1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/notifier.h> 12 #include <linux/reboot.h> 13 #include <linux/prctl.h> 14 #include <linux/highuid.h> 15 #include <linux/fs.h> 16 #include <linux/perf_event.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/gfp.h> 40 #include <linux/syscore_ops.h> 41 42 #include <linux/compat.h> 43 #include <linux/syscalls.h> 44 #include <linux/kprobes.h> 45 #include <linux/user_namespace.h> 46 47 #include <linux/kmsg_dump.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/io.h> 51 #include <asm/unistd.h> 52 53 #ifndef SET_UNALIGN_CTL 54 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 55 #endif 56 #ifndef GET_UNALIGN_CTL 57 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 58 #endif 59 #ifndef SET_FPEMU_CTL 60 # define SET_FPEMU_CTL(a,b) (-EINVAL) 61 #endif 62 #ifndef GET_FPEMU_CTL 63 # define GET_FPEMU_CTL(a,b) (-EINVAL) 64 #endif 65 #ifndef SET_FPEXC_CTL 66 # define SET_FPEXC_CTL(a,b) (-EINVAL) 67 #endif 68 #ifndef GET_FPEXC_CTL 69 # define GET_FPEXC_CTL(a,b) (-EINVAL) 70 #endif 71 #ifndef GET_ENDIAN 72 # define GET_ENDIAN(a,b) (-EINVAL) 73 #endif 74 #ifndef SET_ENDIAN 75 # define SET_ENDIAN(a,b) (-EINVAL) 76 #endif 77 #ifndef GET_TSC_CTL 78 # define GET_TSC_CTL(a) (-EINVAL) 79 #endif 80 #ifndef SET_TSC_CTL 81 # define SET_TSC_CTL(a) (-EINVAL) 82 #endif 83 84 /* 85 * this is where the system-wide overflow UID and GID are defined, for 86 * architectures that now have 32-bit UID/GID but didn't in the past 87 */ 88 89 int overflowuid = DEFAULT_OVERFLOWUID; 90 int overflowgid = DEFAULT_OVERFLOWGID; 91 92 #ifdef CONFIG_UID16 93 EXPORT_SYMBOL(overflowuid); 94 EXPORT_SYMBOL(overflowgid); 95 #endif 96 97 /* 98 * the same as above, but for filesystems which can only store a 16-bit 99 * UID and GID. as such, this is needed on all architectures 100 */ 101 102 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 103 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 104 105 EXPORT_SYMBOL(fs_overflowuid); 106 EXPORT_SYMBOL(fs_overflowgid); 107 108 /* 109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 110 */ 111 112 int C_A_D = 1; 113 struct pid *cad_pid; 114 EXPORT_SYMBOL(cad_pid); 115 116 /* 117 * If set, this is used for preparing the system to power off. 118 */ 119 120 void (*pm_power_off_prepare)(void); 121 122 /* 123 * Returns true if current's euid is same as p's uid or euid, 124 * or has CAP_SYS_NICE to p's user_ns. 125 * 126 * Called with rcu_read_lock, creds are safe 127 */ 128 static bool set_one_prio_perm(struct task_struct *p) 129 { 130 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 131 132 if (pcred->user->user_ns == cred->user->user_ns && 133 (pcred->uid == cred->euid || 134 pcred->euid == cred->euid)) 135 return true; 136 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE)) 137 return true; 138 return false; 139 } 140 141 /* 142 * set the priority of a task 143 * - the caller must hold the RCU read lock 144 */ 145 static int set_one_prio(struct task_struct *p, int niceval, int error) 146 { 147 int no_nice; 148 149 if (!set_one_prio_perm(p)) { 150 error = -EPERM; 151 goto out; 152 } 153 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 154 error = -EACCES; 155 goto out; 156 } 157 no_nice = security_task_setnice(p, niceval); 158 if (no_nice) { 159 error = no_nice; 160 goto out; 161 } 162 if (error == -ESRCH) 163 error = 0; 164 set_user_nice(p, niceval); 165 out: 166 return error; 167 } 168 169 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 170 { 171 struct task_struct *g, *p; 172 struct user_struct *user; 173 const struct cred *cred = current_cred(); 174 int error = -EINVAL; 175 struct pid *pgrp; 176 177 if (which > PRIO_USER || which < PRIO_PROCESS) 178 goto out; 179 180 /* normalize: avoid signed division (rounding problems) */ 181 error = -ESRCH; 182 if (niceval < -20) 183 niceval = -20; 184 if (niceval > 19) 185 niceval = 19; 186 187 rcu_read_lock(); 188 read_lock(&tasklist_lock); 189 switch (which) { 190 case PRIO_PROCESS: 191 if (who) 192 p = find_task_by_vpid(who); 193 else 194 p = current; 195 if (p) 196 error = set_one_prio(p, niceval, error); 197 break; 198 case PRIO_PGRP: 199 if (who) 200 pgrp = find_vpid(who); 201 else 202 pgrp = task_pgrp(current); 203 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 204 error = set_one_prio(p, niceval, error); 205 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 206 break; 207 case PRIO_USER: 208 user = (struct user_struct *) cred->user; 209 if (!who) 210 who = cred->uid; 211 else if ((who != cred->uid) && 212 !(user = find_user(who))) 213 goto out_unlock; /* No processes for this user */ 214 215 do_each_thread(g, p) { 216 if (__task_cred(p)->uid == who) 217 error = set_one_prio(p, niceval, error); 218 } while_each_thread(g, p); 219 if (who != cred->uid) 220 free_uid(user); /* For find_user() */ 221 break; 222 } 223 out_unlock: 224 read_unlock(&tasklist_lock); 225 rcu_read_unlock(); 226 out: 227 return error; 228 } 229 230 /* 231 * Ugh. To avoid negative return values, "getpriority()" will 232 * not return the normal nice-value, but a negated value that 233 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 234 * to stay compatible. 235 */ 236 SYSCALL_DEFINE2(getpriority, int, which, int, who) 237 { 238 struct task_struct *g, *p; 239 struct user_struct *user; 240 const struct cred *cred = current_cred(); 241 long niceval, retval = -ESRCH; 242 struct pid *pgrp; 243 244 if (which > PRIO_USER || which < PRIO_PROCESS) 245 return -EINVAL; 246 247 rcu_read_lock(); 248 read_lock(&tasklist_lock); 249 switch (which) { 250 case PRIO_PROCESS: 251 if (who) 252 p = find_task_by_vpid(who); 253 else 254 p = current; 255 if (p) { 256 niceval = 20 - task_nice(p); 257 if (niceval > retval) 258 retval = niceval; 259 } 260 break; 261 case PRIO_PGRP: 262 if (who) 263 pgrp = find_vpid(who); 264 else 265 pgrp = task_pgrp(current); 266 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 267 niceval = 20 - task_nice(p); 268 if (niceval > retval) 269 retval = niceval; 270 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 271 break; 272 case PRIO_USER: 273 user = (struct user_struct *) cred->user; 274 if (!who) 275 who = cred->uid; 276 else if ((who != cred->uid) && 277 !(user = find_user(who))) 278 goto out_unlock; /* No processes for this user */ 279 280 do_each_thread(g, p) { 281 if (__task_cred(p)->uid == who) { 282 niceval = 20 - task_nice(p); 283 if (niceval > retval) 284 retval = niceval; 285 } 286 } while_each_thread(g, p); 287 if (who != cred->uid) 288 free_uid(user); /* for find_user() */ 289 break; 290 } 291 out_unlock: 292 read_unlock(&tasklist_lock); 293 rcu_read_unlock(); 294 295 return retval; 296 } 297 298 /** 299 * emergency_restart - reboot the system 300 * 301 * Without shutting down any hardware or taking any locks 302 * reboot the system. This is called when we know we are in 303 * trouble so this is our best effort to reboot. This is 304 * safe to call in interrupt context. 305 */ 306 void emergency_restart(void) 307 { 308 kmsg_dump(KMSG_DUMP_EMERG); 309 machine_emergency_restart(); 310 } 311 EXPORT_SYMBOL_GPL(emergency_restart); 312 313 void kernel_restart_prepare(char *cmd) 314 { 315 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 316 system_state = SYSTEM_RESTART; 317 usermodehelper_disable(); 318 device_shutdown(); 319 syscore_shutdown(); 320 } 321 322 /** 323 * kernel_restart - reboot the system 324 * @cmd: pointer to buffer containing command to execute for restart 325 * or %NULL 326 * 327 * Shutdown everything and perform a clean reboot. 328 * This is not safe to call in interrupt context. 329 */ 330 void kernel_restart(char *cmd) 331 { 332 kernel_restart_prepare(cmd); 333 if (!cmd) 334 printk(KERN_EMERG "Restarting system.\n"); 335 else 336 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 337 kmsg_dump(KMSG_DUMP_RESTART); 338 machine_restart(cmd); 339 } 340 EXPORT_SYMBOL_GPL(kernel_restart); 341 342 static void kernel_shutdown_prepare(enum system_states state) 343 { 344 blocking_notifier_call_chain(&reboot_notifier_list, 345 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 346 system_state = state; 347 usermodehelper_disable(); 348 device_shutdown(); 349 } 350 /** 351 * kernel_halt - halt the system 352 * 353 * Shutdown everything and perform a clean system halt. 354 */ 355 void kernel_halt(void) 356 { 357 kernel_shutdown_prepare(SYSTEM_HALT); 358 syscore_shutdown(); 359 printk(KERN_EMERG "System halted.\n"); 360 kmsg_dump(KMSG_DUMP_HALT); 361 machine_halt(); 362 } 363 364 EXPORT_SYMBOL_GPL(kernel_halt); 365 366 /** 367 * kernel_power_off - power_off the system 368 * 369 * Shutdown everything and perform a clean system power_off. 370 */ 371 void kernel_power_off(void) 372 { 373 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 374 if (pm_power_off_prepare) 375 pm_power_off_prepare(); 376 disable_nonboot_cpus(); 377 syscore_shutdown(); 378 printk(KERN_EMERG "Power down.\n"); 379 kmsg_dump(KMSG_DUMP_POWEROFF); 380 machine_power_off(); 381 } 382 EXPORT_SYMBOL_GPL(kernel_power_off); 383 384 static DEFINE_MUTEX(reboot_mutex); 385 386 /* 387 * Reboot system call: for obvious reasons only root may call it, 388 * and even root needs to set up some magic numbers in the registers 389 * so that some mistake won't make this reboot the whole machine. 390 * You can also set the meaning of the ctrl-alt-del-key here. 391 * 392 * reboot doesn't sync: do that yourself before calling this. 393 */ 394 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, 395 void __user *, arg) 396 { 397 char buffer[256]; 398 int ret = 0; 399 400 /* We only trust the superuser with rebooting the system. */ 401 if (!capable(CAP_SYS_BOOT)) 402 return -EPERM; 403 404 /* For safety, we require "magic" arguments. */ 405 if (magic1 != LINUX_REBOOT_MAGIC1 || 406 (magic2 != LINUX_REBOOT_MAGIC2 && 407 magic2 != LINUX_REBOOT_MAGIC2A && 408 magic2 != LINUX_REBOOT_MAGIC2B && 409 magic2 != LINUX_REBOOT_MAGIC2C)) 410 return -EINVAL; 411 412 /* Instead of trying to make the power_off code look like 413 * halt when pm_power_off is not set do it the easy way. 414 */ 415 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 416 cmd = LINUX_REBOOT_CMD_HALT; 417 418 mutex_lock(&reboot_mutex); 419 switch (cmd) { 420 case LINUX_REBOOT_CMD_RESTART: 421 kernel_restart(NULL); 422 break; 423 424 case LINUX_REBOOT_CMD_CAD_ON: 425 C_A_D = 1; 426 break; 427 428 case LINUX_REBOOT_CMD_CAD_OFF: 429 C_A_D = 0; 430 break; 431 432 case LINUX_REBOOT_CMD_HALT: 433 kernel_halt(); 434 do_exit(0); 435 panic("cannot halt"); 436 437 case LINUX_REBOOT_CMD_POWER_OFF: 438 kernel_power_off(); 439 do_exit(0); 440 break; 441 442 case LINUX_REBOOT_CMD_RESTART2: 443 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 444 ret = -EFAULT; 445 break; 446 } 447 buffer[sizeof(buffer) - 1] = '\0'; 448 449 kernel_restart(buffer); 450 break; 451 452 #ifdef CONFIG_KEXEC 453 case LINUX_REBOOT_CMD_KEXEC: 454 ret = kernel_kexec(); 455 break; 456 #endif 457 458 #ifdef CONFIG_HIBERNATION 459 case LINUX_REBOOT_CMD_SW_SUSPEND: 460 ret = hibernate(); 461 break; 462 #endif 463 464 default: 465 ret = -EINVAL; 466 break; 467 } 468 mutex_unlock(&reboot_mutex); 469 return ret; 470 } 471 472 static void deferred_cad(struct work_struct *dummy) 473 { 474 kernel_restart(NULL); 475 } 476 477 /* 478 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 479 * As it's called within an interrupt, it may NOT sync: the only choice 480 * is whether to reboot at once, or just ignore the ctrl-alt-del. 481 */ 482 void ctrl_alt_del(void) 483 { 484 static DECLARE_WORK(cad_work, deferred_cad); 485 486 if (C_A_D) 487 schedule_work(&cad_work); 488 else 489 kill_cad_pid(SIGINT, 1); 490 } 491 492 /* 493 * Unprivileged users may change the real gid to the effective gid 494 * or vice versa. (BSD-style) 495 * 496 * If you set the real gid at all, or set the effective gid to a value not 497 * equal to the real gid, then the saved gid is set to the new effective gid. 498 * 499 * This makes it possible for a setgid program to completely drop its 500 * privileges, which is often a useful assertion to make when you are doing 501 * a security audit over a program. 502 * 503 * The general idea is that a program which uses just setregid() will be 504 * 100% compatible with BSD. A program which uses just setgid() will be 505 * 100% compatible with POSIX with saved IDs. 506 * 507 * SMP: There are not races, the GIDs are checked only by filesystem 508 * operations (as far as semantic preservation is concerned). 509 */ 510 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 511 { 512 const struct cred *old; 513 struct cred *new; 514 int retval; 515 516 new = prepare_creds(); 517 if (!new) 518 return -ENOMEM; 519 old = current_cred(); 520 521 retval = -EPERM; 522 if (rgid != (gid_t) -1) { 523 if (old->gid == rgid || 524 old->egid == rgid || 525 nsown_capable(CAP_SETGID)) 526 new->gid = rgid; 527 else 528 goto error; 529 } 530 if (egid != (gid_t) -1) { 531 if (old->gid == egid || 532 old->egid == egid || 533 old->sgid == egid || 534 nsown_capable(CAP_SETGID)) 535 new->egid = egid; 536 else 537 goto error; 538 } 539 540 if (rgid != (gid_t) -1 || 541 (egid != (gid_t) -1 && egid != old->gid)) 542 new->sgid = new->egid; 543 new->fsgid = new->egid; 544 545 return commit_creds(new); 546 547 error: 548 abort_creds(new); 549 return retval; 550 } 551 552 /* 553 * setgid() is implemented like SysV w/ SAVED_IDS 554 * 555 * SMP: Same implicit races as above. 556 */ 557 SYSCALL_DEFINE1(setgid, gid_t, gid) 558 { 559 const struct cred *old; 560 struct cred *new; 561 int retval; 562 563 new = prepare_creds(); 564 if (!new) 565 return -ENOMEM; 566 old = current_cred(); 567 568 retval = -EPERM; 569 if (nsown_capable(CAP_SETGID)) 570 new->gid = new->egid = new->sgid = new->fsgid = gid; 571 else if (gid == old->gid || gid == old->sgid) 572 new->egid = new->fsgid = gid; 573 else 574 goto error; 575 576 return commit_creds(new); 577 578 error: 579 abort_creds(new); 580 return retval; 581 } 582 583 /* 584 * change the user struct in a credentials set to match the new UID 585 */ 586 static int set_user(struct cred *new) 587 { 588 struct user_struct *new_user; 589 590 new_user = alloc_uid(current_user_ns(), new->uid); 591 if (!new_user) 592 return -EAGAIN; 593 594 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 595 new_user != INIT_USER) { 596 free_uid(new_user); 597 return -EAGAIN; 598 } 599 600 free_uid(new->user); 601 new->user = new_user; 602 return 0; 603 } 604 605 /* 606 * Unprivileged users may change the real uid to the effective uid 607 * or vice versa. (BSD-style) 608 * 609 * If you set the real uid at all, or set the effective uid to a value not 610 * equal to the real uid, then the saved uid is set to the new effective uid. 611 * 612 * This makes it possible for a setuid program to completely drop its 613 * privileges, which is often a useful assertion to make when you are doing 614 * a security audit over a program. 615 * 616 * The general idea is that a program which uses just setreuid() will be 617 * 100% compatible with BSD. A program which uses just setuid() will be 618 * 100% compatible with POSIX with saved IDs. 619 */ 620 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 621 { 622 const struct cred *old; 623 struct cred *new; 624 int retval; 625 626 new = prepare_creds(); 627 if (!new) 628 return -ENOMEM; 629 old = current_cred(); 630 631 retval = -EPERM; 632 if (ruid != (uid_t) -1) { 633 new->uid = ruid; 634 if (old->uid != ruid && 635 old->euid != ruid && 636 !nsown_capable(CAP_SETUID)) 637 goto error; 638 } 639 640 if (euid != (uid_t) -1) { 641 new->euid = euid; 642 if (old->uid != euid && 643 old->euid != euid && 644 old->suid != euid && 645 !nsown_capable(CAP_SETUID)) 646 goto error; 647 } 648 649 if (new->uid != old->uid) { 650 retval = set_user(new); 651 if (retval < 0) 652 goto error; 653 } 654 if (ruid != (uid_t) -1 || 655 (euid != (uid_t) -1 && euid != old->uid)) 656 new->suid = new->euid; 657 new->fsuid = new->euid; 658 659 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 660 if (retval < 0) 661 goto error; 662 663 return commit_creds(new); 664 665 error: 666 abort_creds(new); 667 return retval; 668 } 669 670 /* 671 * setuid() is implemented like SysV with SAVED_IDS 672 * 673 * Note that SAVED_ID's is deficient in that a setuid root program 674 * like sendmail, for example, cannot set its uid to be a normal 675 * user and then switch back, because if you're root, setuid() sets 676 * the saved uid too. If you don't like this, blame the bright people 677 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 678 * will allow a root program to temporarily drop privileges and be able to 679 * regain them by swapping the real and effective uid. 680 */ 681 SYSCALL_DEFINE1(setuid, uid_t, uid) 682 { 683 const struct cred *old; 684 struct cred *new; 685 int retval; 686 687 new = prepare_creds(); 688 if (!new) 689 return -ENOMEM; 690 old = current_cred(); 691 692 retval = -EPERM; 693 if (nsown_capable(CAP_SETUID)) { 694 new->suid = new->uid = uid; 695 if (uid != old->uid) { 696 retval = set_user(new); 697 if (retval < 0) 698 goto error; 699 } 700 } else if (uid != old->uid && uid != new->suid) { 701 goto error; 702 } 703 704 new->fsuid = new->euid = uid; 705 706 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 707 if (retval < 0) 708 goto error; 709 710 return commit_creds(new); 711 712 error: 713 abort_creds(new); 714 return retval; 715 } 716 717 718 /* 719 * This function implements a generic ability to update ruid, euid, 720 * and suid. This allows you to implement the 4.4 compatible seteuid(). 721 */ 722 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 723 { 724 const struct cred *old; 725 struct cred *new; 726 int retval; 727 728 new = prepare_creds(); 729 if (!new) 730 return -ENOMEM; 731 732 old = current_cred(); 733 734 retval = -EPERM; 735 if (!nsown_capable(CAP_SETUID)) { 736 if (ruid != (uid_t) -1 && ruid != old->uid && 737 ruid != old->euid && ruid != old->suid) 738 goto error; 739 if (euid != (uid_t) -1 && euid != old->uid && 740 euid != old->euid && euid != old->suid) 741 goto error; 742 if (suid != (uid_t) -1 && suid != old->uid && 743 suid != old->euid && suid != old->suid) 744 goto error; 745 } 746 747 if (ruid != (uid_t) -1) { 748 new->uid = ruid; 749 if (ruid != old->uid) { 750 retval = set_user(new); 751 if (retval < 0) 752 goto error; 753 } 754 } 755 if (euid != (uid_t) -1) 756 new->euid = euid; 757 if (suid != (uid_t) -1) 758 new->suid = suid; 759 new->fsuid = new->euid; 760 761 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 762 if (retval < 0) 763 goto error; 764 765 return commit_creds(new); 766 767 error: 768 abort_creds(new); 769 return retval; 770 } 771 772 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) 773 { 774 const struct cred *cred = current_cred(); 775 int retval; 776 777 if (!(retval = put_user(cred->uid, ruid)) && 778 !(retval = put_user(cred->euid, euid))) 779 retval = put_user(cred->suid, suid); 780 781 return retval; 782 } 783 784 /* 785 * Same as above, but for rgid, egid, sgid. 786 */ 787 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 788 { 789 const struct cred *old; 790 struct cred *new; 791 int retval; 792 793 new = prepare_creds(); 794 if (!new) 795 return -ENOMEM; 796 old = current_cred(); 797 798 retval = -EPERM; 799 if (!nsown_capable(CAP_SETGID)) { 800 if (rgid != (gid_t) -1 && rgid != old->gid && 801 rgid != old->egid && rgid != old->sgid) 802 goto error; 803 if (egid != (gid_t) -1 && egid != old->gid && 804 egid != old->egid && egid != old->sgid) 805 goto error; 806 if (sgid != (gid_t) -1 && sgid != old->gid && 807 sgid != old->egid && sgid != old->sgid) 808 goto error; 809 } 810 811 if (rgid != (gid_t) -1) 812 new->gid = rgid; 813 if (egid != (gid_t) -1) 814 new->egid = egid; 815 if (sgid != (gid_t) -1) 816 new->sgid = sgid; 817 new->fsgid = new->egid; 818 819 return commit_creds(new); 820 821 error: 822 abort_creds(new); 823 return retval; 824 } 825 826 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) 827 { 828 const struct cred *cred = current_cred(); 829 int retval; 830 831 if (!(retval = put_user(cred->gid, rgid)) && 832 !(retval = put_user(cred->egid, egid))) 833 retval = put_user(cred->sgid, sgid); 834 835 return retval; 836 } 837 838 839 /* 840 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 841 * is used for "access()" and for the NFS daemon (letting nfsd stay at 842 * whatever uid it wants to). It normally shadows "euid", except when 843 * explicitly set by setfsuid() or for access.. 844 */ 845 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 846 { 847 const struct cred *old; 848 struct cred *new; 849 uid_t old_fsuid; 850 851 new = prepare_creds(); 852 if (!new) 853 return current_fsuid(); 854 old = current_cred(); 855 old_fsuid = old->fsuid; 856 857 if (uid == old->uid || uid == old->euid || 858 uid == old->suid || uid == old->fsuid || 859 nsown_capable(CAP_SETUID)) { 860 if (uid != old_fsuid) { 861 new->fsuid = uid; 862 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 863 goto change_okay; 864 } 865 } 866 867 abort_creds(new); 868 return old_fsuid; 869 870 change_okay: 871 commit_creds(new); 872 return old_fsuid; 873 } 874 875 /* 876 * Samma på svenska.. 877 */ 878 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 879 { 880 const struct cred *old; 881 struct cred *new; 882 gid_t old_fsgid; 883 884 new = prepare_creds(); 885 if (!new) 886 return current_fsgid(); 887 old = current_cred(); 888 old_fsgid = old->fsgid; 889 890 if (gid == old->gid || gid == old->egid || 891 gid == old->sgid || gid == old->fsgid || 892 nsown_capable(CAP_SETGID)) { 893 if (gid != old_fsgid) { 894 new->fsgid = gid; 895 goto change_okay; 896 } 897 } 898 899 abort_creds(new); 900 return old_fsgid; 901 902 change_okay: 903 commit_creds(new); 904 return old_fsgid; 905 } 906 907 void do_sys_times(struct tms *tms) 908 { 909 cputime_t tgutime, tgstime, cutime, cstime; 910 911 spin_lock_irq(¤t->sighand->siglock); 912 thread_group_times(current, &tgutime, &tgstime); 913 cutime = current->signal->cutime; 914 cstime = current->signal->cstime; 915 spin_unlock_irq(¤t->sighand->siglock); 916 tms->tms_utime = cputime_to_clock_t(tgutime); 917 tms->tms_stime = cputime_to_clock_t(tgstime); 918 tms->tms_cutime = cputime_to_clock_t(cutime); 919 tms->tms_cstime = cputime_to_clock_t(cstime); 920 } 921 922 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 923 { 924 if (tbuf) { 925 struct tms tmp; 926 927 do_sys_times(&tmp); 928 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 929 return -EFAULT; 930 } 931 force_successful_syscall_return(); 932 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 933 } 934 935 /* 936 * This needs some heavy checking ... 937 * I just haven't the stomach for it. I also don't fully 938 * understand sessions/pgrp etc. Let somebody who does explain it. 939 * 940 * OK, I think I have the protection semantics right.... this is really 941 * only important on a multi-user system anyway, to make sure one user 942 * can't send a signal to a process owned by another. -TYT, 12/12/91 943 * 944 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 945 * LBT 04.03.94 946 */ 947 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 948 { 949 struct task_struct *p; 950 struct task_struct *group_leader = current->group_leader; 951 struct pid *pgrp; 952 int err; 953 954 if (!pid) 955 pid = task_pid_vnr(group_leader); 956 if (!pgid) 957 pgid = pid; 958 if (pgid < 0) 959 return -EINVAL; 960 rcu_read_lock(); 961 962 /* From this point forward we keep holding onto the tasklist lock 963 * so that our parent does not change from under us. -DaveM 964 */ 965 write_lock_irq(&tasklist_lock); 966 967 err = -ESRCH; 968 p = find_task_by_vpid(pid); 969 if (!p) 970 goto out; 971 972 err = -EINVAL; 973 if (!thread_group_leader(p)) 974 goto out; 975 976 if (same_thread_group(p->real_parent, group_leader)) { 977 err = -EPERM; 978 if (task_session(p) != task_session(group_leader)) 979 goto out; 980 err = -EACCES; 981 if (p->did_exec) 982 goto out; 983 } else { 984 err = -ESRCH; 985 if (p != group_leader) 986 goto out; 987 } 988 989 err = -EPERM; 990 if (p->signal->leader) 991 goto out; 992 993 pgrp = task_pid(p); 994 if (pgid != pid) { 995 struct task_struct *g; 996 997 pgrp = find_vpid(pgid); 998 g = pid_task(pgrp, PIDTYPE_PGID); 999 if (!g || task_session(g) != task_session(group_leader)) 1000 goto out; 1001 } 1002 1003 err = security_task_setpgid(p, pgid); 1004 if (err) 1005 goto out; 1006 1007 if (task_pgrp(p) != pgrp) 1008 change_pid(p, PIDTYPE_PGID, pgrp); 1009 1010 err = 0; 1011 out: 1012 /* All paths lead to here, thus we are safe. -DaveM */ 1013 write_unlock_irq(&tasklist_lock); 1014 rcu_read_unlock(); 1015 return err; 1016 } 1017 1018 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1019 { 1020 struct task_struct *p; 1021 struct pid *grp; 1022 int retval; 1023 1024 rcu_read_lock(); 1025 if (!pid) 1026 grp = task_pgrp(current); 1027 else { 1028 retval = -ESRCH; 1029 p = find_task_by_vpid(pid); 1030 if (!p) 1031 goto out; 1032 grp = task_pgrp(p); 1033 if (!grp) 1034 goto out; 1035 1036 retval = security_task_getpgid(p); 1037 if (retval) 1038 goto out; 1039 } 1040 retval = pid_vnr(grp); 1041 out: 1042 rcu_read_unlock(); 1043 return retval; 1044 } 1045 1046 #ifdef __ARCH_WANT_SYS_GETPGRP 1047 1048 SYSCALL_DEFINE0(getpgrp) 1049 { 1050 return sys_getpgid(0); 1051 } 1052 1053 #endif 1054 1055 SYSCALL_DEFINE1(getsid, pid_t, pid) 1056 { 1057 struct task_struct *p; 1058 struct pid *sid; 1059 int retval; 1060 1061 rcu_read_lock(); 1062 if (!pid) 1063 sid = task_session(current); 1064 else { 1065 retval = -ESRCH; 1066 p = find_task_by_vpid(pid); 1067 if (!p) 1068 goto out; 1069 sid = task_session(p); 1070 if (!sid) 1071 goto out; 1072 1073 retval = security_task_getsid(p); 1074 if (retval) 1075 goto out; 1076 } 1077 retval = pid_vnr(sid); 1078 out: 1079 rcu_read_unlock(); 1080 return retval; 1081 } 1082 1083 SYSCALL_DEFINE0(setsid) 1084 { 1085 struct task_struct *group_leader = current->group_leader; 1086 struct pid *sid = task_pid(group_leader); 1087 pid_t session = pid_vnr(sid); 1088 int err = -EPERM; 1089 1090 write_lock_irq(&tasklist_lock); 1091 /* Fail if I am already a session leader */ 1092 if (group_leader->signal->leader) 1093 goto out; 1094 1095 /* Fail if a process group id already exists that equals the 1096 * proposed session id. 1097 */ 1098 if (pid_task(sid, PIDTYPE_PGID)) 1099 goto out; 1100 1101 group_leader->signal->leader = 1; 1102 __set_special_pids(sid); 1103 1104 proc_clear_tty(group_leader); 1105 1106 err = session; 1107 out: 1108 write_unlock_irq(&tasklist_lock); 1109 if (err > 0) { 1110 proc_sid_connector(group_leader); 1111 sched_autogroup_create_attach(group_leader); 1112 } 1113 return err; 1114 } 1115 1116 DECLARE_RWSEM(uts_sem); 1117 1118 #ifdef COMPAT_UTS_MACHINE 1119 #define override_architecture(name) \ 1120 (personality(current->personality) == PER_LINUX32 && \ 1121 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1122 sizeof(COMPAT_UTS_MACHINE))) 1123 #else 1124 #define override_architecture(name) 0 1125 #endif 1126 1127 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1128 { 1129 int errno = 0; 1130 1131 down_read(&uts_sem); 1132 if (copy_to_user(name, utsname(), sizeof *name)) 1133 errno = -EFAULT; 1134 up_read(&uts_sem); 1135 1136 if (!errno && override_architecture(name)) 1137 errno = -EFAULT; 1138 return errno; 1139 } 1140 1141 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1142 /* 1143 * Old cruft 1144 */ 1145 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1146 { 1147 int error = 0; 1148 1149 if (!name) 1150 return -EFAULT; 1151 1152 down_read(&uts_sem); 1153 if (copy_to_user(name, utsname(), sizeof(*name))) 1154 error = -EFAULT; 1155 up_read(&uts_sem); 1156 1157 if (!error && override_architecture(name)) 1158 error = -EFAULT; 1159 return error; 1160 } 1161 1162 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1163 { 1164 int error; 1165 1166 if (!name) 1167 return -EFAULT; 1168 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) 1169 return -EFAULT; 1170 1171 down_read(&uts_sem); 1172 error = __copy_to_user(&name->sysname, &utsname()->sysname, 1173 __OLD_UTS_LEN); 1174 error |= __put_user(0, name->sysname + __OLD_UTS_LEN); 1175 error |= __copy_to_user(&name->nodename, &utsname()->nodename, 1176 __OLD_UTS_LEN); 1177 error |= __put_user(0, name->nodename + __OLD_UTS_LEN); 1178 error |= __copy_to_user(&name->release, &utsname()->release, 1179 __OLD_UTS_LEN); 1180 error |= __put_user(0, name->release + __OLD_UTS_LEN); 1181 error |= __copy_to_user(&name->version, &utsname()->version, 1182 __OLD_UTS_LEN); 1183 error |= __put_user(0, name->version + __OLD_UTS_LEN); 1184 error |= __copy_to_user(&name->machine, &utsname()->machine, 1185 __OLD_UTS_LEN); 1186 error |= __put_user(0, name->machine + __OLD_UTS_LEN); 1187 up_read(&uts_sem); 1188 1189 if (!error && override_architecture(name)) 1190 error = -EFAULT; 1191 return error ? -EFAULT : 0; 1192 } 1193 #endif 1194 1195 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1196 { 1197 int errno; 1198 char tmp[__NEW_UTS_LEN]; 1199 1200 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1201 return -EPERM; 1202 1203 if (len < 0 || len > __NEW_UTS_LEN) 1204 return -EINVAL; 1205 down_write(&uts_sem); 1206 errno = -EFAULT; 1207 if (!copy_from_user(tmp, name, len)) { 1208 struct new_utsname *u = utsname(); 1209 1210 memcpy(u->nodename, tmp, len); 1211 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1212 errno = 0; 1213 } 1214 up_write(&uts_sem); 1215 return errno; 1216 } 1217 1218 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1219 1220 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1221 { 1222 int i, errno; 1223 struct new_utsname *u; 1224 1225 if (len < 0) 1226 return -EINVAL; 1227 down_read(&uts_sem); 1228 u = utsname(); 1229 i = 1 + strlen(u->nodename); 1230 if (i > len) 1231 i = len; 1232 errno = 0; 1233 if (copy_to_user(name, u->nodename, i)) 1234 errno = -EFAULT; 1235 up_read(&uts_sem); 1236 return errno; 1237 } 1238 1239 #endif 1240 1241 /* 1242 * Only setdomainname; getdomainname can be implemented by calling 1243 * uname() 1244 */ 1245 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1246 { 1247 int errno; 1248 char tmp[__NEW_UTS_LEN]; 1249 1250 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1251 return -EPERM; 1252 if (len < 0 || len > __NEW_UTS_LEN) 1253 return -EINVAL; 1254 1255 down_write(&uts_sem); 1256 errno = -EFAULT; 1257 if (!copy_from_user(tmp, name, len)) { 1258 struct new_utsname *u = utsname(); 1259 1260 memcpy(u->domainname, tmp, len); 1261 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1262 errno = 0; 1263 } 1264 up_write(&uts_sem); 1265 return errno; 1266 } 1267 1268 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1269 { 1270 struct rlimit value; 1271 int ret; 1272 1273 ret = do_prlimit(current, resource, NULL, &value); 1274 if (!ret) 1275 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1276 1277 return ret; 1278 } 1279 1280 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1281 1282 /* 1283 * Back compatibility for getrlimit. Needed for some apps. 1284 */ 1285 1286 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1287 struct rlimit __user *, rlim) 1288 { 1289 struct rlimit x; 1290 if (resource >= RLIM_NLIMITS) 1291 return -EINVAL; 1292 1293 task_lock(current->group_leader); 1294 x = current->signal->rlim[resource]; 1295 task_unlock(current->group_leader); 1296 if (x.rlim_cur > 0x7FFFFFFF) 1297 x.rlim_cur = 0x7FFFFFFF; 1298 if (x.rlim_max > 0x7FFFFFFF) 1299 x.rlim_max = 0x7FFFFFFF; 1300 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1301 } 1302 1303 #endif 1304 1305 static inline bool rlim64_is_infinity(__u64 rlim64) 1306 { 1307 #if BITS_PER_LONG < 64 1308 return rlim64 >= ULONG_MAX; 1309 #else 1310 return rlim64 == RLIM64_INFINITY; 1311 #endif 1312 } 1313 1314 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1315 { 1316 if (rlim->rlim_cur == RLIM_INFINITY) 1317 rlim64->rlim_cur = RLIM64_INFINITY; 1318 else 1319 rlim64->rlim_cur = rlim->rlim_cur; 1320 if (rlim->rlim_max == RLIM_INFINITY) 1321 rlim64->rlim_max = RLIM64_INFINITY; 1322 else 1323 rlim64->rlim_max = rlim->rlim_max; 1324 } 1325 1326 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1327 { 1328 if (rlim64_is_infinity(rlim64->rlim_cur)) 1329 rlim->rlim_cur = RLIM_INFINITY; 1330 else 1331 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1332 if (rlim64_is_infinity(rlim64->rlim_max)) 1333 rlim->rlim_max = RLIM_INFINITY; 1334 else 1335 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1336 } 1337 1338 /* make sure you are allowed to change @tsk limits before calling this */ 1339 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1340 struct rlimit *new_rlim, struct rlimit *old_rlim) 1341 { 1342 struct rlimit *rlim; 1343 int retval = 0; 1344 1345 if (resource >= RLIM_NLIMITS) 1346 return -EINVAL; 1347 if (new_rlim) { 1348 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1349 return -EINVAL; 1350 if (resource == RLIMIT_NOFILE && 1351 new_rlim->rlim_max > sysctl_nr_open) 1352 return -EPERM; 1353 } 1354 1355 /* protect tsk->signal and tsk->sighand from disappearing */ 1356 read_lock(&tasklist_lock); 1357 if (!tsk->sighand) { 1358 retval = -ESRCH; 1359 goto out; 1360 } 1361 1362 rlim = tsk->signal->rlim + resource; 1363 task_lock(tsk->group_leader); 1364 if (new_rlim) { 1365 /* Keep the capable check against init_user_ns until 1366 cgroups can contain all limits */ 1367 if (new_rlim->rlim_max > rlim->rlim_max && 1368 !capable(CAP_SYS_RESOURCE)) 1369 retval = -EPERM; 1370 if (!retval) 1371 retval = security_task_setrlimit(tsk->group_leader, 1372 resource, new_rlim); 1373 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { 1374 /* 1375 * The caller is asking for an immediate RLIMIT_CPU 1376 * expiry. But we use the zero value to mean "it was 1377 * never set". So let's cheat and make it one second 1378 * instead 1379 */ 1380 new_rlim->rlim_cur = 1; 1381 } 1382 } 1383 if (!retval) { 1384 if (old_rlim) 1385 *old_rlim = *rlim; 1386 if (new_rlim) 1387 *rlim = *new_rlim; 1388 } 1389 task_unlock(tsk->group_leader); 1390 1391 /* 1392 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1393 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1394 * very long-standing error, and fixing it now risks breakage of 1395 * applications, so we live with it 1396 */ 1397 if (!retval && new_rlim && resource == RLIMIT_CPU && 1398 new_rlim->rlim_cur != RLIM_INFINITY) 1399 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1400 out: 1401 read_unlock(&tasklist_lock); 1402 return retval; 1403 } 1404 1405 /* rcu lock must be held */ 1406 static int check_prlimit_permission(struct task_struct *task) 1407 { 1408 const struct cred *cred = current_cred(), *tcred; 1409 1410 if (current == task) 1411 return 0; 1412 1413 tcred = __task_cred(task); 1414 if (cred->user->user_ns == tcred->user->user_ns && 1415 (cred->uid == tcred->euid && 1416 cred->uid == tcred->suid && 1417 cred->uid == tcred->uid && 1418 cred->gid == tcred->egid && 1419 cred->gid == tcred->sgid && 1420 cred->gid == tcred->gid)) 1421 return 0; 1422 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE)) 1423 return 0; 1424 1425 return -EPERM; 1426 } 1427 1428 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1429 const struct rlimit64 __user *, new_rlim, 1430 struct rlimit64 __user *, old_rlim) 1431 { 1432 struct rlimit64 old64, new64; 1433 struct rlimit old, new; 1434 struct task_struct *tsk; 1435 int ret; 1436 1437 if (new_rlim) { 1438 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1439 return -EFAULT; 1440 rlim64_to_rlim(&new64, &new); 1441 } 1442 1443 rcu_read_lock(); 1444 tsk = pid ? find_task_by_vpid(pid) : current; 1445 if (!tsk) { 1446 rcu_read_unlock(); 1447 return -ESRCH; 1448 } 1449 ret = check_prlimit_permission(tsk); 1450 if (ret) { 1451 rcu_read_unlock(); 1452 return ret; 1453 } 1454 get_task_struct(tsk); 1455 rcu_read_unlock(); 1456 1457 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1458 old_rlim ? &old : NULL); 1459 1460 if (!ret && old_rlim) { 1461 rlim_to_rlim64(&old, &old64); 1462 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1463 ret = -EFAULT; 1464 } 1465 1466 put_task_struct(tsk); 1467 return ret; 1468 } 1469 1470 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1471 { 1472 struct rlimit new_rlim; 1473 1474 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1475 return -EFAULT; 1476 return do_prlimit(current, resource, &new_rlim, NULL); 1477 } 1478 1479 /* 1480 * It would make sense to put struct rusage in the task_struct, 1481 * except that would make the task_struct be *really big*. After 1482 * task_struct gets moved into malloc'ed memory, it would 1483 * make sense to do this. It will make moving the rest of the information 1484 * a lot simpler! (Which we're not doing right now because we're not 1485 * measuring them yet). 1486 * 1487 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1488 * races with threads incrementing their own counters. But since word 1489 * reads are atomic, we either get new values or old values and we don't 1490 * care which for the sums. We always take the siglock to protect reading 1491 * the c* fields from p->signal from races with exit.c updating those 1492 * fields when reaping, so a sample either gets all the additions of a 1493 * given child after it's reaped, or none so this sample is before reaping. 1494 * 1495 * Locking: 1496 * We need to take the siglock for CHILDEREN, SELF and BOTH 1497 * for the cases current multithreaded, non-current single threaded 1498 * non-current multithreaded. Thread traversal is now safe with 1499 * the siglock held. 1500 * Strictly speaking, we donot need to take the siglock if we are current and 1501 * single threaded, as no one else can take our signal_struct away, no one 1502 * else can reap the children to update signal->c* counters, and no one else 1503 * can race with the signal-> fields. If we do not take any lock, the 1504 * signal-> fields could be read out of order while another thread was just 1505 * exiting. So we should place a read memory barrier when we avoid the lock. 1506 * On the writer side, write memory barrier is implied in __exit_signal 1507 * as __exit_signal releases the siglock spinlock after updating the signal-> 1508 * fields. But we don't do this yet to keep things simple. 1509 * 1510 */ 1511 1512 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1513 { 1514 r->ru_nvcsw += t->nvcsw; 1515 r->ru_nivcsw += t->nivcsw; 1516 r->ru_minflt += t->min_flt; 1517 r->ru_majflt += t->maj_flt; 1518 r->ru_inblock += task_io_get_inblock(t); 1519 r->ru_oublock += task_io_get_oublock(t); 1520 } 1521 1522 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1523 { 1524 struct task_struct *t; 1525 unsigned long flags; 1526 cputime_t tgutime, tgstime, utime, stime; 1527 unsigned long maxrss = 0; 1528 1529 memset((char *) r, 0, sizeof *r); 1530 utime = stime = cputime_zero; 1531 1532 if (who == RUSAGE_THREAD) { 1533 task_times(current, &utime, &stime); 1534 accumulate_thread_rusage(p, r); 1535 maxrss = p->signal->maxrss; 1536 goto out; 1537 } 1538 1539 if (!lock_task_sighand(p, &flags)) 1540 return; 1541 1542 switch (who) { 1543 case RUSAGE_BOTH: 1544 case RUSAGE_CHILDREN: 1545 utime = p->signal->cutime; 1546 stime = p->signal->cstime; 1547 r->ru_nvcsw = p->signal->cnvcsw; 1548 r->ru_nivcsw = p->signal->cnivcsw; 1549 r->ru_minflt = p->signal->cmin_flt; 1550 r->ru_majflt = p->signal->cmaj_flt; 1551 r->ru_inblock = p->signal->cinblock; 1552 r->ru_oublock = p->signal->coublock; 1553 maxrss = p->signal->cmaxrss; 1554 1555 if (who == RUSAGE_CHILDREN) 1556 break; 1557 1558 case RUSAGE_SELF: 1559 thread_group_times(p, &tgutime, &tgstime); 1560 utime = cputime_add(utime, tgutime); 1561 stime = cputime_add(stime, tgstime); 1562 r->ru_nvcsw += p->signal->nvcsw; 1563 r->ru_nivcsw += p->signal->nivcsw; 1564 r->ru_minflt += p->signal->min_flt; 1565 r->ru_majflt += p->signal->maj_flt; 1566 r->ru_inblock += p->signal->inblock; 1567 r->ru_oublock += p->signal->oublock; 1568 if (maxrss < p->signal->maxrss) 1569 maxrss = p->signal->maxrss; 1570 t = p; 1571 do { 1572 accumulate_thread_rusage(t, r); 1573 t = next_thread(t); 1574 } while (t != p); 1575 break; 1576 1577 default: 1578 BUG(); 1579 } 1580 unlock_task_sighand(p, &flags); 1581 1582 out: 1583 cputime_to_timeval(utime, &r->ru_utime); 1584 cputime_to_timeval(stime, &r->ru_stime); 1585 1586 if (who != RUSAGE_CHILDREN) { 1587 struct mm_struct *mm = get_task_mm(p); 1588 if (mm) { 1589 setmax_mm_hiwater_rss(&maxrss, mm); 1590 mmput(mm); 1591 } 1592 } 1593 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1594 } 1595 1596 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1597 { 1598 struct rusage r; 1599 k_getrusage(p, who, &r); 1600 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1601 } 1602 1603 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1604 { 1605 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1606 who != RUSAGE_THREAD) 1607 return -EINVAL; 1608 return getrusage(current, who, ru); 1609 } 1610 1611 SYSCALL_DEFINE1(umask, int, mask) 1612 { 1613 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1614 return mask; 1615 } 1616 1617 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 1618 unsigned long, arg4, unsigned long, arg5) 1619 { 1620 struct task_struct *me = current; 1621 unsigned char comm[sizeof(me->comm)]; 1622 long error; 1623 1624 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1625 if (error != -ENOSYS) 1626 return error; 1627 1628 error = 0; 1629 switch (option) { 1630 case PR_SET_PDEATHSIG: 1631 if (!valid_signal(arg2)) { 1632 error = -EINVAL; 1633 break; 1634 } 1635 me->pdeath_signal = arg2; 1636 error = 0; 1637 break; 1638 case PR_GET_PDEATHSIG: 1639 error = put_user(me->pdeath_signal, (int __user *)arg2); 1640 break; 1641 case PR_GET_DUMPABLE: 1642 error = get_dumpable(me->mm); 1643 break; 1644 case PR_SET_DUMPABLE: 1645 if (arg2 < 0 || arg2 > 1) { 1646 error = -EINVAL; 1647 break; 1648 } 1649 set_dumpable(me->mm, arg2); 1650 error = 0; 1651 break; 1652 1653 case PR_SET_UNALIGN: 1654 error = SET_UNALIGN_CTL(me, arg2); 1655 break; 1656 case PR_GET_UNALIGN: 1657 error = GET_UNALIGN_CTL(me, arg2); 1658 break; 1659 case PR_SET_FPEMU: 1660 error = SET_FPEMU_CTL(me, arg2); 1661 break; 1662 case PR_GET_FPEMU: 1663 error = GET_FPEMU_CTL(me, arg2); 1664 break; 1665 case PR_SET_FPEXC: 1666 error = SET_FPEXC_CTL(me, arg2); 1667 break; 1668 case PR_GET_FPEXC: 1669 error = GET_FPEXC_CTL(me, arg2); 1670 break; 1671 case PR_GET_TIMING: 1672 error = PR_TIMING_STATISTICAL; 1673 break; 1674 case PR_SET_TIMING: 1675 if (arg2 != PR_TIMING_STATISTICAL) 1676 error = -EINVAL; 1677 else 1678 error = 0; 1679 break; 1680 1681 case PR_SET_NAME: 1682 comm[sizeof(me->comm)-1] = 0; 1683 if (strncpy_from_user(comm, (char __user *)arg2, 1684 sizeof(me->comm) - 1) < 0) 1685 return -EFAULT; 1686 set_task_comm(me, comm); 1687 return 0; 1688 case PR_GET_NAME: 1689 get_task_comm(comm, me); 1690 if (copy_to_user((char __user *)arg2, comm, 1691 sizeof(comm))) 1692 return -EFAULT; 1693 return 0; 1694 case PR_GET_ENDIAN: 1695 error = GET_ENDIAN(me, arg2); 1696 break; 1697 case PR_SET_ENDIAN: 1698 error = SET_ENDIAN(me, arg2); 1699 break; 1700 1701 case PR_GET_SECCOMP: 1702 error = prctl_get_seccomp(); 1703 break; 1704 case PR_SET_SECCOMP: 1705 error = prctl_set_seccomp(arg2); 1706 break; 1707 case PR_GET_TSC: 1708 error = GET_TSC_CTL(arg2); 1709 break; 1710 case PR_SET_TSC: 1711 error = SET_TSC_CTL(arg2); 1712 break; 1713 case PR_TASK_PERF_EVENTS_DISABLE: 1714 error = perf_event_task_disable(); 1715 break; 1716 case PR_TASK_PERF_EVENTS_ENABLE: 1717 error = perf_event_task_enable(); 1718 break; 1719 case PR_GET_TIMERSLACK: 1720 error = current->timer_slack_ns; 1721 break; 1722 case PR_SET_TIMERSLACK: 1723 if (arg2 <= 0) 1724 current->timer_slack_ns = 1725 current->default_timer_slack_ns; 1726 else 1727 current->timer_slack_ns = arg2; 1728 error = 0; 1729 break; 1730 case PR_MCE_KILL: 1731 if (arg4 | arg5) 1732 return -EINVAL; 1733 switch (arg2) { 1734 case PR_MCE_KILL_CLEAR: 1735 if (arg3 != 0) 1736 return -EINVAL; 1737 current->flags &= ~PF_MCE_PROCESS; 1738 break; 1739 case PR_MCE_KILL_SET: 1740 current->flags |= PF_MCE_PROCESS; 1741 if (arg3 == PR_MCE_KILL_EARLY) 1742 current->flags |= PF_MCE_EARLY; 1743 else if (arg3 == PR_MCE_KILL_LATE) 1744 current->flags &= ~PF_MCE_EARLY; 1745 else if (arg3 == PR_MCE_KILL_DEFAULT) 1746 current->flags &= 1747 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 1748 else 1749 return -EINVAL; 1750 break; 1751 default: 1752 return -EINVAL; 1753 } 1754 error = 0; 1755 break; 1756 case PR_MCE_KILL_GET: 1757 if (arg2 | arg3 | arg4 | arg5) 1758 return -EINVAL; 1759 if (current->flags & PF_MCE_PROCESS) 1760 error = (current->flags & PF_MCE_EARLY) ? 1761 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 1762 else 1763 error = PR_MCE_KILL_DEFAULT; 1764 break; 1765 default: 1766 error = -EINVAL; 1767 break; 1768 } 1769 return error; 1770 } 1771 1772 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 1773 struct getcpu_cache __user *, unused) 1774 { 1775 int err = 0; 1776 int cpu = raw_smp_processor_id(); 1777 if (cpup) 1778 err |= put_user(cpu, cpup); 1779 if (nodep) 1780 err |= put_user(cpu_to_node(cpu), nodep); 1781 return err ? -EFAULT : 0; 1782 } 1783 1784 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1785 1786 static void argv_cleanup(struct subprocess_info *info) 1787 { 1788 argv_free(info->argv); 1789 } 1790 1791 /** 1792 * orderly_poweroff - Trigger an orderly system poweroff 1793 * @force: force poweroff if command execution fails 1794 * 1795 * This may be called from any context to trigger a system shutdown. 1796 * If the orderly shutdown fails, it will force an immediate shutdown. 1797 */ 1798 int orderly_poweroff(bool force) 1799 { 1800 int argc; 1801 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1802 static char *envp[] = { 1803 "HOME=/", 1804 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1805 NULL 1806 }; 1807 int ret = -ENOMEM; 1808 struct subprocess_info *info; 1809 1810 if (argv == NULL) { 1811 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1812 __func__, poweroff_cmd); 1813 goto out; 1814 } 1815 1816 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 1817 if (info == NULL) { 1818 argv_free(argv); 1819 goto out; 1820 } 1821 1822 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); 1823 1824 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1825 1826 out: 1827 if (ret && force) { 1828 printk(KERN_WARNING "Failed to start orderly shutdown: " 1829 "forcing the issue\n"); 1830 1831 /* I guess this should try to kick off some daemon to 1832 sync and poweroff asap. Or not even bother syncing 1833 if we're doing an emergency shutdown? */ 1834 emergency_sync(); 1835 kernel_power_off(); 1836 } 1837 1838 return ret; 1839 } 1840 EXPORT_SYMBOL_GPL(orderly_poweroff); 1841