1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 /** 30 * struct alarm_base - Alarm timer bases 31 * @lock: Lock for syncrhonized access to the base 32 * @timerqueue: Timerqueue head managing the list of events 33 * @timer: hrtimer used to schedule events while running 34 * @gettime: Function to read the time correlating to the base 35 * @base_clockid: clockid for the base 36 */ 37 static struct alarm_base { 38 spinlock_t lock; 39 struct timerqueue_head timerqueue; 40 ktime_t (*gettime)(void); 41 clockid_t base_clockid; 42 } alarm_bases[ALARM_NUMTYPE]; 43 44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */ 45 static ktime_t freezer_delta; 46 static DEFINE_SPINLOCK(freezer_delta_lock); 47 48 static struct wakeup_source *ws; 49 50 #ifdef CONFIG_RTC_CLASS 51 /* rtc timer and device for setting alarm wakeups at suspend */ 52 static struct rtc_timer rtctimer; 53 static struct rtc_device *rtcdev; 54 static DEFINE_SPINLOCK(rtcdev_lock); 55 56 /** 57 * alarmtimer_get_rtcdev - Return selected rtcdevice 58 * 59 * This function returns the rtc device to use for wakealarms. 60 * If one has not already been chosen, it checks to see if a 61 * functional rtc device is available. 62 */ 63 struct rtc_device *alarmtimer_get_rtcdev(void) 64 { 65 unsigned long flags; 66 struct rtc_device *ret; 67 68 spin_lock_irqsave(&rtcdev_lock, flags); 69 ret = rtcdev; 70 spin_unlock_irqrestore(&rtcdev_lock, flags); 71 72 return ret; 73 } 74 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 75 76 static int alarmtimer_rtc_add_device(struct device *dev, 77 struct class_interface *class_intf) 78 { 79 unsigned long flags; 80 struct rtc_device *rtc = to_rtc_device(dev); 81 82 if (rtcdev) 83 return -EBUSY; 84 85 if (!rtc->ops->set_alarm) 86 return -1; 87 if (!device_may_wakeup(rtc->dev.parent)) 88 return -1; 89 90 spin_lock_irqsave(&rtcdev_lock, flags); 91 if (!rtcdev) { 92 rtcdev = rtc; 93 /* hold a reference so it doesn't go away */ 94 get_device(dev); 95 } 96 spin_unlock_irqrestore(&rtcdev_lock, flags); 97 return 0; 98 } 99 100 static inline void alarmtimer_rtc_timer_init(void) 101 { 102 rtc_timer_init(&rtctimer, NULL, NULL); 103 } 104 105 static struct class_interface alarmtimer_rtc_interface = { 106 .add_dev = &alarmtimer_rtc_add_device, 107 }; 108 109 static int alarmtimer_rtc_interface_setup(void) 110 { 111 alarmtimer_rtc_interface.class = rtc_class; 112 return class_interface_register(&alarmtimer_rtc_interface); 113 } 114 static void alarmtimer_rtc_interface_remove(void) 115 { 116 class_interface_unregister(&alarmtimer_rtc_interface); 117 } 118 #else 119 struct rtc_device *alarmtimer_get_rtcdev(void) 120 { 121 return NULL; 122 } 123 #define rtcdev (NULL) 124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 125 static inline void alarmtimer_rtc_interface_remove(void) { } 126 static inline void alarmtimer_rtc_timer_init(void) { } 127 #endif 128 129 /** 130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 131 * @base: pointer to the base where the timer is being run 132 * @alarm: pointer to alarm being enqueued. 133 * 134 * Adds alarm to a alarm_base timerqueue 135 * 136 * Must hold base->lock when calling. 137 */ 138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 139 { 140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 141 timerqueue_del(&base->timerqueue, &alarm->node); 142 143 timerqueue_add(&base->timerqueue, &alarm->node); 144 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 145 } 146 147 /** 148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 149 * @base: pointer to the base where the timer is running 150 * @alarm: pointer to alarm being removed 151 * 152 * Removes alarm to a alarm_base timerqueue 153 * 154 * Must hold base->lock when calling. 155 */ 156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 157 { 158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 159 return; 160 161 timerqueue_del(&base->timerqueue, &alarm->node); 162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 163 } 164 165 166 /** 167 * alarmtimer_fired - Handles alarm hrtimer being fired. 168 * @timer: pointer to hrtimer being run 169 * 170 * When a alarm timer fires, this runs through the timerqueue to 171 * see which alarms expired, and runs those. If there are more alarm 172 * timers queued for the future, we set the hrtimer to fire when 173 * when the next future alarm timer expires. 174 */ 175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 176 { 177 struct alarm *alarm = container_of(timer, struct alarm, timer); 178 struct alarm_base *base = &alarm_bases[alarm->type]; 179 unsigned long flags; 180 int ret = HRTIMER_NORESTART; 181 int restart = ALARMTIMER_NORESTART; 182 183 spin_lock_irqsave(&base->lock, flags); 184 alarmtimer_dequeue(base, alarm); 185 spin_unlock_irqrestore(&base->lock, flags); 186 187 if (alarm->function) 188 restart = alarm->function(alarm, base->gettime()); 189 190 spin_lock_irqsave(&base->lock, flags); 191 if (restart != ALARMTIMER_NORESTART) { 192 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 193 alarmtimer_enqueue(base, alarm); 194 ret = HRTIMER_RESTART; 195 } 196 spin_unlock_irqrestore(&base->lock, flags); 197 198 return ret; 199 200 } 201 202 ktime_t alarm_expires_remaining(const struct alarm *alarm) 203 { 204 struct alarm_base *base = &alarm_bases[alarm->type]; 205 return ktime_sub(alarm->node.expires, base->gettime()); 206 } 207 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 208 209 #ifdef CONFIG_RTC_CLASS 210 /** 211 * alarmtimer_suspend - Suspend time callback 212 * @dev: unused 213 * @state: unused 214 * 215 * When we are going into suspend, we look through the bases 216 * to see which is the soonest timer to expire. We then 217 * set an rtc timer to fire that far into the future, which 218 * will wake us from suspend. 219 */ 220 static int alarmtimer_suspend(struct device *dev) 221 { 222 struct rtc_time tm; 223 ktime_t min, now; 224 unsigned long flags; 225 struct rtc_device *rtc; 226 int i; 227 int ret; 228 229 spin_lock_irqsave(&freezer_delta_lock, flags); 230 min = freezer_delta; 231 freezer_delta = ktime_set(0, 0); 232 spin_unlock_irqrestore(&freezer_delta_lock, flags); 233 234 rtc = alarmtimer_get_rtcdev(); 235 /* If we have no rtcdev, just return */ 236 if (!rtc) 237 return 0; 238 239 /* Find the soonest timer to expire*/ 240 for (i = 0; i < ALARM_NUMTYPE; i++) { 241 struct alarm_base *base = &alarm_bases[i]; 242 struct timerqueue_node *next; 243 ktime_t delta; 244 245 spin_lock_irqsave(&base->lock, flags); 246 next = timerqueue_getnext(&base->timerqueue); 247 spin_unlock_irqrestore(&base->lock, flags); 248 if (!next) 249 continue; 250 delta = ktime_sub(next->expires, base->gettime()); 251 if (!min.tv64 || (delta.tv64 < min.tv64)) 252 min = delta; 253 } 254 if (min.tv64 == 0) 255 return 0; 256 257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 259 return -EBUSY; 260 } 261 262 /* Setup an rtc timer to fire that far in the future */ 263 rtc_timer_cancel(rtc, &rtctimer); 264 rtc_read_time(rtc, &tm); 265 now = rtc_tm_to_ktime(tm); 266 now = ktime_add(now, min); 267 268 /* Set alarm, if in the past reject suspend briefly to handle */ 269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0)); 270 if (ret < 0) 271 __pm_wakeup_event(ws, MSEC_PER_SEC); 272 return ret; 273 } 274 275 static int alarmtimer_resume(struct device *dev) 276 { 277 struct rtc_device *rtc; 278 279 rtc = alarmtimer_get_rtcdev(); 280 if (rtc) 281 rtc_timer_cancel(rtc, &rtctimer); 282 return 0; 283 } 284 285 #else 286 static int alarmtimer_suspend(struct device *dev) 287 { 288 return 0; 289 } 290 291 static int alarmtimer_resume(struct device *dev) 292 { 293 return 0; 294 } 295 #endif 296 297 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 298 { 299 ktime_t delta; 300 unsigned long flags; 301 struct alarm_base *base = &alarm_bases[type]; 302 303 delta = ktime_sub(absexp, base->gettime()); 304 305 spin_lock_irqsave(&freezer_delta_lock, flags); 306 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) 307 freezer_delta = delta; 308 spin_unlock_irqrestore(&freezer_delta_lock, flags); 309 } 310 311 312 /** 313 * alarm_init - Initialize an alarm structure 314 * @alarm: ptr to alarm to be initialized 315 * @type: the type of the alarm 316 * @function: callback that is run when the alarm fires 317 */ 318 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 319 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 320 { 321 timerqueue_init(&alarm->node); 322 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 323 HRTIMER_MODE_ABS); 324 alarm->timer.function = alarmtimer_fired; 325 alarm->function = function; 326 alarm->type = type; 327 alarm->state = ALARMTIMER_STATE_INACTIVE; 328 } 329 EXPORT_SYMBOL_GPL(alarm_init); 330 331 /** 332 * alarm_start - Sets an absolute alarm to fire 333 * @alarm: ptr to alarm to set 334 * @start: time to run the alarm 335 */ 336 void alarm_start(struct alarm *alarm, ktime_t start) 337 { 338 struct alarm_base *base = &alarm_bases[alarm->type]; 339 unsigned long flags; 340 341 spin_lock_irqsave(&base->lock, flags); 342 alarm->node.expires = start; 343 alarmtimer_enqueue(base, alarm); 344 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 345 spin_unlock_irqrestore(&base->lock, flags); 346 } 347 EXPORT_SYMBOL_GPL(alarm_start); 348 349 /** 350 * alarm_start_relative - Sets a relative alarm to fire 351 * @alarm: ptr to alarm to set 352 * @start: time relative to now to run the alarm 353 */ 354 void alarm_start_relative(struct alarm *alarm, ktime_t start) 355 { 356 struct alarm_base *base = &alarm_bases[alarm->type]; 357 358 start = ktime_add(start, base->gettime()); 359 alarm_start(alarm, start); 360 } 361 EXPORT_SYMBOL_GPL(alarm_start_relative); 362 363 void alarm_restart(struct alarm *alarm) 364 { 365 struct alarm_base *base = &alarm_bases[alarm->type]; 366 unsigned long flags; 367 368 spin_lock_irqsave(&base->lock, flags); 369 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 370 hrtimer_restart(&alarm->timer); 371 alarmtimer_enqueue(base, alarm); 372 spin_unlock_irqrestore(&base->lock, flags); 373 } 374 EXPORT_SYMBOL_GPL(alarm_restart); 375 376 /** 377 * alarm_try_to_cancel - Tries to cancel an alarm timer 378 * @alarm: ptr to alarm to be canceled 379 * 380 * Returns 1 if the timer was canceled, 0 if it was not running, 381 * and -1 if the callback was running 382 */ 383 int alarm_try_to_cancel(struct alarm *alarm) 384 { 385 struct alarm_base *base = &alarm_bases[alarm->type]; 386 unsigned long flags; 387 int ret; 388 389 spin_lock_irqsave(&base->lock, flags); 390 ret = hrtimer_try_to_cancel(&alarm->timer); 391 if (ret >= 0) 392 alarmtimer_dequeue(base, alarm); 393 spin_unlock_irqrestore(&base->lock, flags); 394 return ret; 395 } 396 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 397 398 399 /** 400 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 401 * @alarm: ptr to alarm to be canceled 402 * 403 * Returns 1 if the timer was canceled, 0 if it was not active. 404 */ 405 int alarm_cancel(struct alarm *alarm) 406 { 407 for (;;) { 408 int ret = alarm_try_to_cancel(alarm); 409 if (ret >= 0) 410 return ret; 411 cpu_relax(); 412 } 413 } 414 EXPORT_SYMBOL_GPL(alarm_cancel); 415 416 417 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 418 { 419 u64 overrun = 1; 420 ktime_t delta; 421 422 delta = ktime_sub(now, alarm->node.expires); 423 424 if (delta.tv64 < 0) 425 return 0; 426 427 if (unlikely(delta.tv64 >= interval.tv64)) { 428 s64 incr = ktime_to_ns(interval); 429 430 overrun = ktime_divns(delta, incr); 431 432 alarm->node.expires = ktime_add_ns(alarm->node.expires, 433 incr*overrun); 434 435 if (alarm->node.expires.tv64 > now.tv64) 436 return overrun; 437 /* 438 * This (and the ktime_add() below) is the 439 * correction for exact: 440 */ 441 overrun++; 442 } 443 444 alarm->node.expires = ktime_add(alarm->node.expires, interval); 445 return overrun; 446 } 447 EXPORT_SYMBOL_GPL(alarm_forward); 448 449 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 450 { 451 struct alarm_base *base = &alarm_bases[alarm->type]; 452 453 return alarm_forward(alarm, base->gettime(), interval); 454 } 455 EXPORT_SYMBOL_GPL(alarm_forward_now); 456 457 458 /** 459 * clock2alarm - helper that converts from clockid to alarmtypes 460 * @clockid: clockid. 461 */ 462 static enum alarmtimer_type clock2alarm(clockid_t clockid) 463 { 464 if (clockid == CLOCK_REALTIME_ALARM) 465 return ALARM_REALTIME; 466 if (clockid == CLOCK_BOOTTIME_ALARM) 467 return ALARM_BOOTTIME; 468 return -1; 469 } 470 471 /** 472 * alarm_handle_timer - Callback for posix timers 473 * @alarm: alarm that fired 474 * 475 * Posix timer callback for expired alarm timers. 476 */ 477 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 478 ktime_t now) 479 { 480 unsigned long flags; 481 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 482 it.alarm.alarmtimer); 483 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 484 485 spin_lock_irqsave(&ptr->it_lock, flags); 486 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) { 487 if (posix_timer_event(ptr, 0) != 0) 488 ptr->it_overrun++; 489 } 490 491 /* Re-add periodic timers */ 492 if (ptr->it.alarm.interval.tv64) { 493 ptr->it_overrun += alarm_forward(alarm, now, 494 ptr->it.alarm.interval); 495 result = ALARMTIMER_RESTART; 496 } 497 spin_unlock_irqrestore(&ptr->it_lock, flags); 498 499 return result; 500 } 501 502 /** 503 * alarm_clock_getres - posix getres interface 504 * @which_clock: clockid 505 * @tp: timespec to fill 506 * 507 * Returns the granularity of underlying alarm base clock 508 */ 509 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 510 { 511 if (!alarmtimer_get_rtcdev()) 512 return -EINVAL; 513 514 tp->tv_sec = 0; 515 tp->tv_nsec = hrtimer_resolution; 516 return 0; 517 } 518 519 /** 520 * alarm_clock_get - posix clock_get interface 521 * @which_clock: clockid 522 * @tp: timespec to fill. 523 * 524 * Provides the underlying alarm base time. 525 */ 526 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 527 { 528 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 529 530 if (!alarmtimer_get_rtcdev()) 531 return -EINVAL; 532 533 *tp = ktime_to_timespec(base->gettime()); 534 return 0; 535 } 536 537 /** 538 * alarm_timer_create - posix timer_create interface 539 * @new_timer: k_itimer pointer to manage 540 * 541 * Initializes the k_itimer structure. 542 */ 543 static int alarm_timer_create(struct k_itimer *new_timer) 544 { 545 enum alarmtimer_type type; 546 struct alarm_base *base; 547 548 if (!alarmtimer_get_rtcdev()) 549 return -ENOTSUPP; 550 551 if (!capable(CAP_WAKE_ALARM)) 552 return -EPERM; 553 554 type = clock2alarm(new_timer->it_clock); 555 base = &alarm_bases[type]; 556 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 557 return 0; 558 } 559 560 /** 561 * alarm_timer_get - posix timer_get interface 562 * @new_timer: k_itimer pointer 563 * @cur_setting: itimerspec data to fill 564 * 565 * Copies out the current itimerspec data 566 */ 567 static void alarm_timer_get(struct k_itimer *timr, 568 struct itimerspec *cur_setting) 569 { 570 ktime_t relative_expiry_time = 571 alarm_expires_remaining(&(timr->it.alarm.alarmtimer)); 572 573 if (ktime_to_ns(relative_expiry_time) > 0) { 574 cur_setting->it_value = ktime_to_timespec(relative_expiry_time); 575 } else { 576 cur_setting->it_value.tv_sec = 0; 577 cur_setting->it_value.tv_nsec = 0; 578 } 579 580 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval); 581 } 582 583 /** 584 * alarm_timer_del - posix timer_del interface 585 * @timr: k_itimer pointer to be deleted 586 * 587 * Cancels any programmed alarms for the given timer. 588 */ 589 static int alarm_timer_del(struct k_itimer *timr) 590 { 591 if (!rtcdev) 592 return -ENOTSUPP; 593 594 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 595 return TIMER_RETRY; 596 597 return 0; 598 } 599 600 /** 601 * alarm_timer_set - posix timer_set interface 602 * @timr: k_itimer pointer to be deleted 603 * @flags: timer flags 604 * @new_setting: itimerspec to be used 605 * @old_setting: itimerspec being replaced 606 * 607 * Sets the timer to new_setting, and starts the timer. 608 */ 609 static int alarm_timer_set(struct k_itimer *timr, int flags, 610 struct itimerspec *new_setting, 611 struct itimerspec *old_setting) 612 { 613 ktime_t exp; 614 615 if (!rtcdev) 616 return -ENOTSUPP; 617 618 if (flags & ~TIMER_ABSTIME) 619 return -EINVAL; 620 621 if (old_setting) 622 alarm_timer_get(timr, old_setting); 623 624 /* If the timer was already set, cancel it */ 625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 626 return TIMER_RETRY; 627 628 /* start the timer */ 629 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval); 630 exp = timespec_to_ktime(new_setting->it_value); 631 /* Convert (if necessary) to absolute time */ 632 if (flags != TIMER_ABSTIME) { 633 ktime_t now; 634 635 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime(); 636 exp = ktime_add(now, exp); 637 } 638 639 alarm_start(&timr->it.alarm.alarmtimer, exp); 640 return 0; 641 } 642 643 /** 644 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 645 * @alarm: ptr to alarm that fired 646 * 647 * Wakes up the task that set the alarmtimer 648 */ 649 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 650 ktime_t now) 651 { 652 struct task_struct *task = (struct task_struct *)alarm->data; 653 654 alarm->data = NULL; 655 if (task) 656 wake_up_process(task); 657 return ALARMTIMER_NORESTART; 658 } 659 660 /** 661 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 662 * @alarm: ptr to alarmtimer 663 * @absexp: absolute expiration time 664 * 665 * Sets the alarm timer and sleeps until it is fired or interrupted. 666 */ 667 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 668 { 669 alarm->data = (void *)current; 670 do { 671 set_current_state(TASK_INTERRUPTIBLE); 672 alarm_start(alarm, absexp); 673 if (likely(alarm->data)) 674 schedule(); 675 676 alarm_cancel(alarm); 677 } while (alarm->data && !signal_pending(current)); 678 679 __set_current_state(TASK_RUNNING); 680 681 return (alarm->data == NULL); 682 } 683 684 685 /** 686 * update_rmtp - Update remaining timespec value 687 * @exp: expiration time 688 * @type: timer type 689 * @rmtp: user pointer to remaining timepsec value 690 * 691 * Helper function that fills in rmtp value with time between 692 * now and the exp value 693 */ 694 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 695 struct timespec __user *rmtp) 696 { 697 struct timespec rmt; 698 ktime_t rem; 699 700 rem = ktime_sub(exp, alarm_bases[type].gettime()); 701 702 if (rem.tv64 <= 0) 703 return 0; 704 rmt = ktime_to_timespec(rem); 705 706 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 707 return -EFAULT; 708 709 return 1; 710 711 } 712 713 /** 714 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 715 * @restart: ptr to restart block 716 * 717 * Handles restarted clock_nanosleep calls 718 */ 719 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 720 { 721 enum alarmtimer_type type = restart->nanosleep.clockid; 722 ktime_t exp; 723 struct timespec __user *rmtp; 724 struct alarm alarm; 725 int ret = 0; 726 727 exp.tv64 = restart->nanosleep.expires; 728 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 729 730 if (alarmtimer_do_nsleep(&alarm, exp)) 731 goto out; 732 733 if (freezing(current)) 734 alarmtimer_freezerset(exp, type); 735 736 rmtp = restart->nanosleep.rmtp; 737 if (rmtp) { 738 ret = update_rmtp(exp, type, rmtp); 739 if (ret <= 0) 740 goto out; 741 } 742 743 744 /* The other values in restart are already filled in */ 745 ret = -ERESTART_RESTARTBLOCK; 746 out: 747 return ret; 748 } 749 750 /** 751 * alarm_timer_nsleep - alarmtimer nanosleep 752 * @which_clock: clockid 753 * @flags: determins abstime or relative 754 * @tsreq: requested sleep time (abs or rel) 755 * @rmtp: remaining sleep time saved 756 * 757 * Handles clock_nanosleep calls against _ALARM clockids 758 */ 759 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 760 struct timespec *tsreq, struct timespec __user *rmtp) 761 { 762 enum alarmtimer_type type = clock2alarm(which_clock); 763 struct alarm alarm; 764 ktime_t exp; 765 int ret = 0; 766 struct restart_block *restart; 767 768 if (!alarmtimer_get_rtcdev()) 769 return -ENOTSUPP; 770 771 if (flags & ~TIMER_ABSTIME) 772 return -EINVAL; 773 774 if (!capable(CAP_WAKE_ALARM)) 775 return -EPERM; 776 777 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 778 779 exp = timespec_to_ktime(*tsreq); 780 /* Convert (if necessary) to absolute time */ 781 if (flags != TIMER_ABSTIME) { 782 ktime_t now = alarm_bases[type].gettime(); 783 exp = ktime_add(now, exp); 784 } 785 786 if (alarmtimer_do_nsleep(&alarm, exp)) 787 goto out; 788 789 if (freezing(current)) 790 alarmtimer_freezerset(exp, type); 791 792 /* abs timers don't set remaining time or restart */ 793 if (flags == TIMER_ABSTIME) { 794 ret = -ERESTARTNOHAND; 795 goto out; 796 } 797 798 if (rmtp) { 799 ret = update_rmtp(exp, type, rmtp); 800 if (ret <= 0) 801 goto out; 802 } 803 804 restart = ¤t->restart_block; 805 restart->fn = alarm_timer_nsleep_restart; 806 restart->nanosleep.clockid = type; 807 restart->nanosleep.expires = exp.tv64; 808 restart->nanosleep.rmtp = rmtp; 809 ret = -ERESTART_RESTARTBLOCK; 810 811 out: 812 return ret; 813 } 814 815 816 /* Suspend hook structures */ 817 static const struct dev_pm_ops alarmtimer_pm_ops = { 818 .suspend = alarmtimer_suspend, 819 .resume = alarmtimer_resume, 820 }; 821 822 static struct platform_driver alarmtimer_driver = { 823 .driver = { 824 .name = "alarmtimer", 825 .pm = &alarmtimer_pm_ops, 826 } 827 }; 828 829 /** 830 * alarmtimer_init - Initialize alarm timer code 831 * 832 * This function initializes the alarm bases and registers 833 * the posix clock ids. 834 */ 835 static int __init alarmtimer_init(void) 836 { 837 struct platform_device *pdev; 838 int error = 0; 839 int i; 840 struct k_clock alarm_clock = { 841 .clock_getres = alarm_clock_getres, 842 .clock_get = alarm_clock_get, 843 .timer_create = alarm_timer_create, 844 .timer_set = alarm_timer_set, 845 .timer_del = alarm_timer_del, 846 .timer_get = alarm_timer_get, 847 .nsleep = alarm_timer_nsleep, 848 }; 849 850 alarmtimer_rtc_timer_init(); 851 852 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 853 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 854 855 /* Initialize alarm bases */ 856 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 857 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 858 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 859 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 860 for (i = 0; i < ALARM_NUMTYPE; i++) { 861 timerqueue_init_head(&alarm_bases[i].timerqueue); 862 spin_lock_init(&alarm_bases[i].lock); 863 } 864 865 error = alarmtimer_rtc_interface_setup(); 866 if (error) 867 return error; 868 869 error = platform_driver_register(&alarmtimer_driver); 870 if (error) 871 goto out_if; 872 873 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 874 if (IS_ERR(pdev)) { 875 error = PTR_ERR(pdev); 876 goto out_drv; 877 } 878 ws = wakeup_source_register("alarmtimer"); 879 return 0; 880 881 out_drv: 882 platform_driver_unregister(&alarmtimer_driver); 883 out_if: 884 alarmtimer_rtc_interface_remove(); 885 return error; 886 } 887 device_initcall(alarmtimer_init); 888