1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 37 #include <linux/compat.h> 38 #include <linux/syscalls.h> 39 #include <linux/kprobes.h> 40 #include <linux/user_namespace.h> 41 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/unistd.h> 45 46 #ifndef SET_UNALIGN_CTL 47 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 48 #endif 49 #ifndef GET_UNALIGN_CTL 50 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 51 #endif 52 #ifndef SET_FPEMU_CTL 53 # define SET_FPEMU_CTL(a,b) (-EINVAL) 54 #endif 55 #ifndef GET_FPEMU_CTL 56 # define GET_FPEMU_CTL(a,b) (-EINVAL) 57 #endif 58 #ifndef SET_FPEXC_CTL 59 # define SET_FPEXC_CTL(a,b) (-EINVAL) 60 #endif 61 #ifndef GET_FPEXC_CTL 62 # define GET_FPEXC_CTL(a,b) (-EINVAL) 63 #endif 64 #ifndef GET_ENDIAN 65 # define GET_ENDIAN(a,b) (-EINVAL) 66 #endif 67 #ifndef SET_ENDIAN 68 # define SET_ENDIAN(a,b) (-EINVAL) 69 #endif 70 #ifndef GET_TSC_CTL 71 # define GET_TSC_CTL(a) (-EINVAL) 72 #endif 73 #ifndef SET_TSC_CTL 74 # define SET_TSC_CTL(a) (-EINVAL) 75 #endif 76 77 /* 78 * this is where the system-wide overflow UID and GID are defined, for 79 * architectures that now have 32-bit UID/GID but didn't in the past 80 */ 81 82 int overflowuid = DEFAULT_OVERFLOWUID; 83 int overflowgid = DEFAULT_OVERFLOWGID; 84 85 #ifdef CONFIG_UID16 86 EXPORT_SYMBOL(overflowuid); 87 EXPORT_SYMBOL(overflowgid); 88 #endif 89 90 /* 91 * the same as above, but for filesystems which can only store a 16-bit 92 * UID and GID. as such, this is needed on all architectures 93 */ 94 95 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 96 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 97 98 EXPORT_SYMBOL(fs_overflowuid); 99 EXPORT_SYMBOL(fs_overflowgid); 100 101 /* 102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 103 */ 104 105 int C_A_D = 1; 106 struct pid *cad_pid; 107 EXPORT_SYMBOL(cad_pid); 108 109 /* 110 * If set, this is used for preparing the system to power off. 111 */ 112 113 void (*pm_power_off_prepare)(void); 114 115 static int set_one_prio(struct task_struct *p, int niceval, int error) 116 { 117 int no_nice; 118 119 if (p->uid != current->euid && 120 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 121 error = -EPERM; 122 goto out; 123 } 124 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 125 error = -EACCES; 126 goto out; 127 } 128 no_nice = security_task_setnice(p, niceval); 129 if (no_nice) { 130 error = no_nice; 131 goto out; 132 } 133 if (error == -ESRCH) 134 error = 0; 135 set_user_nice(p, niceval); 136 out: 137 return error; 138 } 139 140 asmlinkage long sys_setpriority(int which, int who, int niceval) 141 { 142 struct task_struct *g, *p; 143 struct user_struct *user; 144 int error = -EINVAL; 145 struct pid *pgrp; 146 147 if (which > PRIO_USER || which < PRIO_PROCESS) 148 goto out; 149 150 /* normalize: avoid signed division (rounding problems) */ 151 error = -ESRCH; 152 if (niceval < -20) 153 niceval = -20; 154 if (niceval > 19) 155 niceval = 19; 156 157 read_lock(&tasklist_lock); 158 switch (which) { 159 case PRIO_PROCESS: 160 if (who) 161 p = find_task_by_vpid(who); 162 else 163 p = current; 164 if (p) 165 error = set_one_prio(p, niceval, error); 166 break; 167 case PRIO_PGRP: 168 if (who) 169 pgrp = find_vpid(who); 170 else 171 pgrp = task_pgrp(current); 172 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 173 error = set_one_prio(p, niceval, error); 174 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 175 break; 176 case PRIO_USER: 177 user = current->user; 178 if (!who) 179 who = current->uid; 180 else 181 if ((who != current->uid) && !(user = find_user(who))) 182 goto out_unlock; /* No processes for this user */ 183 184 do_each_thread(g, p) 185 if (p->uid == who) 186 error = set_one_prio(p, niceval, error); 187 while_each_thread(g, p); 188 if (who != current->uid) 189 free_uid(user); /* For find_user() */ 190 break; 191 } 192 out_unlock: 193 read_unlock(&tasklist_lock); 194 out: 195 return error; 196 } 197 198 /* 199 * Ugh. To avoid negative return values, "getpriority()" will 200 * not return the normal nice-value, but a negated value that 201 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 202 * to stay compatible. 203 */ 204 asmlinkage long sys_getpriority(int which, int who) 205 { 206 struct task_struct *g, *p; 207 struct user_struct *user; 208 long niceval, retval = -ESRCH; 209 struct pid *pgrp; 210 211 if (which > PRIO_USER || which < PRIO_PROCESS) 212 return -EINVAL; 213 214 read_lock(&tasklist_lock); 215 switch (which) { 216 case PRIO_PROCESS: 217 if (who) 218 p = find_task_by_vpid(who); 219 else 220 p = current; 221 if (p) { 222 niceval = 20 - task_nice(p); 223 if (niceval > retval) 224 retval = niceval; 225 } 226 break; 227 case PRIO_PGRP: 228 if (who) 229 pgrp = find_vpid(who); 230 else 231 pgrp = task_pgrp(current); 232 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 233 niceval = 20 - task_nice(p); 234 if (niceval > retval) 235 retval = niceval; 236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 237 break; 238 case PRIO_USER: 239 user = current->user; 240 if (!who) 241 who = current->uid; 242 else 243 if ((who != current->uid) && !(user = find_user(who))) 244 goto out_unlock; /* No processes for this user */ 245 246 do_each_thread(g, p) 247 if (p->uid == who) { 248 niceval = 20 - task_nice(p); 249 if (niceval > retval) 250 retval = niceval; 251 } 252 while_each_thread(g, p); 253 if (who != current->uid) 254 free_uid(user); /* for find_user() */ 255 break; 256 } 257 out_unlock: 258 read_unlock(&tasklist_lock); 259 260 return retval; 261 } 262 263 /** 264 * emergency_restart - reboot the system 265 * 266 * Without shutting down any hardware or taking any locks 267 * reboot the system. This is called when we know we are in 268 * trouble so this is our best effort to reboot. This is 269 * safe to call in interrupt context. 270 */ 271 void emergency_restart(void) 272 { 273 machine_emergency_restart(); 274 } 275 EXPORT_SYMBOL_GPL(emergency_restart); 276 277 static void kernel_restart_prepare(char *cmd) 278 { 279 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 280 system_state = SYSTEM_RESTART; 281 device_shutdown(); 282 sysdev_shutdown(); 283 } 284 285 /** 286 * kernel_restart - reboot the system 287 * @cmd: pointer to buffer containing command to execute for restart 288 * or %NULL 289 * 290 * Shutdown everything and perform a clean reboot. 291 * This is not safe to call in interrupt context. 292 */ 293 void kernel_restart(char *cmd) 294 { 295 kernel_restart_prepare(cmd); 296 if (!cmd) 297 printk(KERN_EMERG "Restarting system.\n"); 298 else 299 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 300 machine_restart(cmd); 301 } 302 EXPORT_SYMBOL_GPL(kernel_restart); 303 304 static void kernel_shutdown_prepare(enum system_states state) 305 { 306 blocking_notifier_call_chain(&reboot_notifier_list, 307 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 308 system_state = state; 309 device_shutdown(); 310 } 311 /** 312 * kernel_halt - halt the system 313 * 314 * Shutdown everything and perform a clean system halt. 315 */ 316 void kernel_halt(void) 317 { 318 kernel_shutdown_prepare(SYSTEM_HALT); 319 sysdev_shutdown(); 320 printk(KERN_EMERG "System halted.\n"); 321 machine_halt(); 322 } 323 324 EXPORT_SYMBOL_GPL(kernel_halt); 325 326 /** 327 * kernel_power_off - power_off the system 328 * 329 * Shutdown everything and perform a clean system power_off. 330 */ 331 void kernel_power_off(void) 332 { 333 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 334 if (pm_power_off_prepare) 335 pm_power_off_prepare(); 336 disable_nonboot_cpus(); 337 sysdev_shutdown(); 338 printk(KERN_EMERG "Power down.\n"); 339 machine_power_off(); 340 } 341 EXPORT_SYMBOL_GPL(kernel_power_off); 342 /* 343 * Reboot system call: for obvious reasons only root may call it, 344 * and even root needs to set up some magic numbers in the registers 345 * so that some mistake won't make this reboot the whole machine. 346 * You can also set the meaning of the ctrl-alt-del-key here. 347 * 348 * reboot doesn't sync: do that yourself before calling this. 349 */ 350 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 351 { 352 char buffer[256]; 353 354 /* We only trust the superuser with rebooting the system. */ 355 if (!capable(CAP_SYS_BOOT)) 356 return -EPERM; 357 358 /* For safety, we require "magic" arguments. */ 359 if (magic1 != LINUX_REBOOT_MAGIC1 || 360 (magic2 != LINUX_REBOOT_MAGIC2 && 361 magic2 != LINUX_REBOOT_MAGIC2A && 362 magic2 != LINUX_REBOOT_MAGIC2B && 363 magic2 != LINUX_REBOOT_MAGIC2C)) 364 return -EINVAL; 365 366 /* Instead of trying to make the power_off code look like 367 * halt when pm_power_off is not set do it the easy way. 368 */ 369 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 370 cmd = LINUX_REBOOT_CMD_HALT; 371 372 lock_kernel(); 373 switch (cmd) { 374 case LINUX_REBOOT_CMD_RESTART: 375 kernel_restart(NULL); 376 break; 377 378 case LINUX_REBOOT_CMD_CAD_ON: 379 C_A_D = 1; 380 break; 381 382 case LINUX_REBOOT_CMD_CAD_OFF: 383 C_A_D = 0; 384 break; 385 386 case LINUX_REBOOT_CMD_HALT: 387 kernel_halt(); 388 unlock_kernel(); 389 do_exit(0); 390 break; 391 392 case LINUX_REBOOT_CMD_POWER_OFF: 393 kernel_power_off(); 394 unlock_kernel(); 395 do_exit(0); 396 break; 397 398 case LINUX_REBOOT_CMD_RESTART2: 399 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 400 unlock_kernel(); 401 return -EFAULT; 402 } 403 buffer[sizeof(buffer) - 1] = '\0'; 404 405 kernel_restart(buffer); 406 break; 407 408 #ifdef CONFIG_KEXEC 409 case LINUX_REBOOT_CMD_KEXEC: 410 { 411 int ret; 412 ret = kernel_kexec(); 413 unlock_kernel(); 414 return ret; 415 } 416 #endif 417 418 #ifdef CONFIG_HIBERNATION 419 case LINUX_REBOOT_CMD_SW_SUSPEND: 420 { 421 int ret = hibernate(); 422 unlock_kernel(); 423 return ret; 424 } 425 #endif 426 427 default: 428 unlock_kernel(); 429 return -EINVAL; 430 } 431 unlock_kernel(); 432 return 0; 433 } 434 435 static void deferred_cad(struct work_struct *dummy) 436 { 437 kernel_restart(NULL); 438 } 439 440 /* 441 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 442 * As it's called within an interrupt, it may NOT sync: the only choice 443 * is whether to reboot at once, or just ignore the ctrl-alt-del. 444 */ 445 void ctrl_alt_del(void) 446 { 447 static DECLARE_WORK(cad_work, deferred_cad); 448 449 if (C_A_D) 450 schedule_work(&cad_work); 451 else 452 kill_cad_pid(SIGINT, 1); 453 } 454 455 /* 456 * Unprivileged users may change the real gid to the effective gid 457 * or vice versa. (BSD-style) 458 * 459 * If you set the real gid at all, or set the effective gid to a value not 460 * equal to the real gid, then the saved gid is set to the new effective gid. 461 * 462 * This makes it possible for a setgid program to completely drop its 463 * privileges, which is often a useful assertion to make when you are doing 464 * a security audit over a program. 465 * 466 * The general idea is that a program which uses just setregid() will be 467 * 100% compatible with BSD. A program which uses just setgid() will be 468 * 100% compatible with POSIX with saved IDs. 469 * 470 * SMP: There are not races, the GIDs are checked only by filesystem 471 * operations (as far as semantic preservation is concerned). 472 */ 473 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 474 { 475 int old_rgid = current->gid; 476 int old_egid = current->egid; 477 int new_rgid = old_rgid; 478 int new_egid = old_egid; 479 int retval; 480 481 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 482 if (retval) 483 return retval; 484 485 if (rgid != (gid_t) -1) { 486 if ((old_rgid == rgid) || 487 (current->egid==rgid) || 488 capable(CAP_SETGID)) 489 new_rgid = rgid; 490 else 491 return -EPERM; 492 } 493 if (egid != (gid_t) -1) { 494 if ((old_rgid == egid) || 495 (current->egid == egid) || 496 (current->sgid == egid) || 497 capable(CAP_SETGID)) 498 new_egid = egid; 499 else 500 return -EPERM; 501 } 502 if (new_egid != old_egid) { 503 set_dumpable(current->mm, suid_dumpable); 504 smp_wmb(); 505 } 506 if (rgid != (gid_t) -1 || 507 (egid != (gid_t) -1 && egid != old_rgid)) 508 current->sgid = new_egid; 509 current->fsgid = new_egid; 510 current->egid = new_egid; 511 current->gid = new_rgid; 512 key_fsgid_changed(current); 513 proc_id_connector(current, PROC_EVENT_GID); 514 return 0; 515 } 516 517 /* 518 * setgid() is implemented like SysV w/ SAVED_IDS 519 * 520 * SMP: Same implicit races as above. 521 */ 522 asmlinkage long sys_setgid(gid_t gid) 523 { 524 int old_egid = current->egid; 525 int retval; 526 527 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 528 if (retval) 529 return retval; 530 531 if (capable(CAP_SETGID)) { 532 if (old_egid != gid) { 533 set_dumpable(current->mm, suid_dumpable); 534 smp_wmb(); 535 } 536 current->gid = current->egid = current->sgid = current->fsgid = gid; 537 } else if ((gid == current->gid) || (gid == current->sgid)) { 538 if (old_egid != gid) { 539 set_dumpable(current->mm, suid_dumpable); 540 smp_wmb(); 541 } 542 current->egid = current->fsgid = gid; 543 } 544 else 545 return -EPERM; 546 547 key_fsgid_changed(current); 548 proc_id_connector(current, PROC_EVENT_GID); 549 return 0; 550 } 551 552 static int set_user(uid_t new_ruid, int dumpclear) 553 { 554 struct user_struct *new_user; 555 556 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid); 557 if (!new_user) 558 return -EAGAIN; 559 560 if (atomic_read(&new_user->processes) >= 561 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 562 new_user != current->nsproxy->user_ns->root_user) { 563 free_uid(new_user); 564 return -EAGAIN; 565 } 566 567 switch_uid(new_user); 568 569 if (dumpclear) { 570 set_dumpable(current->mm, suid_dumpable); 571 smp_wmb(); 572 } 573 current->uid = new_ruid; 574 return 0; 575 } 576 577 /* 578 * Unprivileged users may change the real uid to the effective uid 579 * or vice versa. (BSD-style) 580 * 581 * If you set the real uid at all, or set the effective uid to a value not 582 * equal to the real uid, then the saved uid is set to the new effective uid. 583 * 584 * This makes it possible for a setuid program to completely drop its 585 * privileges, which is often a useful assertion to make when you are doing 586 * a security audit over a program. 587 * 588 * The general idea is that a program which uses just setreuid() will be 589 * 100% compatible with BSD. A program which uses just setuid() will be 590 * 100% compatible with POSIX with saved IDs. 591 */ 592 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 593 { 594 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 595 int retval; 596 597 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 598 if (retval) 599 return retval; 600 601 new_ruid = old_ruid = current->uid; 602 new_euid = old_euid = current->euid; 603 old_suid = current->suid; 604 605 if (ruid != (uid_t) -1) { 606 new_ruid = ruid; 607 if ((old_ruid != ruid) && 608 (current->euid != ruid) && 609 !capable(CAP_SETUID)) 610 return -EPERM; 611 } 612 613 if (euid != (uid_t) -1) { 614 new_euid = euid; 615 if ((old_ruid != euid) && 616 (current->euid != euid) && 617 (current->suid != euid) && 618 !capable(CAP_SETUID)) 619 return -EPERM; 620 } 621 622 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 623 return -EAGAIN; 624 625 if (new_euid != old_euid) { 626 set_dumpable(current->mm, suid_dumpable); 627 smp_wmb(); 628 } 629 current->fsuid = current->euid = new_euid; 630 if (ruid != (uid_t) -1 || 631 (euid != (uid_t) -1 && euid != old_ruid)) 632 current->suid = current->euid; 633 current->fsuid = current->euid; 634 635 key_fsuid_changed(current); 636 proc_id_connector(current, PROC_EVENT_UID); 637 638 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 639 } 640 641 642 643 /* 644 * setuid() is implemented like SysV with SAVED_IDS 645 * 646 * Note that SAVED_ID's is deficient in that a setuid root program 647 * like sendmail, for example, cannot set its uid to be a normal 648 * user and then switch back, because if you're root, setuid() sets 649 * the saved uid too. If you don't like this, blame the bright people 650 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 651 * will allow a root program to temporarily drop privileges and be able to 652 * regain them by swapping the real and effective uid. 653 */ 654 asmlinkage long sys_setuid(uid_t uid) 655 { 656 int old_euid = current->euid; 657 int old_ruid, old_suid, new_suid; 658 int retval; 659 660 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 661 if (retval) 662 return retval; 663 664 old_ruid = current->uid; 665 old_suid = current->suid; 666 new_suid = old_suid; 667 668 if (capable(CAP_SETUID)) { 669 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 670 return -EAGAIN; 671 new_suid = uid; 672 } else if ((uid != current->uid) && (uid != new_suid)) 673 return -EPERM; 674 675 if (old_euid != uid) { 676 set_dumpable(current->mm, suid_dumpable); 677 smp_wmb(); 678 } 679 current->fsuid = current->euid = uid; 680 current->suid = new_suid; 681 682 key_fsuid_changed(current); 683 proc_id_connector(current, PROC_EVENT_UID); 684 685 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 686 } 687 688 689 /* 690 * This function implements a generic ability to update ruid, euid, 691 * and suid. This allows you to implement the 4.4 compatible seteuid(). 692 */ 693 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 694 { 695 int old_ruid = current->uid; 696 int old_euid = current->euid; 697 int old_suid = current->suid; 698 int retval; 699 700 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 701 if (retval) 702 return retval; 703 704 if (!capable(CAP_SETUID)) { 705 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 706 (ruid != current->euid) && (ruid != current->suid)) 707 return -EPERM; 708 if ((euid != (uid_t) -1) && (euid != current->uid) && 709 (euid != current->euid) && (euid != current->suid)) 710 return -EPERM; 711 if ((suid != (uid_t) -1) && (suid != current->uid) && 712 (suid != current->euid) && (suid != current->suid)) 713 return -EPERM; 714 } 715 if (ruid != (uid_t) -1) { 716 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 717 return -EAGAIN; 718 } 719 if (euid != (uid_t) -1) { 720 if (euid != current->euid) { 721 set_dumpable(current->mm, suid_dumpable); 722 smp_wmb(); 723 } 724 current->euid = euid; 725 } 726 current->fsuid = current->euid; 727 if (suid != (uid_t) -1) 728 current->suid = suid; 729 730 key_fsuid_changed(current); 731 proc_id_connector(current, PROC_EVENT_UID); 732 733 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 734 } 735 736 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 737 { 738 int retval; 739 740 if (!(retval = put_user(current->uid, ruid)) && 741 !(retval = put_user(current->euid, euid))) 742 retval = put_user(current->suid, suid); 743 744 return retval; 745 } 746 747 /* 748 * Same as above, but for rgid, egid, sgid. 749 */ 750 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 751 { 752 int retval; 753 754 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 755 if (retval) 756 return retval; 757 758 if (!capable(CAP_SETGID)) { 759 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 760 (rgid != current->egid) && (rgid != current->sgid)) 761 return -EPERM; 762 if ((egid != (gid_t) -1) && (egid != current->gid) && 763 (egid != current->egid) && (egid != current->sgid)) 764 return -EPERM; 765 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 766 (sgid != current->egid) && (sgid != current->sgid)) 767 return -EPERM; 768 } 769 if (egid != (gid_t) -1) { 770 if (egid != current->egid) { 771 set_dumpable(current->mm, suid_dumpable); 772 smp_wmb(); 773 } 774 current->egid = egid; 775 } 776 current->fsgid = current->egid; 777 if (rgid != (gid_t) -1) 778 current->gid = rgid; 779 if (sgid != (gid_t) -1) 780 current->sgid = sgid; 781 782 key_fsgid_changed(current); 783 proc_id_connector(current, PROC_EVENT_GID); 784 return 0; 785 } 786 787 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 788 { 789 int retval; 790 791 if (!(retval = put_user(current->gid, rgid)) && 792 !(retval = put_user(current->egid, egid))) 793 retval = put_user(current->sgid, sgid); 794 795 return retval; 796 } 797 798 799 /* 800 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 801 * is used for "access()" and for the NFS daemon (letting nfsd stay at 802 * whatever uid it wants to). It normally shadows "euid", except when 803 * explicitly set by setfsuid() or for access.. 804 */ 805 asmlinkage long sys_setfsuid(uid_t uid) 806 { 807 int old_fsuid; 808 809 old_fsuid = current->fsuid; 810 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 811 return old_fsuid; 812 813 if (uid == current->uid || uid == current->euid || 814 uid == current->suid || uid == current->fsuid || 815 capable(CAP_SETUID)) { 816 if (uid != old_fsuid) { 817 set_dumpable(current->mm, suid_dumpable); 818 smp_wmb(); 819 } 820 current->fsuid = uid; 821 } 822 823 key_fsuid_changed(current); 824 proc_id_connector(current, PROC_EVENT_UID); 825 826 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 827 828 return old_fsuid; 829 } 830 831 /* 832 * Samma på svenska.. 833 */ 834 asmlinkage long sys_setfsgid(gid_t gid) 835 { 836 int old_fsgid; 837 838 old_fsgid = current->fsgid; 839 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 840 return old_fsgid; 841 842 if (gid == current->gid || gid == current->egid || 843 gid == current->sgid || gid == current->fsgid || 844 capable(CAP_SETGID)) { 845 if (gid != old_fsgid) { 846 set_dumpable(current->mm, suid_dumpable); 847 smp_wmb(); 848 } 849 current->fsgid = gid; 850 key_fsgid_changed(current); 851 proc_id_connector(current, PROC_EVENT_GID); 852 } 853 return old_fsgid; 854 } 855 856 asmlinkage long sys_times(struct tms __user * tbuf) 857 { 858 /* 859 * In the SMP world we might just be unlucky and have one of 860 * the times increment as we use it. Since the value is an 861 * atomically safe type this is just fine. Conceptually its 862 * as if the syscall took an instant longer to occur. 863 */ 864 if (tbuf) { 865 struct tms tmp; 866 struct task_struct *tsk = current; 867 struct task_struct *t; 868 cputime_t utime, stime, cutime, cstime; 869 870 spin_lock_irq(&tsk->sighand->siglock); 871 utime = tsk->signal->utime; 872 stime = tsk->signal->stime; 873 t = tsk; 874 do { 875 utime = cputime_add(utime, t->utime); 876 stime = cputime_add(stime, t->stime); 877 t = next_thread(t); 878 } while (t != tsk); 879 880 cutime = tsk->signal->cutime; 881 cstime = tsk->signal->cstime; 882 spin_unlock_irq(&tsk->sighand->siglock); 883 884 tmp.tms_utime = cputime_to_clock_t(utime); 885 tmp.tms_stime = cputime_to_clock_t(stime); 886 tmp.tms_cutime = cputime_to_clock_t(cutime); 887 tmp.tms_cstime = cputime_to_clock_t(cstime); 888 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 889 return -EFAULT; 890 } 891 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 892 } 893 894 /* 895 * This needs some heavy checking ... 896 * I just haven't the stomach for it. I also don't fully 897 * understand sessions/pgrp etc. Let somebody who does explain it. 898 * 899 * OK, I think I have the protection semantics right.... this is really 900 * only important on a multi-user system anyway, to make sure one user 901 * can't send a signal to a process owned by another. -TYT, 12/12/91 902 * 903 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 904 * LBT 04.03.94 905 */ 906 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 907 { 908 struct task_struct *p; 909 struct task_struct *group_leader = current->group_leader; 910 struct pid *pgrp; 911 int err; 912 913 if (!pid) 914 pid = task_pid_vnr(group_leader); 915 if (!pgid) 916 pgid = pid; 917 if (pgid < 0) 918 return -EINVAL; 919 920 /* From this point forward we keep holding onto the tasklist lock 921 * so that our parent does not change from under us. -DaveM 922 */ 923 write_lock_irq(&tasklist_lock); 924 925 err = -ESRCH; 926 p = find_task_by_vpid(pid); 927 if (!p) 928 goto out; 929 930 err = -EINVAL; 931 if (!thread_group_leader(p)) 932 goto out; 933 934 if (same_thread_group(p->real_parent, group_leader)) { 935 err = -EPERM; 936 if (task_session(p) != task_session(group_leader)) 937 goto out; 938 err = -EACCES; 939 if (p->did_exec) 940 goto out; 941 } else { 942 err = -ESRCH; 943 if (p != group_leader) 944 goto out; 945 } 946 947 err = -EPERM; 948 if (p->signal->leader) 949 goto out; 950 951 pgrp = task_pid(p); 952 if (pgid != pid) { 953 struct task_struct *g; 954 955 pgrp = find_vpid(pgid); 956 g = pid_task(pgrp, PIDTYPE_PGID); 957 if (!g || task_session(g) != task_session(group_leader)) 958 goto out; 959 } 960 961 err = security_task_setpgid(p, pgid); 962 if (err) 963 goto out; 964 965 if (task_pgrp(p) != pgrp) { 966 change_pid(p, PIDTYPE_PGID, pgrp); 967 set_task_pgrp(p, pid_nr(pgrp)); 968 } 969 970 err = 0; 971 out: 972 /* All paths lead to here, thus we are safe. -DaveM */ 973 write_unlock_irq(&tasklist_lock); 974 return err; 975 } 976 977 asmlinkage long sys_getpgid(pid_t pid) 978 { 979 struct task_struct *p; 980 struct pid *grp; 981 int retval; 982 983 rcu_read_lock(); 984 if (!pid) 985 grp = task_pgrp(current); 986 else { 987 retval = -ESRCH; 988 p = find_task_by_vpid(pid); 989 if (!p) 990 goto out; 991 grp = task_pgrp(p); 992 if (!grp) 993 goto out; 994 995 retval = security_task_getpgid(p); 996 if (retval) 997 goto out; 998 } 999 retval = pid_vnr(grp); 1000 out: 1001 rcu_read_unlock(); 1002 return retval; 1003 } 1004 1005 #ifdef __ARCH_WANT_SYS_GETPGRP 1006 1007 asmlinkage long sys_getpgrp(void) 1008 { 1009 return sys_getpgid(0); 1010 } 1011 1012 #endif 1013 1014 asmlinkage long sys_getsid(pid_t pid) 1015 { 1016 struct task_struct *p; 1017 struct pid *sid; 1018 int retval; 1019 1020 rcu_read_lock(); 1021 if (!pid) 1022 sid = task_session(current); 1023 else { 1024 retval = -ESRCH; 1025 p = find_task_by_vpid(pid); 1026 if (!p) 1027 goto out; 1028 sid = task_session(p); 1029 if (!sid) 1030 goto out; 1031 1032 retval = security_task_getsid(p); 1033 if (retval) 1034 goto out; 1035 } 1036 retval = pid_vnr(sid); 1037 out: 1038 rcu_read_unlock(); 1039 return retval; 1040 } 1041 1042 asmlinkage long sys_setsid(void) 1043 { 1044 struct task_struct *group_leader = current->group_leader; 1045 struct pid *sid = task_pid(group_leader); 1046 pid_t session = pid_vnr(sid); 1047 int err = -EPERM; 1048 1049 write_lock_irq(&tasklist_lock); 1050 /* Fail if I am already a session leader */ 1051 if (group_leader->signal->leader) 1052 goto out; 1053 1054 /* Fail if a process group id already exists that equals the 1055 * proposed session id. 1056 */ 1057 if (pid_task(sid, PIDTYPE_PGID)) 1058 goto out; 1059 1060 group_leader->signal->leader = 1; 1061 __set_special_pids(sid); 1062 1063 spin_lock(&group_leader->sighand->siglock); 1064 group_leader->signal->tty = NULL; 1065 spin_unlock(&group_leader->sighand->siglock); 1066 1067 err = session; 1068 out: 1069 write_unlock_irq(&tasklist_lock); 1070 return err; 1071 } 1072 1073 /* 1074 * Supplementary group IDs 1075 */ 1076 1077 /* init to 2 - one for init_task, one to ensure it is never freed */ 1078 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1079 1080 struct group_info *groups_alloc(int gidsetsize) 1081 { 1082 struct group_info *group_info; 1083 int nblocks; 1084 int i; 1085 1086 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1087 /* Make sure we always allocate at least one indirect block pointer */ 1088 nblocks = nblocks ? : 1; 1089 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1090 if (!group_info) 1091 return NULL; 1092 group_info->ngroups = gidsetsize; 1093 group_info->nblocks = nblocks; 1094 atomic_set(&group_info->usage, 1); 1095 1096 if (gidsetsize <= NGROUPS_SMALL) 1097 group_info->blocks[0] = group_info->small_block; 1098 else { 1099 for (i = 0; i < nblocks; i++) { 1100 gid_t *b; 1101 b = (void *)__get_free_page(GFP_USER); 1102 if (!b) 1103 goto out_undo_partial_alloc; 1104 group_info->blocks[i] = b; 1105 } 1106 } 1107 return group_info; 1108 1109 out_undo_partial_alloc: 1110 while (--i >= 0) { 1111 free_page((unsigned long)group_info->blocks[i]); 1112 } 1113 kfree(group_info); 1114 return NULL; 1115 } 1116 1117 EXPORT_SYMBOL(groups_alloc); 1118 1119 void groups_free(struct group_info *group_info) 1120 { 1121 if (group_info->blocks[0] != group_info->small_block) { 1122 int i; 1123 for (i = 0; i < group_info->nblocks; i++) 1124 free_page((unsigned long)group_info->blocks[i]); 1125 } 1126 kfree(group_info); 1127 } 1128 1129 EXPORT_SYMBOL(groups_free); 1130 1131 /* export the group_info to a user-space array */ 1132 static int groups_to_user(gid_t __user *grouplist, 1133 struct group_info *group_info) 1134 { 1135 int i; 1136 unsigned int count = group_info->ngroups; 1137 1138 for (i = 0; i < group_info->nblocks; i++) { 1139 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1140 unsigned int len = cp_count * sizeof(*grouplist); 1141 1142 if (copy_to_user(grouplist, group_info->blocks[i], len)) 1143 return -EFAULT; 1144 1145 grouplist += NGROUPS_PER_BLOCK; 1146 count -= cp_count; 1147 } 1148 return 0; 1149 } 1150 1151 /* fill a group_info from a user-space array - it must be allocated already */ 1152 static int groups_from_user(struct group_info *group_info, 1153 gid_t __user *grouplist) 1154 { 1155 int i; 1156 unsigned int count = group_info->ngroups; 1157 1158 for (i = 0; i < group_info->nblocks; i++) { 1159 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1160 unsigned int len = cp_count * sizeof(*grouplist); 1161 1162 if (copy_from_user(group_info->blocks[i], grouplist, len)) 1163 return -EFAULT; 1164 1165 grouplist += NGROUPS_PER_BLOCK; 1166 count -= cp_count; 1167 } 1168 return 0; 1169 } 1170 1171 /* a simple Shell sort */ 1172 static void groups_sort(struct group_info *group_info) 1173 { 1174 int base, max, stride; 1175 int gidsetsize = group_info->ngroups; 1176 1177 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1178 ; /* nothing */ 1179 stride /= 3; 1180 1181 while (stride) { 1182 max = gidsetsize - stride; 1183 for (base = 0; base < max; base++) { 1184 int left = base; 1185 int right = left + stride; 1186 gid_t tmp = GROUP_AT(group_info, right); 1187 1188 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1189 GROUP_AT(group_info, right) = 1190 GROUP_AT(group_info, left); 1191 right = left; 1192 left -= stride; 1193 } 1194 GROUP_AT(group_info, right) = tmp; 1195 } 1196 stride /= 3; 1197 } 1198 } 1199 1200 /* a simple bsearch */ 1201 int groups_search(struct group_info *group_info, gid_t grp) 1202 { 1203 unsigned int left, right; 1204 1205 if (!group_info) 1206 return 0; 1207 1208 left = 0; 1209 right = group_info->ngroups; 1210 while (left < right) { 1211 unsigned int mid = (left+right)/2; 1212 int cmp = grp - GROUP_AT(group_info, mid); 1213 if (cmp > 0) 1214 left = mid + 1; 1215 else if (cmp < 0) 1216 right = mid; 1217 else 1218 return 1; 1219 } 1220 return 0; 1221 } 1222 1223 /* validate and set current->group_info */ 1224 int set_current_groups(struct group_info *group_info) 1225 { 1226 int retval; 1227 struct group_info *old_info; 1228 1229 retval = security_task_setgroups(group_info); 1230 if (retval) 1231 return retval; 1232 1233 groups_sort(group_info); 1234 get_group_info(group_info); 1235 1236 task_lock(current); 1237 old_info = current->group_info; 1238 current->group_info = group_info; 1239 task_unlock(current); 1240 1241 put_group_info(old_info); 1242 1243 return 0; 1244 } 1245 1246 EXPORT_SYMBOL(set_current_groups); 1247 1248 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1249 { 1250 int i = 0; 1251 1252 /* 1253 * SMP: Nobody else can change our grouplist. Thus we are 1254 * safe. 1255 */ 1256 1257 if (gidsetsize < 0) 1258 return -EINVAL; 1259 1260 /* no need to grab task_lock here; it cannot change */ 1261 i = current->group_info->ngroups; 1262 if (gidsetsize) { 1263 if (i > gidsetsize) { 1264 i = -EINVAL; 1265 goto out; 1266 } 1267 if (groups_to_user(grouplist, current->group_info)) { 1268 i = -EFAULT; 1269 goto out; 1270 } 1271 } 1272 out: 1273 return i; 1274 } 1275 1276 /* 1277 * SMP: Our groups are copy-on-write. We can set them safely 1278 * without another task interfering. 1279 */ 1280 1281 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1282 { 1283 struct group_info *group_info; 1284 int retval; 1285 1286 if (!capable(CAP_SETGID)) 1287 return -EPERM; 1288 if ((unsigned)gidsetsize > NGROUPS_MAX) 1289 return -EINVAL; 1290 1291 group_info = groups_alloc(gidsetsize); 1292 if (!group_info) 1293 return -ENOMEM; 1294 retval = groups_from_user(group_info, grouplist); 1295 if (retval) { 1296 put_group_info(group_info); 1297 return retval; 1298 } 1299 1300 retval = set_current_groups(group_info); 1301 put_group_info(group_info); 1302 1303 return retval; 1304 } 1305 1306 /* 1307 * Check whether we're fsgid/egid or in the supplemental group.. 1308 */ 1309 int in_group_p(gid_t grp) 1310 { 1311 int retval = 1; 1312 if (grp != current->fsgid) 1313 retval = groups_search(current->group_info, grp); 1314 return retval; 1315 } 1316 1317 EXPORT_SYMBOL(in_group_p); 1318 1319 int in_egroup_p(gid_t grp) 1320 { 1321 int retval = 1; 1322 if (grp != current->egid) 1323 retval = groups_search(current->group_info, grp); 1324 return retval; 1325 } 1326 1327 EXPORT_SYMBOL(in_egroup_p); 1328 1329 DECLARE_RWSEM(uts_sem); 1330 1331 asmlinkage long sys_newuname(struct new_utsname __user * name) 1332 { 1333 int errno = 0; 1334 1335 down_read(&uts_sem); 1336 if (copy_to_user(name, utsname(), sizeof *name)) 1337 errno = -EFAULT; 1338 up_read(&uts_sem); 1339 return errno; 1340 } 1341 1342 asmlinkage long sys_sethostname(char __user *name, int len) 1343 { 1344 int errno; 1345 char tmp[__NEW_UTS_LEN]; 1346 1347 if (!capable(CAP_SYS_ADMIN)) 1348 return -EPERM; 1349 if (len < 0 || len > __NEW_UTS_LEN) 1350 return -EINVAL; 1351 down_write(&uts_sem); 1352 errno = -EFAULT; 1353 if (!copy_from_user(tmp, name, len)) { 1354 memcpy(utsname()->nodename, tmp, len); 1355 utsname()->nodename[len] = 0; 1356 errno = 0; 1357 } 1358 up_write(&uts_sem); 1359 return errno; 1360 } 1361 1362 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1363 1364 asmlinkage long sys_gethostname(char __user *name, int len) 1365 { 1366 int i, errno; 1367 1368 if (len < 0) 1369 return -EINVAL; 1370 down_read(&uts_sem); 1371 i = 1 + strlen(utsname()->nodename); 1372 if (i > len) 1373 i = len; 1374 errno = 0; 1375 if (copy_to_user(name, utsname()->nodename, i)) 1376 errno = -EFAULT; 1377 up_read(&uts_sem); 1378 return errno; 1379 } 1380 1381 #endif 1382 1383 /* 1384 * Only setdomainname; getdomainname can be implemented by calling 1385 * uname() 1386 */ 1387 asmlinkage long sys_setdomainname(char __user *name, int len) 1388 { 1389 int errno; 1390 char tmp[__NEW_UTS_LEN]; 1391 1392 if (!capable(CAP_SYS_ADMIN)) 1393 return -EPERM; 1394 if (len < 0 || len > __NEW_UTS_LEN) 1395 return -EINVAL; 1396 1397 down_write(&uts_sem); 1398 errno = -EFAULT; 1399 if (!copy_from_user(tmp, name, len)) { 1400 memcpy(utsname()->domainname, tmp, len); 1401 utsname()->domainname[len] = 0; 1402 errno = 0; 1403 } 1404 up_write(&uts_sem); 1405 return errno; 1406 } 1407 1408 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1409 { 1410 if (resource >= RLIM_NLIMITS) 1411 return -EINVAL; 1412 else { 1413 struct rlimit value; 1414 task_lock(current->group_leader); 1415 value = current->signal->rlim[resource]; 1416 task_unlock(current->group_leader); 1417 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1418 } 1419 } 1420 1421 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1422 1423 /* 1424 * Back compatibility for getrlimit. Needed for some apps. 1425 */ 1426 1427 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1428 { 1429 struct rlimit x; 1430 if (resource >= RLIM_NLIMITS) 1431 return -EINVAL; 1432 1433 task_lock(current->group_leader); 1434 x = current->signal->rlim[resource]; 1435 task_unlock(current->group_leader); 1436 if (x.rlim_cur > 0x7FFFFFFF) 1437 x.rlim_cur = 0x7FFFFFFF; 1438 if (x.rlim_max > 0x7FFFFFFF) 1439 x.rlim_max = 0x7FFFFFFF; 1440 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1441 } 1442 1443 #endif 1444 1445 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1446 { 1447 struct rlimit new_rlim, *old_rlim; 1448 unsigned long it_prof_secs; 1449 int retval; 1450 1451 if (resource >= RLIM_NLIMITS) 1452 return -EINVAL; 1453 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1454 return -EFAULT; 1455 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1456 return -EINVAL; 1457 old_rlim = current->signal->rlim + resource; 1458 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1459 !capable(CAP_SYS_RESOURCE)) 1460 return -EPERM; 1461 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open) 1462 return -EPERM; 1463 1464 retval = security_task_setrlimit(resource, &new_rlim); 1465 if (retval) 1466 return retval; 1467 1468 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) { 1469 /* 1470 * The caller is asking for an immediate RLIMIT_CPU 1471 * expiry. But we use the zero value to mean "it was 1472 * never set". So let's cheat and make it one second 1473 * instead 1474 */ 1475 new_rlim.rlim_cur = 1; 1476 } 1477 1478 task_lock(current->group_leader); 1479 *old_rlim = new_rlim; 1480 task_unlock(current->group_leader); 1481 1482 if (resource != RLIMIT_CPU) 1483 goto out; 1484 1485 /* 1486 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1487 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1488 * very long-standing error, and fixing it now risks breakage of 1489 * applications, so we live with it 1490 */ 1491 if (new_rlim.rlim_cur == RLIM_INFINITY) 1492 goto out; 1493 1494 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 1495 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { 1496 unsigned long rlim_cur = new_rlim.rlim_cur; 1497 cputime_t cputime; 1498 1499 cputime = secs_to_cputime(rlim_cur); 1500 read_lock(&tasklist_lock); 1501 spin_lock_irq(¤t->sighand->siglock); 1502 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 1503 spin_unlock_irq(¤t->sighand->siglock); 1504 read_unlock(&tasklist_lock); 1505 } 1506 out: 1507 return 0; 1508 } 1509 1510 /* 1511 * It would make sense to put struct rusage in the task_struct, 1512 * except that would make the task_struct be *really big*. After 1513 * task_struct gets moved into malloc'ed memory, it would 1514 * make sense to do this. It will make moving the rest of the information 1515 * a lot simpler! (Which we're not doing right now because we're not 1516 * measuring them yet). 1517 * 1518 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1519 * races with threads incrementing their own counters. But since word 1520 * reads are atomic, we either get new values or old values and we don't 1521 * care which for the sums. We always take the siglock to protect reading 1522 * the c* fields from p->signal from races with exit.c updating those 1523 * fields when reaping, so a sample either gets all the additions of a 1524 * given child after it's reaped, or none so this sample is before reaping. 1525 * 1526 * Locking: 1527 * We need to take the siglock for CHILDEREN, SELF and BOTH 1528 * for the cases current multithreaded, non-current single threaded 1529 * non-current multithreaded. Thread traversal is now safe with 1530 * the siglock held. 1531 * Strictly speaking, we donot need to take the siglock if we are current and 1532 * single threaded, as no one else can take our signal_struct away, no one 1533 * else can reap the children to update signal->c* counters, and no one else 1534 * can race with the signal-> fields. If we do not take any lock, the 1535 * signal-> fields could be read out of order while another thread was just 1536 * exiting. So we should place a read memory barrier when we avoid the lock. 1537 * On the writer side, write memory barrier is implied in __exit_signal 1538 * as __exit_signal releases the siglock spinlock after updating the signal-> 1539 * fields. But we don't do this yet to keep things simple. 1540 * 1541 */ 1542 1543 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r, 1544 cputime_t *utimep, cputime_t *stimep) 1545 { 1546 *utimep = cputime_add(*utimep, t->utime); 1547 *stimep = cputime_add(*stimep, t->stime); 1548 r->ru_nvcsw += t->nvcsw; 1549 r->ru_nivcsw += t->nivcsw; 1550 r->ru_minflt += t->min_flt; 1551 r->ru_majflt += t->maj_flt; 1552 r->ru_inblock += task_io_get_inblock(t); 1553 r->ru_oublock += task_io_get_oublock(t); 1554 } 1555 1556 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1557 { 1558 struct task_struct *t; 1559 unsigned long flags; 1560 cputime_t utime, stime; 1561 1562 memset((char *) r, 0, sizeof *r); 1563 utime = stime = cputime_zero; 1564 1565 if (who == RUSAGE_THREAD) { 1566 accumulate_thread_rusage(p, r, &utime, &stime); 1567 goto out; 1568 } 1569 1570 if (!lock_task_sighand(p, &flags)) 1571 return; 1572 1573 switch (who) { 1574 case RUSAGE_BOTH: 1575 case RUSAGE_CHILDREN: 1576 utime = p->signal->cutime; 1577 stime = p->signal->cstime; 1578 r->ru_nvcsw = p->signal->cnvcsw; 1579 r->ru_nivcsw = p->signal->cnivcsw; 1580 r->ru_minflt = p->signal->cmin_flt; 1581 r->ru_majflt = p->signal->cmaj_flt; 1582 r->ru_inblock = p->signal->cinblock; 1583 r->ru_oublock = p->signal->coublock; 1584 1585 if (who == RUSAGE_CHILDREN) 1586 break; 1587 1588 case RUSAGE_SELF: 1589 utime = cputime_add(utime, p->signal->utime); 1590 stime = cputime_add(stime, p->signal->stime); 1591 r->ru_nvcsw += p->signal->nvcsw; 1592 r->ru_nivcsw += p->signal->nivcsw; 1593 r->ru_minflt += p->signal->min_flt; 1594 r->ru_majflt += p->signal->maj_flt; 1595 r->ru_inblock += p->signal->inblock; 1596 r->ru_oublock += p->signal->oublock; 1597 t = p; 1598 do { 1599 accumulate_thread_rusage(t, r, &utime, &stime); 1600 t = next_thread(t); 1601 } while (t != p); 1602 break; 1603 1604 default: 1605 BUG(); 1606 } 1607 unlock_task_sighand(p, &flags); 1608 1609 out: 1610 cputime_to_timeval(utime, &r->ru_utime); 1611 cputime_to_timeval(stime, &r->ru_stime); 1612 } 1613 1614 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1615 { 1616 struct rusage r; 1617 k_getrusage(p, who, &r); 1618 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1619 } 1620 1621 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1622 { 1623 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1624 who != RUSAGE_THREAD) 1625 return -EINVAL; 1626 return getrusage(current, who, ru); 1627 } 1628 1629 asmlinkage long sys_umask(int mask) 1630 { 1631 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1632 return mask; 1633 } 1634 1635 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1636 unsigned long arg4, unsigned long arg5) 1637 { 1638 long error = 0; 1639 1640 if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error)) 1641 return error; 1642 1643 switch (option) { 1644 case PR_SET_PDEATHSIG: 1645 if (!valid_signal(arg2)) { 1646 error = -EINVAL; 1647 break; 1648 } 1649 current->pdeath_signal = arg2; 1650 break; 1651 case PR_GET_PDEATHSIG: 1652 error = put_user(current->pdeath_signal, (int __user *)arg2); 1653 break; 1654 case PR_GET_DUMPABLE: 1655 error = get_dumpable(current->mm); 1656 break; 1657 case PR_SET_DUMPABLE: 1658 if (arg2 < 0 || arg2 > 1) { 1659 error = -EINVAL; 1660 break; 1661 } 1662 set_dumpable(current->mm, arg2); 1663 break; 1664 1665 case PR_SET_UNALIGN: 1666 error = SET_UNALIGN_CTL(current, arg2); 1667 break; 1668 case PR_GET_UNALIGN: 1669 error = GET_UNALIGN_CTL(current, arg2); 1670 break; 1671 case PR_SET_FPEMU: 1672 error = SET_FPEMU_CTL(current, arg2); 1673 break; 1674 case PR_GET_FPEMU: 1675 error = GET_FPEMU_CTL(current, arg2); 1676 break; 1677 case PR_SET_FPEXC: 1678 error = SET_FPEXC_CTL(current, arg2); 1679 break; 1680 case PR_GET_FPEXC: 1681 error = GET_FPEXC_CTL(current, arg2); 1682 break; 1683 case PR_GET_TIMING: 1684 error = PR_TIMING_STATISTICAL; 1685 break; 1686 case PR_SET_TIMING: 1687 if (arg2 != PR_TIMING_STATISTICAL) 1688 error = -EINVAL; 1689 break; 1690 1691 case PR_SET_NAME: { 1692 struct task_struct *me = current; 1693 unsigned char ncomm[sizeof(me->comm)]; 1694 1695 ncomm[sizeof(me->comm)-1] = 0; 1696 if (strncpy_from_user(ncomm, (char __user *)arg2, 1697 sizeof(me->comm)-1) < 0) 1698 return -EFAULT; 1699 set_task_comm(me, ncomm); 1700 return 0; 1701 } 1702 case PR_GET_NAME: { 1703 struct task_struct *me = current; 1704 unsigned char tcomm[sizeof(me->comm)]; 1705 1706 get_task_comm(tcomm, me); 1707 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1708 return -EFAULT; 1709 return 0; 1710 } 1711 case PR_GET_ENDIAN: 1712 error = GET_ENDIAN(current, arg2); 1713 break; 1714 case PR_SET_ENDIAN: 1715 error = SET_ENDIAN(current, arg2); 1716 break; 1717 1718 case PR_GET_SECCOMP: 1719 error = prctl_get_seccomp(); 1720 break; 1721 case PR_SET_SECCOMP: 1722 error = prctl_set_seccomp(arg2); 1723 break; 1724 case PR_GET_TSC: 1725 error = GET_TSC_CTL(arg2); 1726 break; 1727 case PR_SET_TSC: 1728 error = SET_TSC_CTL(arg2); 1729 break; 1730 default: 1731 error = -EINVAL; 1732 break; 1733 } 1734 return error; 1735 } 1736 1737 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep, 1738 struct getcpu_cache __user *unused) 1739 { 1740 int err = 0; 1741 int cpu = raw_smp_processor_id(); 1742 if (cpup) 1743 err |= put_user(cpu, cpup); 1744 if (nodep) 1745 err |= put_user(cpu_to_node(cpu), nodep); 1746 return err ? -EFAULT : 0; 1747 } 1748 1749 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1750 1751 static void argv_cleanup(char **argv, char **envp) 1752 { 1753 argv_free(argv); 1754 } 1755 1756 /** 1757 * orderly_poweroff - Trigger an orderly system poweroff 1758 * @force: force poweroff if command execution fails 1759 * 1760 * This may be called from any context to trigger a system shutdown. 1761 * If the orderly shutdown fails, it will force an immediate shutdown. 1762 */ 1763 int orderly_poweroff(bool force) 1764 { 1765 int argc; 1766 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1767 static char *envp[] = { 1768 "HOME=/", 1769 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1770 NULL 1771 }; 1772 int ret = -ENOMEM; 1773 struct subprocess_info *info; 1774 1775 if (argv == NULL) { 1776 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1777 __func__, poweroff_cmd); 1778 goto out; 1779 } 1780 1781 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 1782 if (info == NULL) { 1783 argv_free(argv); 1784 goto out; 1785 } 1786 1787 call_usermodehelper_setcleanup(info, argv_cleanup); 1788 1789 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1790 1791 out: 1792 if (ret && force) { 1793 printk(KERN_WARNING "Failed to start orderly shutdown: " 1794 "forcing the issue\n"); 1795 1796 /* I guess this should try to kick off some daemon to 1797 sync and poweroff asap. Or not even bother syncing 1798 if we're doing an emergency shutdown? */ 1799 emergency_sync(); 1800 kernel_power_off(); 1801 } 1802 1803 return ret; 1804 } 1805 EXPORT_SYMBOL_GPL(orderly_poweroff); 1806