xref: /openbmc/linux/kernel/sys.c (revision e9e8bcb8)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
46 
47 #include <linux/kmsg_dump.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/unistd.h>
52 
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef SET_FPEMU_CTL
60 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_FPEMU_CTL
63 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef SET_FPEXC_CTL
66 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_FPEXC_CTL
69 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef GET_ENDIAN
72 # define GET_ENDIAN(a,b)	(-EINVAL)
73 #endif
74 #ifndef SET_ENDIAN
75 # define SET_ENDIAN(a,b)	(-EINVAL)
76 #endif
77 #ifndef GET_TSC_CTL
78 # define GET_TSC_CTL(a)		(-EINVAL)
79 #endif
80 #ifndef SET_TSC_CTL
81 # define SET_TSC_CTL(a)		(-EINVAL)
82 #endif
83 
84 /*
85  * this is where the system-wide overflow UID and GID are defined, for
86  * architectures that now have 32-bit UID/GID but didn't in the past
87  */
88 
89 int overflowuid = DEFAULT_OVERFLOWUID;
90 int overflowgid = DEFAULT_OVERFLOWGID;
91 
92 #ifdef CONFIG_UID16
93 EXPORT_SYMBOL(overflowuid);
94 EXPORT_SYMBOL(overflowgid);
95 #endif
96 
97 /*
98  * the same as above, but for filesystems which can only store a 16-bit
99  * UID and GID. as such, this is needed on all architectures
100  */
101 
102 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
103 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
104 
105 EXPORT_SYMBOL(fs_overflowuid);
106 EXPORT_SYMBOL(fs_overflowgid);
107 
108 /*
109  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
110  */
111 
112 int C_A_D = 1;
113 struct pid *cad_pid;
114 EXPORT_SYMBOL(cad_pid);
115 
116 /*
117  * If set, this is used for preparing the system to power off.
118  */
119 
120 void (*pm_power_off_prepare)(void);
121 
122 /*
123  * Returns true if current's euid is same as p's uid or euid,
124  * or has CAP_SYS_NICE to p's user_ns.
125  *
126  * Called with rcu_read_lock, creds are safe
127  */
128 static bool set_one_prio_perm(struct task_struct *p)
129 {
130 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
131 
132 	if (pcred->user->user_ns == cred->user->user_ns &&
133 	    (pcred->uid  == cred->euid ||
134 	     pcred->euid == cred->euid))
135 		return true;
136 	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
137 		return true;
138 	return false;
139 }
140 
141 /*
142  * set the priority of a task
143  * - the caller must hold the RCU read lock
144  */
145 static int set_one_prio(struct task_struct *p, int niceval, int error)
146 {
147 	int no_nice;
148 
149 	if (!set_one_prio_perm(p)) {
150 		error = -EPERM;
151 		goto out;
152 	}
153 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
154 		error = -EACCES;
155 		goto out;
156 	}
157 	no_nice = security_task_setnice(p, niceval);
158 	if (no_nice) {
159 		error = no_nice;
160 		goto out;
161 	}
162 	if (error == -ESRCH)
163 		error = 0;
164 	set_user_nice(p, niceval);
165 out:
166 	return error;
167 }
168 
169 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
170 {
171 	struct task_struct *g, *p;
172 	struct user_struct *user;
173 	const struct cred *cred = current_cred();
174 	int error = -EINVAL;
175 	struct pid *pgrp;
176 
177 	if (which > PRIO_USER || which < PRIO_PROCESS)
178 		goto out;
179 
180 	/* normalize: avoid signed division (rounding problems) */
181 	error = -ESRCH;
182 	if (niceval < -20)
183 		niceval = -20;
184 	if (niceval > 19)
185 		niceval = 19;
186 
187 	rcu_read_lock();
188 	read_lock(&tasklist_lock);
189 	switch (which) {
190 		case PRIO_PROCESS:
191 			if (who)
192 				p = find_task_by_vpid(who);
193 			else
194 				p = current;
195 			if (p)
196 				error = set_one_prio(p, niceval, error);
197 			break;
198 		case PRIO_PGRP:
199 			if (who)
200 				pgrp = find_vpid(who);
201 			else
202 				pgrp = task_pgrp(current);
203 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
204 				error = set_one_prio(p, niceval, error);
205 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
206 			break;
207 		case PRIO_USER:
208 			user = (struct user_struct *) cred->user;
209 			if (!who)
210 				who = cred->uid;
211 			else if ((who != cred->uid) &&
212 				 !(user = find_user(who)))
213 				goto out_unlock;	/* No processes for this user */
214 
215 			do_each_thread(g, p) {
216 				if (__task_cred(p)->uid == who)
217 					error = set_one_prio(p, niceval, error);
218 			} while_each_thread(g, p);
219 			if (who != cred->uid)
220 				free_uid(user);		/* For find_user() */
221 			break;
222 	}
223 out_unlock:
224 	read_unlock(&tasklist_lock);
225 	rcu_read_unlock();
226 out:
227 	return error;
228 }
229 
230 /*
231  * Ugh. To avoid negative return values, "getpriority()" will
232  * not return the normal nice-value, but a negated value that
233  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
234  * to stay compatible.
235  */
236 SYSCALL_DEFINE2(getpriority, int, which, int, who)
237 {
238 	struct task_struct *g, *p;
239 	struct user_struct *user;
240 	const struct cred *cred = current_cred();
241 	long niceval, retval = -ESRCH;
242 	struct pid *pgrp;
243 
244 	if (which > PRIO_USER || which < PRIO_PROCESS)
245 		return -EINVAL;
246 
247 	rcu_read_lock();
248 	read_lock(&tasklist_lock);
249 	switch (which) {
250 		case PRIO_PROCESS:
251 			if (who)
252 				p = find_task_by_vpid(who);
253 			else
254 				p = current;
255 			if (p) {
256 				niceval = 20 - task_nice(p);
257 				if (niceval > retval)
258 					retval = niceval;
259 			}
260 			break;
261 		case PRIO_PGRP:
262 			if (who)
263 				pgrp = find_vpid(who);
264 			else
265 				pgrp = task_pgrp(current);
266 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
267 				niceval = 20 - task_nice(p);
268 				if (niceval > retval)
269 					retval = niceval;
270 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
271 			break;
272 		case PRIO_USER:
273 			user = (struct user_struct *) cred->user;
274 			if (!who)
275 				who = cred->uid;
276 			else if ((who != cred->uid) &&
277 				 !(user = find_user(who)))
278 				goto out_unlock;	/* No processes for this user */
279 
280 			do_each_thread(g, p) {
281 				if (__task_cred(p)->uid == who) {
282 					niceval = 20 - task_nice(p);
283 					if (niceval > retval)
284 						retval = niceval;
285 				}
286 			} while_each_thread(g, p);
287 			if (who != cred->uid)
288 				free_uid(user);		/* for find_user() */
289 			break;
290 	}
291 out_unlock:
292 	read_unlock(&tasklist_lock);
293 	rcu_read_unlock();
294 
295 	return retval;
296 }
297 
298 /**
299  *	emergency_restart - reboot the system
300  *
301  *	Without shutting down any hardware or taking any locks
302  *	reboot the system.  This is called when we know we are in
303  *	trouble so this is our best effort to reboot.  This is
304  *	safe to call in interrupt context.
305  */
306 void emergency_restart(void)
307 {
308 	kmsg_dump(KMSG_DUMP_EMERG);
309 	machine_emergency_restart();
310 }
311 EXPORT_SYMBOL_GPL(emergency_restart);
312 
313 void kernel_restart_prepare(char *cmd)
314 {
315 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
316 	system_state = SYSTEM_RESTART;
317 	usermodehelper_disable();
318 	device_shutdown();
319 	syscore_shutdown();
320 }
321 
322 /**
323  *	kernel_restart - reboot the system
324  *	@cmd: pointer to buffer containing command to execute for restart
325  *		or %NULL
326  *
327  *	Shutdown everything and perform a clean reboot.
328  *	This is not safe to call in interrupt context.
329  */
330 void kernel_restart(char *cmd)
331 {
332 	kernel_restart_prepare(cmd);
333 	if (!cmd)
334 		printk(KERN_EMERG "Restarting system.\n");
335 	else
336 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
337 	kmsg_dump(KMSG_DUMP_RESTART);
338 	machine_restart(cmd);
339 }
340 EXPORT_SYMBOL_GPL(kernel_restart);
341 
342 static void kernel_shutdown_prepare(enum system_states state)
343 {
344 	blocking_notifier_call_chain(&reboot_notifier_list,
345 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
346 	system_state = state;
347 	usermodehelper_disable();
348 	device_shutdown();
349 }
350 /**
351  *	kernel_halt - halt the system
352  *
353  *	Shutdown everything and perform a clean system halt.
354  */
355 void kernel_halt(void)
356 {
357 	kernel_shutdown_prepare(SYSTEM_HALT);
358 	syscore_shutdown();
359 	printk(KERN_EMERG "System halted.\n");
360 	kmsg_dump(KMSG_DUMP_HALT);
361 	machine_halt();
362 }
363 
364 EXPORT_SYMBOL_GPL(kernel_halt);
365 
366 /**
367  *	kernel_power_off - power_off the system
368  *
369  *	Shutdown everything and perform a clean system power_off.
370  */
371 void kernel_power_off(void)
372 {
373 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
374 	if (pm_power_off_prepare)
375 		pm_power_off_prepare();
376 	disable_nonboot_cpus();
377 	syscore_shutdown();
378 	printk(KERN_EMERG "Power down.\n");
379 	kmsg_dump(KMSG_DUMP_POWEROFF);
380 	machine_power_off();
381 }
382 EXPORT_SYMBOL_GPL(kernel_power_off);
383 
384 static DEFINE_MUTEX(reboot_mutex);
385 
386 /*
387  * Reboot system call: for obvious reasons only root may call it,
388  * and even root needs to set up some magic numbers in the registers
389  * so that some mistake won't make this reboot the whole machine.
390  * You can also set the meaning of the ctrl-alt-del-key here.
391  *
392  * reboot doesn't sync: do that yourself before calling this.
393  */
394 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
395 		void __user *, arg)
396 {
397 	char buffer[256];
398 	int ret = 0;
399 
400 	/* We only trust the superuser with rebooting the system. */
401 	if (!capable(CAP_SYS_BOOT))
402 		return -EPERM;
403 
404 	/* For safety, we require "magic" arguments. */
405 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
406 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
407 	                magic2 != LINUX_REBOOT_MAGIC2A &&
408 			magic2 != LINUX_REBOOT_MAGIC2B &&
409 	                magic2 != LINUX_REBOOT_MAGIC2C))
410 		return -EINVAL;
411 
412 	/* Instead of trying to make the power_off code look like
413 	 * halt when pm_power_off is not set do it the easy way.
414 	 */
415 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
416 		cmd = LINUX_REBOOT_CMD_HALT;
417 
418 	mutex_lock(&reboot_mutex);
419 	switch (cmd) {
420 	case LINUX_REBOOT_CMD_RESTART:
421 		kernel_restart(NULL);
422 		break;
423 
424 	case LINUX_REBOOT_CMD_CAD_ON:
425 		C_A_D = 1;
426 		break;
427 
428 	case LINUX_REBOOT_CMD_CAD_OFF:
429 		C_A_D = 0;
430 		break;
431 
432 	case LINUX_REBOOT_CMD_HALT:
433 		kernel_halt();
434 		do_exit(0);
435 		panic("cannot halt");
436 
437 	case LINUX_REBOOT_CMD_POWER_OFF:
438 		kernel_power_off();
439 		do_exit(0);
440 		break;
441 
442 	case LINUX_REBOOT_CMD_RESTART2:
443 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
444 			ret = -EFAULT;
445 			break;
446 		}
447 		buffer[sizeof(buffer) - 1] = '\0';
448 
449 		kernel_restart(buffer);
450 		break;
451 
452 #ifdef CONFIG_KEXEC
453 	case LINUX_REBOOT_CMD_KEXEC:
454 		ret = kernel_kexec();
455 		break;
456 #endif
457 
458 #ifdef CONFIG_HIBERNATION
459 	case LINUX_REBOOT_CMD_SW_SUSPEND:
460 		ret = hibernate();
461 		break;
462 #endif
463 
464 	default:
465 		ret = -EINVAL;
466 		break;
467 	}
468 	mutex_unlock(&reboot_mutex);
469 	return ret;
470 }
471 
472 static void deferred_cad(struct work_struct *dummy)
473 {
474 	kernel_restart(NULL);
475 }
476 
477 /*
478  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
479  * As it's called within an interrupt, it may NOT sync: the only choice
480  * is whether to reboot at once, or just ignore the ctrl-alt-del.
481  */
482 void ctrl_alt_del(void)
483 {
484 	static DECLARE_WORK(cad_work, deferred_cad);
485 
486 	if (C_A_D)
487 		schedule_work(&cad_work);
488 	else
489 		kill_cad_pid(SIGINT, 1);
490 }
491 
492 /*
493  * Unprivileged users may change the real gid to the effective gid
494  * or vice versa.  (BSD-style)
495  *
496  * If you set the real gid at all, or set the effective gid to a value not
497  * equal to the real gid, then the saved gid is set to the new effective gid.
498  *
499  * This makes it possible for a setgid program to completely drop its
500  * privileges, which is often a useful assertion to make when you are doing
501  * a security audit over a program.
502  *
503  * The general idea is that a program which uses just setregid() will be
504  * 100% compatible with BSD.  A program which uses just setgid() will be
505  * 100% compatible with POSIX with saved IDs.
506  *
507  * SMP: There are not races, the GIDs are checked only by filesystem
508  *      operations (as far as semantic preservation is concerned).
509  */
510 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
511 {
512 	const struct cred *old;
513 	struct cred *new;
514 	int retval;
515 
516 	new = prepare_creds();
517 	if (!new)
518 		return -ENOMEM;
519 	old = current_cred();
520 
521 	retval = -EPERM;
522 	if (rgid != (gid_t) -1) {
523 		if (old->gid == rgid ||
524 		    old->egid == rgid ||
525 		    nsown_capable(CAP_SETGID))
526 			new->gid = rgid;
527 		else
528 			goto error;
529 	}
530 	if (egid != (gid_t) -1) {
531 		if (old->gid == egid ||
532 		    old->egid == egid ||
533 		    old->sgid == egid ||
534 		    nsown_capable(CAP_SETGID))
535 			new->egid = egid;
536 		else
537 			goto error;
538 	}
539 
540 	if (rgid != (gid_t) -1 ||
541 	    (egid != (gid_t) -1 && egid != old->gid))
542 		new->sgid = new->egid;
543 	new->fsgid = new->egid;
544 
545 	return commit_creds(new);
546 
547 error:
548 	abort_creds(new);
549 	return retval;
550 }
551 
552 /*
553  * setgid() is implemented like SysV w/ SAVED_IDS
554  *
555  * SMP: Same implicit races as above.
556  */
557 SYSCALL_DEFINE1(setgid, gid_t, gid)
558 {
559 	const struct cred *old;
560 	struct cred *new;
561 	int retval;
562 
563 	new = prepare_creds();
564 	if (!new)
565 		return -ENOMEM;
566 	old = current_cred();
567 
568 	retval = -EPERM;
569 	if (nsown_capable(CAP_SETGID))
570 		new->gid = new->egid = new->sgid = new->fsgid = gid;
571 	else if (gid == old->gid || gid == old->sgid)
572 		new->egid = new->fsgid = gid;
573 	else
574 		goto error;
575 
576 	return commit_creds(new);
577 
578 error:
579 	abort_creds(new);
580 	return retval;
581 }
582 
583 /*
584  * change the user struct in a credentials set to match the new UID
585  */
586 static int set_user(struct cred *new)
587 {
588 	struct user_struct *new_user;
589 
590 	new_user = alloc_uid(current_user_ns(), new->uid);
591 	if (!new_user)
592 		return -EAGAIN;
593 
594 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
595 			new_user != INIT_USER) {
596 		free_uid(new_user);
597 		return -EAGAIN;
598 	}
599 
600 	free_uid(new->user);
601 	new->user = new_user;
602 	return 0;
603 }
604 
605 /*
606  * Unprivileged users may change the real uid to the effective uid
607  * or vice versa.  (BSD-style)
608  *
609  * If you set the real uid at all, or set the effective uid to a value not
610  * equal to the real uid, then the saved uid is set to the new effective uid.
611  *
612  * This makes it possible for a setuid program to completely drop its
613  * privileges, which is often a useful assertion to make when you are doing
614  * a security audit over a program.
615  *
616  * The general idea is that a program which uses just setreuid() will be
617  * 100% compatible with BSD.  A program which uses just setuid() will be
618  * 100% compatible with POSIX with saved IDs.
619  */
620 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
621 {
622 	const struct cred *old;
623 	struct cred *new;
624 	int retval;
625 
626 	new = prepare_creds();
627 	if (!new)
628 		return -ENOMEM;
629 	old = current_cred();
630 
631 	retval = -EPERM;
632 	if (ruid != (uid_t) -1) {
633 		new->uid = ruid;
634 		if (old->uid != ruid &&
635 		    old->euid != ruid &&
636 		    !nsown_capable(CAP_SETUID))
637 			goto error;
638 	}
639 
640 	if (euid != (uid_t) -1) {
641 		new->euid = euid;
642 		if (old->uid != euid &&
643 		    old->euid != euid &&
644 		    old->suid != euid &&
645 		    !nsown_capable(CAP_SETUID))
646 			goto error;
647 	}
648 
649 	if (new->uid != old->uid) {
650 		retval = set_user(new);
651 		if (retval < 0)
652 			goto error;
653 	}
654 	if (ruid != (uid_t) -1 ||
655 	    (euid != (uid_t) -1 && euid != old->uid))
656 		new->suid = new->euid;
657 	new->fsuid = new->euid;
658 
659 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
660 	if (retval < 0)
661 		goto error;
662 
663 	return commit_creds(new);
664 
665 error:
666 	abort_creds(new);
667 	return retval;
668 }
669 
670 /*
671  * setuid() is implemented like SysV with SAVED_IDS
672  *
673  * Note that SAVED_ID's is deficient in that a setuid root program
674  * like sendmail, for example, cannot set its uid to be a normal
675  * user and then switch back, because if you're root, setuid() sets
676  * the saved uid too.  If you don't like this, blame the bright people
677  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
678  * will allow a root program to temporarily drop privileges and be able to
679  * regain them by swapping the real and effective uid.
680  */
681 SYSCALL_DEFINE1(setuid, uid_t, uid)
682 {
683 	const struct cred *old;
684 	struct cred *new;
685 	int retval;
686 
687 	new = prepare_creds();
688 	if (!new)
689 		return -ENOMEM;
690 	old = current_cred();
691 
692 	retval = -EPERM;
693 	if (nsown_capable(CAP_SETUID)) {
694 		new->suid = new->uid = uid;
695 		if (uid != old->uid) {
696 			retval = set_user(new);
697 			if (retval < 0)
698 				goto error;
699 		}
700 	} else if (uid != old->uid && uid != new->suid) {
701 		goto error;
702 	}
703 
704 	new->fsuid = new->euid = uid;
705 
706 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
707 	if (retval < 0)
708 		goto error;
709 
710 	return commit_creds(new);
711 
712 error:
713 	abort_creds(new);
714 	return retval;
715 }
716 
717 
718 /*
719  * This function implements a generic ability to update ruid, euid,
720  * and suid.  This allows you to implement the 4.4 compatible seteuid().
721  */
722 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
723 {
724 	const struct cred *old;
725 	struct cred *new;
726 	int retval;
727 
728 	new = prepare_creds();
729 	if (!new)
730 		return -ENOMEM;
731 
732 	old = current_cred();
733 
734 	retval = -EPERM;
735 	if (!nsown_capable(CAP_SETUID)) {
736 		if (ruid != (uid_t) -1 && ruid != old->uid &&
737 		    ruid != old->euid  && ruid != old->suid)
738 			goto error;
739 		if (euid != (uid_t) -1 && euid != old->uid &&
740 		    euid != old->euid  && euid != old->suid)
741 			goto error;
742 		if (suid != (uid_t) -1 && suid != old->uid &&
743 		    suid != old->euid  && suid != old->suid)
744 			goto error;
745 	}
746 
747 	if (ruid != (uid_t) -1) {
748 		new->uid = ruid;
749 		if (ruid != old->uid) {
750 			retval = set_user(new);
751 			if (retval < 0)
752 				goto error;
753 		}
754 	}
755 	if (euid != (uid_t) -1)
756 		new->euid = euid;
757 	if (suid != (uid_t) -1)
758 		new->suid = suid;
759 	new->fsuid = new->euid;
760 
761 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
762 	if (retval < 0)
763 		goto error;
764 
765 	return commit_creds(new);
766 
767 error:
768 	abort_creds(new);
769 	return retval;
770 }
771 
772 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
773 {
774 	const struct cred *cred = current_cred();
775 	int retval;
776 
777 	if (!(retval   = put_user(cred->uid,  ruid)) &&
778 	    !(retval   = put_user(cred->euid, euid)))
779 		retval = put_user(cred->suid, suid);
780 
781 	return retval;
782 }
783 
784 /*
785  * Same as above, but for rgid, egid, sgid.
786  */
787 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
788 {
789 	const struct cred *old;
790 	struct cred *new;
791 	int retval;
792 
793 	new = prepare_creds();
794 	if (!new)
795 		return -ENOMEM;
796 	old = current_cred();
797 
798 	retval = -EPERM;
799 	if (!nsown_capable(CAP_SETGID)) {
800 		if (rgid != (gid_t) -1 && rgid != old->gid &&
801 		    rgid != old->egid  && rgid != old->sgid)
802 			goto error;
803 		if (egid != (gid_t) -1 && egid != old->gid &&
804 		    egid != old->egid  && egid != old->sgid)
805 			goto error;
806 		if (sgid != (gid_t) -1 && sgid != old->gid &&
807 		    sgid != old->egid  && sgid != old->sgid)
808 			goto error;
809 	}
810 
811 	if (rgid != (gid_t) -1)
812 		new->gid = rgid;
813 	if (egid != (gid_t) -1)
814 		new->egid = egid;
815 	if (sgid != (gid_t) -1)
816 		new->sgid = sgid;
817 	new->fsgid = new->egid;
818 
819 	return commit_creds(new);
820 
821 error:
822 	abort_creds(new);
823 	return retval;
824 }
825 
826 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
827 {
828 	const struct cred *cred = current_cred();
829 	int retval;
830 
831 	if (!(retval   = put_user(cred->gid,  rgid)) &&
832 	    !(retval   = put_user(cred->egid, egid)))
833 		retval = put_user(cred->sgid, sgid);
834 
835 	return retval;
836 }
837 
838 
839 /*
840  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
841  * is used for "access()" and for the NFS daemon (letting nfsd stay at
842  * whatever uid it wants to). It normally shadows "euid", except when
843  * explicitly set by setfsuid() or for access..
844  */
845 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
846 {
847 	const struct cred *old;
848 	struct cred *new;
849 	uid_t old_fsuid;
850 
851 	new = prepare_creds();
852 	if (!new)
853 		return current_fsuid();
854 	old = current_cred();
855 	old_fsuid = old->fsuid;
856 
857 	if (uid == old->uid  || uid == old->euid  ||
858 	    uid == old->suid || uid == old->fsuid ||
859 	    nsown_capable(CAP_SETUID)) {
860 		if (uid != old_fsuid) {
861 			new->fsuid = uid;
862 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
863 				goto change_okay;
864 		}
865 	}
866 
867 	abort_creds(new);
868 	return old_fsuid;
869 
870 change_okay:
871 	commit_creds(new);
872 	return old_fsuid;
873 }
874 
875 /*
876  * Samma på svenska..
877  */
878 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
879 {
880 	const struct cred *old;
881 	struct cred *new;
882 	gid_t old_fsgid;
883 
884 	new = prepare_creds();
885 	if (!new)
886 		return current_fsgid();
887 	old = current_cred();
888 	old_fsgid = old->fsgid;
889 
890 	if (gid == old->gid  || gid == old->egid  ||
891 	    gid == old->sgid || gid == old->fsgid ||
892 	    nsown_capable(CAP_SETGID)) {
893 		if (gid != old_fsgid) {
894 			new->fsgid = gid;
895 			goto change_okay;
896 		}
897 	}
898 
899 	abort_creds(new);
900 	return old_fsgid;
901 
902 change_okay:
903 	commit_creds(new);
904 	return old_fsgid;
905 }
906 
907 void do_sys_times(struct tms *tms)
908 {
909 	cputime_t tgutime, tgstime, cutime, cstime;
910 
911 	spin_lock_irq(&current->sighand->siglock);
912 	thread_group_times(current, &tgutime, &tgstime);
913 	cutime = current->signal->cutime;
914 	cstime = current->signal->cstime;
915 	spin_unlock_irq(&current->sighand->siglock);
916 	tms->tms_utime = cputime_to_clock_t(tgutime);
917 	tms->tms_stime = cputime_to_clock_t(tgstime);
918 	tms->tms_cutime = cputime_to_clock_t(cutime);
919 	tms->tms_cstime = cputime_to_clock_t(cstime);
920 }
921 
922 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
923 {
924 	if (tbuf) {
925 		struct tms tmp;
926 
927 		do_sys_times(&tmp);
928 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
929 			return -EFAULT;
930 	}
931 	force_successful_syscall_return();
932 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
933 }
934 
935 /*
936  * This needs some heavy checking ...
937  * I just haven't the stomach for it. I also don't fully
938  * understand sessions/pgrp etc. Let somebody who does explain it.
939  *
940  * OK, I think I have the protection semantics right.... this is really
941  * only important on a multi-user system anyway, to make sure one user
942  * can't send a signal to a process owned by another.  -TYT, 12/12/91
943  *
944  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
945  * LBT 04.03.94
946  */
947 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
948 {
949 	struct task_struct *p;
950 	struct task_struct *group_leader = current->group_leader;
951 	struct pid *pgrp;
952 	int err;
953 
954 	if (!pid)
955 		pid = task_pid_vnr(group_leader);
956 	if (!pgid)
957 		pgid = pid;
958 	if (pgid < 0)
959 		return -EINVAL;
960 	rcu_read_lock();
961 
962 	/* From this point forward we keep holding onto the tasklist lock
963 	 * so that our parent does not change from under us. -DaveM
964 	 */
965 	write_lock_irq(&tasklist_lock);
966 
967 	err = -ESRCH;
968 	p = find_task_by_vpid(pid);
969 	if (!p)
970 		goto out;
971 
972 	err = -EINVAL;
973 	if (!thread_group_leader(p))
974 		goto out;
975 
976 	if (same_thread_group(p->real_parent, group_leader)) {
977 		err = -EPERM;
978 		if (task_session(p) != task_session(group_leader))
979 			goto out;
980 		err = -EACCES;
981 		if (p->did_exec)
982 			goto out;
983 	} else {
984 		err = -ESRCH;
985 		if (p != group_leader)
986 			goto out;
987 	}
988 
989 	err = -EPERM;
990 	if (p->signal->leader)
991 		goto out;
992 
993 	pgrp = task_pid(p);
994 	if (pgid != pid) {
995 		struct task_struct *g;
996 
997 		pgrp = find_vpid(pgid);
998 		g = pid_task(pgrp, PIDTYPE_PGID);
999 		if (!g || task_session(g) != task_session(group_leader))
1000 			goto out;
1001 	}
1002 
1003 	err = security_task_setpgid(p, pgid);
1004 	if (err)
1005 		goto out;
1006 
1007 	if (task_pgrp(p) != pgrp)
1008 		change_pid(p, PIDTYPE_PGID, pgrp);
1009 
1010 	err = 0;
1011 out:
1012 	/* All paths lead to here, thus we are safe. -DaveM */
1013 	write_unlock_irq(&tasklist_lock);
1014 	rcu_read_unlock();
1015 	return err;
1016 }
1017 
1018 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1019 {
1020 	struct task_struct *p;
1021 	struct pid *grp;
1022 	int retval;
1023 
1024 	rcu_read_lock();
1025 	if (!pid)
1026 		grp = task_pgrp(current);
1027 	else {
1028 		retval = -ESRCH;
1029 		p = find_task_by_vpid(pid);
1030 		if (!p)
1031 			goto out;
1032 		grp = task_pgrp(p);
1033 		if (!grp)
1034 			goto out;
1035 
1036 		retval = security_task_getpgid(p);
1037 		if (retval)
1038 			goto out;
1039 	}
1040 	retval = pid_vnr(grp);
1041 out:
1042 	rcu_read_unlock();
1043 	return retval;
1044 }
1045 
1046 #ifdef __ARCH_WANT_SYS_GETPGRP
1047 
1048 SYSCALL_DEFINE0(getpgrp)
1049 {
1050 	return sys_getpgid(0);
1051 }
1052 
1053 #endif
1054 
1055 SYSCALL_DEFINE1(getsid, pid_t, pid)
1056 {
1057 	struct task_struct *p;
1058 	struct pid *sid;
1059 	int retval;
1060 
1061 	rcu_read_lock();
1062 	if (!pid)
1063 		sid = task_session(current);
1064 	else {
1065 		retval = -ESRCH;
1066 		p = find_task_by_vpid(pid);
1067 		if (!p)
1068 			goto out;
1069 		sid = task_session(p);
1070 		if (!sid)
1071 			goto out;
1072 
1073 		retval = security_task_getsid(p);
1074 		if (retval)
1075 			goto out;
1076 	}
1077 	retval = pid_vnr(sid);
1078 out:
1079 	rcu_read_unlock();
1080 	return retval;
1081 }
1082 
1083 SYSCALL_DEFINE0(setsid)
1084 {
1085 	struct task_struct *group_leader = current->group_leader;
1086 	struct pid *sid = task_pid(group_leader);
1087 	pid_t session = pid_vnr(sid);
1088 	int err = -EPERM;
1089 
1090 	write_lock_irq(&tasklist_lock);
1091 	/* Fail if I am already a session leader */
1092 	if (group_leader->signal->leader)
1093 		goto out;
1094 
1095 	/* Fail if a process group id already exists that equals the
1096 	 * proposed session id.
1097 	 */
1098 	if (pid_task(sid, PIDTYPE_PGID))
1099 		goto out;
1100 
1101 	group_leader->signal->leader = 1;
1102 	__set_special_pids(sid);
1103 
1104 	proc_clear_tty(group_leader);
1105 
1106 	err = session;
1107 out:
1108 	write_unlock_irq(&tasklist_lock);
1109 	if (err > 0) {
1110 		proc_sid_connector(group_leader);
1111 		sched_autogroup_create_attach(group_leader);
1112 	}
1113 	return err;
1114 }
1115 
1116 DECLARE_RWSEM(uts_sem);
1117 
1118 #ifdef COMPAT_UTS_MACHINE
1119 #define override_architecture(name) \
1120 	(personality(current->personality) == PER_LINUX32 && \
1121 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1122 		      sizeof(COMPAT_UTS_MACHINE)))
1123 #else
1124 #define override_architecture(name)	0
1125 #endif
1126 
1127 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1128 {
1129 	int errno = 0;
1130 
1131 	down_read(&uts_sem);
1132 	if (copy_to_user(name, utsname(), sizeof *name))
1133 		errno = -EFAULT;
1134 	up_read(&uts_sem);
1135 
1136 	if (!errno && override_architecture(name))
1137 		errno = -EFAULT;
1138 	return errno;
1139 }
1140 
1141 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1142 /*
1143  * Old cruft
1144  */
1145 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1146 {
1147 	int error = 0;
1148 
1149 	if (!name)
1150 		return -EFAULT;
1151 
1152 	down_read(&uts_sem);
1153 	if (copy_to_user(name, utsname(), sizeof(*name)))
1154 		error = -EFAULT;
1155 	up_read(&uts_sem);
1156 
1157 	if (!error && override_architecture(name))
1158 		error = -EFAULT;
1159 	return error;
1160 }
1161 
1162 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1163 {
1164 	int error;
1165 
1166 	if (!name)
1167 		return -EFAULT;
1168 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1169 		return -EFAULT;
1170 
1171 	down_read(&uts_sem);
1172 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1173 			       __OLD_UTS_LEN);
1174 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1175 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1176 				__OLD_UTS_LEN);
1177 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1178 	error |= __copy_to_user(&name->release, &utsname()->release,
1179 				__OLD_UTS_LEN);
1180 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1181 	error |= __copy_to_user(&name->version, &utsname()->version,
1182 				__OLD_UTS_LEN);
1183 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1184 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1185 				__OLD_UTS_LEN);
1186 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1187 	up_read(&uts_sem);
1188 
1189 	if (!error && override_architecture(name))
1190 		error = -EFAULT;
1191 	return error ? -EFAULT : 0;
1192 }
1193 #endif
1194 
1195 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196 {
1197 	int errno;
1198 	char tmp[__NEW_UTS_LEN];
1199 
1200 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201 		return -EPERM;
1202 
1203 	if (len < 0 || len > __NEW_UTS_LEN)
1204 		return -EINVAL;
1205 	down_write(&uts_sem);
1206 	errno = -EFAULT;
1207 	if (!copy_from_user(tmp, name, len)) {
1208 		struct new_utsname *u = utsname();
1209 
1210 		memcpy(u->nodename, tmp, len);
1211 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212 		errno = 0;
1213 	}
1214 	up_write(&uts_sem);
1215 	return errno;
1216 }
1217 
1218 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1219 
1220 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1221 {
1222 	int i, errno;
1223 	struct new_utsname *u;
1224 
1225 	if (len < 0)
1226 		return -EINVAL;
1227 	down_read(&uts_sem);
1228 	u = utsname();
1229 	i = 1 + strlen(u->nodename);
1230 	if (i > len)
1231 		i = len;
1232 	errno = 0;
1233 	if (copy_to_user(name, u->nodename, i))
1234 		errno = -EFAULT;
1235 	up_read(&uts_sem);
1236 	return errno;
1237 }
1238 
1239 #endif
1240 
1241 /*
1242  * Only setdomainname; getdomainname can be implemented by calling
1243  * uname()
1244  */
1245 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1246 {
1247 	int errno;
1248 	char tmp[__NEW_UTS_LEN];
1249 
1250 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1251 		return -EPERM;
1252 	if (len < 0 || len > __NEW_UTS_LEN)
1253 		return -EINVAL;
1254 
1255 	down_write(&uts_sem);
1256 	errno = -EFAULT;
1257 	if (!copy_from_user(tmp, name, len)) {
1258 		struct new_utsname *u = utsname();
1259 
1260 		memcpy(u->domainname, tmp, len);
1261 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1262 		errno = 0;
1263 	}
1264 	up_write(&uts_sem);
1265 	return errno;
1266 }
1267 
1268 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1269 {
1270 	struct rlimit value;
1271 	int ret;
1272 
1273 	ret = do_prlimit(current, resource, NULL, &value);
1274 	if (!ret)
1275 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1276 
1277 	return ret;
1278 }
1279 
1280 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1281 
1282 /*
1283  *	Back compatibility for getrlimit. Needed for some apps.
1284  */
1285 
1286 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1287 		struct rlimit __user *, rlim)
1288 {
1289 	struct rlimit x;
1290 	if (resource >= RLIM_NLIMITS)
1291 		return -EINVAL;
1292 
1293 	task_lock(current->group_leader);
1294 	x = current->signal->rlim[resource];
1295 	task_unlock(current->group_leader);
1296 	if (x.rlim_cur > 0x7FFFFFFF)
1297 		x.rlim_cur = 0x7FFFFFFF;
1298 	if (x.rlim_max > 0x7FFFFFFF)
1299 		x.rlim_max = 0x7FFFFFFF;
1300 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1301 }
1302 
1303 #endif
1304 
1305 static inline bool rlim64_is_infinity(__u64 rlim64)
1306 {
1307 #if BITS_PER_LONG < 64
1308 	return rlim64 >= ULONG_MAX;
1309 #else
1310 	return rlim64 == RLIM64_INFINITY;
1311 #endif
1312 }
1313 
1314 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1315 {
1316 	if (rlim->rlim_cur == RLIM_INFINITY)
1317 		rlim64->rlim_cur = RLIM64_INFINITY;
1318 	else
1319 		rlim64->rlim_cur = rlim->rlim_cur;
1320 	if (rlim->rlim_max == RLIM_INFINITY)
1321 		rlim64->rlim_max = RLIM64_INFINITY;
1322 	else
1323 		rlim64->rlim_max = rlim->rlim_max;
1324 }
1325 
1326 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1327 {
1328 	if (rlim64_is_infinity(rlim64->rlim_cur))
1329 		rlim->rlim_cur = RLIM_INFINITY;
1330 	else
1331 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1332 	if (rlim64_is_infinity(rlim64->rlim_max))
1333 		rlim->rlim_max = RLIM_INFINITY;
1334 	else
1335 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1336 }
1337 
1338 /* make sure you are allowed to change @tsk limits before calling this */
1339 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1340 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1341 {
1342 	struct rlimit *rlim;
1343 	int retval = 0;
1344 
1345 	if (resource >= RLIM_NLIMITS)
1346 		return -EINVAL;
1347 	if (new_rlim) {
1348 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1349 			return -EINVAL;
1350 		if (resource == RLIMIT_NOFILE &&
1351 				new_rlim->rlim_max > sysctl_nr_open)
1352 			return -EPERM;
1353 	}
1354 
1355 	/* protect tsk->signal and tsk->sighand from disappearing */
1356 	read_lock(&tasklist_lock);
1357 	if (!tsk->sighand) {
1358 		retval = -ESRCH;
1359 		goto out;
1360 	}
1361 
1362 	rlim = tsk->signal->rlim + resource;
1363 	task_lock(tsk->group_leader);
1364 	if (new_rlim) {
1365 		/* Keep the capable check against init_user_ns until
1366 		   cgroups can contain all limits */
1367 		if (new_rlim->rlim_max > rlim->rlim_max &&
1368 				!capable(CAP_SYS_RESOURCE))
1369 			retval = -EPERM;
1370 		if (!retval)
1371 			retval = security_task_setrlimit(tsk->group_leader,
1372 					resource, new_rlim);
1373 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1374 			/*
1375 			 * The caller is asking for an immediate RLIMIT_CPU
1376 			 * expiry.  But we use the zero value to mean "it was
1377 			 * never set".  So let's cheat and make it one second
1378 			 * instead
1379 			 */
1380 			new_rlim->rlim_cur = 1;
1381 		}
1382 	}
1383 	if (!retval) {
1384 		if (old_rlim)
1385 			*old_rlim = *rlim;
1386 		if (new_rlim)
1387 			*rlim = *new_rlim;
1388 	}
1389 	task_unlock(tsk->group_leader);
1390 
1391 	/*
1392 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1393 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1394 	 * very long-standing error, and fixing it now risks breakage of
1395 	 * applications, so we live with it
1396 	 */
1397 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1398 			 new_rlim->rlim_cur != RLIM_INFINITY)
1399 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1400 out:
1401 	read_unlock(&tasklist_lock);
1402 	return retval;
1403 }
1404 
1405 /* rcu lock must be held */
1406 static int check_prlimit_permission(struct task_struct *task)
1407 {
1408 	const struct cred *cred = current_cred(), *tcred;
1409 
1410 	if (current == task)
1411 		return 0;
1412 
1413 	tcred = __task_cred(task);
1414 	if (cred->user->user_ns == tcred->user->user_ns &&
1415 	    (cred->uid == tcred->euid &&
1416 	     cred->uid == tcred->suid &&
1417 	     cred->uid == tcred->uid  &&
1418 	     cred->gid == tcred->egid &&
1419 	     cred->gid == tcred->sgid &&
1420 	     cred->gid == tcred->gid))
1421 		return 0;
1422 	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1423 		return 0;
1424 
1425 	return -EPERM;
1426 }
1427 
1428 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1429 		const struct rlimit64 __user *, new_rlim,
1430 		struct rlimit64 __user *, old_rlim)
1431 {
1432 	struct rlimit64 old64, new64;
1433 	struct rlimit old, new;
1434 	struct task_struct *tsk;
1435 	int ret;
1436 
1437 	if (new_rlim) {
1438 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1439 			return -EFAULT;
1440 		rlim64_to_rlim(&new64, &new);
1441 	}
1442 
1443 	rcu_read_lock();
1444 	tsk = pid ? find_task_by_vpid(pid) : current;
1445 	if (!tsk) {
1446 		rcu_read_unlock();
1447 		return -ESRCH;
1448 	}
1449 	ret = check_prlimit_permission(tsk);
1450 	if (ret) {
1451 		rcu_read_unlock();
1452 		return ret;
1453 	}
1454 	get_task_struct(tsk);
1455 	rcu_read_unlock();
1456 
1457 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1458 			old_rlim ? &old : NULL);
1459 
1460 	if (!ret && old_rlim) {
1461 		rlim_to_rlim64(&old, &old64);
1462 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1463 			ret = -EFAULT;
1464 	}
1465 
1466 	put_task_struct(tsk);
1467 	return ret;
1468 }
1469 
1470 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1471 {
1472 	struct rlimit new_rlim;
1473 
1474 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1475 		return -EFAULT;
1476 	return do_prlimit(current, resource, &new_rlim, NULL);
1477 }
1478 
1479 /*
1480  * It would make sense to put struct rusage in the task_struct,
1481  * except that would make the task_struct be *really big*.  After
1482  * task_struct gets moved into malloc'ed memory, it would
1483  * make sense to do this.  It will make moving the rest of the information
1484  * a lot simpler!  (Which we're not doing right now because we're not
1485  * measuring them yet).
1486  *
1487  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1488  * races with threads incrementing their own counters.  But since word
1489  * reads are atomic, we either get new values or old values and we don't
1490  * care which for the sums.  We always take the siglock to protect reading
1491  * the c* fields from p->signal from races with exit.c updating those
1492  * fields when reaping, so a sample either gets all the additions of a
1493  * given child after it's reaped, or none so this sample is before reaping.
1494  *
1495  * Locking:
1496  * We need to take the siglock for CHILDEREN, SELF and BOTH
1497  * for  the cases current multithreaded, non-current single threaded
1498  * non-current multithreaded.  Thread traversal is now safe with
1499  * the siglock held.
1500  * Strictly speaking, we donot need to take the siglock if we are current and
1501  * single threaded,  as no one else can take our signal_struct away, no one
1502  * else can  reap the  children to update signal->c* counters, and no one else
1503  * can race with the signal-> fields. If we do not take any lock, the
1504  * signal-> fields could be read out of order while another thread was just
1505  * exiting. So we should  place a read memory barrier when we avoid the lock.
1506  * On the writer side,  write memory barrier is implied in  __exit_signal
1507  * as __exit_signal releases  the siglock spinlock after updating the signal->
1508  * fields. But we don't do this yet to keep things simple.
1509  *
1510  */
1511 
1512 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1513 {
1514 	r->ru_nvcsw += t->nvcsw;
1515 	r->ru_nivcsw += t->nivcsw;
1516 	r->ru_minflt += t->min_flt;
1517 	r->ru_majflt += t->maj_flt;
1518 	r->ru_inblock += task_io_get_inblock(t);
1519 	r->ru_oublock += task_io_get_oublock(t);
1520 }
1521 
1522 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1523 {
1524 	struct task_struct *t;
1525 	unsigned long flags;
1526 	cputime_t tgutime, tgstime, utime, stime;
1527 	unsigned long maxrss = 0;
1528 
1529 	memset((char *) r, 0, sizeof *r);
1530 	utime = stime = cputime_zero;
1531 
1532 	if (who == RUSAGE_THREAD) {
1533 		task_times(current, &utime, &stime);
1534 		accumulate_thread_rusage(p, r);
1535 		maxrss = p->signal->maxrss;
1536 		goto out;
1537 	}
1538 
1539 	if (!lock_task_sighand(p, &flags))
1540 		return;
1541 
1542 	switch (who) {
1543 		case RUSAGE_BOTH:
1544 		case RUSAGE_CHILDREN:
1545 			utime = p->signal->cutime;
1546 			stime = p->signal->cstime;
1547 			r->ru_nvcsw = p->signal->cnvcsw;
1548 			r->ru_nivcsw = p->signal->cnivcsw;
1549 			r->ru_minflt = p->signal->cmin_flt;
1550 			r->ru_majflt = p->signal->cmaj_flt;
1551 			r->ru_inblock = p->signal->cinblock;
1552 			r->ru_oublock = p->signal->coublock;
1553 			maxrss = p->signal->cmaxrss;
1554 
1555 			if (who == RUSAGE_CHILDREN)
1556 				break;
1557 
1558 		case RUSAGE_SELF:
1559 			thread_group_times(p, &tgutime, &tgstime);
1560 			utime = cputime_add(utime, tgutime);
1561 			stime = cputime_add(stime, tgstime);
1562 			r->ru_nvcsw += p->signal->nvcsw;
1563 			r->ru_nivcsw += p->signal->nivcsw;
1564 			r->ru_minflt += p->signal->min_flt;
1565 			r->ru_majflt += p->signal->maj_flt;
1566 			r->ru_inblock += p->signal->inblock;
1567 			r->ru_oublock += p->signal->oublock;
1568 			if (maxrss < p->signal->maxrss)
1569 				maxrss = p->signal->maxrss;
1570 			t = p;
1571 			do {
1572 				accumulate_thread_rusage(t, r);
1573 				t = next_thread(t);
1574 			} while (t != p);
1575 			break;
1576 
1577 		default:
1578 			BUG();
1579 	}
1580 	unlock_task_sighand(p, &flags);
1581 
1582 out:
1583 	cputime_to_timeval(utime, &r->ru_utime);
1584 	cputime_to_timeval(stime, &r->ru_stime);
1585 
1586 	if (who != RUSAGE_CHILDREN) {
1587 		struct mm_struct *mm = get_task_mm(p);
1588 		if (mm) {
1589 			setmax_mm_hiwater_rss(&maxrss, mm);
1590 			mmput(mm);
1591 		}
1592 	}
1593 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1594 }
1595 
1596 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597 {
1598 	struct rusage r;
1599 	k_getrusage(p, who, &r);
1600 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601 }
1602 
1603 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604 {
1605 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606 	    who != RUSAGE_THREAD)
1607 		return -EINVAL;
1608 	return getrusage(current, who, ru);
1609 }
1610 
1611 SYSCALL_DEFINE1(umask, int, mask)
1612 {
1613 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1614 	return mask;
1615 }
1616 
1617 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1618 		unsigned long, arg4, unsigned long, arg5)
1619 {
1620 	struct task_struct *me = current;
1621 	unsigned char comm[sizeof(me->comm)];
1622 	long error;
1623 
1624 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1625 	if (error != -ENOSYS)
1626 		return error;
1627 
1628 	error = 0;
1629 	switch (option) {
1630 		case PR_SET_PDEATHSIG:
1631 			if (!valid_signal(arg2)) {
1632 				error = -EINVAL;
1633 				break;
1634 			}
1635 			me->pdeath_signal = arg2;
1636 			error = 0;
1637 			break;
1638 		case PR_GET_PDEATHSIG:
1639 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1640 			break;
1641 		case PR_GET_DUMPABLE:
1642 			error = get_dumpable(me->mm);
1643 			break;
1644 		case PR_SET_DUMPABLE:
1645 			if (arg2 < 0 || arg2 > 1) {
1646 				error = -EINVAL;
1647 				break;
1648 			}
1649 			set_dumpable(me->mm, arg2);
1650 			error = 0;
1651 			break;
1652 
1653 		case PR_SET_UNALIGN:
1654 			error = SET_UNALIGN_CTL(me, arg2);
1655 			break;
1656 		case PR_GET_UNALIGN:
1657 			error = GET_UNALIGN_CTL(me, arg2);
1658 			break;
1659 		case PR_SET_FPEMU:
1660 			error = SET_FPEMU_CTL(me, arg2);
1661 			break;
1662 		case PR_GET_FPEMU:
1663 			error = GET_FPEMU_CTL(me, arg2);
1664 			break;
1665 		case PR_SET_FPEXC:
1666 			error = SET_FPEXC_CTL(me, arg2);
1667 			break;
1668 		case PR_GET_FPEXC:
1669 			error = GET_FPEXC_CTL(me, arg2);
1670 			break;
1671 		case PR_GET_TIMING:
1672 			error = PR_TIMING_STATISTICAL;
1673 			break;
1674 		case PR_SET_TIMING:
1675 			if (arg2 != PR_TIMING_STATISTICAL)
1676 				error = -EINVAL;
1677 			else
1678 				error = 0;
1679 			break;
1680 
1681 		case PR_SET_NAME:
1682 			comm[sizeof(me->comm)-1] = 0;
1683 			if (strncpy_from_user(comm, (char __user *)arg2,
1684 					      sizeof(me->comm) - 1) < 0)
1685 				return -EFAULT;
1686 			set_task_comm(me, comm);
1687 			return 0;
1688 		case PR_GET_NAME:
1689 			get_task_comm(comm, me);
1690 			if (copy_to_user((char __user *)arg2, comm,
1691 					 sizeof(comm)))
1692 				return -EFAULT;
1693 			return 0;
1694 		case PR_GET_ENDIAN:
1695 			error = GET_ENDIAN(me, arg2);
1696 			break;
1697 		case PR_SET_ENDIAN:
1698 			error = SET_ENDIAN(me, arg2);
1699 			break;
1700 
1701 		case PR_GET_SECCOMP:
1702 			error = prctl_get_seccomp();
1703 			break;
1704 		case PR_SET_SECCOMP:
1705 			error = prctl_set_seccomp(arg2);
1706 			break;
1707 		case PR_GET_TSC:
1708 			error = GET_TSC_CTL(arg2);
1709 			break;
1710 		case PR_SET_TSC:
1711 			error = SET_TSC_CTL(arg2);
1712 			break;
1713 		case PR_TASK_PERF_EVENTS_DISABLE:
1714 			error = perf_event_task_disable();
1715 			break;
1716 		case PR_TASK_PERF_EVENTS_ENABLE:
1717 			error = perf_event_task_enable();
1718 			break;
1719 		case PR_GET_TIMERSLACK:
1720 			error = current->timer_slack_ns;
1721 			break;
1722 		case PR_SET_TIMERSLACK:
1723 			if (arg2 <= 0)
1724 				current->timer_slack_ns =
1725 					current->default_timer_slack_ns;
1726 			else
1727 				current->timer_slack_ns = arg2;
1728 			error = 0;
1729 			break;
1730 		case PR_MCE_KILL:
1731 			if (arg4 | arg5)
1732 				return -EINVAL;
1733 			switch (arg2) {
1734 			case PR_MCE_KILL_CLEAR:
1735 				if (arg3 != 0)
1736 					return -EINVAL;
1737 				current->flags &= ~PF_MCE_PROCESS;
1738 				break;
1739 			case PR_MCE_KILL_SET:
1740 				current->flags |= PF_MCE_PROCESS;
1741 				if (arg3 == PR_MCE_KILL_EARLY)
1742 					current->flags |= PF_MCE_EARLY;
1743 				else if (arg3 == PR_MCE_KILL_LATE)
1744 					current->flags &= ~PF_MCE_EARLY;
1745 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1746 					current->flags &=
1747 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1748 				else
1749 					return -EINVAL;
1750 				break;
1751 			default:
1752 				return -EINVAL;
1753 			}
1754 			error = 0;
1755 			break;
1756 		case PR_MCE_KILL_GET:
1757 			if (arg2 | arg3 | arg4 | arg5)
1758 				return -EINVAL;
1759 			if (current->flags & PF_MCE_PROCESS)
1760 				error = (current->flags & PF_MCE_EARLY) ?
1761 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1762 			else
1763 				error = PR_MCE_KILL_DEFAULT;
1764 			break;
1765 		default:
1766 			error = -EINVAL;
1767 			break;
1768 	}
1769 	return error;
1770 }
1771 
1772 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1773 		struct getcpu_cache __user *, unused)
1774 {
1775 	int err = 0;
1776 	int cpu = raw_smp_processor_id();
1777 	if (cpup)
1778 		err |= put_user(cpu, cpup);
1779 	if (nodep)
1780 		err |= put_user(cpu_to_node(cpu), nodep);
1781 	return err ? -EFAULT : 0;
1782 }
1783 
1784 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1785 
1786 static void argv_cleanup(struct subprocess_info *info)
1787 {
1788 	argv_free(info->argv);
1789 }
1790 
1791 /**
1792  * orderly_poweroff - Trigger an orderly system poweroff
1793  * @force: force poweroff if command execution fails
1794  *
1795  * This may be called from any context to trigger a system shutdown.
1796  * If the orderly shutdown fails, it will force an immediate shutdown.
1797  */
1798 int orderly_poweroff(bool force)
1799 {
1800 	int argc;
1801 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1802 	static char *envp[] = {
1803 		"HOME=/",
1804 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1805 		NULL
1806 	};
1807 	int ret = -ENOMEM;
1808 	struct subprocess_info *info;
1809 
1810 	if (argv == NULL) {
1811 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1812 		       __func__, poweroff_cmd);
1813 		goto out;
1814 	}
1815 
1816 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1817 	if (info == NULL) {
1818 		argv_free(argv);
1819 		goto out;
1820 	}
1821 
1822 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1823 
1824 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1825 
1826   out:
1827 	if (ret && force) {
1828 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1829 		       "forcing the issue\n");
1830 
1831 		/* I guess this should try to kick off some daemon to
1832 		   sync and poweroff asap.  Or not even bother syncing
1833 		   if we're doing an emergency shutdown? */
1834 		emergency_sync();
1835 		kernel_power_off();
1836 	}
1837 
1838 	return ret;
1839 }
1840 EXPORT_SYMBOL_GPL(orderly_poweroff);
1841