xref: /openbmc/linux/kernel/time/alarmtimer.c (revision fc4b4d96)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similar to hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corporation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30 
31 #include "posix-timers.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35 
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:		Lock for syncrhonized access to the base
39  * @timerqueue:		Timerqueue head managing the list of events
40  * @get_ktime:		Function to read the time correlating to the base
41  * @get_timespec:	Function to read the namespace time correlating to the base
42  * @base_clockid:	clockid for the base
43  */
44 static struct alarm_base {
45 	spinlock_t		lock;
46 	struct timerqueue_head	timerqueue;
47 	ktime_t			(*get_ktime)(void);
48 	void			(*get_timespec)(struct timespec64 *tp);
49 	clockid_t		base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51 
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59 
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer		rtctimer;
63 static struct rtc_device	*rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65 
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
alarmtimer_get_rtcdev(void)71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73 	unsigned long flags;
74 	struct rtc_device *ret;
75 
76 	spin_lock_irqsave(&rtcdev_lock, flags);
77 	ret = rtcdev;
78 	spin_unlock_irqrestore(&rtcdev_lock, flags);
79 
80 	return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83 
alarmtimer_rtc_add_device(struct device * dev)84 static int alarmtimer_rtc_add_device(struct device *dev)
85 {
86 	unsigned long flags;
87 	struct rtc_device *rtc = to_rtc_device(dev);
88 	struct platform_device *pdev;
89 	int ret = 0;
90 
91 	if (rtcdev)
92 		return -EBUSY;
93 
94 	if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 		return -1;
96 	if (!device_may_wakeup(rtc->dev.parent))
97 		return -1;
98 
99 	pdev = platform_device_register_data(dev, "alarmtimer",
100 					     PLATFORM_DEVID_AUTO, NULL, 0);
101 	if (!IS_ERR(pdev))
102 		device_init_wakeup(&pdev->dev, true);
103 
104 	spin_lock_irqsave(&rtcdev_lock, flags);
105 	if (!IS_ERR(pdev) && !rtcdev) {
106 		if (!try_module_get(rtc->owner)) {
107 			ret = -1;
108 			goto unlock;
109 		}
110 
111 		rtcdev = rtc;
112 		/* hold a reference so it doesn't go away */
113 		get_device(dev);
114 		pdev = NULL;
115 	} else {
116 		ret = -1;
117 	}
118 unlock:
119 	spin_unlock_irqrestore(&rtcdev_lock, flags);
120 
121 	platform_device_unregister(pdev);
122 
123 	return ret;
124 }
125 
alarmtimer_rtc_timer_init(void)126 static inline void alarmtimer_rtc_timer_init(void)
127 {
128 	rtc_timer_init(&rtctimer, NULL, NULL);
129 }
130 
131 static struct class_interface alarmtimer_rtc_interface = {
132 	.add_dev = &alarmtimer_rtc_add_device,
133 };
134 
alarmtimer_rtc_interface_setup(void)135 static int alarmtimer_rtc_interface_setup(void)
136 {
137 	alarmtimer_rtc_interface.class = rtc_class;
138 	return class_interface_register(&alarmtimer_rtc_interface);
139 }
alarmtimer_rtc_interface_remove(void)140 static void alarmtimer_rtc_interface_remove(void)
141 {
142 	class_interface_unregister(&alarmtimer_rtc_interface);
143 }
144 #else
alarmtimer_rtc_interface_setup(void)145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)146 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)147 static inline void alarmtimer_rtc_timer_init(void) { }
148 #endif
149 
150 /**
151  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152  * @base: pointer to the base where the timer is being run
153  * @alarm: pointer to alarm being enqueued.
154  *
155  * Adds alarm to a alarm_base timerqueue
156  *
157  * Must hold base->lock when calling.
158  */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160 {
161 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 		timerqueue_del(&base->timerqueue, &alarm->node);
163 
164 	timerqueue_add(&base->timerqueue, &alarm->node);
165 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166 }
167 
168 /**
169  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170  * @base: pointer to the base where the timer is running
171  * @alarm: pointer to alarm being removed
172  *
173  * Removes alarm to a alarm_base timerqueue
174  *
175  * Must hold base->lock when calling.
176  */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178 {
179 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 		return;
181 
182 	timerqueue_del(&base->timerqueue, &alarm->node);
183 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184 }
185 
186 
187 /**
188  * alarmtimer_fired - Handles alarm hrtimer being fired.
189  * @timer: pointer to hrtimer being run
190  *
191  * When a alarm timer fires, this runs through the timerqueue to
192  * see which alarms expired, and runs those. If there are more alarm
193  * timers queued for the future, we set the hrtimer to fire when
194  * the next future alarm timer expires.
195  */
alarmtimer_fired(struct hrtimer * timer)196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197 {
198 	struct alarm *alarm = container_of(timer, struct alarm, timer);
199 	struct alarm_base *base = &alarm_bases[alarm->type];
200 	unsigned long flags;
201 	int ret = HRTIMER_NORESTART;
202 	int restart = ALARMTIMER_NORESTART;
203 
204 	spin_lock_irqsave(&base->lock, flags);
205 	alarmtimer_dequeue(base, alarm);
206 	spin_unlock_irqrestore(&base->lock, flags);
207 
208 	if (alarm->function)
209 		restart = alarm->function(alarm, base->get_ktime());
210 
211 	spin_lock_irqsave(&base->lock, flags);
212 	if (restart != ALARMTIMER_NORESTART) {
213 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
214 		alarmtimer_enqueue(base, alarm);
215 		ret = HRTIMER_RESTART;
216 	}
217 	spin_unlock_irqrestore(&base->lock, flags);
218 
219 	trace_alarmtimer_fired(alarm, base->get_ktime());
220 	return ret;
221 
222 }
223 
alarm_expires_remaining(const struct alarm * alarm)224 ktime_t alarm_expires_remaining(const struct alarm *alarm)
225 {
226 	struct alarm_base *base = &alarm_bases[alarm->type];
227 	return ktime_sub(alarm->node.expires, base->get_ktime());
228 }
229 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
230 
231 #ifdef CONFIG_RTC_CLASS
232 /**
233  * alarmtimer_suspend - Suspend time callback
234  * @dev: unused
235  *
236  * When we are going into suspend, we look through the bases
237  * to see which is the soonest timer to expire. We then
238  * set an rtc timer to fire that far into the future, which
239  * will wake us from suspend.
240  */
alarmtimer_suspend(struct device * dev)241 static int alarmtimer_suspend(struct device *dev)
242 {
243 	ktime_t min, now, expires;
244 	int i, ret, type;
245 	struct rtc_device *rtc;
246 	unsigned long flags;
247 	struct rtc_time tm;
248 
249 	spin_lock_irqsave(&freezer_delta_lock, flags);
250 	min = freezer_delta;
251 	expires = freezer_expires;
252 	type = freezer_alarmtype;
253 	freezer_delta = 0;
254 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
255 
256 	rtc = alarmtimer_get_rtcdev();
257 	/* If we have no rtcdev, just return */
258 	if (!rtc)
259 		return 0;
260 
261 	/* Find the soonest timer to expire*/
262 	for (i = 0; i < ALARM_NUMTYPE; i++) {
263 		struct alarm_base *base = &alarm_bases[i];
264 		struct timerqueue_node *next;
265 		ktime_t delta;
266 
267 		spin_lock_irqsave(&base->lock, flags);
268 		next = timerqueue_getnext(&base->timerqueue);
269 		spin_unlock_irqrestore(&base->lock, flags);
270 		if (!next)
271 			continue;
272 		delta = ktime_sub(next->expires, base->get_ktime());
273 		if (!min || (delta < min)) {
274 			expires = next->expires;
275 			min = delta;
276 			type = i;
277 		}
278 	}
279 	if (min == 0)
280 		return 0;
281 
282 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
283 		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
284 		return -EBUSY;
285 	}
286 
287 	trace_alarmtimer_suspend(expires, type);
288 
289 	/* Setup an rtc timer to fire that far in the future */
290 	rtc_timer_cancel(rtc, &rtctimer);
291 	rtc_read_time(rtc, &tm);
292 	now = rtc_tm_to_ktime(tm);
293 	now = ktime_add(now, min);
294 
295 	/* Set alarm, if in the past reject suspend briefly to handle */
296 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
297 	if (ret < 0)
298 		pm_wakeup_event(dev, MSEC_PER_SEC);
299 	return ret;
300 }
301 
alarmtimer_resume(struct device * dev)302 static int alarmtimer_resume(struct device *dev)
303 {
304 	struct rtc_device *rtc;
305 
306 	rtc = alarmtimer_get_rtcdev();
307 	if (rtc)
308 		rtc_timer_cancel(rtc, &rtctimer);
309 	return 0;
310 }
311 
312 #else
alarmtimer_suspend(struct device * dev)313 static int alarmtimer_suspend(struct device *dev)
314 {
315 	return 0;
316 }
317 
alarmtimer_resume(struct device * dev)318 static int alarmtimer_resume(struct device *dev)
319 {
320 	return 0;
321 }
322 #endif
323 
324 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))325 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
326 	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
327 {
328 	timerqueue_init(&alarm->node);
329 	alarm->timer.function = alarmtimer_fired;
330 	alarm->function = function;
331 	alarm->type = type;
332 	alarm->state = ALARMTIMER_STATE_INACTIVE;
333 }
334 
335 /**
336  * alarm_init - Initialize an alarm structure
337  * @alarm: ptr to alarm to be initialized
338  * @type: the type of the alarm
339  * @function: callback that is run when the alarm fires
340  */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))341 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
342 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
343 {
344 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
345 		     HRTIMER_MODE_ABS);
346 	__alarm_init(alarm, type, function);
347 }
348 EXPORT_SYMBOL_GPL(alarm_init);
349 
350 /**
351  * alarm_start - Sets an absolute alarm to fire
352  * @alarm: ptr to alarm to set
353  * @start: time to run the alarm
354  */
alarm_start(struct alarm * alarm,ktime_t start)355 void alarm_start(struct alarm *alarm, ktime_t start)
356 {
357 	struct alarm_base *base = &alarm_bases[alarm->type];
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(&base->lock, flags);
361 	alarm->node.expires = start;
362 	alarmtimer_enqueue(base, alarm);
363 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
364 	spin_unlock_irqrestore(&base->lock, flags);
365 
366 	trace_alarmtimer_start(alarm, base->get_ktime());
367 }
368 EXPORT_SYMBOL_GPL(alarm_start);
369 
370 /**
371  * alarm_start_relative - Sets a relative alarm to fire
372  * @alarm: ptr to alarm to set
373  * @start: time relative to now to run the alarm
374  */
alarm_start_relative(struct alarm * alarm,ktime_t start)375 void alarm_start_relative(struct alarm *alarm, ktime_t start)
376 {
377 	struct alarm_base *base = &alarm_bases[alarm->type];
378 
379 	start = ktime_add_safe(start, base->get_ktime());
380 	alarm_start(alarm, start);
381 }
382 EXPORT_SYMBOL_GPL(alarm_start_relative);
383 
alarm_restart(struct alarm * alarm)384 void alarm_restart(struct alarm *alarm)
385 {
386 	struct alarm_base *base = &alarm_bases[alarm->type];
387 	unsigned long flags;
388 
389 	spin_lock_irqsave(&base->lock, flags);
390 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
391 	hrtimer_restart(&alarm->timer);
392 	alarmtimer_enqueue(base, alarm);
393 	spin_unlock_irqrestore(&base->lock, flags);
394 }
395 EXPORT_SYMBOL_GPL(alarm_restart);
396 
397 /**
398  * alarm_try_to_cancel - Tries to cancel an alarm timer
399  * @alarm: ptr to alarm to be canceled
400  *
401  * Returns 1 if the timer was canceled, 0 if it was not running,
402  * and -1 if the callback was running
403  */
alarm_try_to_cancel(struct alarm * alarm)404 int alarm_try_to_cancel(struct alarm *alarm)
405 {
406 	struct alarm_base *base = &alarm_bases[alarm->type];
407 	unsigned long flags;
408 	int ret;
409 
410 	spin_lock_irqsave(&base->lock, flags);
411 	ret = hrtimer_try_to_cancel(&alarm->timer);
412 	if (ret >= 0)
413 		alarmtimer_dequeue(base, alarm);
414 	spin_unlock_irqrestore(&base->lock, flags);
415 
416 	trace_alarmtimer_cancel(alarm, base->get_ktime());
417 	return ret;
418 }
419 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
420 
421 
422 /**
423  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
424  * @alarm: ptr to alarm to be canceled
425  *
426  * Returns 1 if the timer was canceled, 0 if it was not active.
427  */
alarm_cancel(struct alarm * alarm)428 int alarm_cancel(struct alarm *alarm)
429 {
430 	for (;;) {
431 		int ret = alarm_try_to_cancel(alarm);
432 		if (ret >= 0)
433 			return ret;
434 		hrtimer_cancel_wait_running(&alarm->timer);
435 	}
436 }
437 EXPORT_SYMBOL_GPL(alarm_cancel);
438 
439 
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)440 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
441 {
442 	u64 overrun = 1;
443 	ktime_t delta;
444 
445 	delta = ktime_sub(now, alarm->node.expires);
446 
447 	if (delta < 0)
448 		return 0;
449 
450 	if (unlikely(delta >= interval)) {
451 		s64 incr = ktime_to_ns(interval);
452 
453 		overrun = ktime_divns(delta, incr);
454 
455 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
456 							incr*overrun);
457 
458 		if (alarm->node.expires > now)
459 			return overrun;
460 		/*
461 		 * This (and the ktime_add() below) is the
462 		 * correction for exact:
463 		 */
464 		overrun++;
465 	}
466 
467 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
468 	return overrun;
469 }
470 EXPORT_SYMBOL_GPL(alarm_forward);
471 
__alarm_forward_now(struct alarm * alarm,ktime_t interval,bool throttle)472 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
473 {
474 	struct alarm_base *base = &alarm_bases[alarm->type];
475 	ktime_t now = base->get_ktime();
476 
477 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
478 		/*
479 		 * Same issue as with posix_timer_fn(). Timers which are
480 		 * periodic but the signal is ignored can starve the system
481 		 * with a very small interval. The real fix which was
482 		 * promised in the context of posix_timer_fn() never
483 		 * materialized, but someone should really work on it.
484 		 *
485 		 * To prevent DOS fake @now to be 1 jiffie out which keeps
486 		 * the overrun accounting correct but creates an
487 		 * inconsistency vs. timer_gettime(2).
488 		 */
489 		ktime_t kj = NSEC_PER_SEC / HZ;
490 
491 		if (interval < kj)
492 			now = ktime_add(now, kj);
493 	}
494 
495 	return alarm_forward(alarm, now, interval);
496 }
497 
alarm_forward_now(struct alarm * alarm,ktime_t interval)498 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
499 {
500 	return __alarm_forward_now(alarm, interval, false);
501 }
502 EXPORT_SYMBOL_GPL(alarm_forward_now);
503 
504 #ifdef CONFIG_POSIX_TIMERS
505 
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)506 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
507 {
508 	struct alarm_base *base;
509 	unsigned long flags;
510 	ktime_t delta;
511 
512 	switch(type) {
513 	case ALARM_REALTIME:
514 		base = &alarm_bases[ALARM_REALTIME];
515 		type = ALARM_REALTIME_FREEZER;
516 		break;
517 	case ALARM_BOOTTIME:
518 		base = &alarm_bases[ALARM_BOOTTIME];
519 		type = ALARM_BOOTTIME_FREEZER;
520 		break;
521 	default:
522 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
523 		return;
524 	}
525 
526 	delta = ktime_sub(absexp, base->get_ktime());
527 
528 	spin_lock_irqsave(&freezer_delta_lock, flags);
529 	if (!freezer_delta || (delta < freezer_delta)) {
530 		freezer_delta = delta;
531 		freezer_expires = absexp;
532 		freezer_alarmtype = type;
533 	}
534 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
535 }
536 
537 /**
538  * clock2alarm - helper that converts from clockid to alarmtypes
539  * @clockid: clockid.
540  */
clock2alarm(clockid_t clockid)541 static enum alarmtimer_type clock2alarm(clockid_t clockid)
542 {
543 	if (clockid == CLOCK_REALTIME_ALARM)
544 		return ALARM_REALTIME;
545 	if (clockid == CLOCK_BOOTTIME_ALARM)
546 		return ALARM_BOOTTIME;
547 	return -1;
548 }
549 
550 /**
551  * alarm_handle_timer - Callback for posix timers
552  * @alarm: alarm that fired
553  * @now: time at the timer expiration
554  *
555  * Posix timer callback for expired alarm timers.
556  *
557  * Return: whether the timer is to be restarted
558  */
alarm_handle_timer(struct alarm * alarm,ktime_t now)559 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
560 							ktime_t now)
561 {
562 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
563 					    it.alarm.alarmtimer);
564 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
565 	unsigned long flags;
566 	int si_private = 0;
567 
568 	spin_lock_irqsave(&ptr->it_lock, flags);
569 
570 	ptr->it_active = 0;
571 	if (ptr->it_interval)
572 		si_private = ++ptr->it_requeue_pending;
573 
574 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
575 		/*
576 		 * Handle ignored signals and rearm the timer. This will go
577 		 * away once we handle ignored signals proper. Ensure that
578 		 * small intervals cannot starve the system.
579 		 */
580 		ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
581 		++ptr->it_requeue_pending;
582 		ptr->it_active = 1;
583 		result = ALARMTIMER_RESTART;
584 	}
585 	spin_unlock_irqrestore(&ptr->it_lock, flags);
586 
587 	return result;
588 }
589 
590 /**
591  * alarm_timer_rearm - Posix timer callback for rearming timer
592  * @timr:	Pointer to the posixtimer data struct
593  */
alarm_timer_rearm(struct k_itimer * timr)594 static void alarm_timer_rearm(struct k_itimer *timr)
595 {
596 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
597 
598 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
599 	alarm_start(alarm, alarm->node.expires);
600 }
601 
602 /**
603  * alarm_timer_forward - Posix timer callback for forwarding timer
604  * @timr:	Pointer to the posixtimer data struct
605  * @now:	Current time to forward the timer against
606  */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)607 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
608 {
609 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
610 
611 	return alarm_forward(alarm, timr->it_interval, now);
612 }
613 
614 /**
615  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
616  * @timr:	Pointer to the posixtimer data struct
617  * @now:	Current time to calculate against
618  */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)619 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
620 {
621 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
622 
623 	return ktime_sub(alarm->node.expires, now);
624 }
625 
626 /**
627  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
628  * @timr:	Pointer to the posixtimer data struct
629  */
alarm_timer_try_to_cancel(struct k_itimer * timr)630 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
631 {
632 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
633 }
634 
635 /**
636  * alarm_timer_wait_running - Posix timer callback to wait for a timer
637  * @timr:	Pointer to the posixtimer data struct
638  *
639  * Called from the core code when timer cancel detected that the callback
640  * is running. @timr is unlocked and rcu read lock is held to prevent it
641  * from being freed.
642  */
alarm_timer_wait_running(struct k_itimer * timr)643 static void alarm_timer_wait_running(struct k_itimer *timr)
644 {
645 	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
646 }
647 
648 /**
649  * alarm_timer_arm - Posix timer callback to arm a timer
650  * @timr:	Pointer to the posixtimer data struct
651  * @expires:	The new expiry time
652  * @absolute:	Expiry value is absolute time
653  * @sigev_none:	Posix timer does not deliver signals
654  */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)655 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
656 			    bool absolute, bool sigev_none)
657 {
658 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
659 	struct alarm_base *base = &alarm_bases[alarm->type];
660 
661 	if (!absolute)
662 		expires = ktime_add_safe(expires, base->get_ktime());
663 	if (sigev_none)
664 		alarm->node.expires = expires;
665 	else
666 		alarm_start(&timr->it.alarm.alarmtimer, expires);
667 }
668 
669 /**
670  * alarm_clock_getres - posix getres interface
671  * @which_clock: clockid
672  * @tp: timespec to fill
673  *
674  * Returns the granularity of underlying alarm base clock
675  */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)676 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
677 {
678 	if (!alarmtimer_get_rtcdev())
679 		return -EINVAL;
680 
681 	tp->tv_sec = 0;
682 	tp->tv_nsec = hrtimer_resolution;
683 	return 0;
684 }
685 
686 /**
687  * alarm_clock_get_timespec - posix clock_get_timespec interface
688  * @which_clock: clockid
689  * @tp: timespec to fill.
690  *
691  * Provides the underlying alarm base time in a tasks time namespace.
692  */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)693 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
694 {
695 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
696 
697 	if (!alarmtimer_get_rtcdev())
698 		return -EINVAL;
699 
700 	base->get_timespec(tp);
701 
702 	return 0;
703 }
704 
705 /**
706  * alarm_clock_get_ktime - posix clock_get_ktime interface
707  * @which_clock: clockid
708  *
709  * Provides the underlying alarm base time in the root namespace.
710  */
alarm_clock_get_ktime(clockid_t which_clock)711 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
712 {
713 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
714 
715 	if (!alarmtimer_get_rtcdev())
716 		return -EINVAL;
717 
718 	return base->get_ktime();
719 }
720 
721 /**
722  * alarm_timer_create - posix timer_create interface
723  * @new_timer: k_itimer pointer to manage
724  *
725  * Initializes the k_itimer structure.
726  */
alarm_timer_create(struct k_itimer * new_timer)727 static int alarm_timer_create(struct k_itimer *new_timer)
728 {
729 	enum  alarmtimer_type type;
730 
731 	if (!alarmtimer_get_rtcdev())
732 		return -EOPNOTSUPP;
733 
734 	if (!capable(CAP_WAKE_ALARM))
735 		return -EPERM;
736 
737 	type = clock2alarm(new_timer->it_clock);
738 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
739 	return 0;
740 }
741 
742 /**
743  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
744  * @alarm: ptr to alarm that fired
745  * @now: time at the timer expiration
746  *
747  * Wakes up the task that set the alarmtimer
748  *
749  * Return: ALARMTIMER_NORESTART
750  */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)751 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
752 								ktime_t now)
753 {
754 	struct task_struct *task = alarm->data;
755 
756 	alarm->data = NULL;
757 	if (task)
758 		wake_up_process(task);
759 	return ALARMTIMER_NORESTART;
760 }
761 
762 /**
763  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
764  * @alarm: ptr to alarmtimer
765  * @absexp: absolute expiration time
766  * @type: alarm type (BOOTTIME/REALTIME).
767  *
768  * Sets the alarm timer and sleeps until it is fired or interrupted.
769  */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)770 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
771 				enum alarmtimer_type type)
772 {
773 	struct restart_block *restart;
774 	alarm->data = (void *)current;
775 	do {
776 		set_current_state(TASK_INTERRUPTIBLE);
777 		alarm_start(alarm, absexp);
778 		if (likely(alarm->data))
779 			schedule();
780 
781 		alarm_cancel(alarm);
782 	} while (alarm->data && !signal_pending(current));
783 
784 	__set_current_state(TASK_RUNNING);
785 
786 	destroy_hrtimer_on_stack(&alarm->timer);
787 
788 	if (!alarm->data)
789 		return 0;
790 
791 	if (freezing(current))
792 		alarmtimer_freezerset(absexp, type);
793 	restart = &current->restart_block;
794 	if (restart->nanosleep.type != TT_NONE) {
795 		struct timespec64 rmt;
796 		ktime_t rem;
797 
798 		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
799 
800 		if (rem <= 0)
801 			return 0;
802 		rmt = ktime_to_timespec64(rem);
803 
804 		return nanosleep_copyout(restart, &rmt);
805 	}
806 	return -ERESTART_RESTARTBLOCK;
807 }
808 
809 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))810 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
811 		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
812 {
813 	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
814 			      HRTIMER_MODE_ABS);
815 	__alarm_init(alarm, type, function);
816 }
817 
818 /**
819  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
820  * @restart: ptr to restart block
821  *
822  * Handles restarted clock_nanosleep calls
823  */
alarm_timer_nsleep_restart(struct restart_block * restart)824 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
825 {
826 	enum  alarmtimer_type type = restart->nanosleep.clockid;
827 	ktime_t exp = restart->nanosleep.expires;
828 	struct alarm alarm;
829 
830 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
831 
832 	return alarmtimer_do_nsleep(&alarm, exp, type);
833 }
834 
835 /**
836  * alarm_timer_nsleep - alarmtimer nanosleep
837  * @which_clock: clockid
838  * @flags: determines abstime or relative
839  * @tsreq: requested sleep time (abs or rel)
840  *
841  * Handles clock_nanosleep calls against _ALARM clockids
842  */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)843 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
844 			      const struct timespec64 *tsreq)
845 {
846 	enum  alarmtimer_type type = clock2alarm(which_clock);
847 	struct restart_block *restart = &current->restart_block;
848 	struct alarm alarm;
849 	ktime_t exp;
850 	int ret;
851 
852 	if (!alarmtimer_get_rtcdev())
853 		return -EOPNOTSUPP;
854 
855 	if (flags & ~TIMER_ABSTIME)
856 		return -EINVAL;
857 
858 	if (!capable(CAP_WAKE_ALARM))
859 		return -EPERM;
860 
861 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
862 
863 	exp = timespec64_to_ktime(*tsreq);
864 	/* Convert (if necessary) to absolute time */
865 	if (flags != TIMER_ABSTIME) {
866 		ktime_t now = alarm_bases[type].get_ktime();
867 
868 		exp = ktime_add_safe(now, exp);
869 	} else {
870 		exp = timens_ktime_to_host(which_clock, exp);
871 	}
872 
873 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
874 	if (ret != -ERESTART_RESTARTBLOCK)
875 		return ret;
876 
877 	/* abs timers don't set remaining time or restart */
878 	if (flags == TIMER_ABSTIME)
879 		return -ERESTARTNOHAND;
880 
881 	restart->nanosleep.clockid = type;
882 	restart->nanosleep.expires = exp;
883 	set_restart_fn(restart, alarm_timer_nsleep_restart);
884 	return ret;
885 }
886 
887 const struct k_clock alarm_clock = {
888 	.clock_getres		= alarm_clock_getres,
889 	.clock_get_ktime	= alarm_clock_get_ktime,
890 	.clock_get_timespec	= alarm_clock_get_timespec,
891 	.timer_create		= alarm_timer_create,
892 	.timer_set		= common_timer_set,
893 	.timer_del		= common_timer_del,
894 	.timer_get		= common_timer_get,
895 	.timer_arm		= alarm_timer_arm,
896 	.timer_rearm		= alarm_timer_rearm,
897 	.timer_forward		= alarm_timer_forward,
898 	.timer_remaining	= alarm_timer_remaining,
899 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
900 	.timer_wait_running	= alarm_timer_wait_running,
901 	.nsleep			= alarm_timer_nsleep,
902 };
903 #endif /* CONFIG_POSIX_TIMERS */
904 
905 
906 /* Suspend hook structures */
907 static const struct dev_pm_ops alarmtimer_pm_ops = {
908 	.suspend = alarmtimer_suspend,
909 	.resume = alarmtimer_resume,
910 };
911 
912 static struct platform_driver alarmtimer_driver = {
913 	.driver = {
914 		.name = "alarmtimer",
915 		.pm = &alarmtimer_pm_ops,
916 	}
917 };
918 
get_boottime_timespec(struct timespec64 * tp)919 static void get_boottime_timespec(struct timespec64 *tp)
920 {
921 	ktime_get_boottime_ts64(tp);
922 	timens_add_boottime(tp);
923 }
924 
925 /**
926  * alarmtimer_init - Initialize alarm timer code
927  *
928  * This function initializes the alarm bases and registers
929  * the posix clock ids.
930  */
alarmtimer_init(void)931 static int __init alarmtimer_init(void)
932 {
933 	int error;
934 	int i;
935 
936 	alarmtimer_rtc_timer_init();
937 
938 	/* Initialize alarm bases */
939 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
940 	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
941 	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
942 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
943 	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
944 	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
945 	for (i = 0; i < ALARM_NUMTYPE; i++) {
946 		timerqueue_init_head(&alarm_bases[i].timerqueue);
947 		spin_lock_init(&alarm_bases[i].lock);
948 	}
949 
950 	error = alarmtimer_rtc_interface_setup();
951 	if (error)
952 		return error;
953 
954 	error = platform_driver_register(&alarmtimer_driver);
955 	if (error)
956 		goto out_if;
957 
958 	return 0;
959 out_if:
960 	alarmtimer_rtc_interface_remove();
961 	return error;
962 }
963 device_initcall(alarmtimer_init);
964