1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 /** 30 * struct alarm_base - Alarm timer bases 31 * @lock: Lock for syncrhonized access to the base 32 * @timerqueue: Timerqueue head managing the list of events 33 * @timer: hrtimer used to schedule events while running 34 * @gettime: Function to read the time correlating to the base 35 * @base_clockid: clockid for the base 36 */ 37 static struct alarm_base { 38 spinlock_t lock; 39 struct timerqueue_head timerqueue; 40 ktime_t (*gettime)(void); 41 clockid_t base_clockid; 42 } alarm_bases[ALARM_NUMTYPE]; 43 44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */ 45 static ktime_t freezer_delta; 46 static DEFINE_SPINLOCK(freezer_delta_lock); 47 48 static struct wakeup_source *ws; 49 50 #ifdef CONFIG_RTC_CLASS 51 /* rtc timer and device for setting alarm wakeups at suspend */ 52 static struct rtc_timer rtctimer; 53 static struct rtc_device *rtcdev; 54 static DEFINE_SPINLOCK(rtcdev_lock); 55 56 /** 57 * alarmtimer_get_rtcdev - Return selected rtcdevice 58 * 59 * This function returns the rtc device to use for wakealarms. 60 * If one has not already been chosen, it checks to see if a 61 * functional rtc device is available. 62 */ 63 struct rtc_device *alarmtimer_get_rtcdev(void) 64 { 65 unsigned long flags; 66 struct rtc_device *ret; 67 68 spin_lock_irqsave(&rtcdev_lock, flags); 69 ret = rtcdev; 70 spin_unlock_irqrestore(&rtcdev_lock, flags); 71 72 return ret; 73 } 74 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 75 76 static int alarmtimer_rtc_add_device(struct device *dev, 77 struct class_interface *class_intf) 78 { 79 unsigned long flags; 80 struct rtc_device *rtc = to_rtc_device(dev); 81 82 if (rtcdev) 83 return -EBUSY; 84 85 if (!rtc->ops->set_alarm) 86 return -1; 87 if (!device_may_wakeup(rtc->dev.parent)) 88 return -1; 89 90 spin_lock_irqsave(&rtcdev_lock, flags); 91 if (!rtcdev) { 92 rtcdev = rtc; 93 /* hold a reference so it doesn't go away */ 94 get_device(dev); 95 } 96 spin_unlock_irqrestore(&rtcdev_lock, flags); 97 return 0; 98 } 99 100 static inline void alarmtimer_rtc_timer_init(void) 101 { 102 rtc_timer_init(&rtctimer, NULL, NULL); 103 } 104 105 static struct class_interface alarmtimer_rtc_interface = { 106 .add_dev = &alarmtimer_rtc_add_device, 107 }; 108 109 static int alarmtimer_rtc_interface_setup(void) 110 { 111 alarmtimer_rtc_interface.class = rtc_class; 112 return class_interface_register(&alarmtimer_rtc_interface); 113 } 114 static void alarmtimer_rtc_interface_remove(void) 115 { 116 class_interface_unregister(&alarmtimer_rtc_interface); 117 } 118 #else 119 struct rtc_device *alarmtimer_get_rtcdev(void) 120 { 121 return NULL; 122 } 123 #define rtcdev (NULL) 124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 125 static inline void alarmtimer_rtc_interface_remove(void) { } 126 static inline void alarmtimer_rtc_timer_init(void) { } 127 #endif 128 129 /** 130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 131 * @base: pointer to the base where the timer is being run 132 * @alarm: pointer to alarm being enqueued. 133 * 134 * Adds alarm to a alarm_base timerqueue 135 * 136 * Must hold base->lock when calling. 137 */ 138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 139 { 140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 141 timerqueue_del(&base->timerqueue, &alarm->node); 142 143 timerqueue_add(&base->timerqueue, &alarm->node); 144 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 145 } 146 147 /** 148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 149 * @base: pointer to the base where the timer is running 150 * @alarm: pointer to alarm being removed 151 * 152 * Removes alarm to a alarm_base timerqueue 153 * 154 * Must hold base->lock when calling. 155 */ 156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 157 { 158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 159 return; 160 161 timerqueue_del(&base->timerqueue, &alarm->node); 162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 163 } 164 165 166 /** 167 * alarmtimer_fired - Handles alarm hrtimer being fired. 168 * @timer: pointer to hrtimer being run 169 * 170 * When a alarm timer fires, this runs through the timerqueue to 171 * see which alarms expired, and runs those. If there are more alarm 172 * timers queued for the future, we set the hrtimer to fire when 173 * when the next future alarm timer expires. 174 */ 175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 176 { 177 struct alarm *alarm = container_of(timer, struct alarm, timer); 178 struct alarm_base *base = &alarm_bases[alarm->type]; 179 unsigned long flags; 180 int ret = HRTIMER_NORESTART; 181 int restart = ALARMTIMER_NORESTART; 182 183 spin_lock_irqsave(&base->lock, flags); 184 alarmtimer_dequeue(base, alarm); 185 spin_unlock_irqrestore(&base->lock, flags); 186 187 if (alarm->function) 188 restart = alarm->function(alarm, base->gettime()); 189 190 spin_lock_irqsave(&base->lock, flags); 191 if (restart != ALARMTIMER_NORESTART) { 192 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 193 alarmtimer_enqueue(base, alarm); 194 ret = HRTIMER_RESTART; 195 } 196 spin_unlock_irqrestore(&base->lock, flags); 197 198 return ret; 199 200 } 201 202 ktime_t alarm_expires_remaining(const struct alarm *alarm) 203 { 204 struct alarm_base *base = &alarm_bases[alarm->type]; 205 return ktime_sub(alarm->node.expires, base->gettime()); 206 } 207 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 208 209 #ifdef CONFIG_RTC_CLASS 210 /** 211 * alarmtimer_suspend - Suspend time callback 212 * @dev: unused 213 * @state: unused 214 * 215 * When we are going into suspend, we look through the bases 216 * to see which is the soonest timer to expire. We then 217 * set an rtc timer to fire that far into the future, which 218 * will wake us from suspend. 219 */ 220 static int alarmtimer_suspend(struct device *dev) 221 { 222 struct rtc_time tm; 223 ktime_t min, now; 224 unsigned long flags; 225 struct rtc_device *rtc; 226 int i; 227 int ret; 228 229 spin_lock_irqsave(&freezer_delta_lock, flags); 230 min = freezer_delta; 231 freezer_delta = ktime_set(0, 0); 232 spin_unlock_irqrestore(&freezer_delta_lock, flags); 233 234 rtc = alarmtimer_get_rtcdev(); 235 /* If we have no rtcdev, just return */ 236 if (!rtc) 237 return 0; 238 239 /* Find the soonest timer to expire*/ 240 for (i = 0; i < ALARM_NUMTYPE; i++) { 241 struct alarm_base *base = &alarm_bases[i]; 242 struct timerqueue_node *next; 243 ktime_t delta; 244 245 spin_lock_irqsave(&base->lock, flags); 246 next = timerqueue_getnext(&base->timerqueue); 247 spin_unlock_irqrestore(&base->lock, flags); 248 if (!next) 249 continue; 250 delta = ktime_sub(next->expires, base->gettime()); 251 if (!min.tv64 || (delta.tv64 < min.tv64)) 252 min = delta; 253 } 254 if (min.tv64 == 0) 255 return 0; 256 257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 259 return -EBUSY; 260 } 261 262 /* Setup an rtc timer to fire that far in the future */ 263 rtc_timer_cancel(rtc, &rtctimer); 264 rtc_read_time(rtc, &tm); 265 now = rtc_tm_to_ktime(tm); 266 now = ktime_add(now, min); 267 268 /* Set alarm, if in the past reject suspend briefly to handle */ 269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0)); 270 if (ret < 0) 271 __pm_wakeup_event(ws, MSEC_PER_SEC); 272 return ret; 273 } 274 #else 275 static int alarmtimer_suspend(struct device *dev) 276 { 277 return 0; 278 } 279 #endif 280 281 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 282 { 283 ktime_t delta; 284 unsigned long flags; 285 struct alarm_base *base = &alarm_bases[type]; 286 287 delta = ktime_sub(absexp, base->gettime()); 288 289 spin_lock_irqsave(&freezer_delta_lock, flags); 290 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) 291 freezer_delta = delta; 292 spin_unlock_irqrestore(&freezer_delta_lock, flags); 293 } 294 295 296 /** 297 * alarm_init - Initialize an alarm structure 298 * @alarm: ptr to alarm to be initialized 299 * @type: the type of the alarm 300 * @function: callback that is run when the alarm fires 301 */ 302 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 303 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 304 { 305 timerqueue_init(&alarm->node); 306 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 307 HRTIMER_MODE_ABS); 308 alarm->timer.function = alarmtimer_fired; 309 alarm->function = function; 310 alarm->type = type; 311 alarm->state = ALARMTIMER_STATE_INACTIVE; 312 } 313 EXPORT_SYMBOL_GPL(alarm_init); 314 315 /** 316 * alarm_start - Sets an absolute alarm to fire 317 * @alarm: ptr to alarm to set 318 * @start: time to run the alarm 319 */ 320 int alarm_start(struct alarm *alarm, ktime_t start) 321 { 322 struct alarm_base *base = &alarm_bases[alarm->type]; 323 unsigned long flags; 324 int ret; 325 326 spin_lock_irqsave(&base->lock, flags); 327 alarm->node.expires = start; 328 alarmtimer_enqueue(base, alarm); 329 ret = hrtimer_start(&alarm->timer, alarm->node.expires, 330 HRTIMER_MODE_ABS); 331 spin_unlock_irqrestore(&base->lock, flags); 332 return ret; 333 } 334 EXPORT_SYMBOL_GPL(alarm_start); 335 336 /** 337 * alarm_start_relative - Sets a relative alarm to fire 338 * @alarm: ptr to alarm to set 339 * @start: time relative to now to run the alarm 340 */ 341 int alarm_start_relative(struct alarm *alarm, ktime_t start) 342 { 343 struct alarm_base *base = &alarm_bases[alarm->type]; 344 345 start = ktime_add(start, base->gettime()); 346 return alarm_start(alarm, start); 347 } 348 EXPORT_SYMBOL_GPL(alarm_start_relative); 349 350 void alarm_restart(struct alarm *alarm) 351 { 352 struct alarm_base *base = &alarm_bases[alarm->type]; 353 unsigned long flags; 354 355 spin_lock_irqsave(&base->lock, flags); 356 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 357 hrtimer_restart(&alarm->timer); 358 alarmtimer_enqueue(base, alarm); 359 spin_unlock_irqrestore(&base->lock, flags); 360 } 361 EXPORT_SYMBOL_GPL(alarm_restart); 362 363 /** 364 * alarm_try_to_cancel - Tries to cancel an alarm timer 365 * @alarm: ptr to alarm to be canceled 366 * 367 * Returns 1 if the timer was canceled, 0 if it was not running, 368 * and -1 if the callback was running 369 */ 370 int alarm_try_to_cancel(struct alarm *alarm) 371 { 372 struct alarm_base *base = &alarm_bases[alarm->type]; 373 unsigned long flags; 374 int ret; 375 376 spin_lock_irqsave(&base->lock, flags); 377 ret = hrtimer_try_to_cancel(&alarm->timer); 378 if (ret >= 0) 379 alarmtimer_dequeue(base, alarm); 380 spin_unlock_irqrestore(&base->lock, flags); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 384 385 386 /** 387 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 388 * @alarm: ptr to alarm to be canceled 389 * 390 * Returns 1 if the timer was canceled, 0 if it was not active. 391 */ 392 int alarm_cancel(struct alarm *alarm) 393 { 394 for (;;) { 395 int ret = alarm_try_to_cancel(alarm); 396 if (ret >= 0) 397 return ret; 398 cpu_relax(); 399 } 400 } 401 EXPORT_SYMBOL_GPL(alarm_cancel); 402 403 404 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 405 { 406 u64 overrun = 1; 407 ktime_t delta; 408 409 delta = ktime_sub(now, alarm->node.expires); 410 411 if (delta.tv64 < 0) 412 return 0; 413 414 if (unlikely(delta.tv64 >= interval.tv64)) { 415 s64 incr = ktime_to_ns(interval); 416 417 overrun = ktime_divns(delta, incr); 418 419 alarm->node.expires = ktime_add_ns(alarm->node.expires, 420 incr*overrun); 421 422 if (alarm->node.expires.tv64 > now.tv64) 423 return overrun; 424 /* 425 * This (and the ktime_add() below) is the 426 * correction for exact: 427 */ 428 overrun++; 429 } 430 431 alarm->node.expires = ktime_add(alarm->node.expires, interval); 432 return overrun; 433 } 434 EXPORT_SYMBOL_GPL(alarm_forward); 435 436 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 437 { 438 struct alarm_base *base = &alarm_bases[alarm->type]; 439 440 return alarm_forward(alarm, base->gettime(), interval); 441 } 442 EXPORT_SYMBOL_GPL(alarm_forward_now); 443 444 445 /** 446 * clock2alarm - helper that converts from clockid to alarmtypes 447 * @clockid: clockid. 448 */ 449 static enum alarmtimer_type clock2alarm(clockid_t clockid) 450 { 451 if (clockid == CLOCK_REALTIME_ALARM) 452 return ALARM_REALTIME; 453 if (clockid == CLOCK_BOOTTIME_ALARM) 454 return ALARM_BOOTTIME; 455 return -1; 456 } 457 458 /** 459 * alarm_handle_timer - Callback for posix timers 460 * @alarm: alarm that fired 461 * 462 * Posix timer callback for expired alarm timers. 463 */ 464 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 465 ktime_t now) 466 { 467 unsigned long flags; 468 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 469 it.alarm.alarmtimer); 470 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 471 472 spin_lock_irqsave(&ptr->it_lock, flags); 473 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) { 474 if (posix_timer_event(ptr, 0) != 0) 475 ptr->it_overrun++; 476 } 477 478 /* Re-add periodic timers */ 479 if (ptr->it.alarm.interval.tv64) { 480 ptr->it_overrun += alarm_forward(alarm, now, 481 ptr->it.alarm.interval); 482 result = ALARMTIMER_RESTART; 483 } 484 spin_unlock_irqrestore(&ptr->it_lock, flags); 485 486 return result; 487 } 488 489 /** 490 * alarm_clock_getres - posix getres interface 491 * @which_clock: clockid 492 * @tp: timespec to fill 493 * 494 * Returns the granularity of underlying alarm base clock 495 */ 496 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 497 { 498 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid; 499 500 if (!alarmtimer_get_rtcdev()) 501 return -EINVAL; 502 503 return hrtimer_get_res(baseid, tp); 504 } 505 506 /** 507 * alarm_clock_get - posix clock_get interface 508 * @which_clock: clockid 509 * @tp: timespec to fill. 510 * 511 * Provides the underlying alarm base time. 512 */ 513 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 514 { 515 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 516 517 if (!alarmtimer_get_rtcdev()) 518 return -EINVAL; 519 520 *tp = ktime_to_timespec(base->gettime()); 521 return 0; 522 } 523 524 /** 525 * alarm_timer_create - posix timer_create interface 526 * @new_timer: k_itimer pointer to manage 527 * 528 * Initializes the k_itimer structure. 529 */ 530 static int alarm_timer_create(struct k_itimer *new_timer) 531 { 532 enum alarmtimer_type type; 533 struct alarm_base *base; 534 535 if (!alarmtimer_get_rtcdev()) 536 return -ENOTSUPP; 537 538 if (!capable(CAP_WAKE_ALARM)) 539 return -EPERM; 540 541 type = clock2alarm(new_timer->it_clock); 542 base = &alarm_bases[type]; 543 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 544 return 0; 545 } 546 547 /** 548 * alarm_timer_get - posix timer_get interface 549 * @new_timer: k_itimer pointer 550 * @cur_setting: itimerspec data to fill 551 * 552 * Copies out the current itimerspec data 553 */ 554 static void alarm_timer_get(struct k_itimer *timr, 555 struct itimerspec *cur_setting) 556 { 557 ktime_t relative_expiry_time = 558 alarm_expires_remaining(&(timr->it.alarm.alarmtimer)); 559 560 if (ktime_to_ns(relative_expiry_time) > 0) { 561 cur_setting->it_value = ktime_to_timespec(relative_expiry_time); 562 } else { 563 cur_setting->it_value.tv_sec = 0; 564 cur_setting->it_value.tv_nsec = 0; 565 } 566 567 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval); 568 } 569 570 /** 571 * alarm_timer_del - posix timer_del interface 572 * @timr: k_itimer pointer to be deleted 573 * 574 * Cancels any programmed alarms for the given timer. 575 */ 576 static int alarm_timer_del(struct k_itimer *timr) 577 { 578 if (!rtcdev) 579 return -ENOTSUPP; 580 581 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 582 return TIMER_RETRY; 583 584 return 0; 585 } 586 587 /** 588 * alarm_timer_set - posix timer_set interface 589 * @timr: k_itimer pointer to be deleted 590 * @flags: timer flags 591 * @new_setting: itimerspec to be used 592 * @old_setting: itimerspec being replaced 593 * 594 * Sets the timer to new_setting, and starts the timer. 595 */ 596 static int alarm_timer_set(struct k_itimer *timr, int flags, 597 struct itimerspec *new_setting, 598 struct itimerspec *old_setting) 599 { 600 ktime_t exp; 601 602 if (!rtcdev) 603 return -ENOTSUPP; 604 605 if (flags & ~TIMER_ABSTIME) 606 return -EINVAL; 607 608 if (old_setting) 609 alarm_timer_get(timr, old_setting); 610 611 /* If the timer was already set, cancel it */ 612 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 613 return TIMER_RETRY; 614 615 /* start the timer */ 616 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval); 617 exp = timespec_to_ktime(new_setting->it_value); 618 /* Convert (if necessary) to absolute time */ 619 if (flags != TIMER_ABSTIME) { 620 ktime_t now; 621 622 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime(); 623 exp = ktime_add(now, exp); 624 } 625 626 alarm_start(&timr->it.alarm.alarmtimer, exp); 627 return 0; 628 } 629 630 /** 631 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 632 * @alarm: ptr to alarm that fired 633 * 634 * Wakes up the task that set the alarmtimer 635 */ 636 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 637 ktime_t now) 638 { 639 struct task_struct *task = (struct task_struct *)alarm->data; 640 641 alarm->data = NULL; 642 if (task) 643 wake_up_process(task); 644 return ALARMTIMER_NORESTART; 645 } 646 647 /** 648 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 649 * @alarm: ptr to alarmtimer 650 * @absexp: absolute expiration time 651 * 652 * Sets the alarm timer and sleeps until it is fired or interrupted. 653 */ 654 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 655 { 656 alarm->data = (void *)current; 657 do { 658 set_current_state(TASK_INTERRUPTIBLE); 659 alarm_start(alarm, absexp); 660 if (likely(alarm->data)) 661 schedule(); 662 663 alarm_cancel(alarm); 664 } while (alarm->data && !signal_pending(current)); 665 666 __set_current_state(TASK_RUNNING); 667 668 return (alarm->data == NULL); 669 } 670 671 672 /** 673 * update_rmtp - Update remaining timespec value 674 * @exp: expiration time 675 * @type: timer type 676 * @rmtp: user pointer to remaining timepsec value 677 * 678 * Helper function that fills in rmtp value with time between 679 * now and the exp value 680 */ 681 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 682 struct timespec __user *rmtp) 683 { 684 struct timespec rmt; 685 ktime_t rem; 686 687 rem = ktime_sub(exp, alarm_bases[type].gettime()); 688 689 if (rem.tv64 <= 0) 690 return 0; 691 rmt = ktime_to_timespec(rem); 692 693 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 694 return -EFAULT; 695 696 return 1; 697 698 } 699 700 /** 701 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 702 * @restart: ptr to restart block 703 * 704 * Handles restarted clock_nanosleep calls 705 */ 706 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 707 { 708 enum alarmtimer_type type = restart->nanosleep.clockid; 709 ktime_t exp; 710 struct timespec __user *rmtp; 711 struct alarm alarm; 712 int ret = 0; 713 714 exp.tv64 = restart->nanosleep.expires; 715 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 716 717 if (alarmtimer_do_nsleep(&alarm, exp)) 718 goto out; 719 720 if (freezing(current)) 721 alarmtimer_freezerset(exp, type); 722 723 rmtp = restart->nanosleep.rmtp; 724 if (rmtp) { 725 ret = update_rmtp(exp, type, rmtp); 726 if (ret <= 0) 727 goto out; 728 } 729 730 731 /* The other values in restart are already filled in */ 732 ret = -ERESTART_RESTARTBLOCK; 733 out: 734 return ret; 735 } 736 737 /** 738 * alarm_timer_nsleep - alarmtimer nanosleep 739 * @which_clock: clockid 740 * @flags: determins abstime or relative 741 * @tsreq: requested sleep time (abs or rel) 742 * @rmtp: remaining sleep time saved 743 * 744 * Handles clock_nanosleep calls against _ALARM clockids 745 */ 746 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 747 struct timespec *tsreq, struct timespec __user *rmtp) 748 { 749 enum alarmtimer_type type = clock2alarm(which_clock); 750 struct alarm alarm; 751 ktime_t exp; 752 int ret = 0; 753 struct restart_block *restart; 754 755 if (!alarmtimer_get_rtcdev()) 756 return -ENOTSUPP; 757 758 if (flags & ~TIMER_ABSTIME) 759 return -EINVAL; 760 761 if (!capable(CAP_WAKE_ALARM)) 762 return -EPERM; 763 764 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 765 766 exp = timespec_to_ktime(*tsreq); 767 /* Convert (if necessary) to absolute time */ 768 if (flags != TIMER_ABSTIME) { 769 ktime_t now = alarm_bases[type].gettime(); 770 exp = ktime_add(now, exp); 771 } 772 773 if (alarmtimer_do_nsleep(&alarm, exp)) 774 goto out; 775 776 if (freezing(current)) 777 alarmtimer_freezerset(exp, type); 778 779 /* abs timers don't set remaining time or restart */ 780 if (flags == TIMER_ABSTIME) { 781 ret = -ERESTARTNOHAND; 782 goto out; 783 } 784 785 if (rmtp) { 786 ret = update_rmtp(exp, type, rmtp); 787 if (ret <= 0) 788 goto out; 789 } 790 791 restart = ¤t->restart_block; 792 restart->fn = alarm_timer_nsleep_restart; 793 restart->nanosleep.clockid = type; 794 restart->nanosleep.expires = exp.tv64; 795 restart->nanosleep.rmtp = rmtp; 796 ret = -ERESTART_RESTARTBLOCK; 797 798 out: 799 return ret; 800 } 801 802 803 /* Suspend hook structures */ 804 static const struct dev_pm_ops alarmtimer_pm_ops = { 805 .suspend = alarmtimer_suspend, 806 }; 807 808 static struct platform_driver alarmtimer_driver = { 809 .driver = { 810 .name = "alarmtimer", 811 .pm = &alarmtimer_pm_ops, 812 } 813 }; 814 815 /** 816 * alarmtimer_init - Initialize alarm timer code 817 * 818 * This function initializes the alarm bases and registers 819 * the posix clock ids. 820 */ 821 static int __init alarmtimer_init(void) 822 { 823 struct platform_device *pdev; 824 int error = 0; 825 int i; 826 struct k_clock alarm_clock = { 827 .clock_getres = alarm_clock_getres, 828 .clock_get = alarm_clock_get, 829 .timer_create = alarm_timer_create, 830 .timer_set = alarm_timer_set, 831 .timer_del = alarm_timer_del, 832 .timer_get = alarm_timer_get, 833 .nsleep = alarm_timer_nsleep, 834 }; 835 836 alarmtimer_rtc_timer_init(); 837 838 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 839 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 840 841 /* Initialize alarm bases */ 842 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 843 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 844 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 845 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 846 for (i = 0; i < ALARM_NUMTYPE; i++) { 847 timerqueue_init_head(&alarm_bases[i].timerqueue); 848 spin_lock_init(&alarm_bases[i].lock); 849 } 850 851 error = alarmtimer_rtc_interface_setup(); 852 if (error) 853 return error; 854 855 error = platform_driver_register(&alarmtimer_driver); 856 if (error) 857 goto out_if; 858 859 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 860 if (IS_ERR(pdev)) { 861 error = PTR_ERR(pdev); 862 goto out_drv; 863 } 864 ws = wakeup_source_register("alarmtimer"); 865 return 0; 866 867 out_drv: 868 platform_driver_unregister(&alarmtimer_driver); 869 out_if: 870 alarmtimer_rtc_interface_remove(); 871 return error; 872 } 873 device_initcall(alarmtimer_init); 874