xref: /openbmc/linux/kernel/sys.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
46 
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53 
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65 
66 #include <linux/nospec.h>
67 
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75 
76 #include "uid16.h"
77 
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
80 #endif
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
83 #endif
84 #ifndef SET_FPEMU_CTL
85 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
86 #endif
87 #ifndef GET_FPEMU_CTL
88 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
89 #endif
90 #ifndef SET_FPEXC_CTL
91 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
92 #endif
93 #ifndef GET_FPEXC_CTL
94 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
95 #endif
96 #ifndef GET_ENDIAN
97 # define GET_ENDIAN(a, b)	(-EINVAL)
98 #endif
99 #ifndef SET_ENDIAN
100 # define SET_ENDIAN(a, b)	(-EINVAL)
101 #endif
102 #ifndef GET_TSC_CTL
103 # define GET_TSC_CTL(a)		(-EINVAL)
104 #endif
105 #ifndef SET_TSC_CTL
106 # define SET_TSC_CTL(a)		(-EINVAL)
107 #endif
108 #ifndef GET_FP_MODE
109 # define GET_FP_MODE(a)		(-EINVAL)
110 #endif
111 #ifndef SET_FP_MODE
112 # define SET_FP_MODE(a,b)	(-EINVAL)
113 #endif
114 #ifndef SVE_SET_VL
115 # define SVE_SET_VL(a)		(-EINVAL)
116 #endif
117 #ifndef SVE_GET_VL
118 # define SVE_GET_VL()		(-EINVAL)
119 #endif
120 #ifndef PAC_RESET_KEYS
121 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
122 #endif
123 #ifndef PAC_SET_ENABLED_KEYS
124 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
125 #endif
126 #ifndef PAC_GET_ENABLED_KEYS
127 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
128 #endif
129 #ifndef SET_TAGGED_ADDR_CTRL
130 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
131 #endif
132 #ifndef GET_TAGGED_ADDR_CTRL
133 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
134 #endif
135 
136 /*
137  * this is where the system-wide overflow UID and GID are defined, for
138  * architectures that now have 32-bit UID/GID but didn't in the past
139  */
140 
141 int overflowuid = DEFAULT_OVERFLOWUID;
142 int overflowgid = DEFAULT_OVERFLOWGID;
143 
144 EXPORT_SYMBOL(overflowuid);
145 EXPORT_SYMBOL(overflowgid);
146 
147 /*
148  * the same as above, but for filesystems which can only store a 16-bit
149  * UID and GID. as such, this is needed on all architectures
150  */
151 
152 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
153 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
154 
155 EXPORT_SYMBOL(fs_overflowuid);
156 EXPORT_SYMBOL(fs_overflowgid);
157 
158 /*
159  * Returns true if current's euid is same as p's uid or euid,
160  * or has CAP_SYS_NICE to p's user_ns.
161  *
162  * Called with rcu_read_lock, creds are safe
163  */
164 static bool set_one_prio_perm(struct task_struct *p)
165 {
166 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
167 
168 	if (uid_eq(pcred->uid,  cred->euid) ||
169 	    uid_eq(pcred->euid, cred->euid))
170 		return true;
171 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
172 		return true;
173 	return false;
174 }
175 
176 /*
177  * set the priority of a task
178  * - the caller must hold the RCU read lock
179  */
180 static int set_one_prio(struct task_struct *p, int niceval, int error)
181 {
182 	int no_nice;
183 
184 	if (!set_one_prio_perm(p)) {
185 		error = -EPERM;
186 		goto out;
187 	}
188 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
189 		error = -EACCES;
190 		goto out;
191 	}
192 	no_nice = security_task_setnice(p, niceval);
193 	if (no_nice) {
194 		error = no_nice;
195 		goto out;
196 	}
197 	if (error == -ESRCH)
198 		error = 0;
199 	set_user_nice(p, niceval);
200 out:
201 	return error;
202 }
203 
204 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
205 {
206 	struct task_struct *g, *p;
207 	struct user_struct *user;
208 	const struct cred *cred = current_cred();
209 	int error = -EINVAL;
210 	struct pid *pgrp;
211 	kuid_t uid;
212 
213 	if (which > PRIO_USER || which < PRIO_PROCESS)
214 		goto out;
215 
216 	/* normalize: avoid signed division (rounding problems) */
217 	error = -ESRCH;
218 	if (niceval < MIN_NICE)
219 		niceval = MIN_NICE;
220 	if (niceval > MAX_NICE)
221 		niceval = MAX_NICE;
222 
223 	rcu_read_lock();
224 	switch (which) {
225 	case PRIO_PROCESS:
226 		if (who)
227 			p = find_task_by_vpid(who);
228 		else
229 			p = current;
230 		if (p)
231 			error = set_one_prio(p, niceval, error);
232 		break;
233 	case PRIO_PGRP:
234 		if (who)
235 			pgrp = find_vpid(who);
236 		else
237 			pgrp = task_pgrp(current);
238 		read_lock(&tasklist_lock);
239 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
240 			error = set_one_prio(p, niceval, error);
241 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
242 		read_unlock(&tasklist_lock);
243 		break;
244 	case PRIO_USER:
245 		uid = make_kuid(cred->user_ns, who);
246 		user = cred->user;
247 		if (!who)
248 			uid = cred->uid;
249 		else if (!uid_eq(uid, cred->uid)) {
250 			user = find_user(uid);
251 			if (!user)
252 				goto out_unlock;	/* No processes for this user */
253 		}
254 		for_each_process_thread(g, p) {
255 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
256 				error = set_one_prio(p, niceval, error);
257 		}
258 		if (!uid_eq(uid, cred->uid))
259 			free_uid(user);		/* For find_user() */
260 		break;
261 	}
262 out_unlock:
263 	rcu_read_unlock();
264 out:
265 	return error;
266 }
267 
268 /*
269  * Ugh. To avoid negative return values, "getpriority()" will
270  * not return the normal nice-value, but a negated value that
271  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
272  * to stay compatible.
273  */
274 SYSCALL_DEFINE2(getpriority, int, which, int, who)
275 {
276 	struct task_struct *g, *p;
277 	struct user_struct *user;
278 	const struct cred *cred = current_cred();
279 	long niceval, retval = -ESRCH;
280 	struct pid *pgrp;
281 	kuid_t uid;
282 
283 	if (which > PRIO_USER || which < PRIO_PROCESS)
284 		return -EINVAL;
285 
286 	rcu_read_lock();
287 	switch (which) {
288 	case PRIO_PROCESS:
289 		if (who)
290 			p = find_task_by_vpid(who);
291 		else
292 			p = current;
293 		if (p) {
294 			niceval = nice_to_rlimit(task_nice(p));
295 			if (niceval > retval)
296 				retval = niceval;
297 		}
298 		break;
299 	case PRIO_PGRP:
300 		if (who)
301 			pgrp = find_vpid(who);
302 		else
303 			pgrp = task_pgrp(current);
304 		read_lock(&tasklist_lock);
305 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
306 			niceval = nice_to_rlimit(task_nice(p));
307 			if (niceval > retval)
308 				retval = niceval;
309 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
310 		read_unlock(&tasklist_lock);
311 		break;
312 	case PRIO_USER:
313 		uid = make_kuid(cred->user_ns, who);
314 		user = cred->user;
315 		if (!who)
316 			uid = cred->uid;
317 		else if (!uid_eq(uid, cred->uid)) {
318 			user = find_user(uid);
319 			if (!user)
320 				goto out_unlock;	/* No processes for this user */
321 		}
322 		for_each_process_thread(g, p) {
323 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
324 				niceval = nice_to_rlimit(task_nice(p));
325 				if (niceval > retval)
326 					retval = niceval;
327 			}
328 		}
329 		if (!uid_eq(uid, cred->uid))
330 			free_uid(user);		/* for find_user() */
331 		break;
332 	}
333 out_unlock:
334 	rcu_read_unlock();
335 
336 	return retval;
337 }
338 
339 /*
340  * Unprivileged users may change the real gid to the effective gid
341  * or vice versa.  (BSD-style)
342  *
343  * If you set the real gid at all, or set the effective gid to a value not
344  * equal to the real gid, then the saved gid is set to the new effective gid.
345  *
346  * This makes it possible for a setgid program to completely drop its
347  * privileges, which is often a useful assertion to make when you are doing
348  * a security audit over a program.
349  *
350  * The general idea is that a program which uses just setregid() will be
351  * 100% compatible with BSD.  A program which uses just setgid() will be
352  * 100% compatible with POSIX with saved IDs.
353  *
354  * SMP: There are not races, the GIDs are checked only by filesystem
355  *      operations (as far as semantic preservation is concerned).
356  */
357 #ifdef CONFIG_MULTIUSER
358 long __sys_setregid(gid_t rgid, gid_t egid)
359 {
360 	struct user_namespace *ns = current_user_ns();
361 	const struct cred *old;
362 	struct cred *new;
363 	int retval;
364 	kgid_t krgid, kegid;
365 
366 	krgid = make_kgid(ns, rgid);
367 	kegid = make_kgid(ns, egid);
368 
369 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
370 		return -EINVAL;
371 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
372 		return -EINVAL;
373 
374 	new = prepare_creds();
375 	if (!new)
376 		return -ENOMEM;
377 	old = current_cred();
378 
379 	retval = -EPERM;
380 	if (rgid != (gid_t) -1) {
381 		if (gid_eq(old->gid, krgid) ||
382 		    gid_eq(old->egid, krgid) ||
383 		    ns_capable_setid(old->user_ns, CAP_SETGID))
384 			new->gid = krgid;
385 		else
386 			goto error;
387 	}
388 	if (egid != (gid_t) -1) {
389 		if (gid_eq(old->gid, kegid) ||
390 		    gid_eq(old->egid, kegid) ||
391 		    gid_eq(old->sgid, kegid) ||
392 		    ns_capable_setid(old->user_ns, CAP_SETGID))
393 			new->egid = kegid;
394 		else
395 			goto error;
396 	}
397 
398 	if (rgid != (gid_t) -1 ||
399 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
400 		new->sgid = new->egid;
401 	new->fsgid = new->egid;
402 
403 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
404 	if (retval < 0)
405 		goto error;
406 
407 	return commit_creds(new);
408 
409 error:
410 	abort_creds(new);
411 	return retval;
412 }
413 
414 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
415 {
416 	return __sys_setregid(rgid, egid);
417 }
418 
419 /*
420  * setgid() is implemented like SysV w/ SAVED_IDS
421  *
422  * SMP: Same implicit races as above.
423  */
424 long __sys_setgid(gid_t gid)
425 {
426 	struct user_namespace *ns = current_user_ns();
427 	const struct cred *old;
428 	struct cred *new;
429 	int retval;
430 	kgid_t kgid;
431 
432 	kgid = make_kgid(ns, gid);
433 	if (!gid_valid(kgid))
434 		return -EINVAL;
435 
436 	new = prepare_creds();
437 	if (!new)
438 		return -ENOMEM;
439 	old = current_cred();
440 
441 	retval = -EPERM;
442 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
443 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
444 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
445 		new->egid = new->fsgid = kgid;
446 	else
447 		goto error;
448 
449 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
450 	if (retval < 0)
451 		goto error;
452 
453 	return commit_creds(new);
454 
455 error:
456 	abort_creds(new);
457 	return retval;
458 }
459 
460 SYSCALL_DEFINE1(setgid, gid_t, gid)
461 {
462 	return __sys_setgid(gid);
463 }
464 
465 /*
466  * change the user struct in a credentials set to match the new UID
467  */
468 static int set_user(struct cred *new)
469 {
470 	struct user_struct *new_user;
471 
472 	new_user = alloc_uid(new->uid);
473 	if (!new_user)
474 		return -EAGAIN;
475 
476 	free_uid(new->user);
477 	new->user = new_user;
478 	return 0;
479 }
480 
481 static void flag_nproc_exceeded(struct cred *new)
482 {
483 	if (new->ucounts == current_ucounts())
484 		return;
485 
486 	/*
487 	 * We don't fail in case of NPROC limit excess here because too many
488 	 * poorly written programs don't check set*uid() return code, assuming
489 	 * it never fails if called by root.  We may still enforce NPROC limit
490 	 * for programs doing set*uid()+execve() by harmlessly deferring the
491 	 * failure to the execve() stage.
492 	 */
493 	if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
494 			new->user != INIT_USER)
495 		current->flags |= PF_NPROC_EXCEEDED;
496 	else
497 		current->flags &= ~PF_NPROC_EXCEEDED;
498 }
499 
500 /*
501  * Unprivileged users may change the real uid to the effective uid
502  * or vice versa.  (BSD-style)
503  *
504  * If you set the real uid at all, or set the effective uid to a value not
505  * equal to the real uid, then the saved uid is set to the new effective uid.
506  *
507  * This makes it possible for a setuid program to completely drop its
508  * privileges, which is often a useful assertion to make when you are doing
509  * a security audit over a program.
510  *
511  * The general idea is that a program which uses just setreuid() will be
512  * 100% compatible with BSD.  A program which uses just setuid() will be
513  * 100% compatible with POSIX with saved IDs.
514  */
515 long __sys_setreuid(uid_t ruid, uid_t euid)
516 {
517 	struct user_namespace *ns = current_user_ns();
518 	const struct cred *old;
519 	struct cred *new;
520 	int retval;
521 	kuid_t kruid, keuid;
522 
523 	kruid = make_kuid(ns, ruid);
524 	keuid = make_kuid(ns, euid);
525 
526 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
527 		return -EINVAL;
528 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
529 		return -EINVAL;
530 
531 	new = prepare_creds();
532 	if (!new)
533 		return -ENOMEM;
534 	old = current_cred();
535 
536 	retval = -EPERM;
537 	if (ruid != (uid_t) -1) {
538 		new->uid = kruid;
539 		if (!uid_eq(old->uid, kruid) &&
540 		    !uid_eq(old->euid, kruid) &&
541 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
542 			goto error;
543 	}
544 
545 	if (euid != (uid_t) -1) {
546 		new->euid = keuid;
547 		if (!uid_eq(old->uid, keuid) &&
548 		    !uid_eq(old->euid, keuid) &&
549 		    !uid_eq(old->suid, keuid) &&
550 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
551 			goto error;
552 	}
553 
554 	if (!uid_eq(new->uid, old->uid)) {
555 		retval = set_user(new);
556 		if (retval < 0)
557 			goto error;
558 	}
559 	if (ruid != (uid_t) -1 ||
560 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
561 		new->suid = new->euid;
562 	new->fsuid = new->euid;
563 
564 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
565 	if (retval < 0)
566 		goto error;
567 
568 	retval = set_cred_ucounts(new);
569 	if (retval < 0)
570 		goto error;
571 
572 	flag_nproc_exceeded(new);
573 	return commit_creds(new);
574 
575 error:
576 	abort_creds(new);
577 	return retval;
578 }
579 
580 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
581 {
582 	return __sys_setreuid(ruid, euid);
583 }
584 
585 /*
586  * setuid() is implemented like SysV with SAVED_IDS
587  *
588  * Note that SAVED_ID's is deficient in that a setuid root program
589  * like sendmail, for example, cannot set its uid to be a normal
590  * user and then switch back, because if you're root, setuid() sets
591  * the saved uid too.  If you don't like this, blame the bright people
592  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
593  * will allow a root program to temporarily drop privileges and be able to
594  * regain them by swapping the real and effective uid.
595  */
596 long __sys_setuid(uid_t uid)
597 {
598 	struct user_namespace *ns = current_user_ns();
599 	const struct cred *old;
600 	struct cred *new;
601 	int retval;
602 	kuid_t kuid;
603 
604 	kuid = make_kuid(ns, uid);
605 	if (!uid_valid(kuid))
606 		return -EINVAL;
607 
608 	new = prepare_creds();
609 	if (!new)
610 		return -ENOMEM;
611 	old = current_cred();
612 
613 	retval = -EPERM;
614 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
615 		new->suid = new->uid = kuid;
616 		if (!uid_eq(kuid, old->uid)) {
617 			retval = set_user(new);
618 			if (retval < 0)
619 				goto error;
620 		}
621 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
622 		goto error;
623 	}
624 
625 	new->fsuid = new->euid = kuid;
626 
627 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
628 	if (retval < 0)
629 		goto error;
630 
631 	retval = set_cred_ucounts(new);
632 	if (retval < 0)
633 		goto error;
634 
635 	flag_nproc_exceeded(new);
636 	return commit_creds(new);
637 
638 error:
639 	abort_creds(new);
640 	return retval;
641 }
642 
643 SYSCALL_DEFINE1(setuid, uid_t, uid)
644 {
645 	return __sys_setuid(uid);
646 }
647 
648 
649 /*
650  * This function implements a generic ability to update ruid, euid,
651  * and suid.  This allows you to implement the 4.4 compatible seteuid().
652  */
653 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
654 {
655 	struct user_namespace *ns = current_user_ns();
656 	const struct cred *old;
657 	struct cred *new;
658 	int retval;
659 	kuid_t kruid, keuid, ksuid;
660 
661 	kruid = make_kuid(ns, ruid);
662 	keuid = make_kuid(ns, euid);
663 	ksuid = make_kuid(ns, suid);
664 
665 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
666 		return -EINVAL;
667 
668 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
669 		return -EINVAL;
670 
671 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
672 		return -EINVAL;
673 
674 	new = prepare_creds();
675 	if (!new)
676 		return -ENOMEM;
677 
678 	old = current_cred();
679 
680 	retval = -EPERM;
681 	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
682 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
683 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
684 			goto error;
685 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
686 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
687 			goto error;
688 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
689 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
690 			goto error;
691 	}
692 
693 	if (ruid != (uid_t) -1) {
694 		new->uid = kruid;
695 		if (!uid_eq(kruid, old->uid)) {
696 			retval = set_user(new);
697 			if (retval < 0)
698 				goto error;
699 		}
700 	}
701 	if (euid != (uid_t) -1)
702 		new->euid = keuid;
703 	if (suid != (uid_t) -1)
704 		new->suid = ksuid;
705 	new->fsuid = new->euid;
706 
707 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
708 	if (retval < 0)
709 		goto error;
710 
711 	retval = set_cred_ucounts(new);
712 	if (retval < 0)
713 		goto error;
714 
715 	flag_nproc_exceeded(new);
716 	return commit_creds(new);
717 
718 error:
719 	abort_creds(new);
720 	return retval;
721 }
722 
723 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
724 {
725 	return __sys_setresuid(ruid, euid, suid);
726 }
727 
728 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
729 {
730 	const struct cred *cred = current_cred();
731 	int retval;
732 	uid_t ruid, euid, suid;
733 
734 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
735 	euid = from_kuid_munged(cred->user_ns, cred->euid);
736 	suid = from_kuid_munged(cred->user_ns, cred->suid);
737 
738 	retval = put_user(ruid, ruidp);
739 	if (!retval) {
740 		retval = put_user(euid, euidp);
741 		if (!retval)
742 			return put_user(suid, suidp);
743 	}
744 	return retval;
745 }
746 
747 /*
748  * Same as above, but for rgid, egid, sgid.
749  */
750 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
751 {
752 	struct user_namespace *ns = current_user_ns();
753 	const struct cred *old;
754 	struct cred *new;
755 	int retval;
756 	kgid_t krgid, kegid, ksgid;
757 
758 	krgid = make_kgid(ns, rgid);
759 	kegid = make_kgid(ns, egid);
760 	ksgid = make_kgid(ns, sgid);
761 
762 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
763 		return -EINVAL;
764 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
765 		return -EINVAL;
766 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
767 		return -EINVAL;
768 
769 	new = prepare_creds();
770 	if (!new)
771 		return -ENOMEM;
772 	old = current_cred();
773 
774 	retval = -EPERM;
775 	if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
776 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
777 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
778 			goto error;
779 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
780 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
781 			goto error;
782 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
783 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
784 			goto error;
785 	}
786 
787 	if (rgid != (gid_t) -1)
788 		new->gid = krgid;
789 	if (egid != (gid_t) -1)
790 		new->egid = kegid;
791 	if (sgid != (gid_t) -1)
792 		new->sgid = ksgid;
793 	new->fsgid = new->egid;
794 
795 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
796 	if (retval < 0)
797 		goto error;
798 
799 	return commit_creds(new);
800 
801 error:
802 	abort_creds(new);
803 	return retval;
804 }
805 
806 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
807 {
808 	return __sys_setresgid(rgid, egid, sgid);
809 }
810 
811 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
812 {
813 	const struct cred *cred = current_cred();
814 	int retval;
815 	gid_t rgid, egid, sgid;
816 
817 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
818 	egid = from_kgid_munged(cred->user_ns, cred->egid);
819 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
820 
821 	retval = put_user(rgid, rgidp);
822 	if (!retval) {
823 		retval = put_user(egid, egidp);
824 		if (!retval)
825 			retval = put_user(sgid, sgidp);
826 	}
827 
828 	return retval;
829 }
830 
831 
832 /*
833  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
834  * is used for "access()" and for the NFS daemon (letting nfsd stay at
835  * whatever uid it wants to). It normally shadows "euid", except when
836  * explicitly set by setfsuid() or for access..
837  */
838 long __sys_setfsuid(uid_t uid)
839 {
840 	const struct cred *old;
841 	struct cred *new;
842 	uid_t old_fsuid;
843 	kuid_t kuid;
844 
845 	old = current_cred();
846 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
847 
848 	kuid = make_kuid(old->user_ns, uid);
849 	if (!uid_valid(kuid))
850 		return old_fsuid;
851 
852 	new = prepare_creds();
853 	if (!new)
854 		return old_fsuid;
855 
856 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
857 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
858 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
859 		if (!uid_eq(kuid, old->fsuid)) {
860 			new->fsuid = kuid;
861 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
862 				goto change_okay;
863 		}
864 	}
865 
866 	abort_creds(new);
867 	return old_fsuid;
868 
869 change_okay:
870 	commit_creds(new);
871 	return old_fsuid;
872 }
873 
874 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
875 {
876 	return __sys_setfsuid(uid);
877 }
878 
879 /*
880  * Samma på svenska..
881  */
882 long __sys_setfsgid(gid_t gid)
883 {
884 	const struct cred *old;
885 	struct cred *new;
886 	gid_t old_fsgid;
887 	kgid_t kgid;
888 
889 	old = current_cred();
890 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
891 
892 	kgid = make_kgid(old->user_ns, gid);
893 	if (!gid_valid(kgid))
894 		return old_fsgid;
895 
896 	new = prepare_creds();
897 	if (!new)
898 		return old_fsgid;
899 
900 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
901 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
902 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
903 		if (!gid_eq(kgid, old->fsgid)) {
904 			new->fsgid = kgid;
905 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
906 				goto change_okay;
907 		}
908 	}
909 
910 	abort_creds(new);
911 	return old_fsgid;
912 
913 change_okay:
914 	commit_creds(new);
915 	return old_fsgid;
916 }
917 
918 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
919 {
920 	return __sys_setfsgid(gid);
921 }
922 #endif /* CONFIG_MULTIUSER */
923 
924 /**
925  * sys_getpid - return the thread group id of the current process
926  *
927  * Note, despite the name, this returns the tgid not the pid.  The tgid and
928  * the pid are identical unless CLONE_THREAD was specified on clone() in
929  * which case the tgid is the same in all threads of the same group.
930  *
931  * This is SMP safe as current->tgid does not change.
932  */
933 SYSCALL_DEFINE0(getpid)
934 {
935 	return task_tgid_vnr(current);
936 }
937 
938 /* Thread ID - the internal kernel "pid" */
939 SYSCALL_DEFINE0(gettid)
940 {
941 	return task_pid_vnr(current);
942 }
943 
944 /*
945  * Accessing ->real_parent is not SMP-safe, it could
946  * change from under us. However, we can use a stale
947  * value of ->real_parent under rcu_read_lock(), see
948  * release_task()->call_rcu(delayed_put_task_struct).
949  */
950 SYSCALL_DEFINE0(getppid)
951 {
952 	int pid;
953 
954 	rcu_read_lock();
955 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
956 	rcu_read_unlock();
957 
958 	return pid;
959 }
960 
961 SYSCALL_DEFINE0(getuid)
962 {
963 	/* Only we change this so SMP safe */
964 	return from_kuid_munged(current_user_ns(), current_uid());
965 }
966 
967 SYSCALL_DEFINE0(geteuid)
968 {
969 	/* Only we change this so SMP safe */
970 	return from_kuid_munged(current_user_ns(), current_euid());
971 }
972 
973 SYSCALL_DEFINE0(getgid)
974 {
975 	/* Only we change this so SMP safe */
976 	return from_kgid_munged(current_user_ns(), current_gid());
977 }
978 
979 SYSCALL_DEFINE0(getegid)
980 {
981 	/* Only we change this so SMP safe */
982 	return from_kgid_munged(current_user_ns(), current_egid());
983 }
984 
985 static void do_sys_times(struct tms *tms)
986 {
987 	u64 tgutime, tgstime, cutime, cstime;
988 
989 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
990 	cutime = current->signal->cutime;
991 	cstime = current->signal->cstime;
992 	tms->tms_utime = nsec_to_clock_t(tgutime);
993 	tms->tms_stime = nsec_to_clock_t(tgstime);
994 	tms->tms_cutime = nsec_to_clock_t(cutime);
995 	tms->tms_cstime = nsec_to_clock_t(cstime);
996 }
997 
998 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
999 {
1000 	if (tbuf) {
1001 		struct tms tmp;
1002 
1003 		do_sys_times(&tmp);
1004 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1005 			return -EFAULT;
1006 	}
1007 	force_successful_syscall_return();
1008 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1009 }
1010 
1011 #ifdef CONFIG_COMPAT
1012 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1013 {
1014 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1015 }
1016 
1017 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1018 {
1019 	if (tbuf) {
1020 		struct tms tms;
1021 		struct compat_tms tmp;
1022 
1023 		do_sys_times(&tms);
1024 		/* Convert our struct tms to the compat version. */
1025 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1026 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1027 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1028 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1029 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1030 			return -EFAULT;
1031 	}
1032 	force_successful_syscall_return();
1033 	return compat_jiffies_to_clock_t(jiffies);
1034 }
1035 #endif
1036 
1037 /*
1038  * This needs some heavy checking ...
1039  * I just haven't the stomach for it. I also don't fully
1040  * understand sessions/pgrp etc. Let somebody who does explain it.
1041  *
1042  * OK, I think I have the protection semantics right.... this is really
1043  * only important on a multi-user system anyway, to make sure one user
1044  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1045  *
1046  * !PF_FORKNOEXEC check to conform completely to POSIX.
1047  */
1048 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1049 {
1050 	struct task_struct *p;
1051 	struct task_struct *group_leader = current->group_leader;
1052 	struct pid *pgrp;
1053 	int err;
1054 
1055 	if (!pid)
1056 		pid = task_pid_vnr(group_leader);
1057 	if (!pgid)
1058 		pgid = pid;
1059 	if (pgid < 0)
1060 		return -EINVAL;
1061 	rcu_read_lock();
1062 
1063 	/* From this point forward we keep holding onto the tasklist lock
1064 	 * so that our parent does not change from under us. -DaveM
1065 	 */
1066 	write_lock_irq(&tasklist_lock);
1067 
1068 	err = -ESRCH;
1069 	p = find_task_by_vpid(pid);
1070 	if (!p)
1071 		goto out;
1072 
1073 	err = -EINVAL;
1074 	if (!thread_group_leader(p))
1075 		goto out;
1076 
1077 	if (same_thread_group(p->real_parent, group_leader)) {
1078 		err = -EPERM;
1079 		if (task_session(p) != task_session(group_leader))
1080 			goto out;
1081 		err = -EACCES;
1082 		if (!(p->flags & PF_FORKNOEXEC))
1083 			goto out;
1084 	} else {
1085 		err = -ESRCH;
1086 		if (p != group_leader)
1087 			goto out;
1088 	}
1089 
1090 	err = -EPERM;
1091 	if (p->signal->leader)
1092 		goto out;
1093 
1094 	pgrp = task_pid(p);
1095 	if (pgid != pid) {
1096 		struct task_struct *g;
1097 
1098 		pgrp = find_vpid(pgid);
1099 		g = pid_task(pgrp, PIDTYPE_PGID);
1100 		if (!g || task_session(g) != task_session(group_leader))
1101 			goto out;
1102 	}
1103 
1104 	err = security_task_setpgid(p, pgid);
1105 	if (err)
1106 		goto out;
1107 
1108 	if (task_pgrp(p) != pgrp)
1109 		change_pid(p, PIDTYPE_PGID, pgrp);
1110 
1111 	err = 0;
1112 out:
1113 	/* All paths lead to here, thus we are safe. -DaveM */
1114 	write_unlock_irq(&tasklist_lock);
1115 	rcu_read_unlock();
1116 	return err;
1117 }
1118 
1119 static int do_getpgid(pid_t pid)
1120 {
1121 	struct task_struct *p;
1122 	struct pid *grp;
1123 	int retval;
1124 
1125 	rcu_read_lock();
1126 	if (!pid)
1127 		grp = task_pgrp(current);
1128 	else {
1129 		retval = -ESRCH;
1130 		p = find_task_by_vpid(pid);
1131 		if (!p)
1132 			goto out;
1133 		grp = task_pgrp(p);
1134 		if (!grp)
1135 			goto out;
1136 
1137 		retval = security_task_getpgid(p);
1138 		if (retval)
1139 			goto out;
1140 	}
1141 	retval = pid_vnr(grp);
1142 out:
1143 	rcu_read_unlock();
1144 	return retval;
1145 }
1146 
1147 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1148 {
1149 	return do_getpgid(pid);
1150 }
1151 
1152 #ifdef __ARCH_WANT_SYS_GETPGRP
1153 
1154 SYSCALL_DEFINE0(getpgrp)
1155 {
1156 	return do_getpgid(0);
1157 }
1158 
1159 #endif
1160 
1161 SYSCALL_DEFINE1(getsid, pid_t, pid)
1162 {
1163 	struct task_struct *p;
1164 	struct pid *sid;
1165 	int retval;
1166 
1167 	rcu_read_lock();
1168 	if (!pid)
1169 		sid = task_session(current);
1170 	else {
1171 		retval = -ESRCH;
1172 		p = find_task_by_vpid(pid);
1173 		if (!p)
1174 			goto out;
1175 		sid = task_session(p);
1176 		if (!sid)
1177 			goto out;
1178 
1179 		retval = security_task_getsid(p);
1180 		if (retval)
1181 			goto out;
1182 	}
1183 	retval = pid_vnr(sid);
1184 out:
1185 	rcu_read_unlock();
1186 	return retval;
1187 }
1188 
1189 static void set_special_pids(struct pid *pid)
1190 {
1191 	struct task_struct *curr = current->group_leader;
1192 
1193 	if (task_session(curr) != pid)
1194 		change_pid(curr, PIDTYPE_SID, pid);
1195 
1196 	if (task_pgrp(curr) != pid)
1197 		change_pid(curr, PIDTYPE_PGID, pid);
1198 }
1199 
1200 int ksys_setsid(void)
1201 {
1202 	struct task_struct *group_leader = current->group_leader;
1203 	struct pid *sid = task_pid(group_leader);
1204 	pid_t session = pid_vnr(sid);
1205 	int err = -EPERM;
1206 
1207 	write_lock_irq(&tasklist_lock);
1208 	/* Fail if I am already a session leader */
1209 	if (group_leader->signal->leader)
1210 		goto out;
1211 
1212 	/* Fail if a process group id already exists that equals the
1213 	 * proposed session id.
1214 	 */
1215 	if (pid_task(sid, PIDTYPE_PGID))
1216 		goto out;
1217 
1218 	group_leader->signal->leader = 1;
1219 	set_special_pids(sid);
1220 
1221 	proc_clear_tty(group_leader);
1222 
1223 	err = session;
1224 out:
1225 	write_unlock_irq(&tasklist_lock);
1226 	if (err > 0) {
1227 		proc_sid_connector(group_leader);
1228 		sched_autogroup_create_attach(group_leader);
1229 	}
1230 	return err;
1231 }
1232 
1233 SYSCALL_DEFINE0(setsid)
1234 {
1235 	return ksys_setsid();
1236 }
1237 
1238 DECLARE_RWSEM(uts_sem);
1239 
1240 #ifdef COMPAT_UTS_MACHINE
1241 #define override_architecture(name) \
1242 	(personality(current->personality) == PER_LINUX32 && \
1243 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1244 		      sizeof(COMPAT_UTS_MACHINE)))
1245 #else
1246 #define override_architecture(name)	0
1247 #endif
1248 
1249 /*
1250  * Work around broken programs that cannot handle "Linux 3.0".
1251  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1252  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1253  * 2.6.60.
1254  */
1255 static int override_release(char __user *release, size_t len)
1256 {
1257 	int ret = 0;
1258 
1259 	if (current->personality & UNAME26) {
1260 		const char *rest = UTS_RELEASE;
1261 		char buf[65] = { 0 };
1262 		int ndots = 0;
1263 		unsigned v;
1264 		size_t copy;
1265 
1266 		while (*rest) {
1267 			if (*rest == '.' && ++ndots >= 3)
1268 				break;
1269 			if (!isdigit(*rest) && *rest != '.')
1270 				break;
1271 			rest++;
1272 		}
1273 		v = LINUX_VERSION_PATCHLEVEL + 60;
1274 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1275 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1276 		ret = copy_to_user(release, buf, copy + 1);
1277 	}
1278 	return ret;
1279 }
1280 
1281 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1282 {
1283 	struct new_utsname tmp;
1284 
1285 	down_read(&uts_sem);
1286 	memcpy(&tmp, utsname(), sizeof(tmp));
1287 	up_read(&uts_sem);
1288 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1289 		return -EFAULT;
1290 
1291 	if (override_release(name->release, sizeof(name->release)))
1292 		return -EFAULT;
1293 	if (override_architecture(name))
1294 		return -EFAULT;
1295 	return 0;
1296 }
1297 
1298 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1299 /*
1300  * Old cruft
1301  */
1302 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1303 {
1304 	struct old_utsname tmp;
1305 
1306 	if (!name)
1307 		return -EFAULT;
1308 
1309 	down_read(&uts_sem);
1310 	memcpy(&tmp, utsname(), sizeof(tmp));
1311 	up_read(&uts_sem);
1312 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1313 		return -EFAULT;
1314 
1315 	if (override_release(name->release, sizeof(name->release)))
1316 		return -EFAULT;
1317 	if (override_architecture(name))
1318 		return -EFAULT;
1319 	return 0;
1320 }
1321 
1322 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1323 {
1324 	struct oldold_utsname tmp;
1325 
1326 	if (!name)
1327 		return -EFAULT;
1328 
1329 	memset(&tmp, 0, sizeof(tmp));
1330 
1331 	down_read(&uts_sem);
1332 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1333 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1334 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1335 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1336 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1337 	up_read(&uts_sem);
1338 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1339 		return -EFAULT;
1340 
1341 	if (override_architecture(name))
1342 		return -EFAULT;
1343 	if (override_release(name->release, sizeof(name->release)))
1344 		return -EFAULT;
1345 	return 0;
1346 }
1347 #endif
1348 
1349 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1350 {
1351 	int errno;
1352 	char tmp[__NEW_UTS_LEN];
1353 
1354 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1355 		return -EPERM;
1356 
1357 	if (len < 0 || len > __NEW_UTS_LEN)
1358 		return -EINVAL;
1359 	errno = -EFAULT;
1360 	if (!copy_from_user(tmp, name, len)) {
1361 		struct new_utsname *u;
1362 
1363 		down_write(&uts_sem);
1364 		u = utsname();
1365 		memcpy(u->nodename, tmp, len);
1366 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1367 		errno = 0;
1368 		uts_proc_notify(UTS_PROC_HOSTNAME);
1369 		up_write(&uts_sem);
1370 	}
1371 	return errno;
1372 }
1373 
1374 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1375 
1376 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1377 {
1378 	int i;
1379 	struct new_utsname *u;
1380 	char tmp[__NEW_UTS_LEN + 1];
1381 
1382 	if (len < 0)
1383 		return -EINVAL;
1384 	down_read(&uts_sem);
1385 	u = utsname();
1386 	i = 1 + strlen(u->nodename);
1387 	if (i > len)
1388 		i = len;
1389 	memcpy(tmp, u->nodename, i);
1390 	up_read(&uts_sem);
1391 	if (copy_to_user(name, tmp, i))
1392 		return -EFAULT;
1393 	return 0;
1394 }
1395 
1396 #endif
1397 
1398 /*
1399  * Only setdomainname; getdomainname can be implemented by calling
1400  * uname()
1401  */
1402 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1403 {
1404 	int errno;
1405 	char tmp[__NEW_UTS_LEN];
1406 
1407 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1408 		return -EPERM;
1409 	if (len < 0 || len > __NEW_UTS_LEN)
1410 		return -EINVAL;
1411 
1412 	errno = -EFAULT;
1413 	if (!copy_from_user(tmp, name, len)) {
1414 		struct new_utsname *u;
1415 
1416 		down_write(&uts_sem);
1417 		u = utsname();
1418 		memcpy(u->domainname, tmp, len);
1419 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1420 		errno = 0;
1421 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1422 		up_write(&uts_sem);
1423 	}
1424 	return errno;
1425 }
1426 
1427 /* make sure you are allowed to change @tsk limits before calling this */
1428 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1429 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1430 {
1431 	struct rlimit *rlim;
1432 	int retval = 0;
1433 
1434 	if (resource >= RLIM_NLIMITS)
1435 		return -EINVAL;
1436 	if (new_rlim) {
1437 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1438 			return -EINVAL;
1439 		if (resource == RLIMIT_NOFILE &&
1440 				new_rlim->rlim_max > sysctl_nr_open)
1441 			return -EPERM;
1442 	}
1443 
1444 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1445 	rlim = tsk->signal->rlim + resource;
1446 	task_lock(tsk->group_leader);
1447 	if (new_rlim) {
1448 		/*
1449 		 * Keep the capable check against init_user_ns until cgroups can
1450 		 * contain all limits.
1451 		 */
1452 		if (new_rlim->rlim_max > rlim->rlim_max &&
1453 				!capable(CAP_SYS_RESOURCE))
1454 			retval = -EPERM;
1455 		if (!retval)
1456 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1457 	}
1458 	if (!retval) {
1459 		if (old_rlim)
1460 			*old_rlim = *rlim;
1461 		if (new_rlim)
1462 			*rlim = *new_rlim;
1463 	}
1464 	task_unlock(tsk->group_leader);
1465 
1466 	/*
1467 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1468 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1469 	 * ignores the rlimit.
1470 	 */
1471 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1472 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1473 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1474 		/*
1475 		 * update_rlimit_cpu can fail if the task is exiting, but there
1476 		 * may be other tasks in the thread group that are not exiting,
1477 		 * and they need their cpu timers adjusted.
1478 		 *
1479 		 * The group_leader is the last task to be released, so if we
1480 		 * cannot update_rlimit_cpu on it, then the entire process is
1481 		 * exiting and we do not need to update at all.
1482 		 */
1483 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1484 	}
1485 
1486 	return retval;
1487 }
1488 
1489 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1490 {
1491 	struct rlimit value;
1492 	int ret;
1493 
1494 	ret = do_prlimit(current, resource, NULL, &value);
1495 	if (!ret)
1496 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1497 
1498 	return ret;
1499 }
1500 
1501 #ifdef CONFIG_COMPAT
1502 
1503 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1504 		       struct compat_rlimit __user *, rlim)
1505 {
1506 	struct rlimit r;
1507 	struct compat_rlimit r32;
1508 
1509 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1510 		return -EFAULT;
1511 
1512 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1513 		r.rlim_cur = RLIM_INFINITY;
1514 	else
1515 		r.rlim_cur = r32.rlim_cur;
1516 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1517 		r.rlim_max = RLIM_INFINITY;
1518 	else
1519 		r.rlim_max = r32.rlim_max;
1520 	return do_prlimit(current, resource, &r, NULL);
1521 }
1522 
1523 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1524 		       struct compat_rlimit __user *, rlim)
1525 {
1526 	struct rlimit r;
1527 	int ret;
1528 
1529 	ret = do_prlimit(current, resource, NULL, &r);
1530 	if (!ret) {
1531 		struct compat_rlimit r32;
1532 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1533 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1534 		else
1535 			r32.rlim_cur = r.rlim_cur;
1536 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1537 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1538 		else
1539 			r32.rlim_max = r.rlim_max;
1540 
1541 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1542 			return -EFAULT;
1543 	}
1544 	return ret;
1545 }
1546 
1547 #endif
1548 
1549 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1550 
1551 /*
1552  *	Back compatibility for getrlimit. Needed for some apps.
1553  */
1554 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1555 		struct rlimit __user *, rlim)
1556 {
1557 	struct rlimit x;
1558 	if (resource >= RLIM_NLIMITS)
1559 		return -EINVAL;
1560 
1561 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1562 	task_lock(current->group_leader);
1563 	x = current->signal->rlim[resource];
1564 	task_unlock(current->group_leader);
1565 	if (x.rlim_cur > 0x7FFFFFFF)
1566 		x.rlim_cur = 0x7FFFFFFF;
1567 	if (x.rlim_max > 0x7FFFFFFF)
1568 		x.rlim_max = 0x7FFFFFFF;
1569 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1570 }
1571 
1572 #ifdef CONFIG_COMPAT
1573 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1574 		       struct compat_rlimit __user *, rlim)
1575 {
1576 	struct rlimit r;
1577 
1578 	if (resource >= RLIM_NLIMITS)
1579 		return -EINVAL;
1580 
1581 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1582 	task_lock(current->group_leader);
1583 	r = current->signal->rlim[resource];
1584 	task_unlock(current->group_leader);
1585 	if (r.rlim_cur > 0x7FFFFFFF)
1586 		r.rlim_cur = 0x7FFFFFFF;
1587 	if (r.rlim_max > 0x7FFFFFFF)
1588 		r.rlim_max = 0x7FFFFFFF;
1589 
1590 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1591 	    put_user(r.rlim_max, &rlim->rlim_max))
1592 		return -EFAULT;
1593 	return 0;
1594 }
1595 #endif
1596 
1597 #endif
1598 
1599 static inline bool rlim64_is_infinity(__u64 rlim64)
1600 {
1601 #if BITS_PER_LONG < 64
1602 	return rlim64 >= ULONG_MAX;
1603 #else
1604 	return rlim64 == RLIM64_INFINITY;
1605 #endif
1606 }
1607 
1608 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1609 {
1610 	if (rlim->rlim_cur == RLIM_INFINITY)
1611 		rlim64->rlim_cur = RLIM64_INFINITY;
1612 	else
1613 		rlim64->rlim_cur = rlim->rlim_cur;
1614 	if (rlim->rlim_max == RLIM_INFINITY)
1615 		rlim64->rlim_max = RLIM64_INFINITY;
1616 	else
1617 		rlim64->rlim_max = rlim->rlim_max;
1618 }
1619 
1620 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1621 {
1622 	if (rlim64_is_infinity(rlim64->rlim_cur))
1623 		rlim->rlim_cur = RLIM_INFINITY;
1624 	else
1625 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1626 	if (rlim64_is_infinity(rlim64->rlim_max))
1627 		rlim->rlim_max = RLIM_INFINITY;
1628 	else
1629 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1630 }
1631 
1632 /* rcu lock must be held */
1633 static int check_prlimit_permission(struct task_struct *task,
1634 				    unsigned int flags)
1635 {
1636 	const struct cred *cred = current_cred(), *tcred;
1637 	bool id_match;
1638 
1639 	if (current == task)
1640 		return 0;
1641 
1642 	tcred = __task_cred(task);
1643 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1644 		    uid_eq(cred->uid, tcred->suid) &&
1645 		    uid_eq(cred->uid, tcred->uid)  &&
1646 		    gid_eq(cred->gid, tcred->egid) &&
1647 		    gid_eq(cred->gid, tcred->sgid) &&
1648 		    gid_eq(cred->gid, tcred->gid));
1649 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1650 		return -EPERM;
1651 
1652 	return security_task_prlimit(cred, tcred, flags);
1653 }
1654 
1655 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1656 		const struct rlimit64 __user *, new_rlim,
1657 		struct rlimit64 __user *, old_rlim)
1658 {
1659 	struct rlimit64 old64, new64;
1660 	struct rlimit old, new;
1661 	struct task_struct *tsk;
1662 	unsigned int checkflags = 0;
1663 	int ret;
1664 
1665 	if (old_rlim)
1666 		checkflags |= LSM_PRLIMIT_READ;
1667 
1668 	if (new_rlim) {
1669 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1670 			return -EFAULT;
1671 		rlim64_to_rlim(&new64, &new);
1672 		checkflags |= LSM_PRLIMIT_WRITE;
1673 	}
1674 
1675 	rcu_read_lock();
1676 	tsk = pid ? find_task_by_vpid(pid) : current;
1677 	if (!tsk) {
1678 		rcu_read_unlock();
1679 		return -ESRCH;
1680 	}
1681 	ret = check_prlimit_permission(tsk, checkflags);
1682 	if (ret) {
1683 		rcu_read_unlock();
1684 		return ret;
1685 	}
1686 	get_task_struct(tsk);
1687 	rcu_read_unlock();
1688 
1689 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1690 			old_rlim ? &old : NULL);
1691 
1692 	if (!ret && old_rlim) {
1693 		rlim_to_rlim64(&old, &old64);
1694 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1695 			ret = -EFAULT;
1696 	}
1697 
1698 	put_task_struct(tsk);
1699 	return ret;
1700 }
1701 
1702 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1703 {
1704 	struct rlimit new_rlim;
1705 
1706 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1707 		return -EFAULT;
1708 	return do_prlimit(current, resource, &new_rlim, NULL);
1709 }
1710 
1711 /*
1712  * It would make sense to put struct rusage in the task_struct,
1713  * except that would make the task_struct be *really big*.  After
1714  * task_struct gets moved into malloc'ed memory, it would
1715  * make sense to do this.  It will make moving the rest of the information
1716  * a lot simpler!  (Which we're not doing right now because we're not
1717  * measuring them yet).
1718  *
1719  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1720  * races with threads incrementing their own counters.  But since word
1721  * reads are atomic, we either get new values or old values and we don't
1722  * care which for the sums.  We always take the siglock to protect reading
1723  * the c* fields from p->signal from races with exit.c updating those
1724  * fields when reaping, so a sample either gets all the additions of a
1725  * given child after it's reaped, or none so this sample is before reaping.
1726  *
1727  * Locking:
1728  * We need to take the siglock for CHILDEREN, SELF and BOTH
1729  * for  the cases current multithreaded, non-current single threaded
1730  * non-current multithreaded.  Thread traversal is now safe with
1731  * the siglock held.
1732  * Strictly speaking, we donot need to take the siglock if we are current and
1733  * single threaded,  as no one else can take our signal_struct away, no one
1734  * else can  reap the  children to update signal->c* counters, and no one else
1735  * can race with the signal-> fields. If we do not take any lock, the
1736  * signal-> fields could be read out of order while another thread was just
1737  * exiting. So we should  place a read memory barrier when we avoid the lock.
1738  * On the writer side,  write memory barrier is implied in  __exit_signal
1739  * as __exit_signal releases  the siglock spinlock after updating the signal->
1740  * fields. But we don't do this yet to keep things simple.
1741  *
1742  */
1743 
1744 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1745 {
1746 	r->ru_nvcsw += t->nvcsw;
1747 	r->ru_nivcsw += t->nivcsw;
1748 	r->ru_minflt += t->min_flt;
1749 	r->ru_majflt += t->maj_flt;
1750 	r->ru_inblock += task_io_get_inblock(t);
1751 	r->ru_oublock += task_io_get_oublock(t);
1752 }
1753 
1754 void getrusage(struct task_struct *p, int who, struct rusage *r)
1755 {
1756 	struct task_struct *t;
1757 	unsigned long flags;
1758 	u64 tgutime, tgstime, utime, stime;
1759 	unsigned long maxrss = 0;
1760 
1761 	memset((char *)r, 0, sizeof (*r));
1762 	utime = stime = 0;
1763 
1764 	if (who == RUSAGE_THREAD) {
1765 		task_cputime_adjusted(current, &utime, &stime);
1766 		accumulate_thread_rusage(p, r);
1767 		maxrss = p->signal->maxrss;
1768 		goto out;
1769 	}
1770 
1771 	if (!lock_task_sighand(p, &flags))
1772 		return;
1773 
1774 	switch (who) {
1775 	case RUSAGE_BOTH:
1776 	case RUSAGE_CHILDREN:
1777 		utime = p->signal->cutime;
1778 		stime = p->signal->cstime;
1779 		r->ru_nvcsw = p->signal->cnvcsw;
1780 		r->ru_nivcsw = p->signal->cnivcsw;
1781 		r->ru_minflt = p->signal->cmin_flt;
1782 		r->ru_majflt = p->signal->cmaj_flt;
1783 		r->ru_inblock = p->signal->cinblock;
1784 		r->ru_oublock = p->signal->coublock;
1785 		maxrss = p->signal->cmaxrss;
1786 
1787 		if (who == RUSAGE_CHILDREN)
1788 			break;
1789 		fallthrough;
1790 
1791 	case RUSAGE_SELF:
1792 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1793 		utime += tgutime;
1794 		stime += tgstime;
1795 		r->ru_nvcsw += p->signal->nvcsw;
1796 		r->ru_nivcsw += p->signal->nivcsw;
1797 		r->ru_minflt += p->signal->min_flt;
1798 		r->ru_majflt += p->signal->maj_flt;
1799 		r->ru_inblock += p->signal->inblock;
1800 		r->ru_oublock += p->signal->oublock;
1801 		if (maxrss < p->signal->maxrss)
1802 			maxrss = p->signal->maxrss;
1803 		t = p;
1804 		do {
1805 			accumulate_thread_rusage(t, r);
1806 		} while_each_thread(p, t);
1807 		break;
1808 
1809 	default:
1810 		BUG();
1811 	}
1812 	unlock_task_sighand(p, &flags);
1813 
1814 out:
1815 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1816 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1817 
1818 	if (who != RUSAGE_CHILDREN) {
1819 		struct mm_struct *mm = get_task_mm(p);
1820 
1821 		if (mm) {
1822 			setmax_mm_hiwater_rss(&maxrss, mm);
1823 			mmput(mm);
1824 		}
1825 	}
1826 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1827 }
1828 
1829 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1830 {
1831 	struct rusage r;
1832 
1833 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1834 	    who != RUSAGE_THREAD)
1835 		return -EINVAL;
1836 
1837 	getrusage(current, who, &r);
1838 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1839 }
1840 
1841 #ifdef CONFIG_COMPAT
1842 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1843 {
1844 	struct rusage r;
1845 
1846 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1847 	    who != RUSAGE_THREAD)
1848 		return -EINVAL;
1849 
1850 	getrusage(current, who, &r);
1851 	return put_compat_rusage(&r, ru);
1852 }
1853 #endif
1854 
1855 SYSCALL_DEFINE1(umask, int, mask)
1856 {
1857 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1858 	return mask;
1859 }
1860 
1861 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1862 {
1863 	struct fd exe;
1864 	struct inode *inode;
1865 	int err;
1866 
1867 	exe = fdget(fd);
1868 	if (!exe.file)
1869 		return -EBADF;
1870 
1871 	inode = file_inode(exe.file);
1872 
1873 	/*
1874 	 * Because the original mm->exe_file points to executable file, make
1875 	 * sure that this one is executable as well, to avoid breaking an
1876 	 * overall picture.
1877 	 */
1878 	err = -EACCES;
1879 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1880 		goto exit;
1881 
1882 	err = file_permission(exe.file, MAY_EXEC);
1883 	if (err)
1884 		goto exit;
1885 
1886 	err = replace_mm_exe_file(mm, exe.file);
1887 exit:
1888 	fdput(exe);
1889 	return err;
1890 }
1891 
1892 /*
1893  * Check arithmetic relations of passed addresses.
1894  *
1895  * WARNING: we don't require any capability here so be very careful
1896  * in what is allowed for modification from userspace.
1897  */
1898 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1899 {
1900 	unsigned long mmap_max_addr = TASK_SIZE;
1901 	int error = -EINVAL, i;
1902 
1903 	static const unsigned char offsets[] = {
1904 		offsetof(struct prctl_mm_map, start_code),
1905 		offsetof(struct prctl_mm_map, end_code),
1906 		offsetof(struct prctl_mm_map, start_data),
1907 		offsetof(struct prctl_mm_map, end_data),
1908 		offsetof(struct prctl_mm_map, start_brk),
1909 		offsetof(struct prctl_mm_map, brk),
1910 		offsetof(struct prctl_mm_map, start_stack),
1911 		offsetof(struct prctl_mm_map, arg_start),
1912 		offsetof(struct prctl_mm_map, arg_end),
1913 		offsetof(struct prctl_mm_map, env_start),
1914 		offsetof(struct prctl_mm_map, env_end),
1915 	};
1916 
1917 	/*
1918 	 * Make sure the members are not somewhere outside
1919 	 * of allowed address space.
1920 	 */
1921 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1922 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1923 
1924 		if ((unsigned long)val >= mmap_max_addr ||
1925 		    (unsigned long)val < mmap_min_addr)
1926 			goto out;
1927 	}
1928 
1929 	/*
1930 	 * Make sure the pairs are ordered.
1931 	 */
1932 #define __prctl_check_order(__m1, __op, __m2)				\
1933 	((unsigned long)prctl_map->__m1 __op				\
1934 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1935 	error  = __prctl_check_order(start_code, <, end_code);
1936 	error |= __prctl_check_order(start_data,<=, end_data);
1937 	error |= __prctl_check_order(start_brk, <=, brk);
1938 	error |= __prctl_check_order(arg_start, <=, arg_end);
1939 	error |= __prctl_check_order(env_start, <=, env_end);
1940 	if (error)
1941 		goto out;
1942 #undef __prctl_check_order
1943 
1944 	error = -EINVAL;
1945 
1946 	/*
1947 	 * Neither we should allow to override limits if they set.
1948 	 */
1949 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1950 			      prctl_map->start_brk, prctl_map->end_data,
1951 			      prctl_map->start_data))
1952 			goto out;
1953 
1954 	error = 0;
1955 out:
1956 	return error;
1957 }
1958 
1959 #ifdef CONFIG_CHECKPOINT_RESTORE
1960 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1961 {
1962 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1963 	unsigned long user_auxv[AT_VECTOR_SIZE];
1964 	struct mm_struct *mm = current->mm;
1965 	int error;
1966 
1967 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1968 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1969 
1970 	if (opt == PR_SET_MM_MAP_SIZE)
1971 		return put_user((unsigned int)sizeof(prctl_map),
1972 				(unsigned int __user *)addr);
1973 
1974 	if (data_size != sizeof(prctl_map))
1975 		return -EINVAL;
1976 
1977 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1978 		return -EFAULT;
1979 
1980 	error = validate_prctl_map_addr(&prctl_map);
1981 	if (error)
1982 		return error;
1983 
1984 	if (prctl_map.auxv_size) {
1985 		/*
1986 		 * Someone is trying to cheat the auxv vector.
1987 		 */
1988 		if (!prctl_map.auxv ||
1989 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
1990 			return -EINVAL;
1991 
1992 		memset(user_auxv, 0, sizeof(user_auxv));
1993 		if (copy_from_user(user_auxv,
1994 				   (const void __user *)prctl_map.auxv,
1995 				   prctl_map.auxv_size))
1996 			return -EFAULT;
1997 
1998 		/* Last entry must be AT_NULL as specification requires */
1999 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2000 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2001 	}
2002 
2003 	if (prctl_map.exe_fd != (u32)-1) {
2004 		/*
2005 		 * Check if the current user is checkpoint/restore capable.
2006 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2007 		 * or CAP_CHECKPOINT_RESTORE.
2008 		 * Note that a user with access to ptrace can masquerade an
2009 		 * arbitrary program as any executable, even setuid ones.
2010 		 * This may have implications in the tomoyo subsystem.
2011 		 */
2012 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2013 			return -EPERM;
2014 
2015 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2016 		if (error)
2017 			return error;
2018 	}
2019 
2020 	/*
2021 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2022 	 * read to exclude races with sys_brk.
2023 	 */
2024 	mmap_read_lock(mm);
2025 
2026 	/*
2027 	 * We don't validate if these members are pointing to
2028 	 * real present VMAs because application may have correspond
2029 	 * VMAs already unmapped and kernel uses these members for statistics
2030 	 * output in procfs mostly, except
2031 	 *
2032 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2033 	 *    for VMAs when updating these members so anything wrong written
2034 	 *    here cause kernel to swear at userspace program but won't lead
2035 	 *    to any problem in kernel itself
2036 	 */
2037 
2038 	spin_lock(&mm->arg_lock);
2039 	mm->start_code	= prctl_map.start_code;
2040 	mm->end_code	= prctl_map.end_code;
2041 	mm->start_data	= prctl_map.start_data;
2042 	mm->end_data	= prctl_map.end_data;
2043 	mm->start_brk	= prctl_map.start_brk;
2044 	mm->brk		= prctl_map.brk;
2045 	mm->start_stack	= prctl_map.start_stack;
2046 	mm->arg_start	= prctl_map.arg_start;
2047 	mm->arg_end	= prctl_map.arg_end;
2048 	mm->env_start	= prctl_map.env_start;
2049 	mm->env_end	= prctl_map.env_end;
2050 	spin_unlock(&mm->arg_lock);
2051 
2052 	/*
2053 	 * Note this update of @saved_auxv is lockless thus
2054 	 * if someone reads this member in procfs while we're
2055 	 * updating -- it may get partly updated results. It's
2056 	 * known and acceptable trade off: we leave it as is to
2057 	 * not introduce additional locks here making the kernel
2058 	 * more complex.
2059 	 */
2060 	if (prctl_map.auxv_size)
2061 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2062 
2063 	mmap_read_unlock(mm);
2064 	return 0;
2065 }
2066 #endif /* CONFIG_CHECKPOINT_RESTORE */
2067 
2068 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2069 			  unsigned long len)
2070 {
2071 	/*
2072 	 * This doesn't move the auxiliary vector itself since it's pinned to
2073 	 * mm_struct, but it permits filling the vector with new values.  It's
2074 	 * up to the caller to provide sane values here, otherwise userspace
2075 	 * tools which use this vector might be unhappy.
2076 	 */
2077 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2078 
2079 	if (len > sizeof(user_auxv))
2080 		return -EINVAL;
2081 
2082 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2083 		return -EFAULT;
2084 
2085 	/* Make sure the last entry is always AT_NULL */
2086 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2087 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2088 
2089 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2090 
2091 	task_lock(current);
2092 	memcpy(mm->saved_auxv, user_auxv, len);
2093 	task_unlock(current);
2094 
2095 	return 0;
2096 }
2097 
2098 static int prctl_set_mm(int opt, unsigned long addr,
2099 			unsigned long arg4, unsigned long arg5)
2100 {
2101 	struct mm_struct *mm = current->mm;
2102 	struct prctl_mm_map prctl_map = {
2103 		.auxv = NULL,
2104 		.auxv_size = 0,
2105 		.exe_fd = -1,
2106 	};
2107 	struct vm_area_struct *vma;
2108 	int error;
2109 
2110 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2111 			      opt != PR_SET_MM_MAP &&
2112 			      opt != PR_SET_MM_MAP_SIZE)))
2113 		return -EINVAL;
2114 
2115 #ifdef CONFIG_CHECKPOINT_RESTORE
2116 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2117 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2118 #endif
2119 
2120 	if (!capable(CAP_SYS_RESOURCE))
2121 		return -EPERM;
2122 
2123 	if (opt == PR_SET_MM_EXE_FILE)
2124 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2125 
2126 	if (opt == PR_SET_MM_AUXV)
2127 		return prctl_set_auxv(mm, addr, arg4);
2128 
2129 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2130 		return -EINVAL;
2131 
2132 	error = -EINVAL;
2133 
2134 	/*
2135 	 * arg_lock protects concurrent updates of arg boundaries, we need
2136 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2137 	 * validation.
2138 	 */
2139 	mmap_read_lock(mm);
2140 	vma = find_vma(mm, addr);
2141 
2142 	spin_lock(&mm->arg_lock);
2143 	prctl_map.start_code	= mm->start_code;
2144 	prctl_map.end_code	= mm->end_code;
2145 	prctl_map.start_data	= mm->start_data;
2146 	prctl_map.end_data	= mm->end_data;
2147 	prctl_map.start_brk	= mm->start_brk;
2148 	prctl_map.brk		= mm->brk;
2149 	prctl_map.start_stack	= mm->start_stack;
2150 	prctl_map.arg_start	= mm->arg_start;
2151 	prctl_map.arg_end	= mm->arg_end;
2152 	prctl_map.env_start	= mm->env_start;
2153 	prctl_map.env_end	= mm->env_end;
2154 
2155 	switch (opt) {
2156 	case PR_SET_MM_START_CODE:
2157 		prctl_map.start_code = addr;
2158 		break;
2159 	case PR_SET_MM_END_CODE:
2160 		prctl_map.end_code = addr;
2161 		break;
2162 	case PR_SET_MM_START_DATA:
2163 		prctl_map.start_data = addr;
2164 		break;
2165 	case PR_SET_MM_END_DATA:
2166 		prctl_map.end_data = addr;
2167 		break;
2168 	case PR_SET_MM_START_STACK:
2169 		prctl_map.start_stack = addr;
2170 		break;
2171 	case PR_SET_MM_START_BRK:
2172 		prctl_map.start_brk = addr;
2173 		break;
2174 	case PR_SET_MM_BRK:
2175 		prctl_map.brk = addr;
2176 		break;
2177 	case PR_SET_MM_ARG_START:
2178 		prctl_map.arg_start = addr;
2179 		break;
2180 	case PR_SET_MM_ARG_END:
2181 		prctl_map.arg_end = addr;
2182 		break;
2183 	case PR_SET_MM_ENV_START:
2184 		prctl_map.env_start = addr;
2185 		break;
2186 	case PR_SET_MM_ENV_END:
2187 		prctl_map.env_end = addr;
2188 		break;
2189 	default:
2190 		goto out;
2191 	}
2192 
2193 	error = validate_prctl_map_addr(&prctl_map);
2194 	if (error)
2195 		goto out;
2196 
2197 	switch (opt) {
2198 	/*
2199 	 * If command line arguments and environment
2200 	 * are placed somewhere else on stack, we can
2201 	 * set them up here, ARG_START/END to setup
2202 	 * command line arguments and ENV_START/END
2203 	 * for environment.
2204 	 */
2205 	case PR_SET_MM_START_STACK:
2206 	case PR_SET_MM_ARG_START:
2207 	case PR_SET_MM_ARG_END:
2208 	case PR_SET_MM_ENV_START:
2209 	case PR_SET_MM_ENV_END:
2210 		if (!vma) {
2211 			error = -EFAULT;
2212 			goto out;
2213 		}
2214 	}
2215 
2216 	mm->start_code	= prctl_map.start_code;
2217 	mm->end_code	= prctl_map.end_code;
2218 	mm->start_data	= prctl_map.start_data;
2219 	mm->end_data	= prctl_map.end_data;
2220 	mm->start_brk	= prctl_map.start_brk;
2221 	mm->brk		= prctl_map.brk;
2222 	mm->start_stack	= prctl_map.start_stack;
2223 	mm->arg_start	= prctl_map.arg_start;
2224 	mm->arg_end	= prctl_map.arg_end;
2225 	mm->env_start	= prctl_map.env_start;
2226 	mm->env_end	= prctl_map.env_end;
2227 
2228 	error = 0;
2229 out:
2230 	spin_unlock(&mm->arg_lock);
2231 	mmap_read_unlock(mm);
2232 	return error;
2233 }
2234 
2235 #ifdef CONFIG_CHECKPOINT_RESTORE
2236 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2237 {
2238 	return put_user(me->clear_child_tid, tid_addr);
2239 }
2240 #else
2241 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2242 {
2243 	return -EINVAL;
2244 }
2245 #endif
2246 
2247 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2248 {
2249 	/*
2250 	 * If task has has_child_subreaper - all its descendants
2251 	 * already have these flag too and new descendants will
2252 	 * inherit it on fork, skip them.
2253 	 *
2254 	 * If we've found child_reaper - skip descendants in
2255 	 * it's subtree as they will never get out pidns.
2256 	 */
2257 	if (p->signal->has_child_subreaper ||
2258 	    is_child_reaper(task_pid(p)))
2259 		return 0;
2260 
2261 	p->signal->has_child_subreaper = 1;
2262 	return 1;
2263 }
2264 
2265 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2266 {
2267 	return -EINVAL;
2268 }
2269 
2270 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2271 				    unsigned long ctrl)
2272 {
2273 	return -EINVAL;
2274 }
2275 
2276 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2277 
2278 #ifdef CONFIG_ANON_VMA_NAME
2279 
2280 #define ANON_VMA_NAME_MAX_LEN		80
2281 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2282 
2283 static inline bool is_valid_name_char(char ch)
2284 {
2285 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2286 	return ch > 0x1f && ch < 0x7f &&
2287 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2288 }
2289 
2290 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2291 			 unsigned long size, unsigned long arg)
2292 {
2293 	struct mm_struct *mm = current->mm;
2294 	const char __user *uname;
2295 	struct anon_vma_name *anon_name = NULL;
2296 	int error;
2297 
2298 	switch (opt) {
2299 	case PR_SET_VMA_ANON_NAME:
2300 		uname = (const char __user *)arg;
2301 		if (uname) {
2302 			char *name, *pch;
2303 
2304 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2305 			if (IS_ERR(name))
2306 				return PTR_ERR(name);
2307 
2308 			for (pch = name; *pch != '\0'; pch++) {
2309 				if (!is_valid_name_char(*pch)) {
2310 					kfree(name);
2311 					return -EINVAL;
2312 				}
2313 			}
2314 			/* anon_vma has its own copy */
2315 			anon_name = anon_vma_name_alloc(name);
2316 			kfree(name);
2317 			if (!anon_name)
2318 				return -ENOMEM;
2319 
2320 		}
2321 
2322 		mmap_write_lock(mm);
2323 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2324 		mmap_write_unlock(mm);
2325 		anon_vma_name_put(anon_name);
2326 		break;
2327 	default:
2328 		error = -EINVAL;
2329 	}
2330 
2331 	return error;
2332 }
2333 
2334 #else /* CONFIG_ANON_VMA_NAME */
2335 static int prctl_set_vma(unsigned long opt, unsigned long start,
2336 			 unsigned long size, unsigned long arg)
2337 {
2338 	return -EINVAL;
2339 }
2340 #endif /* CONFIG_ANON_VMA_NAME */
2341 
2342 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2343 		unsigned long, arg4, unsigned long, arg5)
2344 {
2345 	struct task_struct *me = current;
2346 	unsigned char comm[sizeof(me->comm)];
2347 	long error;
2348 
2349 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2350 	if (error != -ENOSYS)
2351 		return error;
2352 
2353 	error = 0;
2354 	switch (option) {
2355 	case PR_SET_PDEATHSIG:
2356 		if (!valid_signal(arg2)) {
2357 			error = -EINVAL;
2358 			break;
2359 		}
2360 		me->pdeath_signal = arg2;
2361 		break;
2362 	case PR_GET_PDEATHSIG:
2363 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2364 		break;
2365 	case PR_GET_DUMPABLE:
2366 		error = get_dumpable(me->mm);
2367 		break;
2368 	case PR_SET_DUMPABLE:
2369 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2370 			error = -EINVAL;
2371 			break;
2372 		}
2373 		set_dumpable(me->mm, arg2);
2374 		break;
2375 
2376 	case PR_SET_UNALIGN:
2377 		error = SET_UNALIGN_CTL(me, arg2);
2378 		break;
2379 	case PR_GET_UNALIGN:
2380 		error = GET_UNALIGN_CTL(me, arg2);
2381 		break;
2382 	case PR_SET_FPEMU:
2383 		error = SET_FPEMU_CTL(me, arg2);
2384 		break;
2385 	case PR_GET_FPEMU:
2386 		error = GET_FPEMU_CTL(me, arg2);
2387 		break;
2388 	case PR_SET_FPEXC:
2389 		error = SET_FPEXC_CTL(me, arg2);
2390 		break;
2391 	case PR_GET_FPEXC:
2392 		error = GET_FPEXC_CTL(me, arg2);
2393 		break;
2394 	case PR_GET_TIMING:
2395 		error = PR_TIMING_STATISTICAL;
2396 		break;
2397 	case PR_SET_TIMING:
2398 		if (arg2 != PR_TIMING_STATISTICAL)
2399 			error = -EINVAL;
2400 		break;
2401 	case PR_SET_NAME:
2402 		comm[sizeof(me->comm) - 1] = 0;
2403 		if (strncpy_from_user(comm, (char __user *)arg2,
2404 				      sizeof(me->comm) - 1) < 0)
2405 			return -EFAULT;
2406 		set_task_comm(me, comm);
2407 		proc_comm_connector(me);
2408 		break;
2409 	case PR_GET_NAME:
2410 		get_task_comm(comm, me);
2411 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2412 			return -EFAULT;
2413 		break;
2414 	case PR_GET_ENDIAN:
2415 		error = GET_ENDIAN(me, arg2);
2416 		break;
2417 	case PR_SET_ENDIAN:
2418 		error = SET_ENDIAN(me, arg2);
2419 		break;
2420 	case PR_GET_SECCOMP:
2421 		error = prctl_get_seccomp();
2422 		break;
2423 	case PR_SET_SECCOMP:
2424 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2425 		break;
2426 	case PR_GET_TSC:
2427 		error = GET_TSC_CTL(arg2);
2428 		break;
2429 	case PR_SET_TSC:
2430 		error = SET_TSC_CTL(arg2);
2431 		break;
2432 	case PR_TASK_PERF_EVENTS_DISABLE:
2433 		error = perf_event_task_disable();
2434 		break;
2435 	case PR_TASK_PERF_EVENTS_ENABLE:
2436 		error = perf_event_task_enable();
2437 		break;
2438 	case PR_GET_TIMERSLACK:
2439 		if (current->timer_slack_ns > ULONG_MAX)
2440 			error = ULONG_MAX;
2441 		else
2442 			error = current->timer_slack_ns;
2443 		break;
2444 	case PR_SET_TIMERSLACK:
2445 		if (arg2 <= 0)
2446 			current->timer_slack_ns =
2447 					current->default_timer_slack_ns;
2448 		else
2449 			current->timer_slack_ns = arg2;
2450 		break;
2451 	case PR_MCE_KILL:
2452 		if (arg4 | arg5)
2453 			return -EINVAL;
2454 		switch (arg2) {
2455 		case PR_MCE_KILL_CLEAR:
2456 			if (arg3 != 0)
2457 				return -EINVAL;
2458 			current->flags &= ~PF_MCE_PROCESS;
2459 			break;
2460 		case PR_MCE_KILL_SET:
2461 			current->flags |= PF_MCE_PROCESS;
2462 			if (arg3 == PR_MCE_KILL_EARLY)
2463 				current->flags |= PF_MCE_EARLY;
2464 			else if (arg3 == PR_MCE_KILL_LATE)
2465 				current->flags &= ~PF_MCE_EARLY;
2466 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2467 				current->flags &=
2468 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2469 			else
2470 				return -EINVAL;
2471 			break;
2472 		default:
2473 			return -EINVAL;
2474 		}
2475 		break;
2476 	case PR_MCE_KILL_GET:
2477 		if (arg2 | arg3 | arg4 | arg5)
2478 			return -EINVAL;
2479 		if (current->flags & PF_MCE_PROCESS)
2480 			error = (current->flags & PF_MCE_EARLY) ?
2481 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2482 		else
2483 			error = PR_MCE_KILL_DEFAULT;
2484 		break;
2485 	case PR_SET_MM:
2486 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2487 		break;
2488 	case PR_GET_TID_ADDRESS:
2489 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2490 		break;
2491 	case PR_SET_CHILD_SUBREAPER:
2492 		me->signal->is_child_subreaper = !!arg2;
2493 		if (!arg2)
2494 			break;
2495 
2496 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2497 		break;
2498 	case PR_GET_CHILD_SUBREAPER:
2499 		error = put_user(me->signal->is_child_subreaper,
2500 				 (int __user *)arg2);
2501 		break;
2502 	case PR_SET_NO_NEW_PRIVS:
2503 		if (arg2 != 1 || arg3 || arg4 || arg5)
2504 			return -EINVAL;
2505 
2506 		task_set_no_new_privs(current);
2507 		break;
2508 	case PR_GET_NO_NEW_PRIVS:
2509 		if (arg2 || arg3 || arg4 || arg5)
2510 			return -EINVAL;
2511 		return task_no_new_privs(current) ? 1 : 0;
2512 	case PR_GET_THP_DISABLE:
2513 		if (arg2 || arg3 || arg4 || arg5)
2514 			return -EINVAL;
2515 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2516 		break;
2517 	case PR_SET_THP_DISABLE:
2518 		if (arg3 || arg4 || arg5)
2519 			return -EINVAL;
2520 		if (mmap_write_lock_killable(me->mm))
2521 			return -EINTR;
2522 		if (arg2)
2523 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2524 		else
2525 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2526 		mmap_write_unlock(me->mm);
2527 		break;
2528 	case PR_MPX_ENABLE_MANAGEMENT:
2529 	case PR_MPX_DISABLE_MANAGEMENT:
2530 		/* No longer implemented: */
2531 		return -EINVAL;
2532 	case PR_SET_FP_MODE:
2533 		error = SET_FP_MODE(me, arg2);
2534 		break;
2535 	case PR_GET_FP_MODE:
2536 		error = GET_FP_MODE(me);
2537 		break;
2538 	case PR_SVE_SET_VL:
2539 		error = SVE_SET_VL(arg2);
2540 		break;
2541 	case PR_SVE_GET_VL:
2542 		error = SVE_GET_VL();
2543 		break;
2544 	case PR_GET_SPECULATION_CTRL:
2545 		if (arg3 || arg4 || arg5)
2546 			return -EINVAL;
2547 		error = arch_prctl_spec_ctrl_get(me, arg2);
2548 		break;
2549 	case PR_SET_SPECULATION_CTRL:
2550 		if (arg4 || arg5)
2551 			return -EINVAL;
2552 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2553 		break;
2554 	case PR_PAC_RESET_KEYS:
2555 		if (arg3 || arg4 || arg5)
2556 			return -EINVAL;
2557 		error = PAC_RESET_KEYS(me, arg2);
2558 		break;
2559 	case PR_PAC_SET_ENABLED_KEYS:
2560 		if (arg4 || arg5)
2561 			return -EINVAL;
2562 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2563 		break;
2564 	case PR_PAC_GET_ENABLED_KEYS:
2565 		if (arg2 || arg3 || arg4 || arg5)
2566 			return -EINVAL;
2567 		error = PAC_GET_ENABLED_KEYS(me);
2568 		break;
2569 	case PR_SET_TAGGED_ADDR_CTRL:
2570 		if (arg3 || arg4 || arg5)
2571 			return -EINVAL;
2572 		error = SET_TAGGED_ADDR_CTRL(arg2);
2573 		break;
2574 	case PR_GET_TAGGED_ADDR_CTRL:
2575 		if (arg2 || arg3 || arg4 || arg5)
2576 			return -EINVAL;
2577 		error = GET_TAGGED_ADDR_CTRL();
2578 		break;
2579 	case PR_SET_IO_FLUSHER:
2580 		if (!capable(CAP_SYS_RESOURCE))
2581 			return -EPERM;
2582 
2583 		if (arg3 || arg4 || arg5)
2584 			return -EINVAL;
2585 
2586 		if (arg2 == 1)
2587 			current->flags |= PR_IO_FLUSHER;
2588 		else if (!arg2)
2589 			current->flags &= ~PR_IO_FLUSHER;
2590 		else
2591 			return -EINVAL;
2592 		break;
2593 	case PR_GET_IO_FLUSHER:
2594 		if (!capable(CAP_SYS_RESOURCE))
2595 			return -EPERM;
2596 
2597 		if (arg2 || arg3 || arg4 || arg5)
2598 			return -EINVAL;
2599 
2600 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2601 		break;
2602 	case PR_SET_SYSCALL_USER_DISPATCH:
2603 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2604 						  (char __user *) arg5);
2605 		break;
2606 #ifdef CONFIG_SCHED_CORE
2607 	case PR_SCHED_CORE:
2608 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2609 		break;
2610 #endif
2611 	case PR_SET_VMA:
2612 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2613 		break;
2614 	default:
2615 		error = -EINVAL;
2616 		break;
2617 	}
2618 	return error;
2619 }
2620 
2621 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2622 		struct getcpu_cache __user *, unused)
2623 {
2624 	int err = 0;
2625 	int cpu = raw_smp_processor_id();
2626 
2627 	if (cpup)
2628 		err |= put_user(cpu, cpup);
2629 	if (nodep)
2630 		err |= put_user(cpu_to_node(cpu), nodep);
2631 	return err ? -EFAULT : 0;
2632 }
2633 
2634 /**
2635  * do_sysinfo - fill in sysinfo struct
2636  * @info: pointer to buffer to fill
2637  */
2638 static int do_sysinfo(struct sysinfo *info)
2639 {
2640 	unsigned long mem_total, sav_total;
2641 	unsigned int mem_unit, bitcount;
2642 	struct timespec64 tp;
2643 
2644 	memset(info, 0, sizeof(struct sysinfo));
2645 
2646 	ktime_get_boottime_ts64(&tp);
2647 	timens_add_boottime(&tp);
2648 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2649 
2650 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2651 
2652 	info->procs = nr_threads;
2653 
2654 	si_meminfo(info);
2655 	si_swapinfo(info);
2656 
2657 	/*
2658 	 * If the sum of all the available memory (i.e. ram + swap)
2659 	 * is less than can be stored in a 32 bit unsigned long then
2660 	 * we can be binary compatible with 2.2.x kernels.  If not,
2661 	 * well, in that case 2.2.x was broken anyways...
2662 	 *
2663 	 *  -Erik Andersen <andersee@debian.org>
2664 	 */
2665 
2666 	mem_total = info->totalram + info->totalswap;
2667 	if (mem_total < info->totalram || mem_total < info->totalswap)
2668 		goto out;
2669 	bitcount = 0;
2670 	mem_unit = info->mem_unit;
2671 	while (mem_unit > 1) {
2672 		bitcount++;
2673 		mem_unit >>= 1;
2674 		sav_total = mem_total;
2675 		mem_total <<= 1;
2676 		if (mem_total < sav_total)
2677 			goto out;
2678 	}
2679 
2680 	/*
2681 	 * If mem_total did not overflow, multiply all memory values by
2682 	 * info->mem_unit and set it to 1.  This leaves things compatible
2683 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2684 	 * kernels...
2685 	 */
2686 
2687 	info->mem_unit = 1;
2688 	info->totalram <<= bitcount;
2689 	info->freeram <<= bitcount;
2690 	info->sharedram <<= bitcount;
2691 	info->bufferram <<= bitcount;
2692 	info->totalswap <<= bitcount;
2693 	info->freeswap <<= bitcount;
2694 	info->totalhigh <<= bitcount;
2695 	info->freehigh <<= bitcount;
2696 
2697 out:
2698 	return 0;
2699 }
2700 
2701 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2702 {
2703 	struct sysinfo val;
2704 
2705 	do_sysinfo(&val);
2706 
2707 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2708 		return -EFAULT;
2709 
2710 	return 0;
2711 }
2712 
2713 #ifdef CONFIG_COMPAT
2714 struct compat_sysinfo {
2715 	s32 uptime;
2716 	u32 loads[3];
2717 	u32 totalram;
2718 	u32 freeram;
2719 	u32 sharedram;
2720 	u32 bufferram;
2721 	u32 totalswap;
2722 	u32 freeswap;
2723 	u16 procs;
2724 	u16 pad;
2725 	u32 totalhigh;
2726 	u32 freehigh;
2727 	u32 mem_unit;
2728 	char _f[20-2*sizeof(u32)-sizeof(int)];
2729 };
2730 
2731 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2732 {
2733 	struct sysinfo s;
2734 	struct compat_sysinfo s_32;
2735 
2736 	do_sysinfo(&s);
2737 
2738 	/* Check to see if any memory value is too large for 32-bit and scale
2739 	 *  down if needed
2740 	 */
2741 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2742 		int bitcount = 0;
2743 
2744 		while (s.mem_unit < PAGE_SIZE) {
2745 			s.mem_unit <<= 1;
2746 			bitcount++;
2747 		}
2748 
2749 		s.totalram >>= bitcount;
2750 		s.freeram >>= bitcount;
2751 		s.sharedram >>= bitcount;
2752 		s.bufferram >>= bitcount;
2753 		s.totalswap >>= bitcount;
2754 		s.freeswap >>= bitcount;
2755 		s.totalhigh >>= bitcount;
2756 		s.freehigh >>= bitcount;
2757 	}
2758 
2759 	memset(&s_32, 0, sizeof(s_32));
2760 	s_32.uptime = s.uptime;
2761 	s_32.loads[0] = s.loads[0];
2762 	s_32.loads[1] = s.loads[1];
2763 	s_32.loads[2] = s.loads[2];
2764 	s_32.totalram = s.totalram;
2765 	s_32.freeram = s.freeram;
2766 	s_32.sharedram = s.sharedram;
2767 	s_32.bufferram = s.bufferram;
2768 	s_32.totalswap = s.totalswap;
2769 	s_32.freeswap = s.freeswap;
2770 	s_32.procs = s.procs;
2771 	s_32.totalhigh = s.totalhigh;
2772 	s_32.freehigh = s.freehigh;
2773 	s_32.mem_unit = s.mem_unit;
2774 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2775 		return -EFAULT;
2776 	return 0;
2777 }
2778 #endif /* CONFIG_COMPAT */
2779