  *
617  * Returns the granularity of underlying alarm base clock
618  */
619 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
620 {
621 	if (!alarmtimer_get_rtcdev())
622 		return -EINVAL;
623 
624 	tp->tv_sec = 0;
625 	tp->tv_nsec = hrtimer_resolution;
626 	return 0;
627 }
628 
629 /**
630  * alarm_clock_get - posix clock_get interface
631  * @which_clock: clockid
632  * @tp: timespec to fill.
633  *
634  * Provides the underlying alarm base time.
635  */
636 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
637 {
638 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
639 
640 	if (!alarmtimer_get_rtcdev())
641 		return -EINVAL;
642 
643 	*tp = ktime_to_timespec64(base->gettime());
644 	return 0;
645 }
646 
647 /**
648  * alarm_timer_create - posix timer_create interface
649  * @new_timer: k_itimer pointer to manage
650  *
651  * Initializes the k_itimer structure.
652  */
653 static int alarm_timer_create(struct k_itimer *new_timer)
654 {
655 	enum  alarmtimer_type type;
656 
657 	if (!alarmtimer_get_rtcdev())
658 		return -ENOTSUPP;
659 
660 	if (!capable(CAP_WAKE_ALARM))
661 		return -EPERM;
662 
663 	type = clock2alarm(new_timer->it_clock);
664 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
665 	return 0;
666 }
667 
668 /**
669  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
670  * @alarm: ptr to alarm that fired
671  *
672  * Wakes up the task that set the alarmtimer
673  */
674 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
675 								ktime_t now)
676 {
677 	struct task_struct *task = (struct task_struct *)alarm->data;
678 
679 	alarm->data = NULL;
680 	if (task)
681 		wake_up_process(task);
682 	return ALARMTIMER_NORESTART;
683 }
684 
685 /**
686  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
687  * @alarm: ptr to alarmtimer
688  * @absexp: absolute expiration time
689  *
690  * Sets the alarm timer and sleeps until it is fired or interrupted.
691  */
692 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
693 				enum alarmtimer_type type)
694 {
695 	struct restart_block *restart;
696 	alarm->data = (void *)current;
697 	do {
698 		set_current_state(TASK_INTERRUPTIBLE);
699 		alarm_start(alarm, absexp);
700 		if (likely(alarm->data))
701 			schedule();
702 
703 		alarm_cancel(alarm);
704 	} while (alarm->data && !signal_pending(current));
705 
706 	__set_current_state(TASK_RUNNING);
707 
708 	if (!alarm->data)
709 		return 0;
710 
711 	if (freezing(current))
712 		alarmtimer_freezerset(absexp, type);
713 	restart = &current->restart_block;
714 	if (restart->nanosleep.type != TT_NONE) {
715 		struct timespec64 rmt;
716 		ktime_t rem;
717 
718 		rem = ktime_sub(absexp, alarm_bases[type].gettime());
719 
720 		if (rem <= 0)
721 			return 0;
722 		rmt = ktime_to_timespec64(rem);
723 
724 		return nanosleep_copyout(restart, &rmt);
725 	}
726 	return -ERESTART_RESTARTBLOCK;
727 }
728 
729 /**
730  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
731  * @restart: ptr to restart block
732  *
733  * Handles restarted clock_nanosleep calls
734  */
735 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
736 {
737 	enum  alarmtimer_type type = restart->nanosleep.clockid;
738 	ktime_t exp = restart->nanosleep.expires;
739 	struct alarm alarm;
740 
741 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
742 
743 	return alarmtimer_do_nsleep(&alarm, exp, type);
744 }
745 
746 /**
747  * alarm_timer_nsleep - alarmtimer nanosleep
748  * @which_clock: clockid
749  * @flags: determins abstime or relative
750  * @tsreq: requested sleep time (abs or rel)
751  * @rmtp: remaining sleep time saved
752  *
753  * Handles clock_nanosleep calls against _ALARM clockids
754  */
755 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
756 			      const struct timespec64 *tsreq)
757 {
758 	enum  alarmtimer_type type = clock2alarm(which_clock);
759 	struct restart_block *restart = &current->restart_block;
760 	struct alarm alarm;
761 	ktime_t exp;
762 	int ret = 0;
763 
764 	if (!alarmtimer_get_rtcdev())
765 		return -ENOTSUPP;
766 
767 	if (flags & ~TIMER_ABSTIME)
768 		return -EINVAL;
769 
770 	if (!capable(CAP_WAKE_ALARM))
771 		return -EPERM;
772 
773 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
774 
775 	exp = timespec64_to_ktime(*tsreq);
776 	/* Convert (if necessary) to absolute time */
777 	if (flags != TIMER_ABSTIME) {
778 		ktime_t now = alarm_bases[type].gettime();
779 		exp = ktime_add(now, exp);
780 	}
781 
782 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
783 	if (ret != -ERESTART_RESTARTBLOCK)
784 		return ret;
785 
786 	/* abs timers don't set remaining time or restart */
787 	if (flags == TIMER_ABSTIME)
788 		return -ERESTARTNOHAND;
789 
790 	restart->fn = alarm_timer_nsleep_restart;
791 	restart->nanosleep.clockid = type;
792 	restart->nanosleep.expires = exp;
793 	return ret;
794 }
795 
796 const struct k_clock alarm_clock = {
797 	.clock_getres		= alarm_clock_getres,
798 	.clock_get		= alarm_clock_get,
799 	.timer_create		= alarm_timer_create,
800 	.timer_set		= common_timer_set,
801 	.timer_del		= common_timer_del,
802 	.timer_get		= common_timer_get,
803 	.timer_arm		= alarm_timer_arm,
804 	.timer_rearm		= alarm_timer_rearm,
805 	.timer_forward		= alarm_timer_forward,
806 	.timer_remaining	= alarm_timer_remaining,
807 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
808 	.nsleep			= alarm_timer_nsleep,
809 };
810 #endif /* CONFIG_POSIX_TIMERS */
811 
812 
813 /* Suspend hook structures */
814 static const struct dev_pm_ops alarmtimer_pm_ops = {
815 	.suspend = alarmtimer_suspend,
816 	.resume = alarmtimer_resume,
817 };
818 
819 static struct platform_driver alarmtimer_driver = {
820 	.driver = {
821 		.name = "alarmtimer",
822 		.pm = &alarmtimer_pm_ops,
823 	}
824 };
825 
826 /**
827  * alarmtimer_init - Initialize alarm timer code
828  *
829  * This function initializes the alarm bases and registers
830  * the posix clock ids.
831  */
832 static int __init alarmtimer_init(void)
833 {
834 	struct platform_device *pdev;
835 	int error = 0;
836 	int i;
837 
838 	alarmtimer_rtc_timer_init();
839 
840 	/* Initialize alarm bases */
841 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
842 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
843 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
844 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
845 	for (i = 0; i < ALARM_NUMTYPE; i++) {
846 		timerqueue_init_head(&alarm_bases[i].timerqueue);
847 		spin_lock_init(&alarm_bases[i].lock);
848 	}
849 
850 	error = alarmtimer_rtc_interface_setup();
851 	if (error)
852 		return error;
853 
854 	error = platform_driver_register(&alarmtimer_driver);
855 	if (error)
856 		goto out_if;
857 
858 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
859 	if (IS_ERR(pdev)) {
860 		error = PTR_ERR(pdev);
861 		goto out_drv;
862 	}
863 	ws = wakeup_source_register("alarmtimer");
864 	return 0;
865 
866 out_drv:
867 	platform_driver_unregister(&alarmtimer_driver);
868 out_if:
869 	alarmtimer_rtc_interface_remove();
870 	return error;
871 }
872 device_initcall(alarmtimer_init);
873