xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 232b0b08)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/alarmtimer.h>
33 
34 /**
35  * struct alarm_base - Alarm timer bases
36  * @lock:		Lock for syncrhonized access to the base
37  * @timerqueue:		Timerqueue head managing the list of events
38  * @gettime:		Function to read the time correlating to the base
39  * @base_clockid:	clockid for the base
40  */
41 static struct alarm_base {
42 	spinlock_t		lock;
43 	struct timerqueue_head	timerqueue;
44 	ktime_t			(*gettime)(void);
45 	clockid_t		base_clockid;
46 } alarm_bases[ALARM_NUMTYPE];
47 
48 /* freezer information to handle clock_nanosleep triggered wakeups */
49 static enum alarmtimer_type freezer_alarmtype;
50 static ktime_t freezer_expires;
51 static ktime_t freezer_delta;
52 static DEFINE_SPINLOCK(freezer_delta_lock);
53 
54 static struct wakeup_source *ws;
55 
56 #ifdef CONFIG_RTC_CLASS
57 /* rtc timer and device for setting alarm wakeups at suspend */
58 static struct rtc_timer		rtctimer;
59 static struct rtc_device	*rtcdev;
60 static DEFINE_SPINLOCK(rtcdev_lock);
61 
62 /**
63  * alarmtimer_get_rtcdev - Return selected rtcdevice
64  *
65  * This function returns the rtc device to use for wakealarms.
66  * If one has not already been chosen, it checks to see if a
67  * functional rtc device is available.
68  */
69 struct rtc_device *alarmtimer_get_rtcdev(void)
70 {
71 	unsigned long flags;
72 	struct rtc_device *ret;
73 
74 	spin_lock_irqsave(&rtcdev_lock, flags);
75 	ret = rtcdev;
76 	spin_unlock_irqrestore(&rtcdev_lock, flags);
77 
78 	return ret;
79 }
80 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
81 
82 static int alarmtimer_rtc_add_device(struct device *dev,
83 				struct class_interface *class_intf)
84 {
85 	unsigned long flags;
86 	struct rtc_device *rtc = to_rtc_device(dev);
87 
88 	if (rtcdev)
89 		return -EBUSY;
90 
91 	if (!rtc->ops->set_alarm)
92 		return -1;
93 	if (!device_may_wakeup(rtc->dev.parent))
94 		return -1;
95 
96 	spin_lock_irqsave(&rtcdev_lock, flags);
97 	if (!rtcdev) {
98 		rtcdev = rtc;
99 		/* hold a reference so it doesn't go away */
100 		get_device(dev);
101 	}
102 	spin_unlock_irqrestore(&rtcdev_lock, flags);
103 	return 0;
104 }
105 
106 static inline void alarmtimer_rtc_timer_init(void)
107 {
108 	rtc_timer_init(&rtctimer, NULL, NULL);
109 }
110 
111 static struct class_interface alarmtimer_rtc_interface = {
112 	.add_dev = &alarmtimer_rtc_add_device,
113 };
114 
115 static int alarmtimer_rtc_interface_setup(void)
116 {
117 	alarmtimer_rtc_interface.class = rtc_class;
118 	return class_interface_register(&alarmtimer_rtc_interface);
119 }
120 static void alarmtimer_rtc_interface_remove(void)
121 {
122 	class_interface_unregister(&alarmtimer_rtc_interface);
123 }
124 #else
125 struct rtc_device *alarmtimer_get_rtcdev(void)
126 {
127 	return NULL;
128 }
129 #define rtcdev (NULL)
130 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
131 static inline void alarmtimer_rtc_interface_remove(void) { }
132 static inline void alarmtimer_rtc_timer_init(void) { }
133 #endif
134 
135 /**
136  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
137  * @base: pointer to the base where the timer is being run
138  * @alarm: pointer to alarm being enqueued.
139  *
140  * Adds alarm to a alarm_base timerqueue
141  *
142  * Must hold base->lock when calling.
143  */
144 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
145 {
146 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
147 		timerqueue_del(&base->timerqueue, &alarm->node);
148 
149 	timerqueue_add(&base->timerqueue, &alarm->node);
150 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
151 }
152 
153 /**
154  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
155  * @base: pointer to the base where the timer is running
156  * @alarm: pointer to alarm being removed
157  *
158  * Removes alarm to a alarm_base timerqueue
159  *
160  * Must hold base->lock when calling.
161  */
162 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
163 {
164 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
165 		return;
166 
167 	timerqueue_del(&base->timerqueue, &alarm->node);
168 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
169 }
170 
171 
172 /**
173  * alarmtimer_fired - Handles alarm hrtimer being fired.
174  * @timer: pointer to hrtimer being run
175  *
176  * When a alarm timer fires, this runs through the timerqueue to
177  * see which alarms expired, and runs those. If there are more alarm
178  * timers queued for the future, we set the hrtimer to fire when
179  * when the next future alarm timer expires.
180  */
181 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
182 {
183 	struct alarm *alarm = container_of(timer, struct alarm, timer);
184 	struct alarm_base *base = &alarm_bases[alarm->type];
185 	unsigned long flags;
186 	int ret = HRTIMER_NORESTART;
187 	int restart = ALARMTIMER_NORESTART;
188 
189 	spin_lock_irqsave(&base->lock, flags);
190 	alarmtimer_dequeue(base, alarm);
191 	spin_unlock_irqrestore(&base->lock, flags);
192 
193 	if (alarm->function)
194 		restart = alarm->function(alarm, base->gettime());
195 
196 	spin_lock_irqsave(&base->lock, flags);
197 	if (restart != ALARMTIMER_NORESTART) {
198 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
199 		alarmtimer_enqueue(base, alarm);
200 		ret = HRTIMER_RESTART;
201 	}
202 	spin_unlock_irqrestore(&base->lock, flags);
203 
204 	trace_alarmtimer_fired(alarm, base->gettime());
205 	return ret;
206 
207 }
208 
209 ktime_t alarm_expires_remaining(const struct alarm *alarm)
210 {
211 	struct alarm_base *base = &alarm_bases[alarm->type];
212 	return ktime_sub(alarm->node.expires, base->gettime());
213 }
214 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
215 
216 #ifdef CONFIG_RTC_CLASS
217 /**
218  * alarmtimer_suspend - Suspend time callback
219  * @dev: unused
220  * @state: unused
221  *
222  * When we are going into suspend, we look through the bases
223  * to see which is the soonest timer to expire. We then
224  * set an rtc timer to fire that far into the future, which
225  * will wake us from suspend.
226  */
227 static int alarmtimer_suspend(struct device *dev)
228 {
229 	ktime_t min, now, expires;
230 	int i, ret, type;
231 	struct rtc_device *rtc;
232 	unsigned long flags;
233 	struct rtc_time tm;
234 
235 	spin_lock_irqsave(&freezer_delta_lock, flags);
236 	min = freezer_delta;
237 	expires = freezer_expires;
238 	type = freezer_alarmtype;
239 	freezer_delta = 0;
240 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
241 
242 	rtc = alarmtimer_get_rtcdev();
243 	/* If we have no rtcdev, just return */
244 	if (!rtc)
245 		return 0;
246 
247 	/* Find the soonest timer to expire*/
248 	for (i = 0; i < ALARM_NUMTYPE; i++) {
249 		struct alarm_base *base = &alarm_bases[i];
250 		struct timerqueue_node *next;
251 		ktime_t delta;
252 
253 		spin_lock_irqsave(&base->lock, flags);
254 		next = timerqueue_getnext(&base->timerqueue);
255 		spin_unlock_irqrestore(&base->lock, flags);
256 		if (!next)
257 			continue;
258 		delta = ktime_sub(next->expires, base->gettime());
259 		if (!min || (delta < min)) {
260 			expires = next->expires;
261 			min = delta;
262 			type = i;
263 		}
264 	}
265 	if (min == 0)
266 		return 0;
267 
268 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
269 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
270 		return -EBUSY;
271 	}
272 
273 	trace_alarmtimer_suspend(expires, type);
274 
275 	/* Setup an rtc timer to fire that far in the future */
276 	rtc_timer_cancel(rtc, &rtctimer);
277 	rtc_read_time(rtc, &tm);
278 	now = rtc_tm_to_ktime(tm);
279 	now = ktime_add(now, min);
280 
281 	/* Set alarm, if in the past reject suspend briefly to handle */
282 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
283 	if (ret < 0)
284 		__pm_wakeup_event(ws, MSEC_PER_SEC);
285 	return ret;
286 }
287 
288 static int alarmtimer_resume(struct device *dev)
289 {
290 	struct rtc_device *rtc;
291 
292 	rtc = alarmtimer_get_rtcdev();
293 	if (rtc)
294 		rtc_timer_cancel(rtc, &rtctimer);
295 	return 0;
296 }
297 
298 #else
299 static int alarmtimer_suspend(struct device *dev)
300 {
301 	return 0;
302 }
303 
304 static int alarmtimer_resume(struct device *dev)
305 {
306 	return 0;
307 }
308 #endif
309 
310 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
311 {
312 	struct alarm_base *base;
313 	unsigned long flags;
314 	ktime_t delta;
315 
316 	switch(type) {
317 	case ALARM_REALTIME:
318 		base = &alarm_bases[ALARM_REALTIME];
319 		type = ALARM_REALTIME_FREEZER;
320 		break;
321 	case ALARM_BOOTTIME:
322 		base = &alarm_bases[ALARM_BOOTTIME];
323 		type = ALARM_BOOTTIME_FREEZER;
324 		break;
325 	default:
326 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
327 		return;
328 	}
329 
330 	delta = ktime_sub(absexp, base->gettime());
331 
332 	spin_lock_irqsave(&freezer_delta_lock, flags);
333 	if (!freezer_delta || (delta < freezer_delta)) {
334 		freezer_delta = delta;
335 		freezer_expires = absexp;
336 		freezer_alarmtype = type;
337 	}
338 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
339 }
340 
341 
342 /**
343  * alarm_init - Initialize an alarm structure
344  * @alarm: ptr to alarm to be initialized
345  * @type: the type of the alarm
346  * @function: callback that is run when the alarm fires
347  */
348 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
349 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
350 {
351 	timerqueue_init(&alarm->node);
352 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
353 			HRTIMER_MODE_ABS);
354 	alarm->timer.function = alarmtimer_fired;
355 	alarm->function = function;
356 	alarm->type = type;
357 	alarm->state = ALARMTIMER_STATE_INACTIVE;
358 }
359 EXPORT_SYMBOL_GPL(alarm_init);
360 
361 /**
362  * alarm_start - Sets an absolute alarm to fire
363  * @alarm: ptr to alarm to set
364  * @start: time to run the alarm
365  */
366 void alarm_start(struct alarm *alarm, ktime_t start)
367 {
368 	struct alarm_base *base = &alarm_bases[alarm->type];
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&base->lock, flags);
372 	alarm->node.expires = start;
373 	alarmtimer_enqueue(base, alarm);
374 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
375 	spin_unlock_irqrestore(&base->lock, flags);
376 
377 	trace_alarmtimer_start(alarm, base->gettime());
378 }
379 EXPORT_SYMBOL_GPL(alarm_start);
380 
381 /**
382  * alarm_start_relative - Sets a relative alarm to fire
383  * @alarm: ptr to alarm to set
384  * @start: time relative to now to run the alarm
385  */
386 void alarm_start_relative(struct alarm *alarm, ktime_t start)
387 {
388 	struct alarm_base *base = &alarm_bases[alarm->type];
389 
390 	start = ktime_add(start, base->gettime());
391 	alarm_start(alarm, start);
392 }
393 EXPORT_SYMBOL_GPL(alarm_start_relative);
394 
395 void alarm_restart(struct alarm *alarm)
396 {
397 	struct alarm_base *base = &alarm_bases[alarm->type];
398 	unsigned long flags;
399 
400 	spin_lock_irqsave(&base->lock, flags);
401 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
402 	hrtimer_restart(&alarm->timer);
403 	alarmtimer_enqueue(base, alarm);
404 	spin_unlock_irqrestore(&base->lock, flags);
405 }
406 EXPORT_SYMBOL_GPL(alarm_restart);
407 
408 /**
409  * alarm_try_to_cancel - Tries to cancel an alarm timer
410  * @alarm: ptr to alarm to be canceled
411  *
412  * Returns 1 if the timer was canceled, 0 if it was not running,
413  * and -1 if the callback was running
414  */
415 int alarm_try_to_cancel(struct alarm *alarm)
416 {
417 	struct alarm_base *base = &alarm_bases[alarm->type];
418 	unsigned long flags;
419 	int ret;
420 
421 	spin_lock_irqsave(&base->lock, flags);
422 	ret = hrtimer_try_to_cancel(&alarm->timer);
423 	if (ret >= 0)
424 		alarmtimer_dequeue(base, alarm);
425 	spin_unlock_irqrestore(&base->lock, flags);
426 
427 	trace_alarmtimer_cancel(alarm, base->gettime());
428 	return ret;
429 }
430 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
431 
432 
433 /**
434  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
435  * @alarm: ptr to alarm to be canceled
436  *
437  * Returns 1 if the timer was canceled, 0 if it was not active.
438  */
439 int alarm_cancel(struct alarm *alarm)
440 {
441 	for (;;) {
442 		int ret = alarm_try_to_cancel(alarm);
443 		if (ret >= 0)
444 			return ret;
445 		cpu_relax();
446 	}
447 }
448 EXPORT_SYMBOL_GPL(alarm_cancel);
449 
450 
451 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
452 {
453 	u64 overrun = 1;
454 	ktime_t delta;
455 
456 	delta = ktime_sub(now, alarm->node.expires);
457 
458 	if (delta < 0)
459 		return 0;
460 
461 	if (unlikely(delta >= interval)) {
462 		s64 incr = ktime_to_ns(interval);
463 
464 		overrun = ktime_divns(delta, incr);
465 
466 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
467 							incr*overrun);
468 
469 		if (alarm->node.expires > now)
470 			return overrun;
471 		/*
472 		 * This (and the ktime_add() below) is the
473 		 * correction for exact:
474 		 */
475 		overrun++;
476 	}
477 
478 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
479 	return overrun;
480 }
481 EXPORT_SYMBOL_GPL(alarm_forward);
482 
483 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
484 {
485 	struct alarm_base *base = &alarm_bases[alarm->type];
486 
487 	return alarm_forward(alarm, base->gettime(), interval);
488 }
489 EXPORT_SYMBOL_GPL(alarm_forward_now);
490 
491 
492 /**
493  * clock2alarm - helper that converts from clockid to alarmtypes
494  * @clockid: clockid.
495  */
496 static enum alarmtimer_type clock2alarm(clockid_t clockid)
497 {
498 	if (clockid == CLOCK_REALTIME_ALARM)
499 		return ALARM_REALTIME;
500 	if (clockid == CLOCK_BOOTTIME_ALARM)
501 		return ALARM_BOOTTIME;
502 	return -1;
503 }
504 
505 /**
506  * alarm_handle_timer - Callback for posix timers
507  * @alarm: alarm that fired
508  *
509  * Posix timer callback for expired alarm timers.
510  */
511 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
512 							ktime_t now)
513 {
514 	unsigned long flags;
515 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
516 						it.alarm.alarmtimer);
517 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
518 
519 	spin_lock_irqsave(&ptr->it_lock, flags);
520 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
521 		if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
522 		    posix_timer_event(ptr, 0) != 0)
523 			ptr->it_overrun++;
524 	}
525 
526 	/* Re-add periodic timers */
527 	if (ptr->it.alarm.interval) {
528 		ptr->it_overrun += alarm_forward(alarm, now,
529 						ptr->it.alarm.interval);
530 		result = ALARMTIMER_RESTART;
531 	}
532 	spin_unlock_irqrestore(&ptr->it_lock, flags);
533 
534 	return result;
535 }
536 
537 /**
538  * alarm_clock_getres - posix getres interface
539  * @which_clock: clockid
540  * @tp: timespec to fill
541  *
542  * Returns the granularity of underlying alarm base clock
543  */
544 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
545 {
546 	if (!alarmtimer_get_rtcdev())
547 		return -EINVAL;
548 
549 	tp->tv_sec = 0;
550 	tp->tv_nsec = hrtimer_resolution;
551 	return 0;
552 }
553 
554 /**
555  * alarm_clock_get - posix clock_get interface
556  * @which_clock: clockid
557  * @tp: timespec to fill.
558  *
559  * Provides the underlying alarm base time.
560  */
561 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
562 {
563 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
564 
565 	if (!alarmtimer_get_rtcdev())
566 		return -EINVAL;
567 
568 	*tp = ktime_to_timespec(base->gettime());
569 	return 0;
570 }
571 
572 /**
573  * alarm_timer_create - posix timer_create interface
574  * @new_timer: k_itimer pointer to manage
575  *
576  * Initializes the k_itimer structure.
577  */
578 static int alarm_timer_create(struct k_itimer *new_timer)
579 {
580 	enum  alarmtimer_type type;
581 
582 	if (!alarmtimer_get_rtcdev())
583 		return -ENOTSUPP;
584 
585 	if (!capable(CAP_WAKE_ALARM))
586 		return -EPERM;
587 
588 	type = clock2alarm(new_timer->it_clock);
589 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
590 	return 0;
591 }
592 
593 /**
594  * alarm_timer_get - posix timer_get interface
595  * @new_timer: k_itimer pointer
596  * @cur_setting: itimerspec data to fill
597  *
598  * Copies out the current itimerspec data
599  */
600 static void alarm_timer_get(struct k_itimer *timr,
601 				struct itimerspec *cur_setting)
602 {
603 	ktime_t relative_expiry_time =
604 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
605 
606 	if (ktime_to_ns(relative_expiry_time) > 0) {
607 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
608 	} else {
609 		cur_setting->it_value.tv_sec = 0;
610 		cur_setting->it_value.tv_nsec = 0;
611 	}
612 
613 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
614 }
615 
616 /**
617  * alarm_timer_del - posix timer_del interface
618  * @timr: k_itimer pointer to be deleted
619  *
620  * Cancels any programmed alarms for the given timer.
621  */
622 static int alarm_timer_del(struct k_itimer *timr)
623 {
624 	if (!rtcdev)
625 		return -ENOTSUPP;
626 
627 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
628 		return TIMER_RETRY;
629 
630 	return 0;
631 }
632 
633 /**
634  * alarm_timer_set - posix timer_set interface
635  * @timr: k_itimer pointer to be deleted
636  * @flags: timer flags
637  * @new_setting: itimerspec to be used
638  * @old_setting: itimerspec being replaced
639  *
640  * Sets the timer to new_setting, and starts the timer.
641  */
642 static int alarm_timer_set(struct k_itimer *timr, int flags,
643 				struct itimerspec *new_setting,
644 				struct itimerspec *old_setting)
645 {
646 	ktime_t exp;
647 
648 	if (!rtcdev)
649 		return -ENOTSUPP;
650 
651 	if (flags & ~TIMER_ABSTIME)
652 		return -EINVAL;
653 
654 	if (old_setting)
655 		alarm_timer_get(timr, old_setting);
656 
657 	/* If the timer was already set, cancel it */
658 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
659 		return TIMER_RETRY;
660 
661 	/* start the timer */
662 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
663 	exp = timespec_to_ktime(new_setting->it_value);
664 	/* Convert (if necessary) to absolute time */
665 	if (flags != TIMER_ABSTIME) {
666 		ktime_t now;
667 
668 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
669 		exp = ktime_add(now, exp);
670 	}
671 
672 	alarm_start(&timr->it.alarm.alarmtimer, exp);
673 	return 0;
674 }
675 
676 /**
677  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
678  * @alarm: ptr to alarm that fired
679  *
680  * Wakes up the task that set the alarmtimer
681  */
682 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
683 								ktime_t now)
684 {
685 	struct task_struct *task = (struct task_struct *)alarm->data;
686 
687 	alarm->data = NULL;
688 	if (task)
689 		wake_up_process(task);
690 	return ALARMTIMER_NORESTART;
691 }
692 
693 /**
694  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
695  * @alarm: ptr to alarmtimer
696  * @absexp: absolute expiration time
697  *
698  * Sets the alarm timer and sleeps until it is fired or interrupted.
699  */
700 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
701 {
702 	alarm->data = (void *)current;
703 	do {
704 		set_current_state(TASK_INTERRUPTIBLE);
705 		alarm_start(alarm, absexp);
706 		if (likely(alarm->data))
707 			schedule();
708 
709 		alarm_cancel(alarm);
710 	} while (alarm->data && !signal_pending(current));
711 
712 	__set_current_state(TASK_RUNNING);
713 
714 	return (alarm->data == NULL);
715 }
716 
717 
718 /**
719  * update_rmtp - Update remaining timespec value
720  * @exp: expiration time
721  * @type: timer type
722  * @rmtp: user pointer to remaining timepsec value
723  *
724  * Helper function that fills in rmtp value with time between
725  * now and the exp value
726  */
727 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
728 			struct timespec __user *rmtp)
729 {
730 	struct timespec rmt;
731 	ktime_t rem;
732 
733 	rem = ktime_sub(exp, alarm_bases[type].gettime());
734 
735 	if (rem <= 0)
736 		return 0;
737 	rmt = ktime_to_timespec(rem);
738 
739 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
740 		return -EFAULT;
741 
742 	return 1;
743 
744 }
745 
746 /**
747  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
748  * @restart: ptr to restart block
749  *
750  * Handles restarted clock_nanosleep calls
751  */
752 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
753 {
754 	enum  alarmtimer_type type = restart->nanosleep.clockid;
755 	ktime_t exp;
756 	struct timespec __user  *rmtp;
757 	struct alarm alarm;
758 	int ret = 0;
759 
760 	exp = restart->nanosleep.expires;
761 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
762 
763 	if (alarmtimer_do_nsleep(&alarm, exp))
764 		goto out;
765 
766 	if (freezing(current))
767 		alarmtimer_freezerset(exp, type);
768 
769 	rmtp = restart->nanosleep.rmtp;
770 	if (rmtp) {
771 		ret = update_rmtp(exp, type, rmtp);
772 		if (ret <= 0)
773 			goto out;
774 	}
775 
776 
777 	/* The other values in restart are already filled in */
778 	ret = -ERESTART_RESTARTBLOCK;
779 out:
780 	return ret;
781 }
782 
783 /**
784  * alarm_timer_nsleep - alarmtimer nanosleep
785  * @which_clock: clockid
786  * @flags: determins abstime or relative
787  * @tsreq: requested sleep time (abs or rel)
788  * @rmtp: remaining sleep time saved
789  *
790  * Handles clock_nanosleep calls against _ALARM clockids
791  */
792 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
793 		     struct timespec *tsreq, struct timespec __user *rmtp)
794 {
795 	enum  alarmtimer_type type = clock2alarm(which_clock);
796 	struct alarm alarm;
797 	ktime_t exp;
798 	int ret = 0;
799 	struct restart_block *restart;
800 
801 	if (!alarmtimer_get_rtcdev())
802 		return -ENOTSUPP;
803 
804 	if (flags & ~TIMER_ABSTIME)
805 		return -EINVAL;
806 
807 	if (!capable(CAP_WAKE_ALARM))
808 		return -EPERM;
809 
810 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
811 
812 	exp = timespec_to_ktime(*tsreq);
813 	/* Convert (if necessary) to absolute time */
814 	if (flags != TIMER_ABSTIME) {
815 		ktime_t now = alarm_bases[type].gettime();
816 		exp = ktime_add(now, exp);
817 	}
818 
819 	if (alarmtimer_do_nsleep(&alarm, exp))
820 		goto out;
821 
822 	if (freezing(current))
823 		alarmtimer_freezerset(exp, type);
824 
825 	/* abs timers don't set remaining time or restart */
826 	if (flags == TIMER_ABSTIME) {
827 		ret = -ERESTARTNOHAND;
828 		goto out;
829 	}
830 
831 	if (rmtp) {
832 		ret = update_rmtp(exp, type, rmtp);
833 		if (ret <= 0)
834 			goto out;
835 	}
836 
837 	restart = &current->restart_block;
838 	restart->fn = alarm_timer_nsleep_restart;
839 	restart->nanosleep.clockid = type;
840 	restart->nanosleep.expires = exp;
841 	restart->nanosleep.rmtp = rmtp;
842 	ret = -ERESTART_RESTARTBLOCK;
843 
844 out:
845 	return ret;
846 }
847 
848 
849 /* Suspend hook structures */
850 static const struct dev_pm_ops alarmtimer_pm_ops = {
851 	.suspend = alarmtimer_suspend,
852 	.resume = alarmtimer_resume,
853 };
854 
855 static struct platform_driver alarmtimer_driver = {
856 	.driver = {
857 		.name = "alarmtimer",
858 		.pm = &alarmtimer_pm_ops,
859 	}
860 };
861 
862 /**
863  * alarmtimer_init - Initialize alarm timer code
864  *
865  * This function initializes the alarm bases and registers
866  * the posix clock ids.
867  */
868 static int __init alarmtimer_init(void)
869 {
870 	struct platform_device *pdev;
871 	int error = 0;
872 	int i;
873 	struct k_clock alarm_clock = {
874 		.clock_getres	= alarm_clock_getres,
875 		.clock_get	= alarm_clock_get,
876 		.timer_create	= alarm_timer_create,
877 		.timer_set	= alarm_timer_set,
878 		.timer_del	= alarm_timer_del,
879 		.timer_get	= alarm_timer_get,
880 		.nsleep		= alarm_timer_nsleep,
881 	};
882 
883 	alarmtimer_rtc_timer_init();
884 
885 	if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
886 		posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
887 		posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
888 	}
889 
890 	/* Initialize alarm bases */
891 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
892 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
893 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
894 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
895 	for (i = 0; i < ALARM_NUMTYPE; i++) {
896 		timerqueue_init_head(&alarm_bases[i].timerqueue);
897 		spin_lock_init(&alarm_bases[i].lock);
898 	}
899 
900 	error = alarmtimer_rtc_interface_setup();
901 	if (error)
902 		return error;
903 
904 	error = platform_driver_register(&alarmtimer_driver);
905 	if (error)
906 		goto out_if;
907 
908 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
909 	if (IS_ERR(pdev)) {
910 		error = PTR_ERR(pdev);
911 		goto out_drv;
912 	}
913 	ws = wakeup_source_register("alarmtimer");
914 	return 0;
915 
916 out_drv:
917 	platform_driver_unregister(&alarmtimer_driver);
918 out_if:
919 	alarmtimer_rtc_interface_remove();
920 	return error;
921 }
922 device_initcall(alarmtimer_init);
923