xref: /openbmc/linux/kernel/time/alarmtimer.c (revision 161f4089)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @timer: 		hrtimer used to schedule events while running
34  * @gettime:		Function to read the time correlating to the base
35  * @base_clockid:	clockid for the base
36  */
37 static struct alarm_base {
38 	spinlock_t		lock;
39 	struct timerqueue_head	timerqueue;
40 	ktime_t			(*gettime)(void);
41 	clockid_t		base_clockid;
42 } alarm_bases[ALARM_NUMTYPE];
43 
44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45 static ktime_t freezer_delta;
46 static DEFINE_SPINLOCK(freezer_delta_lock);
47 
48 static struct wakeup_source *ws;
49 
50 #ifdef CONFIG_RTC_CLASS
51 /* rtc timer and device for setting alarm wakeups at suspend */
52 static struct rtc_timer		rtctimer;
53 static struct rtc_device	*rtcdev;
54 static DEFINE_SPINLOCK(rtcdev_lock);
55 
56 /**
57  * alarmtimer_get_rtcdev - Return selected rtcdevice
58  *
59  * This function returns the rtc device to use for wakealarms.
60  * If one has not already been chosen, it checks to see if a
61  * functional rtc device is available.
62  */
63 struct rtc_device *alarmtimer_get_rtcdev(void)
64 {
65 	unsigned long flags;
66 	struct rtc_device *ret;
67 
68 	spin_lock_irqsave(&rtcdev_lock, flags);
69 	ret = rtcdev;
70 	spin_unlock_irqrestore(&rtcdev_lock, flags);
71 
72 	return ret;
73 }
74 
75 
76 static int alarmtimer_rtc_add_device(struct device *dev,
77 				struct class_interface *class_intf)
78 {
79 	unsigned long flags;
80 	struct rtc_device *rtc = to_rtc_device(dev);
81 
82 	if (rtcdev)
83 		return -EBUSY;
84 
85 	if (!rtc->ops->set_alarm)
86 		return -1;
87 	if (!device_may_wakeup(rtc->dev.parent))
88 		return -1;
89 
90 	spin_lock_irqsave(&rtcdev_lock, flags);
91 	if (!rtcdev) {
92 		rtcdev = rtc;
93 		/* hold a reference so it doesn't go away */
94 		get_device(dev);
95 	}
96 	spin_unlock_irqrestore(&rtcdev_lock, flags);
97 	return 0;
98 }
99 
100 static inline void alarmtimer_rtc_timer_init(void)
101 {
102 	rtc_timer_init(&rtctimer, NULL, NULL);
103 }
104 
105 static struct class_interface alarmtimer_rtc_interface = {
106 	.add_dev = &alarmtimer_rtc_add_device,
107 };
108 
109 static int alarmtimer_rtc_interface_setup(void)
110 {
111 	alarmtimer_rtc_interface.class = rtc_class;
112 	return class_interface_register(&alarmtimer_rtc_interface);
113 }
114 static void alarmtimer_rtc_interface_remove(void)
115 {
116 	class_interface_unregister(&alarmtimer_rtc_interface);
117 }
118 #else
119 struct rtc_device *alarmtimer_get_rtcdev(void)
120 {
121 	return NULL;
122 }
123 #define rtcdev (NULL)
124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125 static inline void alarmtimer_rtc_interface_remove(void) { }
126 static inline void alarmtimer_rtc_timer_init(void) { }
127 #endif
128 
129 /**
130  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131  * @base: pointer to the base where the timer is being run
132  * @alarm: pointer to alarm being enqueued.
133  *
134  * Adds alarm to a alarm_base timerqueue
135  *
136  * Must hold base->lock when calling.
137  */
138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139 {
140 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 		timerqueue_del(&base->timerqueue, &alarm->node);
142 
143 	timerqueue_add(&base->timerqueue, &alarm->node);
144 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145 }
146 
147 /**
148  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149  * @base: pointer to the base where the timer is running
150  * @alarm: pointer to alarm being removed
151  *
152  * Removes alarm to a alarm_base timerqueue
153  *
154  * Must hold base->lock when calling.
155  */
156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157 {
158 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 		return;
160 
161 	timerqueue_del(&base->timerqueue, &alarm->node);
162 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 }
164 
165 
166 /**
167  * alarmtimer_fired - Handles alarm hrtimer being fired.
168  * @timer: pointer to hrtimer being run
169  *
170  * When a alarm timer fires, this runs through the timerqueue to
171  * see which alarms expired, and runs those. If there are more alarm
172  * timers queued for the future, we set the hrtimer to fire when
173  * when the next future alarm timer expires.
174  */
175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176 {
177 	struct alarm *alarm = container_of(timer, struct alarm, timer);
178 	struct alarm_base *base = &alarm_bases[alarm->type];
179 	unsigned long flags;
180 	int ret = HRTIMER_NORESTART;
181 	int restart = ALARMTIMER_NORESTART;
182 
183 	spin_lock_irqsave(&base->lock, flags);
184 	alarmtimer_dequeue(base, alarm);
185 	spin_unlock_irqrestore(&base->lock, flags);
186 
187 	if (alarm->function)
188 		restart = alarm->function(alarm, base->gettime());
189 
190 	spin_lock_irqsave(&base->lock, flags);
191 	if (restart != ALARMTIMER_NORESTART) {
192 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 		alarmtimer_enqueue(base, alarm);
194 		ret = HRTIMER_RESTART;
195 	}
196 	spin_unlock_irqrestore(&base->lock, flags);
197 
198 	return ret;
199 
200 }
201 
202 ktime_t alarm_expires_remaining(const struct alarm *alarm)
203 {
204 	struct alarm_base *base = &alarm_bases[alarm->type];
205 	return ktime_sub(alarm->node.expires, base->gettime());
206 }
207 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208 
209 #ifdef CONFIG_RTC_CLASS
210 /**
211  * alarmtimer_suspend - Suspend time callback
212  * @dev: unused
213  * @state: unused
214  *
215  * When we are going into suspend, we look through the bases
216  * to see which is the soonest timer to expire. We then
217  * set an rtc timer to fire that far into the future, which
218  * will wake us from suspend.
219  */
220 static int alarmtimer_suspend(struct device *dev)
221 {
222 	struct rtc_time tm;
223 	ktime_t min, now;
224 	unsigned long flags;
225 	struct rtc_device *rtc;
226 	int i;
227 	int ret;
228 
229 	spin_lock_irqsave(&freezer_delta_lock, flags);
230 	min = freezer_delta;
231 	freezer_delta = ktime_set(0, 0);
232 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
233 
234 	rtc = alarmtimer_get_rtcdev();
235 	/* If we have no rtcdev, just return */
236 	if (!rtc)
237 		return 0;
238 
239 	/* Find the soonest timer to expire*/
240 	for (i = 0; i < ALARM_NUMTYPE; i++) {
241 		struct alarm_base *base = &alarm_bases[i];
242 		struct timerqueue_node *next;
243 		ktime_t delta;
244 
245 		spin_lock_irqsave(&base->lock, flags);
246 		next = timerqueue_getnext(&base->timerqueue);
247 		spin_unlock_irqrestore(&base->lock, flags);
248 		if (!next)
249 			continue;
250 		delta = ktime_sub(next->expires, base->gettime());
251 		if (!min.tv64 || (delta.tv64 < min.tv64))
252 			min = delta;
253 	}
254 	if (min.tv64 == 0)
255 		return 0;
256 
257 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 		return -EBUSY;
260 	}
261 
262 	/* Setup an rtc timer to fire that far in the future */
263 	rtc_timer_cancel(rtc, &rtctimer);
264 	rtc_read_time(rtc, &tm);
265 	now = rtc_tm_to_ktime(tm);
266 	now = ktime_add(now, min);
267 
268 	/* Set alarm, if in the past reject suspend briefly to handle */
269 	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 	if (ret < 0)
271 		__pm_wakeup_event(ws, MSEC_PER_SEC);
272 	return ret;
273 }
274 #else
275 static int alarmtimer_suspend(struct device *dev)
276 {
277 	return 0;
278 }
279 #endif
280 
281 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
282 {
283 	ktime_t delta;
284 	unsigned long flags;
285 	struct alarm_base *base = &alarm_bases[type];
286 
287 	delta = ktime_sub(absexp, base->gettime());
288 
289 	spin_lock_irqsave(&freezer_delta_lock, flags);
290 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291 		freezer_delta = delta;
292 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
293 }
294 
295 
296 /**
297  * alarm_init - Initialize an alarm structure
298  * @alarm: ptr to alarm to be initialized
299  * @type: the type of the alarm
300  * @function: callback that is run when the alarm fires
301  */
302 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304 {
305 	timerqueue_init(&alarm->node);
306 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307 			HRTIMER_MODE_ABS);
308 	alarm->timer.function = alarmtimer_fired;
309 	alarm->function = function;
310 	alarm->type = type;
311 	alarm->state = ALARMTIMER_STATE_INACTIVE;
312 }
313 EXPORT_SYMBOL_GPL(alarm_init);
314 
315 /**
316  * alarm_start - Sets an absolute alarm to fire
317  * @alarm: ptr to alarm to set
318  * @start: time to run the alarm
319  */
320 int alarm_start(struct alarm *alarm, ktime_t start)
321 {
322 	struct alarm_base *base = &alarm_bases[alarm->type];
323 	unsigned long flags;
324 	int ret;
325 
326 	spin_lock_irqsave(&base->lock, flags);
327 	alarm->node.expires = start;
328 	alarmtimer_enqueue(base, alarm);
329 	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
330 				HRTIMER_MODE_ABS);
331 	spin_unlock_irqrestore(&base->lock, flags);
332 	return ret;
333 }
334 EXPORT_SYMBOL_GPL(alarm_start);
335 
336 /**
337  * alarm_start_relative - Sets a relative alarm to fire
338  * @alarm: ptr to alarm to set
339  * @start: time relative to now to run the alarm
340  */
341 int alarm_start_relative(struct alarm *alarm, ktime_t start)
342 {
343 	struct alarm_base *base = &alarm_bases[alarm->type];
344 
345 	start = ktime_add(start, base->gettime());
346 	return alarm_start(alarm, start);
347 }
348 EXPORT_SYMBOL_GPL(alarm_start_relative);
349 
350 void alarm_restart(struct alarm *alarm)
351 {
352 	struct alarm_base *base = &alarm_bases[alarm->type];
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&base->lock, flags);
356 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
357 	hrtimer_restart(&alarm->timer);
358 	alarmtimer_enqueue(base, alarm);
359 	spin_unlock_irqrestore(&base->lock, flags);
360 }
361 EXPORT_SYMBOL_GPL(alarm_restart);
362 
363 /**
364  * alarm_try_to_cancel - Tries to cancel an alarm timer
365  * @alarm: ptr to alarm to be canceled
366  *
367  * Returns 1 if the timer was canceled, 0 if it was not running,
368  * and -1 if the callback was running
369  */
370 int alarm_try_to_cancel(struct alarm *alarm)
371 {
372 	struct alarm_base *base = &alarm_bases[alarm->type];
373 	unsigned long flags;
374 	int ret;
375 
376 	spin_lock_irqsave(&base->lock, flags);
377 	ret = hrtimer_try_to_cancel(&alarm->timer);
378 	if (ret >= 0)
379 		alarmtimer_dequeue(base, alarm);
380 	spin_unlock_irqrestore(&base->lock, flags);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
384 
385 
386 /**
387  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
388  * @alarm: ptr to alarm to be canceled
389  *
390  * Returns 1 if the timer was canceled, 0 if it was not active.
391  */
392 int alarm_cancel(struct alarm *alarm)
393 {
394 	for (;;) {
395 		int ret = alarm_try_to_cancel(alarm);
396 		if (ret >= 0)
397 			return ret;
398 		cpu_relax();
399 	}
400 }
401 EXPORT_SYMBOL_GPL(alarm_cancel);
402 
403 
404 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
405 {
406 	u64 overrun = 1;
407 	ktime_t delta;
408 
409 	delta = ktime_sub(now, alarm->node.expires);
410 
411 	if (delta.tv64 < 0)
412 		return 0;
413 
414 	if (unlikely(delta.tv64 >= interval.tv64)) {
415 		s64 incr = ktime_to_ns(interval);
416 
417 		overrun = ktime_divns(delta, incr);
418 
419 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
420 							incr*overrun);
421 
422 		if (alarm->node.expires.tv64 > now.tv64)
423 			return overrun;
424 		/*
425 		 * This (and the ktime_add() below) is the
426 		 * correction for exact:
427 		 */
428 		overrun++;
429 	}
430 
431 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
432 	return overrun;
433 }
434 EXPORT_SYMBOL_GPL(alarm_forward);
435 
436 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
437 {
438 	struct alarm_base *base = &alarm_bases[alarm->type];
439 
440 	return alarm_forward(alarm, base->gettime(), interval);
441 }
442 EXPORT_SYMBOL_GPL(alarm_forward_now);
443 
444 
445 /**
446  * clock2alarm - helper that converts from clockid to alarmtypes
447  * @clockid: clockid.
448  */
449 static enum alarmtimer_type clock2alarm(clockid_t clockid)
450 {
451 	if (clockid == CLOCK_REALTIME_ALARM)
452 		return ALARM_REALTIME;
453 	if (clockid == CLOCK_BOOTTIME_ALARM)
454 		return ALARM_BOOTTIME;
455 	return -1;
456 }
457 
458 /**
459  * alarm_handle_timer - Callback for posix timers
460  * @alarm: alarm that fired
461  *
462  * Posix timer callback for expired alarm timers.
463  */
464 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
465 							ktime_t now)
466 {
467 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
468 						it.alarm.alarmtimer);
469 	if (posix_timer_event(ptr, 0) != 0)
470 		ptr->it_overrun++;
471 
472 	/* Re-add periodic timers */
473 	if (ptr->it.alarm.interval.tv64) {
474 		ptr->it_overrun += alarm_forward(alarm, now,
475 						ptr->it.alarm.interval);
476 		return ALARMTIMER_RESTART;
477 	}
478 	return ALARMTIMER_NORESTART;
479 }
480 
481 /**
482  * alarm_clock_getres - posix getres interface
483  * @which_clock: clockid
484  * @tp: timespec to fill
485  *
486  * Returns the granularity of underlying alarm base clock
487  */
488 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
489 {
490 	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
491 
492 	if (!alarmtimer_get_rtcdev())
493 		return -EINVAL;
494 
495 	return hrtimer_get_res(baseid, tp);
496 }
497 
498 /**
499  * alarm_clock_get - posix clock_get interface
500  * @which_clock: clockid
501  * @tp: timespec to fill.
502  *
503  * Provides the underlying alarm base time.
504  */
505 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
506 {
507 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
508 
509 	if (!alarmtimer_get_rtcdev())
510 		return -EINVAL;
511 
512 	*tp = ktime_to_timespec(base->gettime());
513 	return 0;
514 }
515 
516 /**
517  * alarm_timer_create - posix timer_create interface
518  * @new_timer: k_itimer pointer to manage
519  *
520  * Initializes the k_itimer structure.
521  */
522 static int alarm_timer_create(struct k_itimer *new_timer)
523 {
524 	enum  alarmtimer_type type;
525 	struct alarm_base *base;
526 
527 	if (!alarmtimer_get_rtcdev())
528 		return -ENOTSUPP;
529 
530 	if (!capable(CAP_WAKE_ALARM))
531 		return -EPERM;
532 
533 	type = clock2alarm(new_timer->it_clock);
534 	base = &alarm_bases[type];
535 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
536 	return 0;
537 }
538 
539 /**
540  * alarm_timer_get - posix timer_get interface
541  * @new_timer: k_itimer pointer
542  * @cur_setting: itimerspec data to fill
543  *
544  * Copies the itimerspec data out from the k_itimer
545  */
546 static void alarm_timer_get(struct k_itimer *timr,
547 				struct itimerspec *cur_setting)
548 {
549 	memset(cur_setting, 0, sizeof(struct itimerspec));
550 
551 	cur_setting->it_interval =
552 			ktime_to_timespec(timr->it.alarm.interval);
553 	cur_setting->it_value =
554 		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
555 	return;
556 }
557 
558 /**
559  * alarm_timer_del - posix timer_del interface
560  * @timr: k_itimer pointer to be deleted
561  *
562  * Cancels any programmed alarms for the given timer.
563  */
564 static int alarm_timer_del(struct k_itimer *timr)
565 {
566 	if (!rtcdev)
567 		return -ENOTSUPP;
568 
569 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
570 		return TIMER_RETRY;
571 
572 	return 0;
573 }
574 
575 /**
576  * alarm_timer_set - posix timer_set interface
577  * @timr: k_itimer pointer to be deleted
578  * @flags: timer flags
579  * @new_setting: itimerspec to be used
580  * @old_setting: itimerspec being replaced
581  *
582  * Sets the timer to new_setting, and starts the timer.
583  */
584 static int alarm_timer_set(struct k_itimer *timr, int flags,
585 				struct itimerspec *new_setting,
586 				struct itimerspec *old_setting)
587 {
588 	if (!rtcdev)
589 		return -ENOTSUPP;
590 
591 	if (old_setting)
592 		alarm_timer_get(timr, old_setting);
593 
594 	/* If the timer was already set, cancel it */
595 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
596 		return TIMER_RETRY;
597 
598 	/* start the timer */
599 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
600 	alarm_start(&timr->it.alarm.alarmtimer,
601 			timespec_to_ktime(new_setting->it_value));
602 	return 0;
603 }
604 
605 /**
606  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
607  * @alarm: ptr to alarm that fired
608  *
609  * Wakes up the task that set the alarmtimer
610  */
611 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
612 								ktime_t now)
613 {
614 	struct task_struct *task = (struct task_struct *)alarm->data;
615 
616 	alarm->data = NULL;
617 	if (task)
618 		wake_up_process(task);
619 	return ALARMTIMER_NORESTART;
620 }
621 
622 /**
623  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
624  * @alarm: ptr to alarmtimer
625  * @absexp: absolute expiration time
626  *
627  * Sets the alarm timer and sleeps until it is fired or interrupted.
628  */
629 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
630 {
631 	alarm->data = (void *)current;
632 	do {
633 		set_current_state(TASK_INTERRUPTIBLE);
634 		alarm_start(alarm, absexp);
635 		if (likely(alarm->data))
636 			schedule();
637 
638 		alarm_cancel(alarm);
639 	} while (alarm->data && !signal_pending(current));
640 
641 	__set_current_state(TASK_RUNNING);
642 
643 	return (alarm->data == NULL);
644 }
645 
646 
647 /**
648  * update_rmtp - Update remaining timespec value
649  * @exp: expiration time
650  * @type: timer type
651  * @rmtp: user pointer to remaining timepsec value
652  *
653  * Helper function that fills in rmtp value with time between
654  * now and the exp value
655  */
656 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
657 			struct timespec __user *rmtp)
658 {
659 	struct timespec rmt;
660 	ktime_t rem;
661 
662 	rem = ktime_sub(exp, alarm_bases[type].gettime());
663 
664 	if (rem.tv64 <= 0)
665 		return 0;
666 	rmt = ktime_to_timespec(rem);
667 
668 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
669 		return -EFAULT;
670 
671 	return 1;
672 
673 }
674 
675 /**
676  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
677  * @restart: ptr to restart block
678  *
679  * Handles restarted clock_nanosleep calls
680  */
681 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
682 {
683 	enum  alarmtimer_type type = restart->nanosleep.clockid;
684 	ktime_t exp;
685 	struct timespec __user  *rmtp;
686 	struct alarm alarm;
687 	int ret = 0;
688 
689 	exp.tv64 = restart->nanosleep.expires;
690 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
691 
692 	if (alarmtimer_do_nsleep(&alarm, exp))
693 		goto out;
694 
695 	if (freezing(current))
696 		alarmtimer_freezerset(exp, type);
697 
698 	rmtp = restart->nanosleep.rmtp;
699 	if (rmtp) {
700 		ret = update_rmtp(exp, type, rmtp);
701 		if (ret <= 0)
702 			goto out;
703 	}
704 
705 
706 	/* The other values in restart are already filled in */
707 	ret = -ERESTART_RESTARTBLOCK;
708 out:
709 	return ret;
710 }
711 
712 /**
713  * alarm_timer_nsleep - alarmtimer nanosleep
714  * @which_clock: clockid
715  * @flags: determins abstime or relative
716  * @tsreq: requested sleep time (abs or rel)
717  * @rmtp: remaining sleep time saved
718  *
719  * Handles clock_nanosleep calls against _ALARM clockids
720  */
721 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
722 		     struct timespec *tsreq, struct timespec __user *rmtp)
723 {
724 	enum  alarmtimer_type type = clock2alarm(which_clock);
725 	struct alarm alarm;
726 	ktime_t exp;
727 	int ret = 0;
728 	struct restart_block *restart;
729 
730 	if (!alarmtimer_get_rtcdev())
731 		return -ENOTSUPP;
732 
733 	if (!capable(CAP_WAKE_ALARM))
734 		return -EPERM;
735 
736 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
737 
738 	exp = timespec_to_ktime(*tsreq);
739 	/* Convert (if necessary) to absolute time */
740 	if (flags != TIMER_ABSTIME) {
741 		ktime_t now = alarm_bases[type].gettime();
742 		exp = ktime_add(now, exp);
743 	}
744 
745 	if (alarmtimer_do_nsleep(&alarm, exp))
746 		goto out;
747 
748 	if (freezing(current))
749 		alarmtimer_freezerset(exp, type);
750 
751 	/* abs timers don't set remaining time or restart */
752 	if (flags == TIMER_ABSTIME) {
753 		ret = -ERESTARTNOHAND;
754 		goto out;
755 	}
756 
757 	if (rmtp) {
758 		ret = update_rmtp(exp, type, rmtp);
759 		if (ret <= 0)
760 			goto out;
761 	}
762 
763 	restart = &current_thread_info()->restart_block;
764 	restart->fn = alarm_timer_nsleep_restart;
765 	restart->nanosleep.clockid = type;
766 	restart->nanosleep.expires = exp.tv64;
767 	restart->nanosleep.rmtp = rmtp;
768 	ret = -ERESTART_RESTARTBLOCK;
769 
770 out:
771 	return ret;
772 }
773 
774 
775 /* Suspend hook structures */
776 static const struct dev_pm_ops alarmtimer_pm_ops = {
777 	.suspend = alarmtimer_suspend,
778 };
779 
780 static struct platform_driver alarmtimer_driver = {
781 	.driver = {
782 		.name = "alarmtimer",
783 		.pm = &alarmtimer_pm_ops,
784 	}
785 };
786 
787 /**
788  * alarmtimer_init - Initialize alarm timer code
789  *
790  * This function initializes the alarm bases and registers
791  * the posix clock ids.
792  */
793 static int __init alarmtimer_init(void)
794 {
795 	struct platform_device *pdev;
796 	int error = 0;
797 	int i;
798 	struct k_clock alarm_clock = {
799 		.clock_getres	= alarm_clock_getres,
800 		.clock_get	= alarm_clock_get,
801 		.timer_create	= alarm_timer_create,
802 		.timer_set	= alarm_timer_set,
803 		.timer_del	= alarm_timer_del,
804 		.timer_get	= alarm_timer_get,
805 		.nsleep		= alarm_timer_nsleep,
806 	};
807 
808 	alarmtimer_rtc_timer_init();
809 
810 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
811 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
812 
813 	/* Initialize alarm bases */
814 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
815 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
816 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
817 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
818 	for (i = 0; i < ALARM_NUMTYPE; i++) {
819 		timerqueue_init_head(&alarm_bases[i].timerqueue);
820 		spin_lock_init(&alarm_bases[i].lock);
821 	}
822 
823 	error = alarmtimer_rtc_interface_setup();
824 	if (error)
825 		return error;
826 
827 	error = platform_driver_register(&alarmtimer_driver);
828 	if (error)
829 		goto out_if;
830 
831 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
832 	if (IS_ERR(pdev)) {
833 		error = PTR_ERR(pdev);
834 		goto out_drv;
835 	}
836 	ws = wakeup_source_register("alarmtimer");
837 	return 0;
838 
839 out_drv:
840 	platform_driver_unregister(&alarmtimer_driver);
841 out_if:
842 	alarmtimer_rtc_interface_remove();
843 	return error;
844 }
845 device_initcall(alarmtimer_init);
846