1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alarmtimer interface 4 * 5 * This interface provides a timer which is similar to hrtimers, 6 * but triggers a RTC alarm if the box is suspend. 7 * 8 * This interface is influenced by the Android RTC Alarm timer 9 * interface. 10 * 11 * Copyright (C) 2010 IBM Corporation 12 * 13 * Author: John Stultz <john.stultz@linaro.org> 14 */ 15 #include <linux/time.h> 16 #include <linux/hrtimer.h> 17 #include <linux/timerqueue.h> 18 #include <linux/rtc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/alarmtimer.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/posix-timers.h> 25 #include <linux/workqueue.h> 26 #include <linux/freezer.h> 27 #include <linux/compat.h> 28 #include <linux/module.h> 29 #include <linux/time_namespace.h> 30 31 #include "posix-timers.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/alarmtimer.h> 35 36 /** 37 * struct alarm_base - Alarm timer bases 38 * @lock: Lock for syncrhonized access to the base 39 * @timerqueue: Timerqueue head managing the list of events 40 * @get_ktime: Function to read the time correlating to the base 41 * @get_timespec: Function to read the namespace time correlating to the base 42 * @base_clockid: clockid for the base 43 */ 44 static struct alarm_base { 45 spinlock_t lock; 46 struct timerqueue_head timerqueue; 47 ktime_t (*get_ktime)(void); 48 void (*get_timespec)(struct timespec64 *tp); 49 clockid_t base_clockid; 50 } alarm_bases[ALARM_NUMTYPE]; 51 52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 53 /* freezer information to handle clock_nanosleep triggered wakeups */ 54 static enum alarmtimer_type freezer_alarmtype; 55 static ktime_t freezer_expires; 56 static ktime_t freezer_delta; 57 static DEFINE_SPINLOCK(freezer_delta_lock); 58 #endif 59 60 #ifdef CONFIG_RTC_CLASS 61 /* rtc timer and device for setting alarm wakeups at suspend */ 62 static struct rtc_timer rtctimer; 63 static struct rtc_device *rtcdev; 64 static DEFINE_SPINLOCK(rtcdev_lock); 65 66 /** 67 * alarmtimer_get_rtcdev - Return selected rtcdevice 68 * 69 * This function returns the rtc device to use for wakealarms. 70 */ 71 struct rtc_device *alarmtimer_get_rtcdev(void) 72 { 73 unsigned long flags; 74 struct rtc_device *ret; 75 76 spin_lock_irqsave(&rtcdev_lock, flags); 77 ret = rtcdev; 78 spin_unlock_irqrestore(&rtcdev_lock, flags); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 83 84 static int alarmtimer_rtc_add_device(struct device *dev) 85 { 86 unsigned long flags; 87 struct rtc_device *rtc = to_rtc_device(dev); 88 struct platform_device *pdev; 89 int ret = 0; 90 91 if (rtcdev) 92 return -EBUSY; 93 94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 95 return -1; 96 if (!device_may_wakeup(rtc->dev.parent)) 97 return -1; 98 99 pdev = platform_device_register_data(dev, "alarmtimer", 100 PLATFORM_DEVID_AUTO, NULL, 0); 101 if (!IS_ERR(pdev)) 102 device_init_wakeup(&pdev->dev, true); 103 104 spin_lock_irqsave(&rtcdev_lock, flags); 105 if (!IS_ERR(pdev) && !rtcdev) { 106 if (!try_module_get(rtc->owner)) { 107 ret = -1; 108 goto unlock; 109 } 110 111 rtcdev = rtc; 112 /* hold a reference so it doesn't go away */ 113 get_device(dev); 114 pdev = NULL; 115 } else { 116 ret = -1; 117 } 118 unlock: 119 spin_unlock_irqrestore(&rtcdev_lock, flags); 120 121 platform_device_unregister(pdev); 122 123 return ret; 124 } 125 126 static inline void alarmtimer_rtc_timer_init(void) 127 { 128 rtc_timer_init(&rtctimer, NULL, NULL); 129 } 130 131 static struct class_interface alarmtimer_rtc_interface = { 132 .add_dev = &alarmtimer_rtc_add_device, 133 }; 134 135 static int alarmtimer_rtc_interface_setup(void) 136 { 137 alarmtimer_rtc_interface.class = rtc_class; 138 return class_interface_register(&alarmtimer_rtc_interface); 139 } 140 static void alarmtimer_rtc_interface_remove(void) 141 { 142 class_interface_unregister(&alarmtimer_rtc_interface); 143 } 144 #else 145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 146 static inline void alarmtimer_rtc_interface_remove(void) { } 147 static inline void alarmtimer_rtc_timer_init(void) { } 148 #endif 149 150 /** 151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 152 * @base: pointer to the base where the timer is being run 153 * @alarm: pointer to alarm being enqueued. 154 * 155 * Adds alarm to a alarm_base timerqueue 156 * 157 * Must hold base->lock when calling. 158 */ 159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 160 { 161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 162 timerqueue_del(&base->timerqueue, &alarm->node); 163 164 timerqueue_add(&base->timerqueue, &alarm->node); 165 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 166 } 167 168 /** 169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 170 * @base: pointer to the base where the timer is running 171 * @alarm: pointer to alarm being removed 172 * 173 * Removes alarm to a alarm_base timerqueue 174 * 175 * Must hold base->lock when calling. 176 */ 177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 178 { 179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 180 return; 181 182 timerqueue_del(&base->timerqueue, &alarm->node); 183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 184 } 185 186 187 /** 188 * alarmtimer_fired - Handles alarm hrtimer being fired. 189 * @timer: pointer to hrtimer being run 190 * 191 * When a alarm timer fires, this runs through the timerqueue to 192 * see which alarms expired, and runs those. If there are more alarm 193 * timers queued for the future, we set the hrtimer to fire when 194 * the next future alarm timer expires. 195 */ 196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 197 { 198 struct alarm *alarm = container_of(timer, struct alarm, timer); 199 struct alarm_base *base = &alarm_bases[alarm->type]; 200 unsigned long flags; 201 int ret = HRTIMER_NORESTART; 202 int restart = ALARMTIMER_NORESTART; 203 204 spin_lock_irqsave(&base->lock, flags); 205 alarmtimer_dequeue(base, alarm); 206 spin_unlock_irqrestore(&base->lock, flags); 207 208 if (alarm->function) 209 restart = alarm->function(alarm, base->get_ktime()); 210 211 spin_lock_irqsave(&base->lock, flags); 212 if (restart != ALARMTIMER_NORESTART) { 213 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 214 alarmtimer_enqueue(base, alarm); 215 ret = HRTIMER_RESTART; 216 } 217 spin_unlock_irqrestore(&base->lock, flags); 218 219 trace_alarmtimer_fired(alarm, base->get_ktime()); 220 return ret; 221 222 } 223 224 ktime_t alarm_expires_remaining(const struct alarm *alarm) 225 { 226 struct alarm_base *base = &alarm_bases[alarm->type]; 227 return ktime_sub(alarm->node.expires, base->get_ktime()); 228 } 229 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 230 231 #ifdef CONFIG_RTC_CLASS 232 /** 233 * alarmtimer_suspend - Suspend time callback 234 * @dev: unused 235 * 236 * When we are going into suspend, we look through the bases 237 * to see which is the soonest timer to expire. We then 238 * set an rtc timer to fire that far into the future, which 239 * will wake us from suspend. 240 */ 241 static int alarmtimer_suspend(struct device *dev) 242 { 243 ktime_t min, now, expires; 244 int i, ret, type; 245 struct rtc_device *rtc; 246 unsigned long flags; 247 struct rtc_time tm; 248 249 spin_lock_irqsave(&freezer_delta_lock, flags); 250 min = freezer_delta; 251 expires = freezer_expires; 252 type = freezer_alarmtype; 253 freezer_delta = 0; 254 spin_unlock_irqrestore(&freezer_delta_lock, flags); 255 256 rtc = alarmtimer_get_rtcdev(); 257 /* If we have no rtcdev, just return */ 258 if (!rtc) 259 return 0; 260 261 /* Find the soonest timer to expire*/ 262 for (i = 0; i < ALARM_NUMTYPE; i++) { 263 struct alarm_base *base = &alarm_bases[i]; 264 struct timerqueue_node *next; 265 ktime_t delta; 266 267 spin_lock_irqsave(&base->lock, flags); 268 next = timerqueue_getnext(&base->timerqueue); 269 spin_unlock_irqrestore(&base->lock, flags); 270 if (!next) 271 continue; 272 delta = ktime_sub(next->expires, base->get_ktime()); 273 if (!min || (delta < min)) { 274 expires = next->expires; 275 min = delta; 276 type = i; 277 } 278 } 279 if (min == 0) 280 return 0; 281 282 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 283 pm_wakeup_event(dev, 2 * MSEC_PER_SEC); 284 return -EBUSY; 285 } 286 287 trace_alarmtimer_suspend(expires, type); 288 289 /* Setup an rtc timer to fire that far in the future */ 290 rtc_timer_cancel(rtc, &rtctimer); 291 rtc_read_time(rtc, &tm); 292 now = rtc_tm_to_ktime(tm); 293 now = ktime_add(now, min); 294 295 /* Set alarm, if in the past reject suspend briefly to handle */ 296 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 297 if (ret < 0) 298 pm_wakeup_event(dev, MSEC_PER_SEC); 299 return ret; 300 } 301 302 static int alarmtimer_resume(struct device *dev) 303 { 304 struct rtc_device *rtc; 305 306 rtc = alarmtimer_get_rtcdev(); 307 if (rtc) 308 rtc_timer_cancel(rtc, &rtctimer); 309 return 0; 310 } 311 312 #else 313 static int alarmtimer_suspend(struct device *dev) 314 { 315 return 0; 316 } 317 318 static int alarmtimer_resume(struct device *dev) 319 { 320 return 0; 321 } 322 #endif 323 324 static void 325 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 326 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 327 { 328 timerqueue_init(&alarm->node); 329 alarm->timer.function = alarmtimer_fired; 330 alarm->function = function; 331 alarm->type = type; 332 alarm->state = ALARMTIMER_STATE_INACTIVE; 333 } 334 335 /** 336 * alarm_init - Initialize an alarm structure 337 * @alarm: ptr to alarm to be initialized 338 * @type: the type of the alarm 339 * @function: callback that is run when the alarm fires 340 */ 341 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 342 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 343 { 344 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 345 HRTIMER_MODE_ABS); 346 __alarm_init(alarm, type, function); 347 } 348 EXPORT_SYMBOL_GPL(alarm_init); 349 350 /** 351 * alarm_start - Sets an absolute alarm to fire 352 * @alarm: ptr to alarm to set 353 * @start: time to run the alarm 354 */ 355 void alarm_start(struct alarm *alarm, ktime_t start) 356 { 357 struct alarm_base *base = &alarm_bases[alarm->type]; 358 unsigned long flags; 359 360 spin_lock_irqsave(&base->lock, flags); 361 alarm->node.expires = start; 362 alarmtimer_enqueue(base, alarm); 363 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 364 spin_unlock_irqrestore(&base->lock, flags); 365 366 trace_alarmtimer_start(alarm, base->get_ktime()); 367 } 368 EXPORT_SYMBOL_GPL(alarm_start); 369 370 /** 371 * alarm_start_relative - Sets a relative alarm to fire 372 * @alarm: ptr to alarm to set 373 * @start: time relative to now to run the alarm 374 */ 375 void alarm_start_relative(struct alarm *alarm, ktime_t start) 376 { 377 struct alarm_base *base = &alarm_bases[alarm->type]; 378 379 start = ktime_add_safe(start, base->get_ktime()); 380 alarm_start(alarm, start); 381 } 382 EXPORT_SYMBOL_GPL(alarm_start_relative); 383 384 void alarm_restart(struct alarm *alarm) 385 { 386 struct alarm_base *base = &alarm_bases[alarm->type]; 387 unsigned long flags; 388 389 spin_lock_irqsave(&base->lock, flags); 390 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 391 hrtimer_restart(&alarm->timer); 392 alarmtimer_enqueue(base, alarm); 393 spin_unlock_irqrestore(&base->lock, flags); 394 } 395 EXPORT_SYMBOL_GPL(alarm_restart); 396 397 /** 398 * alarm_try_to_cancel - Tries to cancel an alarm timer 399 * @alarm: ptr to alarm to be canceled 400 * 401 * Returns 1 if the timer was canceled, 0 if it was not running, 402 * and -1 if the callback was running 403 */ 404 int alarm_try_to_cancel(struct alarm *alarm) 405 { 406 struct alarm_base *base = &alarm_bases[alarm->type]; 407 unsigned long flags; 408 int ret; 409 410 spin_lock_irqsave(&base->lock, flags); 411 ret = hrtimer_try_to_cancel(&alarm->timer); 412 if (ret >= 0) 413 alarmtimer_dequeue(base, alarm); 414 spin_unlock_irqrestore(&base->lock, flags); 415 416 trace_alarmtimer_cancel(alarm, base->get_ktime()); 417 return ret; 418 } 419 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 420 421 422 /** 423 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 424 * @alarm: ptr to alarm to be canceled 425 * 426 * Returns 1 if the timer was canceled, 0 if it was not active. 427 */ 428 int alarm_cancel(struct alarm *alarm) 429 { 430 for (;;) { 431 int ret = alarm_try_to_cancel(alarm); 432 if (ret >= 0) 433 return ret; 434 hrtimer_cancel_wait_running(&alarm->timer); 435 } 436 } 437 EXPORT_SYMBOL_GPL(alarm_cancel); 438 439 440 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 441 { 442 u64 overrun = 1; 443 ktime_t delta; 444 445 delta = ktime_sub(now, alarm->node.expires); 446 447 if (delta < 0) 448 return 0; 449 450 if (unlikely(delta >= interval)) { 451 s64 incr = ktime_to_ns(interval); 452 453 overrun = ktime_divns(delta, incr); 454 455 alarm->node.expires = ktime_add_ns(alarm->node.expires, 456 incr*overrun); 457 458 if (alarm->node.expires > now) 459 return overrun; 460 /* 461 * This (and the ktime_add() below) is the 462 * correction for exact: 463 */ 464 overrun++; 465 } 466 467 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 468 return overrun; 469 } 470 EXPORT_SYMBOL_GPL(alarm_forward); 471 472 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle) 473 { 474 struct alarm_base *base = &alarm_bases[alarm->type]; 475 ktime_t now = base->get_ktime(); 476 477 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) { 478 /* 479 * Same issue as with posix_timer_fn(). Timers which are 480 * periodic but the signal is ignored can starve the system 481 * with a very small interval. The real fix which was 482 * promised in the context of posix_timer_fn() never 483 * materialized, but someone should really work on it. 484 * 485 * To prevent DOS fake @now to be 1 jiffie out which keeps 486 * the overrun accounting correct but creates an 487 * inconsistency vs. timer_gettime(2). 488 */ 489 ktime_t kj = NSEC_PER_SEC / HZ; 490 491 if (interval < kj) 492 now = ktime_add(now, kj); 493 } 494 495 return alarm_forward(alarm, now, interval); 496 } 497 498 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 499 { 500 return __alarm_forward_now(alarm, interval, false); 501 } 502 EXPORT_SYMBOL_GPL(alarm_forward_now); 503 504 #ifdef CONFIG_POSIX_TIMERS 505 506 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 507 { 508 struct alarm_base *base; 509 unsigned long flags; 510 ktime_t delta; 511 512 switch(type) { 513 case ALARM_REALTIME: 514 base = &alarm_bases[ALARM_REALTIME]; 515 type = ALARM_REALTIME_FREEZER; 516 break; 517 case ALARM_BOOTTIME: 518 base = &alarm_bases[ALARM_BOOTTIME]; 519 type = ALARM_BOOTTIME_FREEZER; 520 break; 521 default: 522 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 523 return; 524 } 525 526 delta = ktime_sub(absexp, base->get_ktime()); 527 528 spin_lock_irqsave(&freezer_delta_lock, flags); 529 if (!freezer_delta || (delta < freezer_delta)) { 530 freezer_delta = delta; 531 freezer_expires = absexp; 532 freezer_alarmtype = type; 533 } 534 spin_unlock_irqrestore(&freezer_delta_lock, flags); 535 } 536 537 /** 538 * clock2alarm - helper that converts from clockid to alarmtypes 539 * @clockid: clockid. 540 */ 541 static enum alarmtimer_type clock2alarm(clockid_t clockid) 542 { 543 if (clockid == CLOCK_REALTIME_ALARM) 544 return ALARM_REALTIME; 545 if (clockid == CLOCK_BOOTTIME_ALARM) 546 return ALARM_BOOTTIME; 547 return -1; 548 } 549 550 /** 551 * alarm_handle_timer - Callback for posix timers 552 * @alarm: alarm that fired 553 * @now: time at the timer expiration 554 * 555 * Posix timer callback for expired alarm timers. 556 * 557 * Return: whether the timer is to be restarted 558 */ 559 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 560 ktime_t now) 561 { 562 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 563 it.alarm.alarmtimer); 564 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 565 unsigned long flags; 566 int si_private = 0; 567 568 spin_lock_irqsave(&ptr->it_lock, flags); 569 570 ptr->it_active = 0; 571 if (ptr->it_interval) 572 si_private = ++ptr->it_requeue_pending; 573 574 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 575 /* 576 * Handle ignored signals and rearm the timer. This will go 577 * away once we handle ignored signals proper. Ensure that 578 * small intervals cannot starve the system. 579 */ 580 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true); 581 ++ptr->it_requeue_pending; 582 ptr->it_active = 1; 583 result = ALARMTIMER_RESTART; 584 } 585 spin_unlock_irqrestore(&ptr->it_lock, flags); 586 587 return result; 588 } 589 590 /** 591 * alarm_timer_rearm - Posix timer callback for rearming timer 592 * @timr: Pointer to the posixtimer data struct 593 */ 594 static void alarm_timer_rearm(struct k_itimer *timr) 595 { 596 struct alarm *alarm = &timr->it.alarm.alarmtimer; 597 598 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 599 alarm_start(alarm, alarm->node.expires); 600 } 601 602 /** 603 * alarm_timer_forward - Posix timer callback for forwarding timer 604 * @timr: Pointer to the posixtimer data struct 605 * @now: Current time to forward the timer against 606 */ 607 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) 608 { 609 struct alarm *alarm = &timr->it.alarm.alarmtimer; 610 611 return alarm_forward(alarm, timr->it_interval, now); 612 } 613 614 /** 615 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 616 * @timr: Pointer to the posixtimer data struct 617 * @now: Current time to calculate against 618 */ 619 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 620 { 621 struct alarm *alarm = &timr->it.alarm.alarmtimer; 622 623 return ktime_sub(alarm->node.expires, now); 624 } 625 626 /** 627 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 628 * @timr: Pointer to the posixtimer data struct 629 */ 630 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 631 { 632 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 633 } 634 635 /** 636 * alarm_timer_wait_running - Posix timer callback to wait for a timer 637 * @timr: Pointer to the posixtimer data struct 638 * 639 * Called from the core code when timer cancel detected that the callback 640 * is running. @timr is unlocked and rcu read lock is held to prevent it 641 * from being freed. 642 */ 643 static void alarm_timer_wait_running(struct k_itimer *timr) 644 { 645 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer); 646 } 647 648 /** 649 * alarm_timer_arm - Posix timer callback to arm a timer 650 * @timr: Pointer to the posixtimer data struct 651 * @expires: The new expiry time 652 * @absolute: Expiry value is absolute time 653 * @sigev_none: Posix timer does not deliver signals 654 */ 655 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 656 bool absolute, bool sigev_none) 657 { 658 struct alarm *alarm = &timr->it.alarm.alarmtimer; 659 struct alarm_base *base = &alarm_bases[alarm->type]; 660 661 if (!absolute) 662 expires = ktime_add_safe(expires, base->get_ktime()); 663 if (sigev_none) 664 alarm->node.expires = expires; 665 else 666 alarm_start(&timr->it.alarm.alarmtimer, expires); 667 } 668 669 /** 670 * alarm_clock_getres - posix getres interface 671 * @which_clock: clockid 672 * @tp: timespec to fill 673 * 674 * Returns the granularity of underlying alarm base clock 675 */ 676 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 677 { 678 if (!alarmtimer_get_rtcdev()) 679 return -EINVAL; 680 681 tp->tv_sec = 0; 682 tp->tv_nsec = hrtimer_resolution; 683 return 0; 684 } 685 686 /** 687 * alarm_clock_get_timespec - posix clock_get_timespec interface 688 * @which_clock: clockid 689 * @tp: timespec to fill. 690 * 691 * Provides the underlying alarm base time in a tasks time namespace. 692 */ 693 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp) 694 { 695 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 696 697 if (!alarmtimer_get_rtcdev()) 698 return -EINVAL; 699 700 base->get_timespec(tp); 701 702 return 0; 703 } 704 705 /** 706 * alarm_clock_get_ktime - posix clock_get_ktime interface 707 * @which_clock: clockid 708 * 709 * Provides the underlying alarm base time in the root namespace. 710 */ 711 static ktime_t alarm_clock_get_ktime(clockid_t which_clock) 712 { 713 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 714 715 if (!alarmtimer_get_rtcdev()) 716 return -EINVAL; 717 718 return base->get_ktime(); 719 } 720 721 /** 722 * alarm_timer_create - posix timer_create interface 723 * @new_timer: k_itimer pointer to manage 724 * 725 * Initializes the k_itimer structure. 726 */ 727 static int alarm_timer_create(struct k_itimer *new_timer) 728 { 729 enum alarmtimer_type type; 730 731 if (!alarmtimer_get_rtcdev()) 732 return -EOPNOTSUPP; 733 734 if (!capable(CAP_WAKE_ALARM)) 735 return -EPERM; 736 737 type = clock2alarm(new_timer->it_clock); 738 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 739 return 0; 740 } 741 742 /** 743 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 744 * @alarm: ptr to alarm that fired 745 * @now: time at the timer expiration 746 * 747 * Wakes up the task that set the alarmtimer 748 * 749 * Return: ALARMTIMER_NORESTART 750 */ 751 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 752 ktime_t now) 753 { 754 struct task_struct *task = alarm->data; 755 756 alarm->data = NULL; 757 if (task) 758 wake_up_process(task); 759 return ALARMTIMER_NORESTART; 760 } 761 762 /** 763 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 764 * @alarm: ptr to alarmtimer 765 * @absexp: absolute expiration time 766 * @type: alarm type (BOOTTIME/REALTIME). 767 * 768 * Sets the alarm timer and sleeps until it is fired or interrupted. 769 */ 770 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 771 enum alarmtimer_type type) 772 { 773 struct restart_block *restart; 774 alarm->data = (void *)current; 775 do { 776 set_current_state(TASK_INTERRUPTIBLE); 777 alarm_start(alarm, absexp); 778 if (likely(alarm->data)) 779 schedule(); 780 781 alarm_cancel(alarm); 782 } while (alarm->data && !signal_pending(current)); 783 784 __set_current_state(TASK_RUNNING); 785 786 destroy_hrtimer_on_stack(&alarm->timer); 787 788 if (!alarm->data) 789 return 0; 790 791 if (freezing(current)) 792 alarmtimer_freezerset(absexp, type); 793 restart = ¤t->restart_block; 794 if (restart->nanosleep.type != TT_NONE) { 795 struct timespec64 rmt; 796 ktime_t rem; 797 798 rem = ktime_sub(absexp, alarm_bases[type].get_ktime()); 799 800 if (rem <= 0) 801 return 0; 802 rmt = ktime_to_timespec64(rem); 803 804 return nanosleep_copyout(restart, &rmt); 805 } 806 return -ERESTART_RESTARTBLOCK; 807 } 808 809 static void 810 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 811 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 812 { 813 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, 814 HRTIMER_MODE_ABS); 815 __alarm_init(alarm, type, function); 816 } 817 818 /** 819 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 820 * @restart: ptr to restart block 821 * 822 * Handles restarted clock_nanosleep calls 823 */ 824 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 825 { 826 enum alarmtimer_type type = restart->nanosleep.clockid; 827 ktime_t exp = restart->nanosleep.expires; 828 struct alarm alarm; 829 830 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 831 832 return alarmtimer_do_nsleep(&alarm, exp, type); 833 } 834 835 /** 836 * alarm_timer_nsleep - alarmtimer nanosleep 837 * @which_clock: clockid 838 * @flags: determines abstime or relative 839 * @tsreq: requested sleep time (abs or rel) 840 * 841 * Handles clock_nanosleep calls against _ALARM clockids 842 */ 843 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 844 const struct timespec64 *tsreq) 845 { 846 enum alarmtimer_type type = clock2alarm(which_clock); 847 struct restart_block *restart = ¤t->restart_block; 848 struct alarm alarm; 849 ktime_t exp; 850 int ret; 851 852 if (!alarmtimer_get_rtcdev()) 853 return -EOPNOTSUPP; 854 855 if (flags & ~TIMER_ABSTIME) 856 return -EINVAL; 857 858 if (!capable(CAP_WAKE_ALARM)) 859 return -EPERM; 860 861 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 862 863 exp = timespec64_to_ktime(*tsreq); 864 /* Convert (if necessary) to absolute time */ 865 if (flags != TIMER_ABSTIME) { 866 ktime_t now = alarm_bases[type].get_ktime(); 867 868 exp = ktime_add_safe(now, exp); 869 } else { 870 exp = timens_ktime_to_host(which_clock, exp); 871 } 872 873 ret = alarmtimer_do_nsleep(&alarm, exp, type); 874 if (ret != -ERESTART_RESTARTBLOCK) 875 return ret; 876 877 /* abs timers don't set remaining time or restart */ 878 if (flags == TIMER_ABSTIME) 879 return -ERESTARTNOHAND; 880 881 restart->nanosleep.clockid = type; 882 restart->nanosleep.expires = exp; 883 set_restart_fn(restart, alarm_timer_nsleep_restart); 884 return ret; 885 } 886 887 const struct k_clock alarm_clock = { 888 .clock_getres = alarm_clock_getres, 889 .clock_get_ktime = alarm_clock_get_ktime, 890 .clock_get_timespec = alarm_clock_get_timespec, 891 .timer_create = alarm_timer_create, 892 .timer_set = common_timer_set, 893 .timer_del = common_timer_del, 894 .timer_get = common_timer_get, 895 .timer_arm = alarm_timer_arm, 896 .timer_rearm = alarm_timer_rearm, 897 .timer_forward = alarm_timer_forward, 898 .timer_remaining = alarm_timer_remaining, 899 .timer_try_to_cancel = alarm_timer_try_to_cancel, 900 .timer_wait_running = alarm_timer_wait_running, 901 .nsleep = alarm_timer_nsleep, 902 }; 903 #endif /* CONFIG_POSIX_TIMERS */ 904 905 906 /* Suspend hook structures */ 907 static const struct dev_pm_ops alarmtimer_pm_ops = { 908 .suspend = alarmtimer_suspend, 909 .resume = alarmtimer_resume, 910 }; 911 912 static struct platform_driver alarmtimer_driver = { 913 .driver = { 914 .name = "alarmtimer", 915 .pm = &alarmtimer_pm_ops, 916 } 917 }; 918 919 static void get_boottime_timespec(struct timespec64 *tp) 920 { 921 ktime_get_boottime_ts64(tp); 922 timens_add_boottime(tp); 923 } 924 925 /** 926 * alarmtimer_init - Initialize alarm timer code 927 * 928 * This function initializes the alarm bases and registers 929 * the posix clock ids. 930 */ 931 static int __init alarmtimer_init(void) 932 { 933 int error; 934 int i; 935 936 alarmtimer_rtc_timer_init(); 937 938 /* Initialize alarm bases */ 939 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 940 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real; 941 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64; 942 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 943 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime; 944 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec; 945 for (i = 0; i < ALARM_NUMTYPE; i++) { 946 timerqueue_init_head(&alarm_bases[i].timerqueue); 947 spin_lock_init(&alarm_bases[i].lock); 948 } 949 950 error = alarmtimer_rtc_interface_setup(); 951 if (error) 952 return error; 953 954 error = platform_driver_register(&alarmtimer_driver); 955 if (error) 956 goto out_if; 957 958 return 0; 959 out_if: 960 alarmtimer_rtc_interface_remove(); 961 return error; 962 } 963 device_initcall(alarmtimer_init); 964