xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 174cd4b1)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/alarmtimer.h>
24 #include <linux/mutex.h>
25 #include <linux/platform_device.h>
26 #include <linux/posix-timers.h>
27 #include <linux/workqueue.h>
28 #include <linux/freezer.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/alarmtimer.h>
32 
33 /**
34  * struct alarm_base - Alarm timer bases
35  * @lock:		Lock for syncrhonized access to the base
36  * @timerqueue:		Timerqueue head managing the list of events
37  * @gettime:		Function to read the time correlating to the base
38  * @base_clockid:	clockid for the base
39  */
40 static struct alarm_base {
41 	spinlock_t		lock;
42 	struct timerqueue_head	timerqueue;
43 	ktime_t			(*gettime)(void);
44 	clockid_t		base_clockid;
45 } alarm_bases[ALARM_NUMTYPE];
46 
47 /* freezer information to handle clock_nanosleep triggered wakeups */
48 static enum alarmtimer_type freezer_alarmtype;
49 static ktime_t freezer_expires;
50 static ktime_t freezer_delta;
51 static DEFINE_SPINLOCK(freezer_delta_lock);
52 
53 static struct wakeup_source *ws;
54 
55 #ifdef CONFIG_RTC_CLASS
56 /* rtc timer and device for setting alarm wakeups at suspend */
57 static struct rtc_timer		rtctimer;
58 static struct rtc_device	*rtcdev;
59 static DEFINE_SPINLOCK(rtcdev_lock);
60 
61 /**
62  * alarmtimer_get_rtcdev - Return selected rtcdevice
63  *
64  * This function returns the rtc device to use for wakealarms.
65  * If one has not already been chosen, it checks to see if a
66  * functional rtc device is available.
67  */
68 struct rtc_device *alarmtimer_get_rtcdev(void)
69 {
70 	unsigned long flags;
71 	struct rtc_device *ret;
72 
73 	spin_lock_irqsave(&rtcdev_lock, flags);
74 	ret = rtcdev;
75 	spin_unlock_irqrestore(&rtcdev_lock, flags);
76 
77 	return ret;
78 }
79 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
80 
81 static int alarmtimer_rtc_add_device(struct device *dev,
82 				struct class_interface *class_intf)
83 {
84 	unsigned long flags;
85 	struct rtc_device *rtc = to_rtc_device(dev);
86 
87 	if (rtcdev)
88 		return -EBUSY;
89 
90 	if (!rtc->ops->set_alarm)
91 		return -1;
92 	if (!device_may_wakeup(rtc->dev.parent))
93 		return -1;
94 
95 	spin_lock_irqsave(&rtcdev_lock, flags);
96 	if (!rtcdev) {
97 		rtcdev = rtc;
98 		/* hold a reference so it doesn't go away */
99 		get_device(dev);
100 	}
101 	spin_unlock_irqrestore(&rtcdev_lock, flags);
102 	return 0;
103 }
104 
105 static inline void alarmtimer_rtc_timer_init(void)
106 {
107 	rtc_timer_init(&rtctimer, NULL, NULL);
108 }
109 
110 static struct class_interface alarmtimer_rtc_interface = {
111 	.add_dev = &alarmtimer_rtc_add_device,
112 };
113 
114 static int alarmtimer_rtc_interface_setup(void)
115 {
116 	alarmtimer_rtc_interface.class = rtc_class;
117 	return class_interface_register(&alarmtimer_rtc_interface);
118 }
119 static void alarmtimer_rtc_interface_remove(void)
120 {
121 	class_interface_unregister(&alarmtimer_rtc_interface);
122 }
123 #else
124 struct rtc_device *alarmtimer_get_rtcdev(void)
125 {
126 	return NULL;
127 }
128 #define rtcdev (NULL)
129 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
130 static inline void alarmtimer_rtc_interface_remove(void) { }
131 static inline void alarmtimer_rtc_timer_init(void) { }
132 #endif
133 
134 /**
135  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
136  * @base: pointer to the base where the timer is being run
137  * @alarm: pointer to alarm being enqueued.
138  *
139  * Adds alarm to a alarm_base timerqueue
140  *
141  * Must hold base->lock when calling.
142  */
143 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
144 {
145 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
146 		timerqueue_del(&base->timerqueue, &alarm->node);
147 
148 	timerqueue_add(&base->timerqueue, &alarm->node);
149 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
150 }
151 
152 /**
153  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
154  * @base: pointer to the base where the timer is running
155  * @alarm: pointer to alarm being removed
156  *
157  * Removes alarm to a alarm_base timerqueue
158  *
159  * Must hold base->lock when calling.
160  */
161 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
162 {
163 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
164 		return;
165 
166 	timerqueue_del(&base->timerqueue, &alarm->node);
167 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
168 }
169 
170 
171 /**
172  * alarmtimer_fired - Handles alarm hrtimer being fired.
173  * @timer: pointer to hrtimer being run
174  *
175  * When a alarm timer fires, this runs through the timerqueue to
176  * see which alarms expired, and runs those. If there are more alarm
177  * timers queued for the future, we set the hrtimer to fire when
178  * when the next future alarm timer expires.
179  */
180 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
181 {
182 	struct alarm *alarm = container_of(timer, struct alarm, timer);
183 	struct alarm_base *base = &alarm_bases[alarm->type];
184 	unsigned long flags;
185 	int ret = HRTIMER_NORESTART;
186 	int restart = ALARMTIMER_NORESTART;
187 
188 	spin_lock_irqsave(&base->lock, flags);
189 	alarmtimer_dequeue(base, alarm);
190 	spin_unlock_irqrestore(&base->lock, flags);
191 
192 	if (alarm->function)
193 		restart = alarm->function(alarm, base->gettime());
194 
195 	spin_lock_irqsave(&base->lock, flags);
196 	if (restart != ALARMTIMER_NORESTART) {
197 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
198 		alarmtimer_enqueue(base, alarm);
199 		ret = HRTIMER_RESTART;
200 	}
201 	spin_unlock_irqrestore(&base->lock, flags);
202 
203 	trace_alarmtimer_fired(alarm, base->gettime());
204 	return ret;
205 
206 }
207 
208 ktime_t alarm_expires_remaining(const struct alarm *alarm)
209 {
210 	struct alarm_base *base = &alarm_bases[alarm->type];
211 	return ktime_sub(alarm->node.expires, base->gettime());
212 }
213 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
214 
215 #ifdef CONFIG_RTC_CLASS
216 /**
217  * alarmtimer_suspend - Suspend time callback
218  * @dev: unused
219  * @state: unused
220  *
221  * When we are going into suspend, we look through the bases
222  * to see which is the soonest timer to expire. We then
223  * set an rtc timer to fire that far into the future, which
224  * will wake us from suspend.
225  */
226 static int alarmtimer_suspend(struct device *dev)
227 {
228 	ktime_t min, now, expires;
229 	int i, ret, type;
230 	struct rtc_device *rtc;
231 	unsigned long flags;
232 	struct rtc_time tm;
233 
234 	spin_lock_irqsave(&freezer_delta_lock, flags);
235 	min = freezer_delta;
236 	expires = freezer_expires;
237 	type = freezer_alarmtype;
238 	freezer_delta = 0;
239 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
240 
241 	rtc = alarmtimer_get_rtcdev();
242 	/* If we have no rtcdev, just return */
243 	if (!rtc)
244 		return 0;
245 
246 	/* Find the soonest timer to expire*/
247 	for (i = 0; i < ALARM_NUMTYPE; i++) {
248 		struct alarm_base *base = &alarm_bases[i];
249 		struct timerqueue_node *next;
250 		ktime_t delta;
251 
252 		spin_lock_irqsave(&base->lock, flags);
253 		next = timerqueue_getnext(&base->timerqueue);
254 		spin_unlock_irqrestore(&base->lock, flags);
255 		if (!next)
256 			continue;
257 		delta = ktime_sub(next->expires, base->gettime());
258 		if (!min || (delta < min)) {
259 			expires = next->expires;
260 			min = delta;
261 			type = i;
262 		}
263 	}
264 	if (min == 0)
265 		return 0;
266 
267 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
268 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
269 		return -EBUSY;
270 	}
271 
272 	trace_alarmtimer_suspend(expires, type);
273 
274 	/* Setup an rtc timer to fire that far in the future */
275 	rtc_timer_cancel(rtc, &rtctimer);
276 	rtc_read_time(rtc, &tm);
277 	now = rtc_tm_to_ktime(tm);
278 	now = ktime_add(now, min);
279 
280 	/* Set alarm, if in the past reject suspend briefly to handle */
281 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
282 	if (ret < 0)
283 		__pm_wakeup_event(ws, MSEC_PER_SEC);
284 	return ret;
285 }
286 
287 static int alarmtimer_resume(struct device *dev)
288 {
289 	struct rtc_device *rtc;
290 
291 	rtc = alarmtimer_get_rtcdev();
292 	if (rtc)
293 		rtc_timer_cancel(rtc, &rtctimer);
294 	return 0;
295 }
296 
297 #else
298 static int alarmtimer_suspend(struct device *dev)
299 {
300 	return 0;
301 }
302 
303 static int alarmtimer_resume(struct device *dev)
304 {
305 	return 0;
306 }
307 #endif
308 
309 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
310 {
311 	struct alarm_base *base;
312 	unsigned long flags;
313 	ktime_t delta;
314 
315 	switch(type) {
316 	case ALARM_REALTIME:
317 		base = &alarm_bases[ALARM_REALTIME];
318 		type = ALARM_REALTIME_FREEZER;
319 		break;
320 	case ALARM_BOOTTIME:
321 		base = &alarm_bases[ALARM_BOOTTIME];
322 		type = ALARM_BOOTTIME_FREEZER;
323 		break;
324 	default:
325 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
326 		return;
327 	}
328 
329 	delta = ktime_sub(absexp, base->gettime());
330 
331 	spin_lock_irqsave(&freezer_delta_lock, flags);
332 	if (!freezer_delta || (delta < freezer_delta)) {
333 		freezer_delta = delta;
334 		freezer_expires = absexp;
335 		freezer_alarmtype = type;
336 	}
337 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
338 }
339 
340 
341 /**
342  * alarm_init - Initialize an alarm structure
343  * @alarm: ptr to alarm to be initialized
344  * @type: the type of the alarm
345  * @function: callback that is run when the alarm fires
346  */
347 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
348 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
349 {
350 	timerqueue_init(&alarm->node);
351 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
352 			HRTIMER_MODE_ABS);
353 	alarm->timer.function = alarmtimer_fired;
354 	alarm->function = function;
355 	alarm->type = type;
356 	alarm->state = ALARMTIMER_STATE_INACTIVE;
357 }
358 EXPORT_SYMBOL_GPL(alarm_init);
359 
360 /**
361  * alarm_start - Sets an absolute alarm to fire
362  * @alarm: ptr to alarm to set
363  * @start: time to run the alarm
364  */
365 void alarm_start(struct alarm *alarm, ktime_t start)
366 {
367 	struct alarm_base *base = &alarm_bases[alarm->type];
368 	unsigned long flags;
369 
370 	spin_lock_irqsave(&base->lock, flags);
371 	alarm->node.expires = start;
372 	alarmtimer_enqueue(base, alarm);
373 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
374 	spin_unlock_irqrestore(&base->lock, flags);
375 
376 	trace_alarmtimer_start(alarm, base->gettime());
377 }
378 EXPORT_SYMBOL_GPL(alarm_start);
379 
380 /**
381  * alarm_start_relative - Sets a relative alarm to fire
382  * @alarm: ptr to alarm to set
383  * @start: time relative to now to run the alarm
384  */
385 void alarm_start_relative(struct alarm *alarm, ktime_t start)
386 {
387 	struct alarm_base *base = &alarm_bases[alarm->type];
388 
389 	start = ktime_add(start, base->gettime());
390 	alarm_start(alarm, start);
391 }
392 EXPORT_SYMBOL_GPL(alarm_start_relative);
393 
394 void alarm_restart(struct alarm *alarm)
395 {
396 	struct alarm_base *base = &alarm_bases[alarm->type];
397 	unsigned long flags;
398 
399 	spin_lock_irqsave(&base->lock, flags);
400 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
401 	hrtimer_restart(&alarm->timer);
402 	alarmtimer_enqueue(base, alarm);
403 	spin_unlock_irqrestore(&base->lock, flags);
404 }
405 EXPORT_SYMBOL_GPL(alarm_restart);
406 
407 /**
408  * alarm_try_to_cancel - Tries to cancel an alarm timer
409  * @alarm: ptr to alarm to be canceled
410  *
411  * Returns 1 if the timer was canceled, 0 if it was not running,
412  * and -1 if the callback was running
413  */
414 int alarm_try_to_cancel(struct alarm *alarm)
415 {
416 	struct alarm_base *base = &alarm_bases[alarm->type];
417 	unsigned long flags;
418 	int ret;
419 
420 	spin_lock_irqsave(&base->lock, flags);
421 	ret = hrtimer_try_to_cancel(&alarm->timer);
422 	if (ret >= 0)
423 		alarmtimer_dequeue(base, alarm);
424 	spin_unlock_irqrestore(&base->lock, flags);
425 
426 	trace_alarmtimer_cancel(alarm, base->gettime());
427 	return ret;
428 }
429 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
430 
431 
432 /**
433  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
434  * @alarm: ptr to alarm to be canceled
435  *
436  * Returns 1 if the timer was canceled, 0 if it was not active.
437  */
438 int alarm_cancel(struct alarm *alarm)
439 {
440 	for (;;) {
441 		int ret = alarm_try_to_cancel(alarm);
442 		if (ret >= 0)
443 			return ret;
444 		cpu_relax();
445 	}
446 }
447 EXPORT_SYMBOL_GPL(alarm_cancel);
448 
449 
450 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
451 {
452 	u64 overrun = 1;
453 	ktime_t delta;
454 
455 	delta = ktime_sub(now, alarm->node.expires);
456 
457 	if (delta < 0)
458 		return 0;
459 
460 	if (unlikely(delta >= interval)) {
461 		s64 incr = ktime_to_ns(interval);
462 
463 		overrun = ktime_divns(delta, incr);
464 
465 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
466 							incr*overrun);
467 
468 		if (alarm->node.expires > now)
469 			return overrun;
470 		/*
471 		 * This (and the ktime_add() below) is the
472 		 * correction for exact:
473 		 */
474 		overrun++;
475 	}
476 
477 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
478 	return overrun;
479 }
480 EXPORT_SYMBOL_GPL(alarm_forward);
481 
482 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
483 {
484 	struct alarm_base *base = &alarm_bases[alarm->type];
485 
486 	return alarm_forward(alarm, base->gettime(), interval);
487 }
488 EXPORT_SYMBOL_GPL(alarm_forward_now);
489 
490 
491 /**
492  * clock2alarm - helper that converts from clockid to alarmtypes
493  * @clockid: clockid.
494  */
495 static enum alarmtimer_type clock2alarm(clockid_t clockid)
496 {
497 	if (clockid == CLOCK_REALTIME_ALARM)
498 		return ALARM_REALTIME;
499 	if (clockid == CLOCK_BOOTTIME_ALARM)
500 		return ALARM_BOOTTIME;
501 	return -1;
502 }
503 
504 /**
505  * alarm_handle_timer - Callback for posix timers
506  * @alarm: alarm that fired
507  *
508  * Posix timer callback for expired alarm timers.
509  */
510 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
511 							ktime_t now)
512 {
513 	unsigned long flags;
514 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
515 						it.alarm.alarmtimer);
516 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
517 
518 	spin_lock_irqsave(&ptr->it_lock, flags);
519 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
520 		if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
521 		    posix_timer_event(ptr, 0) != 0)
522 			ptr->it_overrun++;
523 	}
524 
525 	/* Re-add periodic timers */
526 	if (ptr->it.alarm.interval) {
527 		ptr->it_overrun += alarm_forward(alarm, now,
528 						ptr->it.alarm.interval);
529 		result = ALARMTIMER_RESTART;
530 	}
531 	spin_unlock_irqrestore(&ptr->it_lock, flags);
532 
533 	return result;
534 }
535 
536 /**
537  * alarm_clock_getres - posix getres interface
538  * @which_clock: clockid
539  * @tp: timespec to fill
540  *
541  * Returns the granularity of underlying alarm base clock
542  */
543 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
544 {
545 	if (!alarmtimer_get_rtcdev())
546 		return -EINVAL;
547 
548 	tp->tv_sec = 0;
549 	tp->tv_nsec = hrtimer_resolution;
550 	return 0;
551 }
552 
553 /**
554  * alarm_clock_get - posix clock_get interface
555  * @which_clock: clockid
556  * @tp: timespec to fill.
557  *
558  * Provides the underlying alarm base time.
559  */
560 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
561 {
562 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
563 
564 	if (!alarmtimer_get_rtcdev())
565 		return -EINVAL;
566 
567 	*tp = ktime_to_timespec(base->gettime());
568 	return 0;
569 }
570 
571 /**
572  * alarm_timer_create - posix timer_create interface
573  * @new_timer: k_itimer pointer to manage
574  *
575  * Initializes the k_itimer structure.
576  */
577 static int alarm_timer_create(struct k_itimer *new_timer)
578 {
579 	enum  alarmtimer_type type;
580 
581 	if (!alarmtimer_get_rtcdev())
582 		return -ENOTSUPP;
583 
584 	if (!capable(CAP_WAKE_ALARM))
585 		return -EPERM;
586 
587 	type = clock2alarm(new_timer->it_clock);
588 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
589 	return 0;
590 }
591 
592 /**
593  * alarm_timer_get - posix timer_get interface
594  * @new_timer: k_itimer pointer
595  * @cur_setting: itimerspec data to fill
596  *
597  * Copies out the current itimerspec data
598  */
599 static void alarm_timer_get(struct k_itimer *timr,
600 				struct itimerspec *cur_setting)
601 {
602 	ktime_t relative_expiry_time =
603 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
604 
605 	if (ktime_to_ns(relative_expiry_time) > 0) {
606 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
607 	} else {
608 		cur_setting->it_value.tv_sec = 0;
609 		cur_setting->it_value.tv_nsec = 0;
610 	}
611 
612 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
613 }
614 
615 /**
616  * alarm_timer_del - posix timer_del interface
617  * @timr: k_itimer pointer to be deleted
618  *
619  * Cancels any programmed alarms for the given timer.
620  */
621 static int alarm_timer_del(struct k_itimer *timr)
622 {
623 	if (!rtcdev)
624 		return -ENOTSUPP;
625 
626 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
627 		return TIMER_RETRY;
628 
629 	return 0;
630 }
631 
632 /**
633  * alarm_timer_set - posix timer_set interface
634  * @timr: k_itimer pointer to be deleted
635  * @flags: timer flags
636  * @new_setting: itimerspec to be used
637  * @old_setting: itimerspec being replaced
638  *
639  * Sets the timer to new_setting, and starts the timer.
640  */
641 static int alarm_timer_set(struct k_itimer *timr, int flags,
642 				struct itimerspec *new_setting,
643 				struct itimerspec *old_setting)
644 {
645 	ktime_t exp;
646 
647 	if (!rtcdev)
648 		return -ENOTSUPP;
649 
650 	if (flags & ~TIMER_ABSTIME)
651 		return -EINVAL;
652 
653 	if (old_setting)
654 		alarm_timer_get(timr, old_setting);
655 
656 	/* If the timer was already set, cancel it */
657 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
658 		return TIMER_RETRY;
659 
660 	/* start the timer */
661 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
662 	exp = timespec_to_ktime(new_setting->it_value);
663 	/* Convert (if necessary) to absolute time */
664 	if (flags != TIMER_ABSTIME) {
665 		ktime_t now;
666 
667 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
668 		exp = ktime_add(now, exp);
669 	}
670 
671 	alarm_start(&timr->it.alarm.alarmtimer, exp);
672 	return 0;
673 }
674 
675 /**
676  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
677  * @alarm: ptr to alarm that fired
678  *
679  * Wakes up the task that set the alarmtimer
680  */
681 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
682 								ktime_t now)
683 {
684 	struct task_struct *task = (struct task_struct *)alarm->data;
685 
686 	alarm->data = NULL;
687 	if (task)
688 		wake_up_process(task);
689 	return ALARMTIMER_NORESTART;
690 }
691 
692 /**
693  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
694  * @alarm: ptr to alarmtimer
695  * @absexp: absolute expiration time
696  *
697  * Sets the alarm timer and sleeps until it is fired or interrupted.
698  */
699 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
700 {
701 	alarm->data = (void *)current;
702 	do {
703 		set_current_state(TASK_INTERRUPTIBLE);
704 		alarm_start(alarm, absexp);
705 		if (likely(alarm->data))
706 			schedule();
707 
708 		alarm_cancel(alarm);
709 	} while (alarm->data && !signal_pending(current));
710 
711 	__set_current_state(TASK_RUNNING);
712 
713 	return (alarm->data == NULL);
714 }
715 
716 
717 /**
718  * update_rmtp - Update remaining timespec value
719  * @exp: expiration time
720  * @type: timer type
721  * @rmtp: user pointer to remaining timepsec value
722  *
723  * Helper function that fills in rmtp value with time between
724  * now and the exp value
725  */
726 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
727 			struct timespec __user *rmtp)
728 {
729 	struct timespec rmt;
730 	ktime_t rem;
731 
732 	rem = ktime_sub(exp, alarm_bases[type].gettime());
733 
734 	if (rem <= 0)
735 		return 0;
736 	rmt = ktime_to_timespec(rem);
737 
738 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
739 		return -EFAULT;
740 
741 	return 1;
742 
743 }
744 
745 /**
746  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
747  * @restart: ptr to restart block
748  *
749  * Handles restarted clock_nanosleep calls
750  */
751 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
752 {
753 	enum  alarmtimer_type type = restart->nanosleep.clockid;
754 	ktime_t exp;
755 	struct timespec __user  *rmtp;
756 	struct alarm alarm;
757 	int ret = 0;
758 
759 	exp = restart->nanosleep.expires;
760 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
761 
762 	if (alarmtimer_do_nsleep(&alarm, exp))
763 		goto out;
764 
765 	if (freezing(current))
766 		alarmtimer_freezerset(exp, type);
767 
768 	rmtp = restart->nanosleep.rmtp;
769 	if (rmtp) {
770 		ret = update_rmtp(exp, type, rmtp);
771 		if (ret <= 0)
772 			goto out;
773 	}
774 
775 
776 	/* The other values in restart are already filled in */
777 	ret = -ERESTART_RESTARTBLOCK;
778 out:
779 	return ret;
780 }
781 
782 /**
783  * alarm_timer_nsleep - alarmtimer nanosleep
784  * @which_clock: clockid
785  * @flags: determins abstime or relative
786  * @tsreq: requested sleep time (abs or rel)
787  * @rmtp: remaining sleep time saved
788  *
789  * Handles clock_nanosleep calls against _ALARM clockids
790  */
791 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
792 		     struct timespec *tsreq, struct timespec __user *rmtp)
793 {
794 	enum  alarmtimer_type type = clock2alarm(which_clock);
795 	struct alarm alarm;
796 	ktime_t exp;
797 	int ret = 0;
798 	struct restart_block *restart;
799 
800 	if (!alarmtimer_get_rtcdev())
801 		return -ENOTSUPP;
802 
803 	if (flags & ~TIMER_ABSTIME)
804 		return -EINVAL;
805 
806 	if (!capable(CAP_WAKE_ALARM))
807 		return -EPERM;
808 
809 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
810 
811 	exp = timespec_to_ktime(*tsreq);
812 	/* Convert (if necessary) to absolute time */
813 	if (flags != TIMER_ABSTIME) {
814 		ktime_t now = alarm_bases[type].gettime();
815 		exp = ktime_add(now, exp);
816 	}
817 
818 	if (alarmtimer_do_nsleep(&alarm, exp))
819 		goto out;
820 
821 	if (freezing(current))
822 		alarmtimer_freezerset(exp, type);
823 
824 	/* abs timers don't set remaining time or restart */
825 	if (flags == TIMER_ABSTIME) {
826 		ret = -ERESTARTNOHAND;
827 		goto out;
828 	}
829 
830 	if (rmtp) {
831 		ret = update_rmtp(exp, type, rmtp);
832 		if (ret <= 0)
833 			goto out;
834 	}
835 
836 	restart = &current->restart_block;
837 	restart->fn = alarm_timer_nsleep_restart;
838 	restart->nanosleep.clockid = type;
839 	restart->nanosleep.expires = exp;
840 	restart->nanosleep.rmtp = rmtp;
841 	ret = -ERESTART_RESTARTBLOCK;
842 
843 out:
844 	return ret;
845 }
846 
847 
848 /* Suspend hook structures */
849 static const struct dev_pm_ops alarmtimer_pm_ops = {
850 	.suspend = alarmtimer_suspend,
851 	.resume = alarmtimer_resume,
852 };
853 
854 static struct platform_driver alarmtimer_driver = {
855 	.driver = {
856 		.name = "alarmtimer",
857 		.pm = &alarmtimer_pm_ops,
858 	}
859 };
860 
861 /**
862  * alarmtimer_init - Initialize alarm timer code
863  *
864  * This function initializes the alarm bases and registers
865  * the posix clock ids.
866  */
867 static int __init alarmtimer_init(void)
868 {
869 	struct platform_device *pdev;
870 	int error = 0;
871 	int i;
872 	struct k_clock alarm_clock = {
873 		.clock_getres	= alarm_clock_getres,
874 		.clock_get	= alarm_clock_get,
875 		.timer_create	= alarm_timer_create,
876 		.timer_set	= alarm_timer_set,
877 		.timer_del	= alarm_timer_del,
878 		.timer_get	= alarm_timer_get,
879 		.nsleep		= alarm_timer_nsleep,
880 	};
881 
882 	alarmtimer_rtc_timer_init();
883 
884 	if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
885 		posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
886 		posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
887 	}
888 
889 	/* Initialize alarm bases */
890 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
891 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
892 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
893 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
894 	for (i = 0; i < ALARM_NUMTYPE; i++) {
895 		timerqueue_init_head(&alarm_bases[i].timerqueue);
896 		spin_lock_init(&alarm_bases[i].lock);
897 	}
898 
899 	error = alarmtimer_rtc_interface_setup();
900 	if (error)
901 		return error;
902 
903 	error = platform_driver_register(&alarmtimer_driver);
904 	if (error)
905 		goto out_if;
906 
907 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
908 	if (IS_ERR(pdev)) {
909 		error = PTR_ERR(pdev);
910 		goto out_drv;
911 	}
912 	ws = wakeup_source_register("alarmtimer");
913 	return 0;
914 
915 out_drv:
916 	platform_driver_unregister(&alarmtimer_driver);
917 out_if:
918 	alarmtimer_rtc_interface_remove();
919 	return error;
920 }
921 device_initcall(alarmtimer_init);
922