1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/sys.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/reboot.h> 13 #include <linux/prctl.h> 14 #include <linux/highuid.h> 15 #include <linux/fs.h> 16 #include <linux/kmod.h> 17 #include <linux/perf_event.h> 18 #include <linux/resource.h> 19 #include <linux/kernel.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/file.h> 40 #include <linux/mount.h> 41 #include <linux/gfp.h> 42 #include <linux/syscore_ops.h> 43 #include <linux/version.h> 44 #include <linux/ctype.h> 45 #include <linux/syscall_user_dispatch.h> 46 47 #include <linux/compat.h> 48 #include <linux/syscalls.h> 49 #include <linux/kprobes.h> 50 #include <linux/user_namespace.h> 51 #include <linux/time_namespace.h> 52 #include <linux/binfmts.h> 53 54 #include <linux/sched.h> 55 #include <linux/sched/autogroup.h> 56 #include <linux/sched/loadavg.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/mm.h> 59 #include <linux/sched/coredump.h> 60 #include <linux/sched/task.h> 61 #include <linux/sched/cputime.h> 62 #include <linux/rcupdate.h> 63 #include <linux/uidgid.h> 64 #include <linux/cred.h> 65 66 #include <linux/nospec.h> 67 68 #include <linux/kmsg_dump.h> 69 /* Move somewhere else to avoid recompiling? */ 70 #include <generated/utsrelease.h> 71 72 #include <linux/uaccess.h> 73 #include <asm/io.h> 74 #include <asm/unistd.h> 75 76 #include "uid16.h" 77 78 #ifndef SET_UNALIGN_CTL 79 # define SET_UNALIGN_CTL(a, b) (-EINVAL) 80 #endif 81 #ifndef GET_UNALIGN_CTL 82 # define GET_UNALIGN_CTL(a, b) (-EINVAL) 83 #endif 84 #ifndef SET_FPEMU_CTL 85 # define SET_FPEMU_CTL(a, b) (-EINVAL) 86 #endif 87 #ifndef GET_FPEMU_CTL 88 # define GET_FPEMU_CTL(a, b) (-EINVAL) 89 #endif 90 #ifndef SET_FPEXC_CTL 91 # define SET_FPEXC_CTL(a, b) (-EINVAL) 92 #endif 93 #ifndef GET_FPEXC_CTL 94 # define GET_FPEXC_CTL(a, b) (-EINVAL) 95 #endif 96 #ifndef GET_ENDIAN 97 # define GET_ENDIAN(a, b) (-EINVAL) 98 #endif 99 #ifndef SET_ENDIAN 100 # define SET_ENDIAN(a, b) (-EINVAL) 101 #endif 102 #ifndef GET_TSC_CTL 103 # define GET_TSC_CTL(a) (-EINVAL) 104 #endif 105 #ifndef SET_TSC_CTL 106 # define SET_TSC_CTL(a) (-EINVAL) 107 #endif 108 #ifndef GET_FP_MODE 109 # define GET_FP_MODE(a) (-EINVAL) 110 #endif 111 #ifndef SET_FP_MODE 112 # define SET_FP_MODE(a,b) (-EINVAL) 113 #endif 114 #ifndef SVE_SET_VL 115 # define SVE_SET_VL(a) (-EINVAL) 116 #endif 117 #ifndef SVE_GET_VL 118 # define SVE_GET_VL() (-EINVAL) 119 #endif 120 #ifndef PAC_RESET_KEYS 121 # define PAC_RESET_KEYS(a, b) (-EINVAL) 122 #endif 123 #ifndef SET_TAGGED_ADDR_CTRL 124 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) 125 #endif 126 #ifndef GET_TAGGED_ADDR_CTRL 127 # define GET_TAGGED_ADDR_CTRL() (-EINVAL) 128 #endif 129 130 /* 131 * this is where the system-wide overflow UID and GID are defined, for 132 * architectures that now have 32-bit UID/GID but didn't in the past 133 */ 134 135 int overflowuid = DEFAULT_OVERFLOWUID; 136 int overflowgid = DEFAULT_OVERFLOWGID; 137 138 EXPORT_SYMBOL(overflowuid); 139 EXPORT_SYMBOL(overflowgid); 140 141 /* 142 * the same as above, but for filesystems which can only store a 16-bit 143 * UID and GID. as such, this is needed on all architectures 144 */ 145 146 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 147 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; 148 149 EXPORT_SYMBOL(fs_overflowuid); 150 EXPORT_SYMBOL(fs_overflowgid); 151 152 /* 153 * Returns true if current's euid is same as p's uid or euid, 154 * or has CAP_SYS_NICE to p's user_ns. 155 * 156 * Called with rcu_read_lock, creds are safe 157 */ 158 static bool set_one_prio_perm(struct task_struct *p) 159 { 160 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 161 162 if (uid_eq(pcred->uid, cred->euid) || 163 uid_eq(pcred->euid, cred->euid)) 164 return true; 165 if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) 166 return true; 167 return false; 168 } 169 170 /* 171 * set the priority of a task 172 * - the caller must hold the RCU read lock 173 */ 174 static int set_one_prio(struct task_struct *p, int niceval, int error) 175 { 176 int no_nice; 177 178 if (!set_one_prio_perm(p)) { 179 error = -EPERM; 180 goto out; 181 } 182 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 183 error = -EACCES; 184 goto out; 185 } 186 no_nice = security_task_setnice(p, niceval); 187 if (no_nice) { 188 error = no_nice; 189 goto out; 190 } 191 if (error == -ESRCH) 192 error = 0; 193 set_user_nice(p, niceval); 194 out: 195 return error; 196 } 197 198 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 199 { 200 struct task_struct *g, *p; 201 struct user_struct *user; 202 const struct cred *cred = current_cred(); 203 int error = -EINVAL; 204 struct pid *pgrp; 205 kuid_t uid; 206 207 if (which > PRIO_USER || which < PRIO_PROCESS) 208 goto out; 209 210 /* normalize: avoid signed division (rounding problems) */ 211 error = -ESRCH; 212 if (niceval < MIN_NICE) 213 niceval = MIN_NICE; 214 if (niceval > MAX_NICE) 215 niceval = MAX_NICE; 216 217 rcu_read_lock(); 218 read_lock(&tasklist_lock); 219 switch (which) { 220 case PRIO_PROCESS: 221 if (who) 222 p = find_task_by_vpid(who); 223 else 224 p = current; 225 if (p) 226 error = set_one_prio(p, niceval, error); 227 break; 228 case PRIO_PGRP: 229 if (who) 230 pgrp = find_vpid(who); 231 else 232 pgrp = task_pgrp(current); 233 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 234 error = set_one_prio(p, niceval, error); 235 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 236 break; 237 case PRIO_USER: 238 uid = make_kuid(cred->user_ns, who); 239 user = cred->user; 240 if (!who) 241 uid = cred->uid; 242 else if (!uid_eq(uid, cred->uid)) { 243 user = find_user(uid); 244 if (!user) 245 goto out_unlock; /* No processes for this user */ 246 } 247 do_each_thread(g, p) { 248 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) 249 error = set_one_prio(p, niceval, error); 250 } while_each_thread(g, p); 251 if (!uid_eq(uid, cred->uid)) 252 free_uid(user); /* For find_user() */ 253 break; 254 } 255 out_unlock: 256 read_unlock(&tasklist_lock); 257 rcu_read_unlock(); 258 out: 259 return error; 260 } 261 262 /* 263 * Ugh. To avoid negative return values, "getpriority()" will 264 * not return the normal nice-value, but a negated value that 265 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 266 * to stay compatible. 267 */ 268 SYSCALL_DEFINE2(getpriority, int, which, int, who) 269 { 270 struct task_struct *g, *p; 271 struct user_struct *user; 272 const struct cred *cred = current_cred(); 273 long niceval, retval = -ESRCH; 274 struct pid *pgrp; 275 kuid_t uid; 276 277 if (which > PRIO_USER || which < PRIO_PROCESS) 278 return -EINVAL; 279 280 rcu_read_lock(); 281 read_lock(&tasklist_lock); 282 switch (which) { 283 case PRIO_PROCESS: 284 if (who) 285 p = find_task_by_vpid(who); 286 else 287 p = current; 288 if (p) { 289 niceval = nice_to_rlimit(task_nice(p)); 290 if (niceval > retval) 291 retval = niceval; 292 } 293 break; 294 case PRIO_PGRP: 295 if (who) 296 pgrp = find_vpid(who); 297 else 298 pgrp = task_pgrp(current); 299 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 300 niceval = nice_to_rlimit(task_nice(p)); 301 if (niceval > retval) 302 retval = niceval; 303 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 304 break; 305 case PRIO_USER: 306 uid = make_kuid(cred->user_ns, who); 307 user = cred->user; 308 if (!who) 309 uid = cred->uid; 310 else if (!uid_eq(uid, cred->uid)) { 311 user = find_user(uid); 312 if (!user) 313 goto out_unlock; /* No processes for this user */ 314 } 315 do_each_thread(g, p) { 316 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { 317 niceval = nice_to_rlimit(task_nice(p)); 318 if (niceval > retval) 319 retval = niceval; 320 } 321 } while_each_thread(g, p); 322 if (!uid_eq(uid, cred->uid)) 323 free_uid(user); /* for find_user() */ 324 break; 325 } 326 out_unlock: 327 read_unlock(&tasklist_lock); 328 rcu_read_unlock(); 329 330 return retval; 331 } 332 333 /* 334 * Unprivileged users may change the real gid to the effective gid 335 * or vice versa. (BSD-style) 336 * 337 * If you set the real gid at all, or set the effective gid to a value not 338 * equal to the real gid, then the saved gid is set to the new effective gid. 339 * 340 * This makes it possible for a setgid program to completely drop its 341 * privileges, which is often a useful assertion to make when you are doing 342 * a security audit over a program. 343 * 344 * The general idea is that a program which uses just setregid() will be 345 * 100% compatible with BSD. A program which uses just setgid() will be 346 * 100% compatible with POSIX with saved IDs. 347 * 348 * SMP: There are not races, the GIDs are checked only by filesystem 349 * operations (as far as semantic preservation is concerned). 350 */ 351 #ifdef CONFIG_MULTIUSER 352 long __sys_setregid(gid_t rgid, gid_t egid) 353 { 354 struct user_namespace *ns = current_user_ns(); 355 const struct cred *old; 356 struct cred *new; 357 int retval; 358 kgid_t krgid, kegid; 359 360 krgid = make_kgid(ns, rgid); 361 kegid = make_kgid(ns, egid); 362 363 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 364 return -EINVAL; 365 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 366 return -EINVAL; 367 368 new = prepare_creds(); 369 if (!new) 370 return -ENOMEM; 371 old = current_cred(); 372 373 retval = -EPERM; 374 if (rgid != (gid_t) -1) { 375 if (gid_eq(old->gid, krgid) || 376 gid_eq(old->egid, krgid) || 377 ns_capable_setid(old->user_ns, CAP_SETGID)) 378 new->gid = krgid; 379 else 380 goto error; 381 } 382 if (egid != (gid_t) -1) { 383 if (gid_eq(old->gid, kegid) || 384 gid_eq(old->egid, kegid) || 385 gid_eq(old->sgid, kegid) || 386 ns_capable_setid(old->user_ns, CAP_SETGID)) 387 new->egid = kegid; 388 else 389 goto error; 390 } 391 392 if (rgid != (gid_t) -1 || 393 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) 394 new->sgid = new->egid; 395 new->fsgid = new->egid; 396 397 retval = security_task_fix_setgid(new, old, LSM_SETID_RE); 398 if (retval < 0) 399 goto error; 400 401 return commit_creds(new); 402 403 error: 404 abort_creds(new); 405 return retval; 406 } 407 408 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 409 { 410 return __sys_setregid(rgid, egid); 411 } 412 413 /* 414 * setgid() is implemented like SysV w/ SAVED_IDS 415 * 416 * SMP: Same implicit races as above. 417 */ 418 long __sys_setgid(gid_t gid) 419 { 420 struct user_namespace *ns = current_user_ns(); 421 const struct cred *old; 422 struct cred *new; 423 int retval; 424 kgid_t kgid; 425 426 kgid = make_kgid(ns, gid); 427 if (!gid_valid(kgid)) 428 return -EINVAL; 429 430 new = prepare_creds(); 431 if (!new) 432 return -ENOMEM; 433 old = current_cred(); 434 435 retval = -EPERM; 436 if (ns_capable_setid(old->user_ns, CAP_SETGID)) 437 new->gid = new->egid = new->sgid = new->fsgid = kgid; 438 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) 439 new->egid = new->fsgid = kgid; 440 else 441 goto error; 442 443 retval = security_task_fix_setgid(new, old, LSM_SETID_ID); 444 if (retval < 0) 445 goto error; 446 447 return commit_creds(new); 448 449 error: 450 abort_creds(new); 451 return retval; 452 } 453 454 SYSCALL_DEFINE1(setgid, gid_t, gid) 455 { 456 return __sys_setgid(gid); 457 } 458 459 /* 460 * change the user struct in a credentials set to match the new UID 461 */ 462 static int set_user(struct cred *new) 463 { 464 struct user_struct *new_user; 465 466 new_user = alloc_uid(new->uid); 467 if (!new_user) 468 return -EAGAIN; 469 470 /* 471 * We don't fail in case of NPROC limit excess here because too many 472 * poorly written programs don't check set*uid() return code, assuming 473 * it never fails if called by root. We may still enforce NPROC limit 474 * for programs doing set*uid()+execve() by harmlessly deferring the 475 * failure to the execve() stage. 476 */ 477 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 478 new_user != INIT_USER) 479 current->flags |= PF_NPROC_EXCEEDED; 480 else 481 current->flags &= ~PF_NPROC_EXCEEDED; 482 483 free_uid(new->user); 484 new->user = new_user; 485 return 0; 486 } 487 488 /* 489 * Unprivileged users may change the real uid to the effective uid 490 * or vice versa. (BSD-style) 491 * 492 * If you set the real uid at all, or set the effective uid to a value not 493 * equal to the real uid, then the saved uid is set to the new effective uid. 494 * 495 * This makes it possible for a setuid program to completely drop its 496 * privileges, which is often a useful assertion to make when you are doing 497 * a security audit over a program. 498 * 499 * The general idea is that a program which uses just setreuid() will be 500 * 100% compatible with BSD. A program which uses just setuid() will be 501 * 100% compatible with POSIX with saved IDs. 502 */ 503 long __sys_setreuid(uid_t ruid, uid_t euid) 504 { 505 struct user_namespace *ns = current_user_ns(); 506 const struct cred *old; 507 struct cred *new; 508 int retval; 509 kuid_t kruid, keuid; 510 511 kruid = make_kuid(ns, ruid); 512 keuid = make_kuid(ns, euid); 513 514 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 515 return -EINVAL; 516 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 517 return -EINVAL; 518 519 new = prepare_creds(); 520 if (!new) 521 return -ENOMEM; 522 old = current_cred(); 523 524 retval = -EPERM; 525 if (ruid != (uid_t) -1) { 526 new->uid = kruid; 527 if (!uid_eq(old->uid, kruid) && 528 !uid_eq(old->euid, kruid) && 529 !ns_capable_setid(old->user_ns, CAP_SETUID)) 530 goto error; 531 } 532 533 if (euid != (uid_t) -1) { 534 new->euid = keuid; 535 if (!uid_eq(old->uid, keuid) && 536 !uid_eq(old->euid, keuid) && 537 !uid_eq(old->suid, keuid) && 538 !ns_capable_setid(old->user_ns, CAP_SETUID)) 539 goto error; 540 } 541 542 if (!uid_eq(new->uid, old->uid)) { 543 retval = set_user(new); 544 if (retval < 0) 545 goto error; 546 } 547 if (ruid != (uid_t) -1 || 548 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) 549 new->suid = new->euid; 550 new->fsuid = new->euid; 551 552 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 553 if (retval < 0) 554 goto error; 555 556 return commit_creds(new); 557 558 error: 559 abort_creds(new); 560 return retval; 561 } 562 563 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 564 { 565 return __sys_setreuid(ruid, euid); 566 } 567 568 /* 569 * setuid() is implemented like SysV with SAVED_IDS 570 * 571 * Note that SAVED_ID's is deficient in that a setuid root program 572 * like sendmail, for example, cannot set its uid to be a normal 573 * user and then switch back, because if you're root, setuid() sets 574 * the saved uid too. If you don't like this, blame the bright people 575 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 576 * will allow a root program to temporarily drop privileges and be able to 577 * regain them by swapping the real and effective uid. 578 */ 579 long __sys_setuid(uid_t uid) 580 { 581 struct user_namespace *ns = current_user_ns(); 582 const struct cred *old; 583 struct cred *new; 584 int retval; 585 kuid_t kuid; 586 587 kuid = make_kuid(ns, uid); 588 if (!uid_valid(kuid)) 589 return -EINVAL; 590 591 new = prepare_creds(); 592 if (!new) 593 return -ENOMEM; 594 old = current_cred(); 595 596 retval = -EPERM; 597 if (ns_capable_setid(old->user_ns, CAP_SETUID)) { 598 new->suid = new->uid = kuid; 599 if (!uid_eq(kuid, old->uid)) { 600 retval = set_user(new); 601 if (retval < 0) 602 goto error; 603 } 604 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { 605 goto error; 606 } 607 608 new->fsuid = new->euid = kuid; 609 610 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 611 if (retval < 0) 612 goto error; 613 614 return commit_creds(new); 615 616 error: 617 abort_creds(new); 618 return retval; 619 } 620 621 SYSCALL_DEFINE1(setuid, uid_t, uid) 622 { 623 return __sys_setuid(uid); 624 } 625 626 627 /* 628 * This function implements a generic ability to update ruid, euid, 629 * and suid. This allows you to implement the 4.4 compatible seteuid(). 630 */ 631 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 632 { 633 struct user_namespace *ns = current_user_ns(); 634 const struct cred *old; 635 struct cred *new; 636 int retval; 637 kuid_t kruid, keuid, ksuid; 638 639 kruid = make_kuid(ns, ruid); 640 keuid = make_kuid(ns, euid); 641 ksuid = make_kuid(ns, suid); 642 643 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 644 return -EINVAL; 645 646 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 647 return -EINVAL; 648 649 if ((suid != (uid_t) -1) && !uid_valid(ksuid)) 650 return -EINVAL; 651 652 new = prepare_creds(); 653 if (!new) 654 return -ENOMEM; 655 656 old = current_cred(); 657 658 retval = -EPERM; 659 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) { 660 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && 661 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) 662 goto error; 663 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && 664 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) 665 goto error; 666 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && 667 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) 668 goto error; 669 } 670 671 if (ruid != (uid_t) -1) { 672 new->uid = kruid; 673 if (!uid_eq(kruid, old->uid)) { 674 retval = set_user(new); 675 if (retval < 0) 676 goto error; 677 } 678 } 679 if (euid != (uid_t) -1) 680 new->euid = keuid; 681 if (suid != (uid_t) -1) 682 new->suid = ksuid; 683 new->fsuid = new->euid; 684 685 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 686 if (retval < 0) 687 goto error; 688 689 return commit_creds(new); 690 691 error: 692 abort_creds(new); 693 return retval; 694 } 695 696 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 697 { 698 return __sys_setresuid(ruid, euid, suid); 699 } 700 701 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) 702 { 703 const struct cred *cred = current_cred(); 704 int retval; 705 uid_t ruid, euid, suid; 706 707 ruid = from_kuid_munged(cred->user_ns, cred->uid); 708 euid = from_kuid_munged(cred->user_ns, cred->euid); 709 suid = from_kuid_munged(cred->user_ns, cred->suid); 710 711 retval = put_user(ruid, ruidp); 712 if (!retval) { 713 retval = put_user(euid, euidp); 714 if (!retval) 715 return put_user(suid, suidp); 716 } 717 return retval; 718 } 719 720 /* 721 * Same as above, but for rgid, egid, sgid. 722 */ 723 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 724 { 725 struct user_namespace *ns = current_user_ns(); 726 const struct cred *old; 727 struct cred *new; 728 int retval; 729 kgid_t krgid, kegid, ksgid; 730 731 krgid = make_kgid(ns, rgid); 732 kegid = make_kgid(ns, egid); 733 ksgid = make_kgid(ns, sgid); 734 735 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 736 return -EINVAL; 737 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 738 return -EINVAL; 739 if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) 740 return -EINVAL; 741 742 new = prepare_creds(); 743 if (!new) 744 return -ENOMEM; 745 old = current_cred(); 746 747 retval = -EPERM; 748 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) { 749 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && 750 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) 751 goto error; 752 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && 753 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) 754 goto error; 755 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && 756 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) 757 goto error; 758 } 759 760 if (rgid != (gid_t) -1) 761 new->gid = krgid; 762 if (egid != (gid_t) -1) 763 new->egid = kegid; 764 if (sgid != (gid_t) -1) 765 new->sgid = ksgid; 766 new->fsgid = new->egid; 767 768 retval = security_task_fix_setgid(new, old, LSM_SETID_RES); 769 if (retval < 0) 770 goto error; 771 772 return commit_creds(new); 773 774 error: 775 abort_creds(new); 776 return retval; 777 } 778 779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 780 { 781 return __sys_setresgid(rgid, egid, sgid); 782 } 783 784 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) 785 { 786 const struct cred *cred = current_cred(); 787 int retval; 788 gid_t rgid, egid, sgid; 789 790 rgid = from_kgid_munged(cred->user_ns, cred->gid); 791 egid = from_kgid_munged(cred->user_ns, cred->egid); 792 sgid = from_kgid_munged(cred->user_ns, cred->sgid); 793 794 retval = put_user(rgid, rgidp); 795 if (!retval) { 796 retval = put_user(egid, egidp); 797 if (!retval) 798 retval = put_user(sgid, sgidp); 799 } 800 801 return retval; 802 } 803 804 805 /* 806 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 807 * is used for "access()" and for the NFS daemon (letting nfsd stay at 808 * whatever uid it wants to). It normally shadows "euid", except when 809 * explicitly set by setfsuid() or for access.. 810 */ 811 long __sys_setfsuid(uid_t uid) 812 { 813 const struct cred *old; 814 struct cred *new; 815 uid_t old_fsuid; 816 kuid_t kuid; 817 818 old = current_cred(); 819 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); 820 821 kuid = make_kuid(old->user_ns, uid); 822 if (!uid_valid(kuid)) 823 return old_fsuid; 824 825 new = prepare_creds(); 826 if (!new) 827 return old_fsuid; 828 829 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || 830 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || 831 ns_capable_setid(old->user_ns, CAP_SETUID)) { 832 if (!uid_eq(kuid, old->fsuid)) { 833 new->fsuid = kuid; 834 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 835 goto change_okay; 836 } 837 } 838 839 abort_creds(new); 840 return old_fsuid; 841 842 change_okay: 843 commit_creds(new); 844 return old_fsuid; 845 } 846 847 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 848 { 849 return __sys_setfsuid(uid); 850 } 851 852 /* 853 * Samma pÃ¥ svenska.. 854 */ 855 long __sys_setfsgid(gid_t gid) 856 { 857 const struct cred *old; 858 struct cred *new; 859 gid_t old_fsgid; 860 kgid_t kgid; 861 862 old = current_cred(); 863 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); 864 865 kgid = make_kgid(old->user_ns, gid); 866 if (!gid_valid(kgid)) 867 return old_fsgid; 868 869 new = prepare_creds(); 870 if (!new) 871 return old_fsgid; 872 873 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || 874 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || 875 ns_capable_setid(old->user_ns, CAP_SETGID)) { 876 if (!gid_eq(kgid, old->fsgid)) { 877 new->fsgid = kgid; 878 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0) 879 goto change_okay; 880 } 881 } 882 883 abort_creds(new); 884 return old_fsgid; 885 886 change_okay: 887 commit_creds(new); 888 return old_fsgid; 889 } 890 891 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 892 { 893 return __sys_setfsgid(gid); 894 } 895 #endif /* CONFIG_MULTIUSER */ 896 897 /** 898 * sys_getpid - return the thread group id of the current process 899 * 900 * Note, despite the name, this returns the tgid not the pid. The tgid and 901 * the pid are identical unless CLONE_THREAD was specified on clone() in 902 * which case the tgid is the same in all threads of the same group. 903 * 904 * This is SMP safe as current->tgid does not change. 905 */ 906 SYSCALL_DEFINE0(getpid) 907 { 908 return task_tgid_vnr(current); 909 } 910 911 /* Thread ID - the internal kernel "pid" */ 912 SYSCALL_DEFINE0(gettid) 913 { 914 return task_pid_vnr(current); 915 } 916 917 /* 918 * Accessing ->real_parent is not SMP-safe, it could 919 * change from under us. However, we can use a stale 920 * value of ->real_parent under rcu_read_lock(), see 921 * release_task()->call_rcu(delayed_put_task_struct). 922 */ 923 SYSCALL_DEFINE0(getppid) 924 { 925 int pid; 926 927 rcu_read_lock(); 928 pid = task_tgid_vnr(rcu_dereference(current->real_parent)); 929 rcu_read_unlock(); 930 931 return pid; 932 } 933 934 SYSCALL_DEFINE0(getuid) 935 { 936 /* Only we change this so SMP safe */ 937 return from_kuid_munged(current_user_ns(), current_uid()); 938 } 939 940 SYSCALL_DEFINE0(geteuid) 941 { 942 /* Only we change this so SMP safe */ 943 return from_kuid_munged(current_user_ns(), current_euid()); 944 } 945 946 SYSCALL_DEFINE0(getgid) 947 { 948 /* Only we change this so SMP safe */ 949 return from_kgid_munged(current_user_ns(), current_gid()); 950 } 951 952 SYSCALL_DEFINE0(getegid) 953 { 954 /* Only we change this so SMP safe */ 955 return from_kgid_munged(current_user_ns(), current_egid()); 956 } 957 958 static void do_sys_times(struct tms *tms) 959 { 960 u64 tgutime, tgstime, cutime, cstime; 961 962 thread_group_cputime_adjusted(current, &tgutime, &tgstime); 963 cutime = current->signal->cutime; 964 cstime = current->signal->cstime; 965 tms->tms_utime = nsec_to_clock_t(tgutime); 966 tms->tms_stime = nsec_to_clock_t(tgstime); 967 tms->tms_cutime = nsec_to_clock_t(cutime); 968 tms->tms_cstime = nsec_to_clock_t(cstime); 969 } 970 971 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 972 { 973 if (tbuf) { 974 struct tms tmp; 975 976 do_sys_times(&tmp); 977 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 978 return -EFAULT; 979 } 980 force_successful_syscall_return(); 981 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 982 } 983 984 #ifdef CONFIG_COMPAT 985 static compat_clock_t clock_t_to_compat_clock_t(clock_t x) 986 { 987 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); 988 } 989 990 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) 991 { 992 if (tbuf) { 993 struct tms tms; 994 struct compat_tms tmp; 995 996 do_sys_times(&tms); 997 /* Convert our struct tms to the compat version. */ 998 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); 999 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); 1000 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); 1001 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); 1002 if (copy_to_user(tbuf, &tmp, sizeof(tmp))) 1003 return -EFAULT; 1004 } 1005 force_successful_syscall_return(); 1006 return compat_jiffies_to_clock_t(jiffies); 1007 } 1008 #endif 1009 1010 /* 1011 * This needs some heavy checking ... 1012 * I just haven't the stomach for it. I also don't fully 1013 * understand sessions/pgrp etc. Let somebody who does explain it. 1014 * 1015 * OK, I think I have the protection semantics right.... this is really 1016 * only important on a multi-user system anyway, to make sure one user 1017 * can't send a signal to a process owned by another. -TYT, 12/12/91 1018 * 1019 * !PF_FORKNOEXEC check to conform completely to POSIX. 1020 */ 1021 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 1022 { 1023 struct task_struct *p; 1024 struct task_struct *group_leader = current->group_leader; 1025 struct pid *pgrp; 1026 int err; 1027 1028 if (!pid) 1029 pid = task_pid_vnr(group_leader); 1030 if (!pgid) 1031 pgid = pid; 1032 if (pgid < 0) 1033 return -EINVAL; 1034 rcu_read_lock(); 1035 1036 /* From this point forward we keep holding onto the tasklist lock 1037 * so that our parent does not change from under us. -DaveM 1038 */ 1039 write_lock_irq(&tasklist_lock); 1040 1041 err = -ESRCH; 1042 p = find_task_by_vpid(pid); 1043 if (!p) 1044 goto out; 1045 1046 err = -EINVAL; 1047 if (!thread_group_leader(p)) 1048 goto out; 1049 1050 if (same_thread_group(p->real_parent, group_leader)) { 1051 err = -EPERM; 1052 if (task_session(p) != task_session(group_leader)) 1053 goto out; 1054 err = -EACCES; 1055 if (!(p->flags & PF_FORKNOEXEC)) 1056 goto out; 1057 } else { 1058 err = -ESRCH; 1059 if (p != group_leader) 1060 goto out; 1061 } 1062 1063 err = -EPERM; 1064 if (p->signal->leader) 1065 goto out; 1066 1067 pgrp = task_pid(p); 1068 if (pgid != pid) { 1069 struct task_struct *g; 1070 1071 pgrp = find_vpid(pgid); 1072 g = pid_task(pgrp, PIDTYPE_PGID); 1073 if (!g || task_session(g) != task_session(group_leader)) 1074 goto out; 1075 } 1076 1077 err = security_task_setpgid(p, pgid); 1078 if (err) 1079 goto out; 1080 1081 if (task_pgrp(p) != pgrp) 1082 change_pid(p, PIDTYPE_PGID, pgrp); 1083 1084 err = 0; 1085 out: 1086 /* All paths lead to here, thus we are safe. -DaveM */ 1087 write_unlock_irq(&tasklist_lock); 1088 rcu_read_unlock(); 1089 return err; 1090 } 1091 1092 static int do_getpgid(pid_t pid) 1093 { 1094 struct task_struct *p; 1095 struct pid *grp; 1096 int retval; 1097 1098 rcu_read_lock(); 1099 if (!pid) 1100 grp = task_pgrp(current); 1101 else { 1102 retval = -ESRCH; 1103 p = find_task_by_vpid(pid); 1104 if (!p) 1105 goto out; 1106 grp = task_pgrp(p); 1107 if (!grp) 1108 goto out; 1109 1110 retval = security_task_getpgid(p); 1111 if (retval) 1112 goto out; 1113 } 1114 retval = pid_vnr(grp); 1115 out: 1116 rcu_read_unlock(); 1117 return retval; 1118 } 1119 1120 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1121 { 1122 return do_getpgid(pid); 1123 } 1124 1125 #ifdef __ARCH_WANT_SYS_GETPGRP 1126 1127 SYSCALL_DEFINE0(getpgrp) 1128 { 1129 return do_getpgid(0); 1130 } 1131 1132 #endif 1133 1134 SYSCALL_DEFINE1(getsid, pid_t, pid) 1135 { 1136 struct task_struct *p; 1137 struct pid *sid; 1138 int retval; 1139 1140 rcu_read_lock(); 1141 if (!pid) 1142 sid = task_session(current); 1143 else { 1144 retval = -ESRCH; 1145 p = find_task_by_vpid(pid); 1146 if (!p) 1147 goto out; 1148 sid = task_session(p); 1149 if (!sid) 1150 goto out; 1151 1152 retval = security_task_getsid(p); 1153 if (retval) 1154 goto out; 1155 } 1156 retval = pid_vnr(sid); 1157 out: 1158 rcu_read_unlock(); 1159 return retval; 1160 } 1161 1162 static void set_special_pids(struct pid *pid) 1163 { 1164 struct task_struct *curr = current->group_leader; 1165 1166 if (task_session(curr) != pid) 1167 change_pid(curr, PIDTYPE_SID, pid); 1168 1169 if (task_pgrp(curr) != pid) 1170 change_pid(curr, PIDTYPE_PGID, pid); 1171 } 1172 1173 int ksys_setsid(void) 1174 { 1175 struct task_struct *group_leader = current->group_leader; 1176 struct pid *sid = task_pid(group_leader); 1177 pid_t session = pid_vnr(sid); 1178 int err = -EPERM; 1179 1180 write_lock_irq(&tasklist_lock); 1181 /* Fail if I am already a session leader */ 1182 if (group_leader->signal->leader) 1183 goto out; 1184 1185 /* Fail if a process group id already exists that equals the 1186 * proposed session id. 1187 */ 1188 if (pid_task(sid, PIDTYPE_PGID)) 1189 goto out; 1190 1191 group_leader->signal->leader = 1; 1192 set_special_pids(sid); 1193 1194 proc_clear_tty(group_leader); 1195 1196 err = session; 1197 out: 1198 write_unlock_irq(&tasklist_lock); 1199 if (err > 0) { 1200 proc_sid_connector(group_leader); 1201 sched_autogroup_create_attach(group_leader); 1202 } 1203 return err; 1204 } 1205 1206 SYSCALL_DEFINE0(setsid) 1207 { 1208 return ksys_setsid(); 1209 } 1210 1211 DECLARE_RWSEM(uts_sem); 1212 1213 #ifdef COMPAT_UTS_MACHINE 1214 #define override_architecture(name) \ 1215 (personality(current->personality) == PER_LINUX32 && \ 1216 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1217 sizeof(COMPAT_UTS_MACHINE))) 1218 #else 1219 #define override_architecture(name) 0 1220 #endif 1221 1222 /* 1223 * Work around broken programs that cannot handle "Linux 3.0". 1224 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1225 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be 1226 * 2.6.60. 1227 */ 1228 static int override_release(char __user *release, size_t len) 1229 { 1230 int ret = 0; 1231 1232 if (current->personality & UNAME26) { 1233 const char *rest = UTS_RELEASE; 1234 char buf[65] = { 0 }; 1235 int ndots = 0; 1236 unsigned v; 1237 size_t copy; 1238 1239 while (*rest) { 1240 if (*rest == '.' && ++ndots >= 3) 1241 break; 1242 if (!isdigit(*rest) && *rest != '.') 1243 break; 1244 rest++; 1245 } 1246 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60; 1247 copy = clamp_t(size_t, len, 1, sizeof(buf)); 1248 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); 1249 ret = copy_to_user(release, buf, copy + 1); 1250 } 1251 return ret; 1252 } 1253 1254 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1255 { 1256 struct new_utsname tmp; 1257 1258 down_read(&uts_sem); 1259 memcpy(&tmp, utsname(), sizeof(tmp)); 1260 up_read(&uts_sem); 1261 if (copy_to_user(name, &tmp, sizeof(tmp))) 1262 return -EFAULT; 1263 1264 if (override_release(name->release, sizeof(name->release))) 1265 return -EFAULT; 1266 if (override_architecture(name)) 1267 return -EFAULT; 1268 return 0; 1269 } 1270 1271 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1272 /* 1273 * Old cruft 1274 */ 1275 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1276 { 1277 struct old_utsname tmp; 1278 1279 if (!name) 1280 return -EFAULT; 1281 1282 down_read(&uts_sem); 1283 memcpy(&tmp, utsname(), sizeof(tmp)); 1284 up_read(&uts_sem); 1285 if (copy_to_user(name, &tmp, sizeof(tmp))) 1286 return -EFAULT; 1287 1288 if (override_release(name->release, sizeof(name->release))) 1289 return -EFAULT; 1290 if (override_architecture(name)) 1291 return -EFAULT; 1292 return 0; 1293 } 1294 1295 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1296 { 1297 struct oldold_utsname tmp; 1298 1299 if (!name) 1300 return -EFAULT; 1301 1302 memset(&tmp, 0, sizeof(tmp)); 1303 1304 down_read(&uts_sem); 1305 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); 1306 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); 1307 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); 1308 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); 1309 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); 1310 up_read(&uts_sem); 1311 if (copy_to_user(name, &tmp, sizeof(tmp))) 1312 return -EFAULT; 1313 1314 if (override_architecture(name)) 1315 return -EFAULT; 1316 if (override_release(name->release, sizeof(name->release))) 1317 return -EFAULT; 1318 return 0; 1319 } 1320 #endif 1321 1322 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1323 { 1324 int errno; 1325 char tmp[__NEW_UTS_LEN]; 1326 1327 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1328 return -EPERM; 1329 1330 if (len < 0 || len > __NEW_UTS_LEN) 1331 return -EINVAL; 1332 errno = -EFAULT; 1333 if (!copy_from_user(tmp, name, len)) { 1334 struct new_utsname *u; 1335 1336 down_write(&uts_sem); 1337 u = utsname(); 1338 memcpy(u->nodename, tmp, len); 1339 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1340 errno = 0; 1341 uts_proc_notify(UTS_PROC_HOSTNAME); 1342 up_write(&uts_sem); 1343 } 1344 return errno; 1345 } 1346 1347 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1348 1349 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1350 { 1351 int i; 1352 struct new_utsname *u; 1353 char tmp[__NEW_UTS_LEN + 1]; 1354 1355 if (len < 0) 1356 return -EINVAL; 1357 down_read(&uts_sem); 1358 u = utsname(); 1359 i = 1 + strlen(u->nodename); 1360 if (i > len) 1361 i = len; 1362 memcpy(tmp, u->nodename, i); 1363 up_read(&uts_sem); 1364 if (copy_to_user(name, tmp, i)) 1365 return -EFAULT; 1366 return 0; 1367 } 1368 1369 #endif 1370 1371 /* 1372 * Only setdomainname; getdomainname can be implemented by calling 1373 * uname() 1374 */ 1375 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1376 { 1377 int errno; 1378 char tmp[__NEW_UTS_LEN]; 1379 1380 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1381 return -EPERM; 1382 if (len < 0 || len > __NEW_UTS_LEN) 1383 return -EINVAL; 1384 1385 errno = -EFAULT; 1386 if (!copy_from_user(tmp, name, len)) { 1387 struct new_utsname *u; 1388 1389 down_write(&uts_sem); 1390 u = utsname(); 1391 memcpy(u->domainname, tmp, len); 1392 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1393 errno = 0; 1394 uts_proc_notify(UTS_PROC_DOMAINNAME); 1395 up_write(&uts_sem); 1396 } 1397 return errno; 1398 } 1399 1400 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1401 { 1402 struct rlimit value; 1403 int ret; 1404 1405 ret = do_prlimit(current, resource, NULL, &value); 1406 if (!ret) 1407 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1408 1409 return ret; 1410 } 1411 1412 #ifdef CONFIG_COMPAT 1413 1414 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, 1415 struct compat_rlimit __user *, rlim) 1416 { 1417 struct rlimit r; 1418 struct compat_rlimit r32; 1419 1420 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) 1421 return -EFAULT; 1422 1423 if (r32.rlim_cur == COMPAT_RLIM_INFINITY) 1424 r.rlim_cur = RLIM_INFINITY; 1425 else 1426 r.rlim_cur = r32.rlim_cur; 1427 if (r32.rlim_max == COMPAT_RLIM_INFINITY) 1428 r.rlim_max = RLIM_INFINITY; 1429 else 1430 r.rlim_max = r32.rlim_max; 1431 return do_prlimit(current, resource, &r, NULL); 1432 } 1433 1434 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, 1435 struct compat_rlimit __user *, rlim) 1436 { 1437 struct rlimit r; 1438 int ret; 1439 1440 ret = do_prlimit(current, resource, NULL, &r); 1441 if (!ret) { 1442 struct compat_rlimit r32; 1443 if (r.rlim_cur > COMPAT_RLIM_INFINITY) 1444 r32.rlim_cur = COMPAT_RLIM_INFINITY; 1445 else 1446 r32.rlim_cur = r.rlim_cur; 1447 if (r.rlim_max > COMPAT_RLIM_INFINITY) 1448 r32.rlim_max = COMPAT_RLIM_INFINITY; 1449 else 1450 r32.rlim_max = r.rlim_max; 1451 1452 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) 1453 return -EFAULT; 1454 } 1455 return ret; 1456 } 1457 1458 #endif 1459 1460 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1461 1462 /* 1463 * Back compatibility for getrlimit. Needed for some apps. 1464 */ 1465 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1466 struct rlimit __user *, rlim) 1467 { 1468 struct rlimit x; 1469 if (resource >= RLIM_NLIMITS) 1470 return -EINVAL; 1471 1472 resource = array_index_nospec(resource, RLIM_NLIMITS); 1473 task_lock(current->group_leader); 1474 x = current->signal->rlim[resource]; 1475 task_unlock(current->group_leader); 1476 if (x.rlim_cur > 0x7FFFFFFF) 1477 x.rlim_cur = 0x7FFFFFFF; 1478 if (x.rlim_max > 0x7FFFFFFF) 1479 x.rlim_max = 0x7FFFFFFF; 1480 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; 1481 } 1482 1483 #ifdef CONFIG_COMPAT 1484 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1485 struct compat_rlimit __user *, rlim) 1486 { 1487 struct rlimit r; 1488 1489 if (resource >= RLIM_NLIMITS) 1490 return -EINVAL; 1491 1492 resource = array_index_nospec(resource, RLIM_NLIMITS); 1493 task_lock(current->group_leader); 1494 r = current->signal->rlim[resource]; 1495 task_unlock(current->group_leader); 1496 if (r.rlim_cur > 0x7FFFFFFF) 1497 r.rlim_cur = 0x7FFFFFFF; 1498 if (r.rlim_max > 0x7FFFFFFF) 1499 r.rlim_max = 0x7FFFFFFF; 1500 1501 if (put_user(r.rlim_cur, &rlim->rlim_cur) || 1502 put_user(r.rlim_max, &rlim->rlim_max)) 1503 return -EFAULT; 1504 return 0; 1505 } 1506 #endif 1507 1508 #endif 1509 1510 static inline bool rlim64_is_infinity(__u64 rlim64) 1511 { 1512 #if BITS_PER_LONG < 64 1513 return rlim64 >= ULONG_MAX; 1514 #else 1515 return rlim64 == RLIM64_INFINITY; 1516 #endif 1517 } 1518 1519 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1520 { 1521 if (rlim->rlim_cur == RLIM_INFINITY) 1522 rlim64->rlim_cur = RLIM64_INFINITY; 1523 else 1524 rlim64->rlim_cur = rlim->rlim_cur; 1525 if (rlim->rlim_max == RLIM_INFINITY) 1526 rlim64->rlim_max = RLIM64_INFINITY; 1527 else 1528 rlim64->rlim_max = rlim->rlim_max; 1529 } 1530 1531 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1532 { 1533 if (rlim64_is_infinity(rlim64->rlim_cur)) 1534 rlim->rlim_cur = RLIM_INFINITY; 1535 else 1536 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1537 if (rlim64_is_infinity(rlim64->rlim_max)) 1538 rlim->rlim_max = RLIM_INFINITY; 1539 else 1540 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1541 } 1542 1543 /* make sure you are allowed to change @tsk limits before calling this */ 1544 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1545 struct rlimit *new_rlim, struct rlimit *old_rlim) 1546 { 1547 struct rlimit *rlim; 1548 int retval = 0; 1549 1550 if (resource >= RLIM_NLIMITS) 1551 return -EINVAL; 1552 if (new_rlim) { 1553 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1554 return -EINVAL; 1555 if (resource == RLIMIT_NOFILE && 1556 new_rlim->rlim_max > sysctl_nr_open) 1557 return -EPERM; 1558 } 1559 1560 /* protect tsk->signal and tsk->sighand from disappearing */ 1561 read_lock(&tasklist_lock); 1562 if (!tsk->sighand) { 1563 retval = -ESRCH; 1564 goto out; 1565 } 1566 1567 rlim = tsk->signal->rlim + resource; 1568 task_lock(tsk->group_leader); 1569 if (new_rlim) { 1570 /* Keep the capable check against init_user_ns until 1571 cgroups can contain all limits */ 1572 if (new_rlim->rlim_max > rlim->rlim_max && 1573 !capable(CAP_SYS_RESOURCE)) 1574 retval = -EPERM; 1575 if (!retval) 1576 retval = security_task_setrlimit(tsk, resource, new_rlim); 1577 } 1578 if (!retval) { 1579 if (old_rlim) 1580 *old_rlim = *rlim; 1581 if (new_rlim) 1582 *rlim = *new_rlim; 1583 } 1584 task_unlock(tsk->group_leader); 1585 1586 /* 1587 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not 1588 * infite. In case of RLIM_INFINITY the posix CPU timer code 1589 * ignores the rlimit. 1590 */ 1591 if (!retval && new_rlim && resource == RLIMIT_CPU && 1592 new_rlim->rlim_cur != RLIM_INFINITY && 1593 IS_ENABLED(CONFIG_POSIX_TIMERS)) 1594 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1595 out: 1596 read_unlock(&tasklist_lock); 1597 return retval; 1598 } 1599 1600 /* rcu lock must be held */ 1601 static int check_prlimit_permission(struct task_struct *task, 1602 unsigned int flags) 1603 { 1604 const struct cred *cred = current_cred(), *tcred; 1605 bool id_match; 1606 1607 if (current == task) 1608 return 0; 1609 1610 tcred = __task_cred(task); 1611 id_match = (uid_eq(cred->uid, tcred->euid) && 1612 uid_eq(cred->uid, tcred->suid) && 1613 uid_eq(cred->uid, tcred->uid) && 1614 gid_eq(cred->gid, tcred->egid) && 1615 gid_eq(cred->gid, tcred->sgid) && 1616 gid_eq(cred->gid, tcred->gid)); 1617 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) 1618 return -EPERM; 1619 1620 return security_task_prlimit(cred, tcred, flags); 1621 } 1622 1623 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1624 const struct rlimit64 __user *, new_rlim, 1625 struct rlimit64 __user *, old_rlim) 1626 { 1627 struct rlimit64 old64, new64; 1628 struct rlimit old, new; 1629 struct task_struct *tsk; 1630 unsigned int checkflags = 0; 1631 int ret; 1632 1633 if (old_rlim) 1634 checkflags |= LSM_PRLIMIT_READ; 1635 1636 if (new_rlim) { 1637 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1638 return -EFAULT; 1639 rlim64_to_rlim(&new64, &new); 1640 checkflags |= LSM_PRLIMIT_WRITE; 1641 } 1642 1643 rcu_read_lock(); 1644 tsk = pid ? find_task_by_vpid(pid) : current; 1645 if (!tsk) { 1646 rcu_read_unlock(); 1647 return -ESRCH; 1648 } 1649 ret = check_prlimit_permission(tsk, checkflags); 1650 if (ret) { 1651 rcu_read_unlock(); 1652 return ret; 1653 } 1654 get_task_struct(tsk); 1655 rcu_read_unlock(); 1656 1657 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1658 old_rlim ? &old : NULL); 1659 1660 if (!ret && old_rlim) { 1661 rlim_to_rlim64(&old, &old64); 1662 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1663 ret = -EFAULT; 1664 } 1665 1666 put_task_struct(tsk); 1667 return ret; 1668 } 1669 1670 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1671 { 1672 struct rlimit new_rlim; 1673 1674 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1675 return -EFAULT; 1676 return do_prlimit(current, resource, &new_rlim, NULL); 1677 } 1678 1679 /* 1680 * It would make sense to put struct rusage in the task_struct, 1681 * except that would make the task_struct be *really big*. After 1682 * task_struct gets moved into malloc'ed memory, it would 1683 * make sense to do this. It will make moving the rest of the information 1684 * a lot simpler! (Which we're not doing right now because we're not 1685 * measuring them yet). 1686 * 1687 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1688 * races with threads incrementing their own counters. But since word 1689 * reads are atomic, we either get new values or old values and we don't 1690 * care which for the sums. We always take the siglock to protect reading 1691 * the c* fields from p->signal from races with exit.c updating those 1692 * fields when reaping, so a sample either gets all the additions of a 1693 * given child after it's reaped, or none so this sample is before reaping. 1694 * 1695 * Locking: 1696 * We need to take the siglock for CHILDEREN, SELF and BOTH 1697 * for the cases current multithreaded, non-current single threaded 1698 * non-current multithreaded. Thread traversal is now safe with 1699 * the siglock held. 1700 * Strictly speaking, we donot need to take the siglock if we are current and 1701 * single threaded, as no one else can take our signal_struct away, no one 1702 * else can reap the children to update signal->c* counters, and no one else 1703 * can race with the signal-> fields. If we do not take any lock, the 1704 * signal-> fields could be read out of order while another thread was just 1705 * exiting. So we should place a read memory barrier when we avoid the lock. 1706 * On the writer side, write memory barrier is implied in __exit_signal 1707 * as __exit_signal releases the siglock spinlock after updating the signal-> 1708 * fields. But we don't do this yet to keep things simple. 1709 * 1710 */ 1711 1712 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1713 { 1714 r->ru_nvcsw += t->nvcsw; 1715 r->ru_nivcsw += t->nivcsw; 1716 r->ru_minflt += t->min_flt; 1717 r->ru_majflt += t->maj_flt; 1718 r->ru_inblock += task_io_get_inblock(t); 1719 r->ru_oublock += task_io_get_oublock(t); 1720 } 1721 1722 void getrusage(struct task_struct *p, int who, struct rusage *r) 1723 { 1724 struct task_struct *t; 1725 unsigned long flags; 1726 u64 tgutime, tgstime, utime, stime; 1727 unsigned long maxrss = 0; 1728 1729 memset((char *)r, 0, sizeof (*r)); 1730 utime = stime = 0; 1731 1732 if (who == RUSAGE_THREAD) { 1733 task_cputime_adjusted(current, &utime, &stime); 1734 accumulate_thread_rusage(p, r); 1735 maxrss = p->signal->maxrss; 1736 goto out; 1737 } 1738 1739 if (!lock_task_sighand(p, &flags)) 1740 return; 1741 1742 switch (who) { 1743 case RUSAGE_BOTH: 1744 case RUSAGE_CHILDREN: 1745 utime = p->signal->cutime; 1746 stime = p->signal->cstime; 1747 r->ru_nvcsw = p->signal->cnvcsw; 1748 r->ru_nivcsw = p->signal->cnivcsw; 1749 r->ru_minflt = p->signal->cmin_flt; 1750 r->ru_majflt = p->signal->cmaj_flt; 1751 r->ru_inblock = p->signal->cinblock; 1752 r->ru_oublock = p->signal->coublock; 1753 maxrss = p->signal->cmaxrss; 1754 1755 if (who == RUSAGE_CHILDREN) 1756 break; 1757 fallthrough; 1758 1759 case RUSAGE_SELF: 1760 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1761 utime += tgutime; 1762 stime += tgstime; 1763 r->ru_nvcsw += p->signal->nvcsw; 1764 r->ru_nivcsw += p->signal->nivcsw; 1765 r->ru_minflt += p->signal->min_flt; 1766 r->ru_majflt += p->signal->maj_flt; 1767 r->ru_inblock += p->signal->inblock; 1768 r->ru_oublock += p->signal->oublock; 1769 if (maxrss < p->signal->maxrss) 1770 maxrss = p->signal->maxrss; 1771 t = p; 1772 do { 1773 accumulate_thread_rusage(t, r); 1774 } while_each_thread(p, t); 1775 break; 1776 1777 default: 1778 BUG(); 1779 } 1780 unlock_task_sighand(p, &flags); 1781 1782 out: 1783 r->ru_utime = ns_to_kernel_old_timeval(utime); 1784 r->ru_stime = ns_to_kernel_old_timeval(stime); 1785 1786 if (who != RUSAGE_CHILDREN) { 1787 struct mm_struct *mm = get_task_mm(p); 1788 1789 if (mm) { 1790 setmax_mm_hiwater_rss(&maxrss, mm); 1791 mmput(mm); 1792 } 1793 } 1794 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1795 } 1796 1797 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1798 { 1799 struct rusage r; 1800 1801 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1802 who != RUSAGE_THREAD) 1803 return -EINVAL; 1804 1805 getrusage(current, who, &r); 1806 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1807 } 1808 1809 #ifdef CONFIG_COMPAT 1810 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) 1811 { 1812 struct rusage r; 1813 1814 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1815 who != RUSAGE_THREAD) 1816 return -EINVAL; 1817 1818 getrusage(current, who, &r); 1819 return put_compat_rusage(&r, ru); 1820 } 1821 #endif 1822 1823 SYSCALL_DEFINE1(umask, int, mask) 1824 { 1825 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1826 return mask; 1827 } 1828 1829 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) 1830 { 1831 struct fd exe; 1832 struct file *old_exe, *exe_file; 1833 struct inode *inode; 1834 int err; 1835 1836 exe = fdget(fd); 1837 if (!exe.file) 1838 return -EBADF; 1839 1840 inode = file_inode(exe.file); 1841 1842 /* 1843 * Because the original mm->exe_file points to executable file, make 1844 * sure that this one is executable as well, to avoid breaking an 1845 * overall picture. 1846 */ 1847 err = -EACCES; 1848 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) 1849 goto exit; 1850 1851 err = inode_permission(inode, MAY_EXEC); 1852 if (err) 1853 goto exit; 1854 1855 /* 1856 * Forbid mm->exe_file change if old file still mapped. 1857 */ 1858 exe_file = get_mm_exe_file(mm); 1859 err = -EBUSY; 1860 if (exe_file) { 1861 struct vm_area_struct *vma; 1862 1863 mmap_read_lock(mm); 1864 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1865 if (!vma->vm_file) 1866 continue; 1867 if (path_equal(&vma->vm_file->f_path, 1868 &exe_file->f_path)) 1869 goto exit_err; 1870 } 1871 1872 mmap_read_unlock(mm); 1873 fput(exe_file); 1874 } 1875 1876 err = 0; 1877 /* set the new file, lockless */ 1878 get_file(exe.file); 1879 old_exe = xchg(&mm->exe_file, exe.file); 1880 if (old_exe) 1881 fput(old_exe); 1882 exit: 1883 fdput(exe); 1884 return err; 1885 exit_err: 1886 mmap_read_unlock(mm); 1887 fput(exe_file); 1888 goto exit; 1889 } 1890 1891 /* 1892 * Check arithmetic relations of passed addresses. 1893 * 1894 * WARNING: we don't require any capability here so be very careful 1895 * in what is allowed for modification from userspace. 1896 */ 1897 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) 1898 { 1899 unsigned long mmap_max_addr = TASK_SIZE; 1900 int error = -EINVAL, i; 1901 1902 static const unsigned char offsets[] = { 1903 offsetof(struct prctl_mm_map, start_code), 1904 offsetof(struct prctl_mm_map, end_code), 1905 offsetof(struct prctl_mm_map, start_data), 1906 offsetof(struct prctl_mm_map, end_data), 1907 offsetof(struct prctl_mm_map, start_brk), 1908 offsetof(struct prctl_mm_map, brk), 1909 offsetof(struct prctl_mm_map, start_stack), 1910 offsetof(struct prctl_mm_map, arg_start), 1911 offsetof(struct prctl_mm_map, arg_end), 1912 offsetof(struct prctl_mm_map, env_start), 1913 offsetof(struct prctl_mm_map, env_end), 1914 }; 1915 1916 /* 1917 * Make sure the members are not somewhere outside 1918 * of allowed address space. 1919 */ 1920 for (i = 0; i < ARRAY_SIZE(offsets); i++) { 1921 u64 val = *(u64 *)((char *)prctl_map + offsets[i]); 1922 1923 if ((unsigned long)val >= mmap_max_addr || 1924 (unsigned long)val < mmap_min_addr) 1925 goto out; 1926 } 1927 1928 /* 1929 * Make sure the pairs are ordered. 1930 */ 1931 #define __prctl_check_order(__m1, __op, __m2) \ 1932 ((unsigned long)prctl_map->__m1 __op \ 1933 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL 1934 error = __prctl_check_order(start_code, <, end_code); 1935 error |= __prctl_check_order(start_data,<=, end_data); 1936 error |= __prctl_check_order(start_brk, <=, brk); 1937 error |= __prctl_check_order(arg_start, <=, arg_end); 1938 error |= __prctl_check_order(env_start, <=, env_end); 1939 if (error) 1940 goto out; 1941 #undef __prctl_check_order 1942 1943 error = -EINVAL; 1944 1945 /* 1946 * @brk should be after @end_data in traditional maps. 1947 */ 1948 if (prctl_map->start_brk <= prctl_map->end_data || 1949 prctl_map->brk <= prctl_map->end_data) 1950 goto out; 1951 1952 /* 1953 * Neither we should allow to override limits if they set. 1954 */ 1955 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, 1956 prctl_map->start_brk, prctl_map->end_data, 1957 prctl_map->start_data)) 1958 goto out; 1959 1960 error = 0; 1961 out: 1962 return error; 1963 } 1964 1965 #ifdef CONFIG_CHECKPOINT_RESTORE 1966 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) 1967 { 1968 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; 1969 unsigned long user_auxv[AT_VECTOR_SIZE]; 1970 struct mm_struct *mm = current->mm; 1971 int error; 1972 1973 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 1974 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); 1975 1976 if (opt == PR_SET_MM_MAP_SIZE) 1977 return put_user((unsigned int)sizeof(prctl_map), 1978 (unsigned int __user *)addr); 1979 1980 if (data_size != sizeof(prctl_map)) 1981 return -EINVAL; 1982 1983 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) 1984 return -EFAULT; 1985 1986 error = validate_prctl_map_addr(&prctl_map); 1987 if (error) 1988 return error; 1989 1990 if (prctl_map.auxv_size) { 1991 /* 1992 * Someone is trying to cheat the auxv vector. 1993 */ 1994 if (!prctl_map.auxv || 1995 prctl_map.auxv_size > sizeof(mm->saved_auxv)) 1996 return -EINVAL; 1997 1998 memset(user_auxv, 0, sizeof(user_auxv)); 1999 if (copy_from_user(user_auxv, 2000 (const void __user *)prctl_map.auxv, 2001 prctl_map.auxv_size)) 2002 return -EFAULT; 2003 2004 /* Last entry must be AT_NULL as specification requires */ 2005 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; 2006 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; 2007 } 2008 2009 if (prctl_map.exe_fd != (u32)-1) { 2010 /* 2011 * Check if the current user is checkpoint/restore capable. 2012 * At the time of this writing, it checks for CAP_SYS_ADMIN 2013 * or CAP_CHECKPOINT_RESTORE. 2014 * Note that a user with access to ptrace can masquerade an 2015 * arbitrary program as any executable, even setuid ones. 2016 * This may have implications in the tomoyo subsystem. 2017 */ 2018 if (!checkpoint_restore_ns_capable(current_user_ns())) 2019 return -EPERM; 2020 2021 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); 2022 if (error) 2023 return error; 2024 } 2025 2026 /* 2027 * arg_lock protects concurent updates but we still need mmap_lock for 2028 * read to exclude races with sys_brk. 2029 */ 2030 mmap_read_lock(mm); 2031 2032 /* 2033 * We don't validate if these members are pointing to 2034 * real present VMAs because application may have correspond 2035 * VMAs already unmapped and kernel uses these members for statistics 2036 * output in procfs mostly, except 2037 * 2038 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups 2039 * for VMAs when updating these memvers so anything wrong written 2040 * here cause kernel to swear at userspace program but won't lead 2041 * to any problem in kernel itself 2042 */ 2043 2044 spin_lock(&mm->arg_lock); 2045 mm->start_code = prctl_map.start_code; 2046 mm->end_code = prctl_map.end_code; 2047 mm->start_data = prctl_map.start_data; 2048 mm->end_data = prctl_map.end_data; 2049 mm->start_brk = prctl_map.start_brk; 2050 mm->brk = prctl_map.brk; 2051 mm->start_stack = prctl_map.start_stack; 2052 mm->arg_start = prctl_map.arg_start; 2053 mm->arg_end = prctl_map.arg_end; 2054 mm->env_start = prctl_map.env_start; 2055 mm->env_end = prctl_map.env_end; 2056 spin_unlock(&mm->arg_lock); 2057 2058 /* 2059 * Note this update of @saved_auxv is lockless thus 2060 * if someone reads this member in procfs while we're 2061 * updating -- it may get partly updated results. It's 2062 * known and acceptable trade off: we leave it as is to 2063 * not introduce additional locks here making the kernel 2064 * more complex. 2065 */ 2066 if (prctl_map.auxv_size) 2067 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); 2068 2069 mmap_read_unlock(mm); 2070 return 0; 2071 } 2072 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2073 2074 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, 2075 unsigned long len) 2076 { 2077 /* 2078 * This doesn't move the auxiliary vector itself since it's pinned to 2079 * mm_struct, but it permits filling the vector with new values. It's 2080 * up to the caller to provide sane values here, otherwise userspace 2081 * tools which use this vector might be unhappy. 2082 */ 2083 unsigned long user_auxv[AT_VECTOR_SIZE]; 2084 2085 if (len > sizeof(user_auxv)) 2086 return -EINVAL; 2087 2088 if (copy_from_user(user_auxv, (const void __user *)addr, len)) 2089 return -EFAULT; 2090 2091 /* Make sure the last entry is always AT_NULL */ 2092 user_auxv[AT_VECTOR_SIZE - 2] = 0; 2093 user_auxv[AT_VECTOR_SIZE - 1] = 0; 2094 2095 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2096 2097 task_lock(current); 2098 memcpy(mm->saved_auxv, user_auxv, len); 2099 task_unlock(current); 2100 2101 return 0; 2102 } 2103 2104 static int prctl_set_mm(int opt, unsigned long addr, 2105 unsigned long arg4, unsigned long arg5) 2106 { 2107 struct mm_struct *mm = current->mm; 2108 struct prctl_mm_map prctl_map = { 2109 .auxv = NULL, 2110 .auxv_size = 0, 2111 .exe_fd = -1, 2112 }; 2113 struct vm_area_struct *vma; 2114 int error; 2115 2116 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && 2117 opt != PR_SET_MM_MAP && 2118 opt != PR_SET_MM_MAP_SIZE))) 2119 return -EINVAL; 2120 2121 #ifdef CONFIG_CHECKPOINT_RESTORE 2122 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) 2123 return prctl_set_mm_map(opt, (const void __user *)addr, arg4); 2124 #endif 2125 2126 if (!capable(CAP_SYS_RESOURCE)) 2127 return -EPERM; 2128 2129 if (opt == PR_SET_MM_EXE_FILE) 2130 return prctl_set_mm_exe_file(mm, (unsigned int)addr); 2131 2132 if (opt == PR_SET_MM_AUXV) 2133 return prctl_set_auxv(mm, addr, arg4); 2134 2135 if (addr >= TASK_SIZE || addr < mmap_min_addr) 2136 return -EINVAL; 2137 2138 error = -EINVAL; 2139 2140 /* 2141 * arg_lock protects concurent updates of arg boundaries, we need 2142 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr 2143 * validation. 2144 */ 2145 mmap_read_lock(mm); 2146 vma = find_vma(mm, addr); 2147 2148 spin_lock(&mm->arg_lock); 2149 prctl_map.start_code = mm->start_code; 2150 prctl_map.end_code = mm->end_code; 2151 prctl_map.start_data = mm->start_data; 2152 prctl_map.end_data = mm->end_data; 2153 prctl_map.start_brk = mm->start_brk; 2154 prctl_map.brk = mm->brk; 2155 prctl_map.start_stack = mm->start_stack; 2156 prctl_map.arg_start = mm->arg_start; 2157 prctl_map.arg_end = mm->arg_end; 2158 prctl_map.env_start = mm->env_start; 2159 prctl_map.env_end = mm->env_end; 2160 2161 switch (opt) { 2162 case PR_SET_MM_START_CODE: 2163 prctl_map.start_code = addr; 2164 break; 2165 case PR_SET_MM_END_CODE: 2166 prctl_map.end_code = addr; 2167 break; 2168 case PR_SET_MM_START_DATA: 2169 prctl_map.start_data = addr; 2170 break; 2171 case PR_SET_MM_END_DATA: 2172 prctl_map.end_data = addr; 2173 break; 2174 case PR_SET_MM_START_STACK: 2175 prctl_map.start_stack = addr; 2176 break; 2177 case PR_SET_MM_START_BRK: 2178 prctl_map.start_brk = addr; 2179 break; 2180 case PR_SET_MM_BRK: 2181 prctl_map.brk = addr; 2182 break; 2183 case PR_SET_MM_ARG_START: 2184 prctl_map.arg_start = addr; 2185 break; 2186 case PR_SET_MM_ARG_END: 2187 prctl_map.arg_end = addr; 2188 break; 2189 case PR_SET_MM_ENV_START: 2190 prctl_map.env_start = addr; 2191 break; 2192 case PR_SET_MM_ENV_END: 2193 prctl_map.env_end = addr; 2194 break; 2195 default: 2196 goto out; 2197 } 2198 2199 error = validate_prctl_map_addr(&prctl_map); 2200 if (error) 2201 goto out; 2202 2203 switch (opt) { 2204 /* 2205 * If command line arguments and environment 2206 * are placed somewhere else on stack, we can 2207 * set them up here, ARG_START/END to setup 2208 * command line argumets and ENV_START/END 2209 * for environment. 2210 */ 2211 case PR_SET_MM_START_STACK: 2212 case PR_SET_MM_ARG_START: 2213 case PR_SET_MM_ARG_END: 2214 case PR_SET_MM_ENV_START: 2215 case PR_SET_MM_ENV_END: 2216 if (!vma) { 2217 error = -EFAULT; 2218 goto out; 2219 } 2220 } 2221 2222 mm->start_code = prctl_map.start_code; 2223 mm->end_code = prctl_map.end_code; 2224 mm->start_data = prctl_map.start_data; 2225 mm->end_data = prctl_map.end_data; 2226 mm->start_brk = prctl_map.start_brk; 2227 mm->brk = prctl_map.brk; 2228 mm->start_stack = prctl_map.start_stack; 2229 mm->arg_start = prctl_map.arg_start; 2230 mm->arg_end = prctl_map.arg_end; 2231 mm->env_start = prctl_map.env_start; 2232 mm->env_end = prctl_map.env_end; 2233 2234 error = 0; 2235 out: 2236 spin_unlock(&mm->arg_lock); 2237 mmap_read_unlock(mm); 2238 return error; 2239 } 2240 2241 #ifdef CONFIG_CHECKPOINT_RESTORE 2242 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) 2243 { 2244 return put_user(me->clear_child_tid, tid_addr); 2245 } 2246 #else 2247 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) 2248 { 2249 return -EINVAL; 2250 } 2251 #endif 2252 2253 static int propagate_has_child_subreaper(struct task_struct *p, void *data) 2254 { 2255 /* 2256 * If task has has_child_subreaper - all its decendants 2257 * already have these flag too and new decendants will 2258 * inherit it on fork, skip them. 2259 * 2260 * If we've found child_reaper - skip descendants in 2261 * it's subtree as they will never get out pidns. 2262 */ 2263 if (p->signal->has_child_subreaper || 2264 is_child_reaper(task_pid(p))) 2265 return 0; 2266 2267 p->signal->has_child_subreaper = 1; 2268 return 1; 2269 } 2270 2271 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) 2272 { 2273 return -EINVAL; 2274 } 2275 2276 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, 2277 unsigned long ctrl) 2278 { 2279 return -EINVAL; 2280 } 2281 2282 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE) 2283 2284 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 2285 unsigned long, arg4, unsigned long, arg5) 2286 { 2287 struct task_struct *me = current; 2288 unsigned char comm[sizeof(me->comm)]; 2289 long error; 2290 2291 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 2292 if (error != -ENOSYS) 2293 return error; 2294 2295 error = 0; 2296 switch (option) { 2297 case PR_SET_PDEATHSIG: 2298 if (!valid_signal(arg2)) { 2299 error = -EINVAL; 2300 break; 2301 } 2302 me->pdeath_signal = arg2; 2303 break; 2304 case PR_GET_PDEATHSIG: 2305 error = put_user(me->pdeath_signal, (int __user *)arg2); 2306 break; 2307 case PR_GET_DUMPABLE: 2308 error = get_dumpable(me->mm); 2309 break; 2310 case PR_SET_DUMPABLE: 2311 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { 2312 error = -EINVAL; 2313 break; 2314 } 2315 set_dumpable(me->mm, arg2); 2316 break; 2317 2318 case PR_SET_UNALIGN: 2319 error = SET_UNALIGN_CTL(me, arg2); 2320 break; 2321 case PR_GET_UNALIGN: 2322 error = GET_UNALIGN_CTL(me, arg2); 2323 break; 2324 case PR_SET_FPEMU: 2325 error = SET_FPEMU_CTL(me, arg2); 2326 break; 2327 case PR_GET_FPEMU: 2328 error = GET_FPEMU_CTL(me, arg2); 2329 break; 2330 case PR_SET_FPEXC: 2331 error = SET_FPEXC_CTL(me, arg2); 2332 break; 2333 case PR_GET_FPEXC: 2334 error = GET_FPEXC_CTL(me, arg2); 2335 break; 2336 case PR_GET_TIMING: 2337 error = PR_TIMING_STATISTICAL; 2338 break; 2339 case PR_SET_TIMING: 2340 if (arg2 != PR_TIMING_STATISTICAL) 2341 error = -EINVAL; 2342 break; 2343 case PR_SET_NAME: 2344 comm[sizeof(me->comm) - 1] = 0; 2345 if (strncpy_from_user(comm, (char __user *)arg2, 2346 sizeof(me->comm) - 1) < 0) 2347 return -EFAULT; 2348 set_task_comm(me, comm); 2349 proc_comm_connector(me); 2350 break; 2351 case PR_GET_NAME: 2352 get_task_comm(comm, me); 2353 if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) 2354 return -EFAULT; 2355 break; 2356 case PR_GET_ENDIAN: 2357 error = GET_ENDIAN(me, arg2); 2358 break; 2359 case PR_SET_ENDIAN: 2360 error = SET_ENDIAN(me, arg2); 2361 break; 2362 case PR_GET_SECCOMP: 2363 error = prctl_get_seccomp(); 2364 break; 2365 case PR_SET_SECCOMP: 2366 error = prctl_set_seccomp(arg2, (char __user *)arg3); 2367 break; 2368 case PR_GET_TSC: 2369 error = GET_TSC_CTL(arg2); 2370 break; 2371 case PR_SET_TSC: 2372 error = SET_TSC_CTL(arg2); 2373 break; 2374 case PR_TASK_PERF_EVENTS_DISABLE: 2375 error = perf_event_task_disable(); 2376 break; 2377 case PR_TASK_PERF_EVENTS_ENABLE: 2378 error = perf_event_task_enable(); 2379 break; 2380 case PR_GET_TIMERSLACK: 2381 if (current->timer_slack_ns > ULONG_MAX) 2382 error = ULONG_MAX; 2383 else 2384 error = current->timer_slack_ns; 2385 break; 2386 case PR_SET_TIMERSLACK: 2387 if (arg2 <= 0) 2388 current->timer_slack_ns = 2389 current->default_timer_slack_ns; 2390 else 2391 current->timer_slack_ns = arg2; 2392 break; 2393 case PR_MCE_KILL: 2394 if (arg4 | arg5) 2395 return -EINVAL; 2396 switch (arg2) { 2397 case PR_MCE_KILL_CLEAR: 2398 if (arg3 != 0) 2399 return -EINVAL; 2400 current->flags &= ~PF_MCE_PROCESS; 2401 break; 2402 case PR_MCE_KILL_SET: 2403 current->flags |= PF_MCE_PROCESS; 2404 if (arg3 == PR_MCE_KILL_EARLY) 2405 current->flags |= PF_MCE_EARLY; 2406 else if (arg3 == PR_MCE_KILL_LATE) 2407 current->flags &= ~PF_MCE_EARLY; 2408 else if (arg3 == PR_MCE_KILL_DEFAULT) 2409 current->flags &= 2410 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 2411 else 2412 return -EINVAL; 2413 break; 2414 default: 2415 return -EINVAL; 2416 } 2417 break; 2418 case PR_MCE_KILL_GET: 2419 if (arg2 | arg3 | arg4 | arg5) 2420 return -EINVAL; 2421 if (current->flags & PF_MCE_PROCESS) 2422 error = (current->flags & PF_MCE_EARLY) ? 2423 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 2424 else 2425 error = PR_MCE_KILL_DEFAULT; 2426 break; 2427 case PR_SET_MM: 2428 error = prctl_set_mm(arg2, arg3, arg4, arg5); 2429 break; 2430 case PR_GET_TID_ADDRESS: 2431 error = prctl_get_tid_address(me, (int __user * __user *)arg2); 2432 break; 2433 case PR_SET_CHILD_SUBREAPER: 2434 me->signal->is_child_subreaper = !!arg2; 2435 if (!arg2) 2436 break; 2437 2438 walk_process_tree(me, propagate_has_child_subreaper, NULL); 2439 break; 2440 case PR_GET_CHILD_SUBREAPER: 2441 error = put_user(me->signal->is_child_subreaper, 2442 (int __user *)arg2); 2443 break; 2444 case PR_SET_NO_NEW_PRIVS: 2445 if (arg2 != 1 || arg3 || arg4 || arg5) 2446 return -EINVAL; 2447 2448 task_set_no_new_privs(current); 2449 break; 2450 case PR_GET_NO_NEW_PRIVS: 2451 if (arg2 || arg3 || arg4 || arg5) 2452 return -EINVAL; 2453 return task_no_new_privs(current) ? 1 : 0; 2454 case PR_GET_THP_DISABLE: 2455 if (arg2 || arg3 || arg4 || arg5) 2456 return -EINVAL; 2457 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); 2458 break; 2459 case PR_SET_THP_DISABLE: 2460 if (arg3 || arg4 || arg5) 2461 return -EINVAL; 2462 if (mmap_write_lock_killable(me->mm)) 2463 return -EINTR; 2464 if (arg2) 2465 set_bit(MMF_DISABLE_THP, &me->mm->flags); 2466 else 2467 clear_bit(MMF_DISABLE_THP, &me->mm->flags); 2468 mmap_write_unlock(me->mm); 2469 break; 2470 case PR_MPX_ENABLE_MANAGEMENT: 2471 case PR_MPX_DISABLE_MANAGEMENT: 2472 /* No longer implemented: */ 2473 return -EINVAL; 2474 case PR_SET_FP_MODE: 2475 error = SET_FP_MODE(me, arg2); 2476 break; 2477 case PR_GET_FP_MODE: 2478 error = GET_FP_MODE(me); 2479 break; 2480 case PR_SVE_SET_VL: 2481 error = SVE_SET_VL(arg2); 2482 break; 2483 case PR_SVE_GET_VL: 2484 error = SVE_GET_VL(); 2485 break; 2486 case PR_GET_SPECULATION_CTRL: 2487 if (arg3 || arg4 || arg5) 2488 return -EINVAL; 2489 error = arch_prctl_spec_ctrl_get(me, arg2); 2490 break; 2491 case PR_SET_SPECULATION_CTRL: 2492 if (arg4 || arg5) 2493 return -EINVAL; 2494 error = arch_prctl_spec_ctrl_set(me, arg2, arg3); 2495 break; 2496 case PR_PAC_RESET_KEYS: 2497 if (arg3 || arg4 || arg5) 2498 return -EINVAL; 2499 error = PAC_RESET_KEYS(me, arg2); 2500 break; 2501 case PR_SET_TAGGED_ADDR_CTRL: 2502 if (arg3 || arg4 || arg5) 2503 return -EINVAL; 2504 error = SET_TAGGED_ADDR_CTRL(arg2); 2505 break; 2506 case PR_GET_TAGGED_ADDR_CTRL: 2507 if (arg2 || arg3 || arg4 || arg5) 2508 return -EINVAL; 2509 error = GET_TAGGED_ADDR_CTRL(); 2510 break; 2511 case PR_SET_IO_FLUSHER: 2512 if (!capable(CAP_SYS_RESOURCE)) 2513 return -EPERM; 2514 2515 if (arg3 || arg4 || arg5) 2516 return -EINVAL; 2517 2518 if (arg2 == 1) 2519 current->flags |= PR_IO_FLUSHER; 2520 else if (!arg2) 2521 current->flags &= ~PR_IO_FLUSHER; 2522 else 2523 return -EINVAL; 2524 break; 2525 case PR_GET_IO_FLUSHER: 2526 if (!capable(CAP_SYS_RESOURCE)) 2527 return -EPERM; 2528 2529 if (arg2 || arg3 || arg4 || arg5) 2530 return -EINVAL; 2531 2532 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER; 2533 break; 2534 case PR_SET_SYSCALL_USER_DISPATCH: 2535 error = set_syscall_user_dispatch(arg2, arg3, arg4, 2536 (char __user *) arg5); 2537 break; 2538 default: 2539 error = -EINVAL; 2540 break; 2541 } 2542 return error; 2543 } 2544 2545 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 2546 struct getcpu_cache __user *, unused) 2547 { 2548 int err = 0; 2549 int cpu = raw_smp_processor_id(); 2550 2551 if (cpup) 2552 err |= put_user(cpu, cpup); 2553 if (nodep) 2554 err |= put_user(cpu_to_node(cpu), nodep); 2555 return err ? -EFAULT : 0; 2556 } 2557 2558 /** 2559 * do_sysinfo - fill in sysinfo struct 2560 * @info: pointer to buffer to fill 2561 */ 2562 static int do_sysinfo(struct sysinfo *info) 2563 { 2564 unsigned long mem_total, sav_total; 2565 unsigned int mem_unit, bitcount; 2566 struct timespec64 tp; 2567 2568 memset(info, 0, sizeof(struct sysinfo)); 2569 2570 ktime_get_boottime_ts64(&tp); 2571 timens_add_boottime(&tp); 2572 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 2573 2574 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); 2575 2576 info->procs = nr_threads; 2577 2578 si_meminfo(info); 2579 si_swapinfo(info); 2580 2581 /* 2582 * If the sum of all the available memory (i.e. ram + swap) 2583 * is less than can be stored in a 32 bit unsigned long then 2584 * we can be binary compatible with 2.2.x kernels. If not, 2585 * well, in that case 2.2.x was broken anyways... 2586 * 2587 * -Erik Andersen <andersee@debian.org> 2588 */ 2589 2590 mem_total = info->totalram + info->totalswap; 2591 if (mem_total < info->totalram || mem_total < info->totalswap) 2592 goto out; 2593 bitcount = 0; 2594 mem_unit = info->mem_unit; 2595 while (mem_unit > 1) { 2596 bitcount++; 2597 mem_unit >>= 1; 2598 sav_total = mem_total; 2599 mem_total <<= 1; 2600 if (mem_total < sav_total) 2601 goto out; 2602 } 2603 2604 /* 2605 * If mem_total did not overflow, multiply all memory values by 2606 * info->mem_unit and set it to 1. This leaves things compatible 2607 * with 2.2.x, and also retains compatibility with earlier 2.4.x 2608 * kernels... 2609 */ 2610 2611 info->mem_unit = 1; 2612 info->totalram <<= bitcount; 2613 info->freeram <<= bitcount; 2614 info->sharedram <<= bitcount; 2615 info->bufferram <<= bitcount; 2616 info->totalswap <<= bitcount; 2617 info->freeswap <<= bitcount; 2618 info->totalhigh <<= bitcount; 2619 info->freehigh <<= bitcount; 2620 2621 out: 2622 return 0; 2623 } 2624 2625 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) 2626 { 2627 struct sysinfo val; 2628 2629 do_sysinfo(&val); 2630 2631 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 2632 return -EFAULT; 2633 2634 return 0; 2635 } 2636 2637 #ifdef CONFIG_COMPAT 2638 struct compat_sysinfo { 2639 s32 uptime; 2640 u32 loads[3]; 2641 u32 totalram; 2642 u32 freeram; 2643 u32 sharedram; 2644 u32 bufferram; 2645 u32 totalswap; 2646 u32 freeswap; 2647 u16 procs; 2648 u16 pad; 2649 u32 totalhigh; 2650 u32 freehigh; 2651 u32 mem_unit; 2652 char _f[20-2*sizeof(u32)-sizeof(int)]; 2653 }; 2654 2655 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) 2656 { 2657 struct sysinfo s; 2658 struct compat_sysinfo s_32; 2659 2660 do_sysinfo(&s); 2661 2662 /* Check to see if any memory value is too large for 32-bit and scale 2663 * down if needed 2664 */ 2665 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { 2666 int bitcount = 0; 2667 2668 while (s.mem_unit < PAGE_SIZE) { 2669 s.mem_unit <<= 1; 2670 bitcount++; 2671 } 2672 2673 s.totalram >>= bitcount; 2674 s.freeram >>= bitcount; 2675 s.sharedram >>= bitcount; 2676 s.bufferram >>= bitcount; 2677 s.totalswap >>= bitcount; 2678 s.freeswap >>= bitcount; 2679 s.totalhigh >>= bitcount; 2680 s.freehigh >>= bitcount; 2681 } 2682 2683 memset(&s_32, 0, sizeof(s_32)); 2684 s_32.uptime = s.uptime; 2685 s_32.loads[0] = s.loads[0]; 2686 s_32.loads[1] = s.loads[1]; 2687 s_32.loads[2] = s.loads[2]; 2688 s_32.totalram = s.totalram; 2689 s_32.freeram = s.freeram; 2690 s_32.sharedram = s.sharedram; 2691 s_32.bufferram = s.bufferram; 2692 s_32.totalswap = s.totalswap; 2693 s_32.freeswap = s.freeswap; 2694 s_32.procs = s.procs; 2695 s_32.totalhigh = s.totalhigh; 2696 s_32.freehigh = s.freehigh; 2697 s_32.mem_unit = s.mem_unit; 2698 if (copy_to_user(info, &s_32, sizeof(s_32))) 2699 return -EFAULT; 2700 return 0; 2701 } 2702 #endif /* CONFIG_COMPAT */ 2703