xref: /openbmc/linux/kernel/sys.c (revision e6e8c82b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
63 
64 #include <linux/nospec.h>
65 
66 #include <linux/kmsg_dump.h>
67 /* Move somewhere else to avoid recompiling? */
68 #include <generated/utsrelease.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/unistd.h>
73 
74 #include "uid16.h"
75 
76 #ifndef SET_UNALIGN_CTL
77 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
78 #endif
79 #ifndef GET_UNALIGN_CTL
80 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
81 #endif
82 #ifndef SET_FPEMU_CTL
83 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
84 #endif
85 #ifndef GET_FPEMU_CTL
86 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
87 #endif
88 #ifndef SET_FPEXC_CTL
89 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
90 #endif
91 #ifndef GET_FPEXC_CTL
92 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
93 #endif
94 #ifndef GET_ENDIAN
95 # define GET_ENDIAN(a, b)	(-EINVAL)
96 #endif
97 #ifndef SET_ENDIAN
98 # define SET_ENDIAN(a, b)	(-EINVAL)
99 #endif
100 #ifndef GET_TSC_CTL
101 # define GET_TSC_CTL(a)		(-EINVAL)
102 #endif
103 #ifndef SET_TSC_CTL
104 # define SET_TSC_CTL(a)		(-EINVAL)
105 #endif
106 #ifndef MPX_ENABLE_MANAGEMENT
107 # define MPX_ENABLE_MANAGEMENT()	(-EINVAL)
108 #endif
109 #ifndef MPX_DISABLE_MANAGEMENT
110 # define MPX_DISABLE_MANAGEMENT()	(-EINVAL)
111 #endif
112 #ifndef GET_FP_MODE
113 # define GET_FP_MODE(a)		(-EINVAL)
114 #endif
115 #ifndef SET_FP_MODE
116 # define SET_FP_MODE(a,b)	(-EINVAL)
117 #endif
118 #ifndef SVE_SET_VL
119 # define SVE_SET_VL(a)		(-EINVAL)
120 #endif
121 #ifndef SVE_GET_VL
122 # define SVE_GET_VL()		(-EINVAL)
123 #endif
124 #ifndef PAC_RESET_KEYS
125 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
126 #endif
127 
128 /*
129  * this is where the system-wide overflow UID and GID are defined, for
130  * architectures that now have 32-bit UID/GID but didn't in the past
131  */
132 
133 int overflowuid = DEFAULT_OVERFLOWUID;
134 int overflowgid = DEFAULT_OVERFLOWGID;
135 
136 EXPORT_SYMBOL(overflowuid);
137 EXPORT_SYMBOL(overflowgid);
138 
139 /*
140  * the same as above, but for filesystems which can only store a 16-bit
141  * UID and GID. as such, this is needed on all architectures
142  */
143 
144 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
145 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
146 
147 EXPORT_SYMBOL(fs_overflowuid);
148 EXPORT_SYMBOL(fs_overflowgid);
149 
150 /*
151  * Returns true if current's euid is same as p's uid or euid,
152  * or has CAP_SYS_NICE to p's user_ns.
153  *
154  * Called with rcu_read_lock, creds are safe
155  */
156 static bool set_one_prio_perm(struct task_struct *p)
157 {
158 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
159 
160 	if (uid_eq(pcred->uid,  cred->euid) ||
161 	    uid_eq(pcred->euid, cred->euid))
162 		return true;
163 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
164 		return true;
165 	return false;
166 }
167 
168 /*
169  * set the priority of a task
170  * - the caller must hold the RCU read lock
171  */
172 static int set_one_prio(struct task_struct *p, int niceval, int error)
173 {
174 	int no_nice;
175 
176 	if (!set_one_prio_perm(p)) {
177 		error = -EPERM;
178 		goto out;
179 	}
180 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
181 		error = -EACCES;
182 		goto out;
183 	}
184 	no_nice = security_task_setnice(p, niceval);
185 	if (no_nice) {
186 		error = no_nice;
187 		goto out;
188 	}
189 	if (error == -ESRCH)
190 		error = 0;
191 	set_user_nice(p, niceval);
192 out:
193 	return error;
194 }
195 
196 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
197 {
198 	struct task_struct *g, *p;
199 	struct user_struct *user;
200 	const struct cred *cred = current_cred();
201 	int error = -EINVAL;
202 	struct pid *pgrp;
203 	kuid_t uid;
204 
205 	if (which > PRIO_USER || which < PRIO_PROCESS)
206 		goto out;
207 
208 	/* normalize: avoid signed division (rounding problems) */
209 	error = -ESRCH;
210 	if (niceval < MIN_NICE)
211 		niceval = MIN_NICE;
212 	if (niceval > MAX_NICE)
213 		niceval = MAX_NICE;
214 
215 	rcu_read_lock();
216 	read_lock(&tasklist_lock);
217 	switch (which) {
218 	case PRIO_PROCESS:
219 		if (who)
220 			p = find_task_by_vpid(who);
221 		else
222 			p = current;
223 		if (p)
224 			error = set_one_prio(p, niceval, error);
225 		break;
226 	case PRIO_PGRP:
227 		if (who)
228 			pgrp = find_vpid(who);
229 		else
230 			pgrp = task_pgrp(current);
231 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
232 			error = set_one_prio(p, niceval, error);
233 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
234 		break;
235 	case PRIO_USER:
236 		uid = make_kuid(cred->user_ns, who);
237 		user = cred->user;
238 		if (!who)
239 			uid = cred->uid;
240 		else if (!uid_eq(uid, cred->uid)) {
241 			user = find_user(uid);
242 			if (!user)
243 				goto out_unlock;	/* No processes for this user */
244 		}
245 		do_each_thread(g, p) {
246 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
247 				error = set_one_prio(p, niceval, error);
248 		} while_each_thread(g, p);
249 		if (!uid_eq(uid, cred->uid))
250 			free_uid(user);		/* For find_user() */
251 		break;
252 	}
253 out_unlock:
254 	read_unlock(&tasklist_lock);
255 	rcu_read_unlock();
256 out:
257 	return error;
258 }
259 
260 /*
261  * Ugh. To avoid negative return values, "getpriority()" will
262  * not return the normal nice-value, but a negated value that
263  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
264  * to stay compatible.
265  */
266 SYSCALL_DEFINE2(getpriority, int, which, int, who)
267 {
268 	struct task_struct *g, *p;
269 	struct user_struct *user;
270 	const struct cred *cred = current_cred();
271 	long niceval, retval = -ESRCH;
272 	struct pid *pgrp;
273 	kuid_t uid;
274 
275 	if (which > PRIO_USER || which < PRIO_PROCESS)
276 		return -EINVAL;
277 
278 	rcu_read_lock();
279 	read_lock(&tasklist_lock);
280 	switch (which) {
281 	case PRIO_PROCESS:
282 		if (who)
283 			p = find_task_by_vpid(who);
284 		else
285 			p = current;
286 		if (p) {
287 			niceval = nice_to_rlimit(task_nice(p));
288 			if (niceval > retval)
289 				retval = niceval;
290 		}
291 		break;
292 	case PRIO_PGRP:
293 		if (who)
294 			pgrp = find_vpid(who);
295 		else
296 			pgrp = task_pgrp(current);
297 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
298 			niceval = nice_to_rlimit(task_nice(p));
299 			if (niceval > retval)
300 				retval = niceval;
301 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
302 		break;
303 	case PRIO_USER:
304 		uid = make_kuid(cred->user_ns, who);
305 		user = cred->user;
306 		if (!who)
307 			uid = cred->uid;
308 		else if (!uid_eq(uid, cred->uid)) {
309 			user = find_user(uid);
310 			if (!user)
311 				goto out_unlock;	/* No processes for this user */
312 		}
313 		do_each_thread(g, p) {
314 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
315 				niceval = nice_to_rlimit(task_nice(p));
316 				if (niceval > retval)
317 					retval = niceval;
318 			}
319 		} while_each_thread(g, p);
320 		if (!uid_eq(uid, cred->uid))
321 			free_uid(user);		/* for find_user() */
322 		break;
323 	}
324 out_unlock:
325 	read_unlock(&tasklist_lock);
326 	rcu_read_unlock();
327 
328 	return retval;
329 }
330 
331 /*
332  * Unprivileged users may change the real gid to the effective gid
333  * or vice versa.  (BSD-style)
334  *
335  * If you set the real gid at all, or set the effective gid to a value not
336  * equal to the real gid, then the saved gid is set to the new effective gid.
337  *
338  * This makes it possible for a setgid program to completely drop its
339  * privileges, which is often a useful assertion to make when you are doing
340  * a security audit over a program.
341  *
342  * The general idea is that a program which uses just setregid() will be
343  * 100% compatible with BSD.  A program which uses just setgid() will be
344  * 100% compatible with POSIX with saved IDs.
345  *
346  * SMP: There are not races, the GIDs are checked only by filesystem
347  *      operations (as far as semantic preservation is concerned).
348  */
349 #ifdef CONFIG_MULTIUSER
350 long __sys_setregid(gid_t rgid, gid_t egid)
351 {
352 	struct user_namespace *ns = current_user_ns();
353 	const struct cred *old;
354 	struct cred *new;
355 	int retval;
356 	kgid_t krgid, kegid;
357 
358 	krgid = make_kgid(ns, rgid);
359 	kegid = make_kgid(ns, egid);
360 
361 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
362 		return -EINVAL;
363 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
364 		return -EINVAL;
365 
366 	new = prepare_creds();
367 	if (!new)
368 		return -ENOMEM;
369 	old = current_cred();
370 
371 	retval = -EPERM;
372 	if (rgid != (gid_t) -1) {
373 		if (gid_eq(old->gid, krgid) ||
374 		    gid_eq(old->egid, krgid) ||
375 		    ns_capable(old->user_ns, CAP_SETGID))
376 			new->gid = krgid;
377 		else
378 			goto error;
379 	}
380 	if (egid != (gid_t) -1) {
381 		if (gid_eq(old->gid, kegid) ||
382 		    gid_eq(old->egid, kegid) ||
383 		    gid_eq(old->sgid, kegid) ||
384 		    ns_capable(old->user_ns, CAP_SETGID))
385 			new->egid = kegid;
386 		else
387 			goto error;
388 	}
389 
390 	if (rgid != (gid_t) -1 ||
391 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
392 		new->sgid = new->egid;
393 	new->fsgid = new->egid;
394 
395 	return commit_creds(new);
396 
397 error:
398 	abort_creds(new);
399 	return retval;
400 }
401 
402 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
403 {
404 	return __sys_setregid(rgid, egid);
405 }
406 
407 /*
408  * setgid() is implemented like SysV w/ SAVED_IDS
409  *
410  * SMP: Same implicit races as above.
411  */
412 long __sys_setgid(gid_t gid)
413 {
414 	struct user_namespace *ns = current_user_ns();
415 	const struct cred *old;
416 	struct cred *new;
417 	int retval;
418 	kgid_t kgid;
419 
420 	kgid = make_kgid(ns, gid);
421 	if (!gid_valid(kgid))
422 		return -EINVAL;
423 
424 	new = prepare_creds();
425 	if (!new)
426 		return -ENOMEM;
427 	old = current_cred();
428 
429 	retval = -EPERM;
430 	if (ns_capable(old->user_ns, CAP_SETGID))
431 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
432 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
433 		new->egid = new->fsgid = kgid;
434 	else
435 		goto error;
436 
437 	return commit_creds(new);
438 
439 error:
440 	abort_creds(new);
441 	return retval;
442 }
443 
444 SYSCALL_DEFINE1(setgid, gid_t, gid)
445 {
446 	return __sys_setgid(gid);
447 }
448 
449 /*
450  * change the user struct in a credentials set to match the new UID
451  */
452 static int set_user(struct cred *new)
453 {
454 	struct user_struct *new_user;
455 
456 	new_user = alloc_uid(new->uid);
457 	if (!new_user)
458 		return -EAGAIN;
459 
460 	/*
461 	 * We don't fail in case of NPROC limit excess here because too many
462 	 * poorly written programs don't check set*uid() return code, assuming
463 	 * it never fails if called by root.  We may still enforce NPROC limit
464 	 * for programs doing set*uid()+execve() by harmlessly deferring the
465 	 * failure to the execve() stage.
466 	 */
467 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
468 			new_user != INIT_USER)
469 		current->flags |= PF_NPROC_EXCEEDED;
470 	else
471 		current->flags &= ~PF_NPROC_EXCEEDED;
472 
473 	free_uid(new->user);
474 	new->user = new_user;
475 	return 0;
476 }
477 
478 /*
479  * Unprivileged users may change the real uid to the effective uid
480  * or vice versa.  (BSD-style)
481  *
482  * If you set the real uid at all, or set the effective uid to a value not
483  * equal to the real uid, then the saved uid is set to the new effective uid.
484  *
485  * This makes it possible for a setuid program to completely drop its
486  * privileges, which is often a useful assertion to make when you are doing
487  * a security audit over a program.
488  *
489  * The general idea is that a program which uses just setreuid() will be
490  * 100% compatible with BSD.  A program which uses just setuid() will be
491  * 100% compatible with POSIX with saved IDs.
492  */
493 long __sys_setreuid(uid_t ruid, uid_t euid)
494 {
495 	struct user_namespace *ns = current_user_ns();
496 	const struct cred *old;
497 	struct cred *new;
498 	int retval;
499 	kuid_t kruid, keuid;
500 
501 	kruid = make_kuid(ns, ruid);
502 	keuid = make_kuid(ns, euid);
503 
504 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
505 		return -EINVAL;
506 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
507 		return -EINVAL;
508 
509 	new = prepare_creds();
510 	if (!new)
511 		return -ENOMEM;
512 	old = current_cred();
513 
514 	retval = -EPERM;
515 	if (ruid != (uid_t) -1) {
516 		new->uid = kruid;
517 		if (!uid_eq(old->uid, kruid) &&
518 		    !uid_eq(old->euid, kruid) &&
519 		    !ns_capable(old->user_ns, CAP_SETUID))
520 			goto error;
521 	}
522 
523 	if (euid != (uid_t) -1) {
524 		new->euid = keuid;
525 		if (!uid_eq(old->uid, keuid) &&
526 		    !uid_eq(old->euid, keuid) &&
527 		    !uid_eq(old->suid, keuid) &&
528 		    !ns_capable(old->user_ns, CAP_SETUID))
529 			goto error;
530 	}
531 
532 	if (!uid_eq(new->uid, old->uid)) {
533 		retval = set_user(new);
534 		if (retval < 0)
535 			goto error;
536 	}
537 	if (ruid != (uid_t) -1 ||
538 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
539 		new->suid = new->euid;
540 	new->fsuid = new->euid;
541 
542 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
543 	if (retval < 0)
544 		goto error;
545 
546 	return commit_creds(new);
547 
548 error:
549 	abort_creds(new);
550 	return retval;
551 }
552 
553 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
554 {
555 	return __sys_setreuid(ruid, euid);
556 }
557 
558 /*
559  * setuid() is implemented like SysV with SAVED_IDS
560  *
561  * Note that SAVED_ID's is deficient in that a setuid root program
562  * like sendmail, for example, cannot set its uid to be a normal
563  * user and then switch back, because if you're root, setuid() sets
564  * the saved uid too.  If you don't like this, blame the bright people
565  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
566  * will allow a root program to temporarily drop privileges and be able to
567  * regain them by swapping the real and effective uid.
568  */
569 long __sys_setuid(uid_t uid)
570 {
571 	struct user_namespace *ns = current_user_ns();
572 	const struct cred *old;
573 	struct cred *new;
574 	int retval;
575 	kuid_t kuid;
576 
577 	kuid = make_kuid(ns, uid);
578 	if (!uid_valid(kuid))
579 		return -EINVAL;
580 
581 	new = prepare_creds();
582 	if (!new)
583 		return -ENOMEM;
584 	old = current_cred();
585 
586 	retval = -EPERM;
587 	if (ns_capable(old->user_ns, CAP_SETUID)) {
588 		new->suid = new->uid = kuid;
589 		if (!uid_eq(kuid, old->uid)) {
590 			retval = set_user(new);
591 			if (retval < 0)
592 				goto error;
593 		}
594 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
595 		goto error;
596 	}
597 
598 	new->fsuid = new->euid = kuid;
599 
600 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
601 	if (retval < 0)
602 		goto error;
603 
604 	return commit_creds(new);
605 
606 error:
607 	abort_creds(new);
608 	return retval;
609 }
610 
611 SYSCALL_DEFINE1(setuid, uid_t, uid)
612 {
613 	return __sys_setuid(uid);
614 }
615 
616 
617 /*
618  * This function implements a generic ability to update ruid, euid,
619  * and suid.  This allows you to implement the 4.4 compatible seteuid().
620  */
621 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
622 {
623 	struct user_namespace *ns = current_user_ns();
624 	const struct cred *old;
625 	struct cred *new;
626 	int retval;
627 	kuid_t kruid, keuid, ksuid;
628 
629 	kruid = make_kuid(ns, ruid);
630 	keuid = make_kuid(ns, euid);
631 	ksuid = make_kuid(ns, suid);
632 
633 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
634 		return -EINVAL;
635 
636 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
637 		return -EINVAL;
638 
639 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
640 		return -EINVAL;
641 
642 	new = prepare_creds();
643 	if (!new)
644 		return -ENOMEM;
645 
646 	old = current_cred();
647 
648 	retval = -EPERM;
649 	if (!ns_capable(old->user_ns, CAP_SETUID)) {
650 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
651 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
652 			goto error;
653 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
654 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
655 			goto error;
656 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
657 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
658 			goto error;
659 	}
660 
661 	if (ruid != (uid_t) -1) {
662 		new->uid = kruid;
663 		if (!uid_eq(kruid, old->uid)) {
664 			retval = set_user(new);
665 			if (retval < 0)
666 				goto error;
667 		}
668 	}
669 	if (euid != (uid_t) -1)
670 		new->euid = keuid;
671 	if (suid != (uid_t) -1)
672 		new->suid = ksuid;
673 	new->fsuid = new->euid;
674 
675 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
676 	if (retval < 0)
677 		goto error;
678 
679 	return commit_creds(new);
680 
681 error:
682 	abort_creds(new);
683 	return retval;
684 }
685 
686 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
687 {
688 	return __sys_setresuid(ruid, euid, suid);
689 }
690 
691 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
692 {
693 	const struct cred *cred = current_cred();
694 	int retval;
695 	uid_t ruid, euid, suid;
696 
697 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
698 	euid = from_kuid_munged(cred->user_ns, cred->euid);
699 	suid = from_kuid_munged(cred->user_ns, cred->suid);
700 
701 	retval = put_user(ruid, ruidp);
702 	if (!retval) {
703 		retval = put_user(euid, euidp);
704 		if (!retval)
705 			return put_user(suid, suidp);
706 	}
707 	return retval;
708 }
709 
710 /*
711  * Same as above, but for rgid, egid, sgid.
712  */
713 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
714 {
715 	struct user_namespace *ns = current_user_ns();
716 	const struct cred *old;
717 	struct cred *new;
718 	int retval;
719 	kgid_t krgid, kegid, ksgid;
720 
721 	krgid = make_kgid(ns, rgid);
722 	kegid = make_kgid(ns, egid);
723 	ksgid = make_kgid(ns, sgid);
724 
725 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
726 		return -EINVAL;
727 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
728 		return -EINVAL;
729 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
730 		return -EINVAL;
731 
732 	new = prepare_creds();
733 	if (!new)
734 		return -ENOMEM;
735 	old = current_cred();
736 
737 	retval = -EPERM;
738 	if (!ns_capable(old->user_ns, CAP_SETGID)) {
739 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
740 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
741 			goto error;
742 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
743 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
744 			goto error;
745 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
746 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
747 			goto error;
748 	}
749 
750 	if (rgid != (gid_t) -1)
751 		new->gid = krgid;
752 	if (egid != (gid_t) -1)
753 		new->egid = kegid;
754 	if (sgid != (gid_t) -1)
755 		new->sgid = ksgid;
756 	new->fsgid = new->egid;
757 
758 	return commit_creds(new);
759 
760 error:
761 	abort_creds(new);
762 	return retval;
763 }
764 
765 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
766 {
767 	return __sys_setresgid(rgid, egid, sgid);
768 }
769 
770 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
771 {
772 	const struct cred *cred = current_cred();
773 	int retval;
774 	gid_t rgid, egid, sgid;
775 
776 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
777 	egid = from_kgid_munged(cred->user_ns, cred->egid);
778 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
779 
780 	retval = put_user(rgid, rgidp);
781 	if (!retval) {
782 		retval = put_user(egid, egidp);
783 		if (!retval)
784 			retval = put_user(sgid, sgidp);
785 	}
786 
787 	return retval;
788 }
789 
790 
791 /*
792  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
793  * is used for "access()" and for the NFS daemon (letting nfsd stay at
794  * whatever uid it wants to). It normally shadows "euid", except when
795  * explicitly set by setfsuid() or for access..
796  */
797 long __sys_setfsuid(uid_t uid)
798 {
799 	const struct cred *old;
800 	struct cred *new;
801 	uid_t old_fsuid;
802 	kuid_t kuid;
803 
804 	old = current_cred();
805 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
806 
807 	kuid = make_kuid(old->user_ns, uid);
808 	if (!uid_valid(kuid))
809 		return old_fsuid;
810 
811 	new = prepare_creds();
812 	if (!new)
813 		return old_fsuid;
814 
815 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
816 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
817 	    ns_capable(old->user_ns, CAP_SETUID)) {
818 		if (!uid_eq(kuid, old->fsuid)) {
819 			new->fsuid = kuid;
820 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
821 				goto change_okay;
822 		}
823 	}
824 
825 	abort_creds(new);
826 	return old_fsuid;
827 
828 change_okay:
829 	commit_creds(new);
830 	return old_fsuid;
831 }
832 
833 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
834 {
835 	return __sys_setfsuid(uid);
836 }
837 
838 /*
839  * Samma på svenska..
840  */
841 long __sys_setfsgid(gid_t gid)
842 {
843 	const struct cred *old;
844 	struct cred *new;
845 	gid_t old_fsgid;
846 	kgid_t kgid;
847 
848 	old = current_cred();
849 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
850 
851 	kgid = make_kgid(old->user_ns, gid);
852 	if (!gid_valid(kgid))
853 		return old_fsgid;
854 
855 	new = prepare_creds();
856 	if (!new)
857 		return old_fsgid;
858 
859 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
860 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
861 	    ns_capable(old->user_ns, CAP_SETGID)) {
862 		if (!gid_eq(kgid, old->fsgid)) {
863 			new->fsgid = kgid;
864 			goto change_okay;
865 		}
866 	}
867 
868 	abort_creds(new);
869 	return old_fsgid;
870 
871 change_okay:
872 	commit_creds(new);
873 	return old_fsgid;
874 }
875 
876 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
877 {
878 	return __sys_setfsgid(gid);
879 }
880 #endif /* CONFIG_MULTIUSER */
881 
882 /**
883  * sys_getpid - return the thread group id of the current process
884  *
885  * Note, despite the name, this returns the tgid not the pid.  The tgid and
886  * the pid are identical unless CLONE_THREAD was specified on clone() in
887  * which case the tgid is the same in all threads of the same group.
888  *
889  * This is SMP safe as current->tgid does not change.
890  */
891 SYSCALL_DEFINE0(getpid)
892 {
893 	return task_tgid_vnr(current);
894 }
895 
896 /* Thread ID - the internal kernel "pid" */
897 SYSCALL_DEFINE0(gettid)
898 {
899 	return task_pid_vnr(current);
900 }
901 
902 /*
903  * Accessing ->real_parent is not SMP-safe, it could
904  * change from under us. However, we can use a stale
905  * value of ->real_parent under rcu_read_lock(), see
906  * release_task()->call_rcu(delayed_put_task_struct).
907  */
908 SYSCALL_DEFINE0(getppid)
909 {
910 	int pid;
911 
912 	rcu_read_lock();
913 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
914 	rcu_read_unlock();
915 
916 	return pid;
917 }
918 
919 SYSCALL_DEFINE0(getuid)
920 {
921 	/* Only we change this so SMP safe */
922 	return from_kuid_munged(current_user_ns(), current_uid());
923 }
924 
925 SYSCALL_DEFINE0(geteuid)
926 {
927 	/* Only we change this so SMP safe */
928 	return from_kuid_munged(current_user_ns(), current_euid());
929 }
930 
931 SYSCALL_DEFINE0(getgid)
932 {
933 	/* Only we change this so SMP safe */
934 	return from_kgid_munged(current_user_ns(), current_gid());
935 }
936 
937 SYSCALL_DEFINE0(getegid)
938 {
939 	/* Only we change this so SMP safe */
940 	return from_kgid_munged(current_user_ns(), current_egid());
941 }
942 
943 static void do_sys_times(struct tms *tms)
944 {
945 	u64 tgutime, tgstime, cutime, cstime;
946 
947 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
948 	cutime = current->signal->cutime;
949 	cstime = current->signal->cstime;
950 	tms->tms_utime = nsec_to_clock_t(tgutime);
951 	tms->tms_stime = nsec_to_clock_t(tgstime);
952 	tms->tms_cutime = nsec_to_clock_t(cutime);
953 	tms->tms_cstime = nsec_to_clock_t(cstime);
954 }
955 
956 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
957 {
958 	if (tbuf) {
959 		struct tms tmp;
960 
961 		do_sys_times(&tmp);
962 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
963 			return -EFAULT;
964 	}
965 	force_successful_syscall_return();
966 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
967 }
968 
969 #ifdef CONFIG_COMPAT
970 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
971 {
972 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
973 }
974 
975 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
976 {
977 	if (tbuf) {
978 		struct tms tms;
979 		struct compat_tms tmp;
980 
981 		do_sys_times(&tms);
982 		/* Convert our struct tms to the compat version. */
983 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
984 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
985 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
986 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
987 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
988 			return -EFAULT;
989 	}
990 	force_successful_syscall_return();
991 	return compat_jiffies_to_clock_t(jiffies);
992 }
993 #endif
994 
995 /*
996  * This needs some heavy checking ...
997  * I just haven't the stomach for it. I also don't fully
998  * understand sessions/pgrp etc. Let somebody who does explain it.
999  *
1000  * OK, I think I have the protection semantics right.... this is really
1001  * only important on a multi-user system anyway, to make sure one user
1002  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1003  *
1004  * !PF_FORKNOEXEC check to conform completely to POSIX.
1005  */
1006 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007 {
1008 	struct task_struct *p;
1009 	struct task_struct *group_leader = current->group_leader;
1010 	struct pid *pgrp;
1011 	int err;
1012 
1013 	if (!pid)
1014 		pid = task_pid_vnr(group_leader);
1015 	if (!pgid)
1016 		pgid = pid;
1017 	if (pgid < 0)
1018 		return -EINVAL;
1019 	rcu_read_lock();
1020 
1021 	/* From this point forward we keep holding onto the tasklist lock
1022 	 * so that our parent does not change from under us. -DaveM
1023 	 */
1024 	write_lock_irq(&tasklist_lock);
1025 
1026 	err = -ESRCH;
1027 	p = find_task_by_vpid(pid);
1028 	if (!p)
1029 		goto out;
1030 
1031 	err = -EINVAL;
1032 	if (!thread_group_leader(p))
1033 		goto out;
1034 
1035 	if (same_thread_group(p->real_parent, group_leader)) {
1036 		err = -EPERM;
1037 		if (task_session(p) != task_session(group_leader))
1038 			goto out;
1039 		err = -EACCES;
1040 		if (!(p->flags & PF_FORKNOEXEC))
1041 			goto out;
1042 	} else {
1043 		err = -ESRCH;
1044 		if (p != group_leader)
1045 			goto out;
1046 	}
1047 
1048 	err = -EPERM;
1049 	if (p->signal->leader)
1050 		goto out;
1051 
1052 	pgrp = task_pid(p);
1053 	if (pgid != pid) {
1054 		struct task_struct *g;
1055 
1056 		pgrp = find_vpid(pgid);
1057 		g = pid_task(pgrp, PIDTYPE_PGID);
1058 		if (!g || task_session(g) != task_session(group_leader))
1059 			goto out;
1060 	}
1061 
1062 	err = security_task_setpgid(p, pgid);
1063 	if (err)
1064 		goto out;
1065 
1066 	if (task_pgrp(p) != pgrp)
1067 		change_pid(p, PIDTYPE_PGID, pgrp);
1068 
1069 	err = 0;
1070 out:
1071 	/* All paths lead to here, thus we are safe. -DaveM */
1072 	write_unlock_irq(&tasklist_lock);
1073 	rcu_read_unlock();
1074 	return err;
1075 }
1076 
1077 static int do_getpgid(pid_t pid)
1078 {
1079 	struct task_struct *p;
1080 	struct pid *grp;
1081 	int retval;
1082 
1083 	rcu_read_lock();
1084 	if (!pid)
1085 		grp = task_pgrp(current);
1086 	else {
1087 		retval = -ESRCH;
1088 		p = find_task_by_vpid(pid);
1089 		if (!p)
1090 			goto out;
1091 		grp = task_pgrp(p);
1092 		if (!grp)
1093 			goto out;
1094 
1095 		retval = security_task_getpgid(p);
1096 		if (retval)
1097 			goto out;
1098 	}
1099 	retval = pid_vnr(grp);
1100 out:
1101 	rcu_read_unlock();
1102 	return retval;
1103 }
1104 
1105 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106 {
1107 	return do_getpgid(pid);
1108 }
1109 
1110 #ifdef __ARCH_WANT_SYS_GETPGRP
1111 
1112 SYSCALL_DEFINE0(getpgrp)
1113 {
1114 	return do_getpgid(0);
1115 }
1116 
1117 #endif
1118 
1119 SYSCALL_DEFINE1(getsid, pid_t, pid)
1120 {
1121 	struct task_struct *p;
1122 	struct pid *sid;
1123 	int retval;
1124 
1125 	rcu_read_lock();
1126 	if (!pid)
1127 		sid = task_session(current);
1128 	else {
1129 		retval = -ESRCH;
1130 		p = find_task_by_vpid(pid);
1131 		if (!p)
1132 			goto out;
1133 		sid = task_session(p);
1134 		if (!sid)
1135 			goto out;
1136 
1137 		retval = security_task_getsid(p);
1138 		if (retval)
1139 			goto out;
1140 	}
1141 	retval = pid_vnr(sid);
1142 out:
1143 	rcu_read_unlock();
1144 	return retval;
1145 }
1146 
1147 static void set_special_pids(struct pid *pid)
1148 {
1149 	struct task_struct *curr = current->group_leader;
1150 
1151 	if (task_session(curr) != pid)
1152 		change_pid(curr, PIDTYPE_SID, pid);
1153 
1154 	if (task_pgrp(curr) != pid)
1155 		change_pid(curr, PIDTYPE_PGID, pid);
1156 }
1157 
1158 int ksys_setsid(void)
1159 {
1160 	struct task_struct *group_leader = current->group_leader;
1161 	struct pid *sid = task_pid(group_leader);
1162 	pid_t session = pid_vnr(sid);
1163 	int err = -EPERM;
1164 
1165 	write_lock_irq(&tasklist_lock);
1166 	/* Fail if I am already a session leader */
1167 	if (group_leader->signal->leader)
1168 		goto out;
1169 
1170 	/* Fail if a process group id already exists that equals the
1171 	 * proposed session id.
1172 	 */
1173 	if (pid_task(sid, PIDTYPE_PGID))
1174 		goto out;
1175 
1176 	group_leader->signal->leader = 1;
1177 	set_special_pids(sid);
1178 
1179 	proc_clear_tty(group_leader);
1180 
1181 	err = session;
1182 out:
1183 	write_unlock_irq(&tasklist_lock);
1184 	if (err > 0) {
1185 		proc_sid_connector(group_leader);
1186 		sched_autogroup_create_attach(group_leader);
1187 	}
1188 	return err;
1189 }
1190 
1191 SYSCALL_DEFINE0(setsid)
1192 {
1193 	return ksys_setsid();
1194 }
1195 
1196 DECLARE_RWSEM(uts_sem);
1197 
1198 #ifdef COMPAT_UTS_MACHINE
1199 #define override_architecture(name) \
1200 	(personality(current->personality) == PER_LINUX32 && \
1201 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202 		      sizeof(COMPAT_UTS_MACHINE)))
1203 #else
1204 #define override_architecture(name)	0
1205 #endif
1206 
1207 /*
1208  * Work around broken programs that cannot handle "Linux 3.0".
1209  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210  * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1211  */
1212 static int override_release(char __user *release, size_t len)
1213 {
1214 	int ret = 0;
1215 
1216 	if (current->personality & UNAME26) {
1217 		const char *rest = UTS_RELEASE;
1218 		char buf[65] = { 0 };
1219 		int ndots = 0;
1220 		unsigned v;
1221 		size_t copy;
1222 
1223 		while (*rest) {
1224 			if (*rest == '.' && ++ndots >= 3)
1225 				break;
1226 			if (!isdigit(*rest) && *rest != '.')
1227 				break;
1228 			rest++;
1229 		}
1230 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1231 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1232 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1233 		ret = copy_to_user(release, buf, copy + 1);
1234 	}
1235 	return ret;
1236 }
1237 
1238 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1239 {
1240 	struct new_utsname tmp;
1241 
1242 	down_read(&uts_sem);
1243 	memcpy(&tmp, utsname(), sizeof(tmp));
1244 	up_read(&uts_sem);
1245 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1246 		return -EFAULT;
1247 
1248 	if (override_release(name->release, sizeof(name->release)))
1249 		return -EFAULT;
1250 	if (override_architecture(name))
1251 		return -EFAULT;
1252 	return 0;
1253 }
1254 
1255 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1256 /*
1257  * Old cruft
1258  */
1259 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1260 {
1261 	struct old_utsname tmp;
1262 
1263 	if (!name)
1264 		return -EFAULT;
1265 
1266 	down_read(&uts_sem);
1267 	memcpy(&tmp, utsname(), sizeof(tmp));
1268 	up_read(&uts_sem);
1269 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1270 		return -EFAULT;
1271 
1272 	if (override_release(name->release, sizeof(name->release)))
1273 		return -EFAULT;
1274 	if (override_architecture(name))
1275 		return -EFAULT;
1276 	return 0;
1277 }
1278 
1279 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1280 {
1281 	struct oldold_utsname tmp = {};
1282 
1283 	if (!name)
1284 		return -EFAULT;
1285 
1286 	down_read(&uts_sem);
1287 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1288 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1289 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1290 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1291 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1292 	up_read(&uts_sem);
1293 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1294 		return -EFAULT;
1295 
1296 	if (override_architecture(name))
1297 		return -EFAULT;
1298 	if (override_release(name->release, sizeof(name->release)))
1299 		return -EFAULT;
1300 	return 0;
1301 }
1302 #endif
1303 
1304 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1305 {
1306 	int errno;
1307 	char tmp[__NEW_UTS_LEN];
1308 
1309 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1310 		return -EPERM;
1311 
1312 	if (len < 0 || len > __NEW_UTS_LEN)
1313 		return -EINVAL;
1314 	errno = -EFAULT;
1315 	if (!copy_from_user(tmp, name, len)) {
1316 		struct new_utsname *u;
1317 
1318 		down_write(&uts_sem);
1319 		u = utsname();
1320 		memcpy(u->nodename, tmp, len);
1321 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1322 		errno = 0;
1323 		uts_proc_notify(UTS_PROC_HOSTNAME);
1324 		up_write(&uts_sem);
1325 	}
1326 	return errno;
1327 }
1328 
1329 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1330 
1331 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1332 {
1333 	int i;
1334 	struct new_utsname *u;
1335 	char tmp[__NEW_UTS_LEN + 1];
1336 
1337 	if (len < 0)
1338 		return -EINVAL;
1339 	down_read(&uts_sem);
1340 	u = utsname();
1341 	i = 1 + strlen(u->nodename);
1342 	if (i > len)
1343 		i = len;
1344 	memcpy(tmp, u->nodename, i);
1345 	up_read(&uts_sem);
1346 	if (copy_to_user(name, tmp, i))
1347 		return -EFAULT;
1348 	return 0;
1349 }
1350 
1351 #endif
1352 
1353 /*
1354  * Only setdomainname; getdomainname can be implemented by calling
1355  * uname()
1356  */
1357 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1358 {
1359 	int errno;
1360 	char tmp[__NEW_UTS_LEN];
1361 
1362 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1363 		return -EPERM;
1364 	if (len < 0 || len > __NEW_UTS_LEN)
1365 		return -EINVAL;
1366 
1367 	errno = -EFAULT;
1368 	if (!copy_from_user(tmp, name, len)) {
1369 		struct new_utsname *u;
1370 
1371 		down_write(&uts_sem);
1372 		u = utsname();
1373 		memcpy(u->domainname, tmp, len);
1374 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1375 		errno = 0;
1376 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1377 		up_write(&uts_sem);
1378 	}
1379 	return errno;
1380 }
1381 
1382 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1383 {
1384 	struct rlimit value;
1385 	int ret;
1386 
1387 	ret = do_prlimit(current, resource, NULL, &value);
1388 	if (!ret)
1389 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1390 
1391 	return ret;
1392 }
1393 
1394 #ifdef CONFIG_COMPAT
1395 
1396 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1397 		       struct compat_rlimit __user *, rlim)
1398 {
1399 	struct rlimit r;
1400 	struct compat_rlimit r32;
1401 
1402 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1403 		return -EFAULT;
1404 
1405 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1406 		r.rlim_cur = RLIM_INFINITY;
1407 	else
1408 		r.rlim_cur = r32.rlim_cur;
1409 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1410 		r.rlim_max = RLIM_INFINITY;
1411 	else
1412 		r.rlim_max = r32.rlim_max;
1413 	return do_prlimit(current, resource, &r, NULL);
1414 }
1415 
1416 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1417 		       struct compat_rlimit __user *, rlim)
1418 {
1419 	struct rlimit r;
1420 	int ret;
1421 
1422 	ret = do_prlimit(current, resource, NULL, &r);
1423 	if (!ret) {
1424 		struct compat_rlimit r32;
1425 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1426 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1427 		else
1428 			r32.rlim_cur = r.rlim_cur;
1429 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1430 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1431 		else
1432 			r32.rlim_max = r.rlim_max;
1433 
1434 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1435 			return -EFAULT;
1436 	}
1437 	return ret;
1438 }
1439 
1440 #endif
1441 
1442 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1443 
1444 /*
1445  *	Back compatibility for getrlimit. Needed for some apps.
1446  */
1447 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1448 		struct rlimit __user *, rlim)
1449 {
1450 	struct rlimit x;
1451 	if (resource >= RLIM_NLIMITS)
1452 		return -EINVAL;
1453 
1454 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1455 	task_lock(current->group_leader);
1456 	x = current->signal->rlim[resource];
1457 	task_unlock(current->group_leader);
1458 	if (x.rlim_cur > 0x7FFFFFFF)
1459 		x.rlim_cur = 0x7FFFFFFF;
1460 	if (x.rlim_max > 0x7FFFFFFF)
1461 		x.rlim_max = 0x7FFFFFFF;
1462 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1463 }
1464 
1465 #ifdef CONFIG_COMPAT
1466 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1467 		       struct compat_rlimit __user *, rlim)
1468 {
1469 	struct rlimit r;
1470 
1471 	if (resource >= RLIM_NLIMITS)
1472 		return -EINVAL;
1473 
1474 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1475 	task_lock(current->group_leader);
1476 	r = current->signal->rlim[resource];
1477 	task_unlock(current->group_leader);
1478 	if (r.rlim_cur > 0x7FFFFFFF)
1479 		r.rlim_cur = 0x7FFFFFFF;
1480 	if (r.rlim_max > 0x7FFFFFFF)
1481 		r.rlim_max = 0x7FFFFFFF;
1482 
1483 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1484 	    put_user(r.rlim_max, &rlim->rlim_max))
1485 		return -EFAULT;
1486 	return 0;
1487 }
1488 #endif
1489 
1490 #endif
1491 
1492 static inline bool rlim64_is_infinity(__u64 rlim64)
1493 {
1494 #if BITS_PER_LONG < 64
1495 	return rlim64 >= ULONG_MAX;
1496 #else
1497 	return rlim64 == RLIM64_INFINITY;
1498 #endif
1499 }
1500 
1501 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1502 {
1503 	if (rlim->rlim_cur == RLIM_INFINITY)
1504 		rlim64->rlim_cur = RLIM64_INFINITY;
1505 	else
1506 		rlim64->rlim_cur = rlim->rlim_cur;
1507 	if (rlim->rlim_max == RLIM_INFINITY)
1508 		rlim64->rlim_max = RLIM64_INFINITY;
1509 	else
1510 		rlim64->rlim_max = rlim->rlim_max;
1511 }
1512 
1513 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1514 {
1515 	if (rlim64_is_infinity(rlim64->rlim_cur))
1516 		rlim->rlim_cur = RLIM_INFINITY;
1517 	else
1518 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1519 	if (rlim64_is_infinity(rlim64->rlim_max))
1520 		rlim->rlim_max = RLIM_INFINITY;
1521 	else
1522 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1523 }
1524 
1525 /* make sure you are allowed to change @tsk limits before calling this */
1526 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1527 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1528 {
1529 	struct rlimit *rlim;
1530 	int retval = 0;
1531 
1532 	if (resource >= RLIM_NLIMITS)
1533 		return -EINVAL;
1534 	if (new_rlim) {
1535 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1536 			return -EINVAL;
1537 		if (resource == RLIMIT_NOFILE &&
1538 				new_rlim->rlim_max > sysctl_nr_open)
1539 			return -EPERM;
1540 	}
1541 
1542 	/* protect tsk->signal and tsk->sighand from disappearing */
1543 	read_lock(&tasklist_lock);
1544 	if (!tsk->sighand) {
1545 		retval = -ESRCH;
1546 		goto out;
1547 	}
1548 
1549 	rlim = tsk->signal->rlim + resource;
1550 	task_lock(tsk->group_leader);
1551 	if (new_rlim) {
1552 		/* Keep the capable check against init_user_ns until
1553 		   cgroups can contain all limits */
1554 		if (new_rlim->rlim_max > rlim->rlim_max &&
1555 				!capable(CAP_SYS_RESOURCE))
1556 			retval = -EPERM;
1557 		if (!retval)
1558 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1559 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1560 			/*
1561 			 * The caller is asking for an immediate RLIMIT_CPU
1562 			 * expiry.  But we use the zero value to mean "it was
1563 			 * never set".  So let's cheat and make it one second
1564 			 * instead
1565 			 */
1566 			new_rlim->rlim_cur = 1;
1567 		}
1568 	}
1569 	if (!retval) {
1570 		if (old_rlim)
1571 			*old_rlim = *rlim;
1572 		if (new_rlim)
1573 			*rlim = *new_rlim;
1574 	}
1575 	task_unlock(tsk->group_leader);
1576 
1577 	/*
1578 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1579 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1580 	 * very long-standing error, and fixing it now risks breakage of
1581 	 * applications, so we live with it
1582 	 */
1583 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1584 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1585 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1586 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1587 out:
1588 	read_unlock(&tasklist_lock);
1589 	return retval;
1590 }
1591 
1592 /* rcu lock must be held */
1593 static int check_prlimit_permission(struct task_struct *task,
1594 				    unsigned int flags)
1595 {
1596 	const struct cred *cred = current_cred(), *tcred;
1597 	bool id_match;
1598 
1599 	if (current == task)
1600 		return 0;
1601 
1602 	tcred = __task_cred(task);
1603 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1604 		    uid_eq(cred->uid, tcred->suid) &&
1605 		    uid_eq(cred->uid, tcred->uid)  &&
1606 		    gid_eq(cred->gid, tcred->egid) &&
1607 		    gid_eq(cred->gid, tcred->sgid) &&
1608 		    gid_eq(cred->gid, tcred->gid));
1609 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1610 		return -EPERM;
1611 
1612 	return security_task_prlimit(cred, tcred, flags);
1613 }
1614 
1615 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1616 		const struct rlimit64 __user *, new_rlim,
1617 		struct rlimit64 __user *, old_rlim)
1618 {
1619 	struct rlimit64 old64, new64;
1620 	struct rlimit old, new;
1621 	struct task_struct *tsk;
1622 	unsigned int checkflags = 0;
1623 	int ret;
1624 
1625 	if (old_rlim)
1626 		checkflags |= LSM_PRLIMIT_READ;
1627 
1628 	if (new_rlim) {
1629 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1630 			return -EFAULT;
1631 		rlim64_to_rlim(&new64, &new);
1632 		checkflags |= LSM_PRLIMIT_WRITE;
1633 	}
1634 
1635 	rcu_read_lock();
1636 	tsk = pid ? find_task_by_vpid(pid) : current;
1637 	if (!tsk) {
1638 		rcu_read_unlock();
1639 		return -ESRCH;
1640 	}
1641 	ret = check_prlimit_permission(tsk, checkflags);
1642 	if (ret) {
1643 		rcu_read_unlock();
1644 		return ret;
1645 	}
1646 	get_task_struct(tsk);
1647 	rcu_read_unlock();
1648 
1649 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1650 			old_rlim ? &old : NULL);
1651 
1652 	if (!ret && old_rlim) {
1653 		rlim_to_rlim64(&old, &old64);
1654 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1655 			ret = -EFAULT;
1656 	}
1657 
1658 	put_task_struct(tsk);
1659 	return ret;
1660 }
1661 
1662 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1663 {
1664 	struct rlimit new_rlim;
1665 
1666 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1667 		return -EFAULT;
1668 	return do_prlimit(current, resource, &new_rlim, NULL);
1669 }
1670 
1671 /*
1672  * It would make sense to put struct rusage in the task_struct,
1673  * except that would make the task_struct be *really big*.  After
1674  * task_struct gets moved into malloc'ed memory, it would
1675  * make sense to do this.  It will make moving the rest of the information
1676  * a lot simpler!  (Which we're not doing right now because we're not
1677  * measuring them yet).
1678  *
1679  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1680  * races with threads incrementing their own counters.  But since word
1681  * reads are atomic, we either get new values or old values and we don't
1682  * care which for the sums.  We always take the siglock to protect reading
1683  * the c* fields from p->signal from races with exit.c updating those
1684  * fields when reaping, so a sample either gets all the additions of a
1685  * given child after it's reaped, or none so this sample is before reaping.
1686  *
1687  * Locking:
1688  * We need to take the siglock for CHILDEREN, SELF and BOTH
1689  * for  the cases current multithreaded, non-current single threaded
1690  * non-current multithreaded.  Thread traversal is now safe with
1691  * the siglock held.
1692  * Strictly speaking, we donot need to take the siglock if we are current and
1693  * single threaded,  as no one else can take our signal_struct away, no one
1694  * else can  reap the  children to update signal->c* counters, and no one else
1695  * can race with the signal-> fields. If we do not take any lock, the
1696  * signal-> fields could be read out of order while another thread was just
1697  * exiting. So we should  place a read memory barrier when we avoid the lock.
1698  * On the writer side,  write memory barrier is implied in  __exit_signal
1699  * as __exit_signal releases  the siglock spinlock after updating the signal->
1700  * fields. But we don't do this yet to keep things simple.
1701  *
1702  */
1703 
1704 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1705 {
1706 	r->ru_nvcsw += t->nvcsw;
1707 	r->ru_nivcsw += t->nivcsw;
1708 	r->ru_minflt += t->min_flt;
1709 	r->ru_majflt += t->maj_flt;
1710 	r->ru_inblock += task_io_get_inblock(t);
1711 	r->ru_oublock += task_io_get_oublock(t);
1712 }
1713 
1714 void getrusage(struct task_struct *p, int who, struct rusage *r)
1715 {
1716 	struct task_struct *t;
1717 	unsigned long flags;
1718 	u64 tgutime, tgstime, utime, stime;
1719 	unsigned long maxrss = 0;
1720 
1721 	memset((char *)r, 0, sizeof (*r));
1722 	utime = stime = 0;
1723 
1724 	if (who == RUSAGE_THREAD) {
1725 		task_cputime_adjusted(current, &utime, &stime);
1726 		accumulate_thread_rusage(p, r);
1727 		maxrss = p->signal->maxrss;
1728 		goto out;
1729 	}
1730 
1731 	if (!lock_task_sighand(p, &flags))
1732 		return;
1733 
1734 	switch (who) {
1735 	case RUSAGE_BOTH:
1736 	case RUSAGE_CHILDREN:
1737 		utime = p->signal->cutime;
1738 		stime = p->signal->cstime;
1739 		r->ru_nvcsw = p->signal->cnvcsw;
1740 		r->ru_nivcsw = p->signal->cnivcsw;
1741 		r->ru_minflt = p->signal->cmin_flt;
1742 		r->ru_majflt = p->signal->cmaj_flt;
1743 		r->ru_inblock = p->signal->cinblock;
1744 		r->ru_oublock = p->signal->coublock;
1745 		maxrss = p->signal->cmaxrss;
1746 
1747 		if (who == RUSAGE_CHILDREN)
1748 			break;
1749 
1750 	case RUSAGE_SELF:
1751 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1752 		utime += tgutime;
1753 		stime += tgstime;
1754 		r->ru_nvcsw += p->signal->nvcsw;
1755 		r->ru_nivcsw += p->signal->nivcsw;
1756 		r->ru_minflt += p->signal->min_flt;
1757 		r->ru_majflt += p->signal->maj_flt;
1758 		r->ru_inblock += p->signal->inblock;
1759 		r->ru_oublock += p->signal->oublock;
1760 		if (maxrss < p->signal->maxrss)
1761 			maxrss = p->signal->maxrss;
1762 		t = p;
1763 		do {
1764 			accumulate_thread_rusage(t, r);
1765 		} while_each_thread(p, t);
1766 		break;
1767 
1768 	default:
1769 		BUG();
1770 	}
1771 	unlock_task_sighand(p, &flags);
1772 
1773 out:
1774 	r->ru_utime = ns_to_timeval(utime);
1775 	r->ru_stime = ns_to_timeval(stime);
1776 
1777 	if (who != RUSAGE_CHILDREN) {
1778 		struct mm_struct *mm = get_task_mm(p);
1779 
1780 		if (mm) {
1781 			setmax_mm_hiwater_rss(&maxrss, mm);
1782 			mmput(mm);
1783 		}
1784 	}
1785 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1786 }
1787 
1788 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1789 {
1790 	struct rusage r;
1791 
1792 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1793 	    who != RUSAGE_THREAD)
1794 		return -EINVAL;
1795 
1796 	getrusage(current, who, &r);
1797 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1798 }
1799 
1800 #ifdef CONFIG_COMPAT
1801 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1802 {
1803 	struct rusage r;
1804 
1805 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1806 	    who != RUSAGE_THREAD)
1807 		return -EINVAL;
1808 
1809 	getrusage(current, who, &r);
1810 	return put_compat_rusage(&r, ru);
1811 }
1812 #endif
1813 
1814 SYSCALL_DEFINE1(umask, int, mask)
1815 {
1816 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1817 	return mask;
1818 }
1819 
1820 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1821 {
1822 	struct fd exe;
1823 	struct file *old_exe, *exe_file;
1824 	struct inode *inode;
1825 	int err;
1826 
1827 	exe = fdget(fd);
1828 	if (!exe.file)
1829 		return -EBADF;
1830 
1831 	inode = file_inode(exe.file);
1832 
1833 	/*
1834 	 * Because the original mm->exe_file points to executable file, make
1835 	 * sure that this one is executable as well, to avoid breaking an
1836 	 * overall picture.
1837 	 */
1838 	err = -EACCES;
1839 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1840 		goto exit;
1841 
1842 	err = inode_permission(inode, MAY_EXEC);
1843 	if (err)
1844 		goto exit;
1845 
1846 	/*
1847 	 * Forbid mm->exe_file change if old file still mapped.
1848 	 */
1849 	exe_file = get_mm_exe_file(mm);
1850 	err = -EBUSY;
1851 	if (exe_file) {
1852 		struct vm_area_struct *vma;
1853 
1854 		down_read(&mm->mmap_sem);
1855 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1856 			if (!vma->vm_file)
1857 				continue;
1858 			if (path_equal(&vma->vm_file->f_path,
1859 				       &exe_file->f_path))
1860 				goto exit_err;
1861 		}
1862 
1863 		up_read(&mm->mmap_sem);
1864 		fput(exe_file);
1865 	}
1866 
1867 	err = 0;
1868 	/* set the new file, lockless */
1869 	get_file(exe.file);
1870 	old_exe = xchg(&mm->exe_file, exe.file);
1871 	if (old_exe)
1872 		fput(old_exe);
1873 exit:
1874 	fdput(exe);
1875 	return err;
1876 exit_err:
1877 	up_read(&mm->mmap_sem);
1878 	fput(exe_file);
1879 	goto exit;
1880 }
1881 
1882 /*
1883  * WARNING: we don't require any capability here so be very careful
1884  * in what is allowed for modification from userspace.
1885  */
1886 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1887 {
1888 	unsigned long mmap_max_addr = TASK_SIZE;
1889 	struct mm_struct *mm = current->mm;
1890 	int error = -EINVAL, i;
1891 
1892 	static const unsigned char offsets[] = {
1893 		offsetof(struct prctl_mm_map, start_code),
1894 		offsetof(struct prctl_mm_map, end_code),
1895 		offsetof(struct prctl_mm_map, start_data),
1896 		offsetof(struct prctl_mm_map, end_data),
1897 		offsetof(struct prctl_mm_map, start_brk),
1898 		offsetof(struct prctl_mm_map, brk),
1899 		offsetof(struct prctl_mm_map, start_stack),
1900 		offsetof(struct prctl_mm_map, arg_start),
1901 		offsetof(struct prctl_mm_map, arg_end),
1902 		offsetof(struct prctl_mm_map, env_start),
1903 		offsetof(struct prctl_mm_map, env_end),
1904 	};
1905 
1906 	/*
1907 	 * Make sure the members are not somewhere outside
1908 	 * of allowed address space.
1909 	 */
1910 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1911 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1912 
1913 		if ((unsigned long)val >= mmap_max_addr ||
1914 		    (unsigned long)val < mmap_min_addr)
1915 			goto out;
1916 	}
1917 
1918 	/*
1919 	 * Make sure the pairs are ordered.
1920 	 */
1921 #define __prctl_check_order(__m1, __op, __m2)				\
1922 	((unsigned long)prctl_map->__m1 __op				\
1923 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1924 	error  = __prctl_check_order(start_code, <, end_code);
1925 	error |= __prctl_check_order(start_data, <, end_data);
1926 	error |= __prctl_check_order(start_brk, <=, brk);
1927 	error |= __prctl_check_order(arg_start, <=, arg_end);
1928 	error |= __prctl_check_order(env_start, <=, env_end);
1929 	if (error)
1930 		goto out;
1931 #undef __prctl_check_order
1932 
1933 	error = -EINVAL;
1934 
1935 	/*
1936 	 * @brk should be after @end_data in traditional maps.
1937 	 */
1938 	if (prctl_map->start_brk <= prctl_map->end_data ||
1939 	    prctl_map->brk <= prctl_map->end_data)
1940 		goto out;
1941 
1942 	/*
1943 	 * Neither we should allow to override limits if they set.
1944 	 */
1945 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1946 			      prctl_map->start_brk, prctl_map->end_data,
1947 			      prctl_map->start_data))
1948 			goto out;
1949 
1950 	/*
1951 	 * Someone is trying to cheat the auxv vector.
1952 	 */
1953 	if (prctl_map->auxv_size) {
1954 		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1955 			goto out;
1956 	}
1957 
1958 	/*
1959 	 * Finally, make sure the caller has the rights to
1960 	 * change /proc/pid/exe link: only local sys admin should
1961 	 * be allowed to.
1962 	 */
1963 	if (prctl_map->exe_fd != (u32)-1) {
1964 		if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1965 			goto out;
1966 	}
1967 
1968 	error = 0;
1969 out:
1970 	return error;
1971 }
1972 
1973 #ifdef CONFIG_CHECKPOINT_RESTORE
1974 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1975 {
1976 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1977 	unsigned long user_auxv[AT_VECTOR_SIZE];
1978 	struct mm_struct *mm = current->mm;
1979 	int error;
1980 
1981 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1982 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1983 
1984 	if (opt == PR_SET_MM_MAP_SIZE)
1985 		return put_user((unsigned int)sizeof(prctl_map),
1986 				(unsigned int __user *)addr);
1987 
1988 	if (data_size != sizeof(prctl_map))
1989 		return -EINVAL;
1990 
1991 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1992 		return -EFAULT;
1993 
1994 	error = validate_prctl_map(&prctl_map);
1995 	if (error)
1996 		return error;
1997 
1998 	if (prctl_map.auxv_size) {
1999 		memset(user_auxv, 0, sizeof(user_auxv));
2000 		if (copy_from_user(user_auxv,
2001 				   (const void __user *)prctl_map.auxv,
2002 				   prctl_map.auxv_size))
2003 			return -EFAULT;
2004 
2005 		/* Last entry must be AT_NULL as specification requires */
2006 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2007 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2008 	}
2009 
2010 	if (prctl_map.exe_fd != (u32)-1) {
2011 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2012 		if (error)
2013 			return error;
2014 	}
2015 
2016 	/*
2017 	 * arg_lock protects concurent updates but we still need mmap_sem for
2018 	 * read to exclude races with sys_brk.
2019 	 */
2020 	down_read(&mm->mmap_sem);
2021 
2022 	/*
2023 	 * We don't validate if these members are pointing to
2024 	 * real present VMAs because application may have correspond
2025 	 * VMAs already unmapped and kernel uses these members for statistics
2026 	 * output in procfs mostly, except
2027 	 *
2028 	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
2029 	 *    for VMAs when updating these memvers so anything wrong written
2030 	 *    here cause kernel to swear at userspace program but won't lead
2031 	 *    to any problem in kernel itself
2032 	 */
2033 
2034 	spin_lock(&mm->arg_lock);
2035 	mm->start_code	= prctl_map.start_code;
2036 	mm->end_code	= prctl_map.end_code;
2037 	mm->start_data	= prctl_map.start_data;
2038 	mm->end_data	= prctl_map.end_data;
2039 	mm->start_brk	= prctl_map.start_brk;
2040 	mm->brk		= prctl_map.brk;
2041 	mm->start_stack	= prctl_map.start_stack;
2042 	mm->arg_start	= prctl_map.arg_start;
2043 	mm->arg_end	= prctl_map.arg_end;
2044 	mm->env_start	= prctl_map.env_start;
2045 	mm->env_end	= prctl_map.env_end;
2046 	spin_unlock(&mm->arg_lock);
2047 
2048 	/*
2049 	 * Note this update of @saved_auxv is lockless thus
2050 	 * if someone reads this member in procfs while we're
2051 	 * updating -- it may get partly updated results. It's
2052 	 * known and acceptable trade off: we leave it as is to
2053 	 * not introduce additional locks here making the kernel
2054 	 * more complex.
2055 	 */
2056 	if (prctl_map.auxv_size)
2057 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2058 
2059 	up_read(&mm->mmap_sem);
2060 	return 0;
2061 }
2062 #endif /* CONFIG_CHECKPOINT_RESTORE */
2063 
2064 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2065 			  unsigned long len)
2066 {
2067 	/*
2068 	 * This doesn't move the auxiliary vector itself since it's pinned to
2069 	 * mm_struct, but it permits filling the vector with new values.  It's
2070 	 * up to the caller to provide sane values here, otherwise userspace
2071 	 * tools which use this vector might be unhappy.
2072 	 */
2073 	unsigned long user_auxv[AT_VECTOR_SIZE];
2074 
2075 	if (len > sizeof(user_auxv))
2076 		return -EINVAL;
2077 
2078 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2079 		return -EFAULT;
2080 
2081 	/* Make sure the last entry is always AT_NULL */
2082 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2083 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2084 
2085 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2086 
2087 	task_lock(current);
2088 	memcpy(mm->saved_auxv, user_auxv, len);
2089 	task_unlock(current);
2090 
2091 	return 0;
2092 }
2093 
2094 static int prctl_set_mm(int opt, unsigned long addr,
2095 			unsigned long arg4, unsigned long arg5)
2096 {
2097 	struct mm_struct *mm = current->mm;
2098 	struct prctl_mm_map prctl_map;
2099 	struct vm_area_struct *vma;
2100 	int error;
2101 
2102 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2103 			      opt != PR_SET_MM_MAP &&
2104 			      opt != PR_SET_MM_MAP_SIZE)))
2105 		return -EINVAL;
2106 
2107 #ifdef CONFIG_CHECKPOINT_RESTORE
2108 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2109 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2110 #endif
2111 
2112 	if (!capable(CAP_SYS_RESOURCE))
2113 		return -EPERM;
2114 
2115 	if (opt == PR_SET_MM_EXE_FILE)
2116 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2117 
2118 	if (opt == PR_SET_MM_AUXV)
2119 		return prctl_set_auxv(mm, addr, arg4);
2120 
2121 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2122 		return -EINVAL;
2123 
2124 	error = -EINVAL;
2125 
2126 	down_write(&mm->mmap_sem);
2127 	vma = find_vma(mm, addr);
2128 
2129 	prctl_map.start_code	= mm->start_code;
2130 	prctl_map.end_code	= mm->end_code;
2131 	prctl_map.start_data	= mm->start_data;
2132 	prctl_map.end_data	= mm->end_data;
2133 	prctl_map.start_brk	= mm->start_brk;
2134 	prctl_map.brk		= mm->brk;
2135 	prctl_map.start_stack	= mm->start_stack;
2136 	prctl_map.arg_start	= mm->arg_start;
2137 	prctl_map.arg_end	= mm->arg_end;
2138 	prctl_map.env_start	= mm->env_start;
2139 	prctl_map.env_end	= mm->env_end;
2140 	prctl_map.auxv		= NULL;
2141 	prctl_map.auxv_size	= 0;
2142 	prctl_map.exe_fd	= -1;
2143 
2144 	switch (opt) {
2145 	case PR_SET_MM_START_CODE:
2146 		prctl_map.start_code = addr;
2147 		break;
2148 	case PR_SET_MM_END_CODE:
2149 		prctl_map.end_code = addr;
2150 		break;
2151 	case PR_SET_MM_START_DATA:
2152 		prctl_map.start_data = addr;
2153 		break;
2154 	case PR_SET_MM_END_DATA:
2155 		prctl_map.end_data = addr;
2156 		break;
2157 	case PR_SET_MM_START_STACK:
2158 		prctl_map.start_stack = addr;
2159 		break;
2160 	case PR_SET_MM_START_BRK:
2161 		prctl_map.start_brk = addr;
2162 		break;
2163 	case PR_SET_MM_BRK:
2164 		prctl_map.brk = addr;
2165 		break;
2166 	case PR_SET_MM_ARG_START:
2167 		prctl_map.arg_start = addr;
2168 		break;
2169 	case PR_SET_MM_ARG_END:
2170 		prctl_map.arg_end = addr;
2171 		break;
2172 	case PR_SET_MM_ENV_START:
2173 		prctl_map.env_start = addr;
2174 		break;
2175 	case PR_SET_MM_ENV_END:
2176 		prctl_map.env_end = addr;
2177 		break;
2178 	default:
2179 		goto out;
2180 	}
2181 
2182 	error = validate_prctl_map(&prctl_map);
2183 	if (error)
2184 		goto out;
2185 
2186 	switch (opt) {
2187 	/*
2188 	 * If command line arguments and environment
2189 	 * are placed somewhere else on stack, we can
2190 	 * set them up here, ARG_START/END to setup
2191 	 * command line argumets and ENV_START/END
2192 	 * for environment.
2193 	 */
2194 	case PR_SET_MM_START_STACK:
2195 	case PR_SET_MM_ARG_START:
2196 	case PR_SET_MM_ARG_END:
2197 	case PR_SET_MM_ENV_START:
2198 	case PR_SET_MM_ENV_END:
2199 		if (!vma) {
2200 			error = -EFAULT;
2201 			goto out;
2202 		}
2203 	}
2204 
2205 	mm->start_code	= prctl_map.start_code;
2206 	mm->end_code	= prctl_map.end_code;
2207 	mm->start_data	= prctl_map.start_data;
2208 	mm->end_data	= prctl_map.end_data;
2209 	mm->start_brk	= prctl_map.start_brk;
2210 	mm->brk		= prctl_map.brk;
2211 	mm->start_stack	= prctl_map.start_stack;
2212 	mm->arg_start	= prctl_map.arg_start;
2213 	mm->arg_end	= prctl_map.arg_end;
2214 	mm->env_start	= prctl_map.env_start;
2215 	mm->env_end	= prctl_map.env_end;
2216 
2217 	error = 0;
2218 out:
2219 	up_write(&mm->mmap_sem);
2220 	return error;
2221 }
2222 
2223 #ifdef CONFIG_CHECKPOINT_RESTORE
2224 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2225 {
2226 	return put_user(me->clear_child_tid, tid_addr);
2227 }
2228 #else
2229 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2230 {
2231 	return -EINVAL;
2232 }
2233 #endif
2234 
2235 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2236 {
2237 	/*
2238 	 * If task has has_child_subreaper - all its decendants
2239 	 * already have these flag too and new decendants will
2240 	 * inherit it on fork, skip them.
2241 	 *
2242 	 * If we've found child_reaper - skip descendants in
2243 	 * it's subtree as they will never get out pidns.
2244 	 */
2245 	if (p->signal->has_child_subreaper ||
2246 	    is_child_reaper(task_pid(p)))
2247 		return 0;
2248 
2249 	p->signal->has_child_subreaper = 1;
2250 	return 1;
2251 }
2252 
2253 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2254 {
2255 	return -EINVAL;
2256 }
2257 
2258 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2259 				    unsigned long ctrl)
2260 {
2261 	return -EINVAL;
2262 }
2263 
2264 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2265 		unsigned long, arg4, unsigned long, arg5)
2266 {
2267 	struct task_struct *me = current;
2268 	unsigned char comm[sizeof(me->comm)];
2269 	long error;
2270 
2271 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2272 	if (error != -ENOSYS)
2273 		return error;
2274 
2275 	error = 0;
2276 	switch (option) {
2277 	case PR_SET_PDEATHSIG:
2278 		if (!valid_signal(arg2)) {
2279 			error = -EINVAL;
2280 			break;
2281 		}
2282 		me->pdeath_signal = arg2;
2283 		break;
2284 	case PR_GET_PDEATHSIG:
2285 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2286 		break;
2287 	case PR_GET_DUMPABLE:
2288 		error = get_dumpable(me->mm);
2289 		break;
2290 	case PR_SET_DUMPABLE:
2291 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2292 			error = -EINVAL;
2293 			break;
2294 		}
2295 		set_dumpable(me->mm, arg2);
2296 		break;
2297 
2298 	case PR_SET_UNALIGN:
2299 		error = SET_UNALIGN_CTL(me, arg2);
2300 		break;
2301 	case PR_GET_UNALIGN:
2302 		error = GET_UNALIGN_CTL(me, arg2);
2303 		break;
2304 	case PR_SET_FPEMU:
2305 		error = SET_FPEMU_CTL(me, arg2);
2306 		break;
2307 	case PR_GET_FPEMU:
2308 		error = GET_FPEMU_CTL(me, arg2);
2309 		break;
2310 	case PR_SET_FPEXC:
2311 		error = SET_FPEXC_CTL(me, arg2);
2312 		break;
2313 	case PR_GET_FPEXC:
2314 		error = GET_FPEXC_CTL(me, arg2);
2315 		break;
2316 	case PR_GET_TIMING:
2317 		error = PR_TIMING_STATISTICAL;
2318 		break;
2319 	case PR_SET_TIMING:
2320 		if (arg2 != PR_TIMING_STATISTICAL)
2321 			error = -EINVAL;
2322 		break;
2323 	case PR_SET_NAME:
2324 		comm[sizeof(me->comm) - 1] = 0;
2325 		if (strncpy_from_user(comm, (char __user *)arg2,
2326 				      sizeof(me->comm) - 1) < 0)
2327 			return -EFAULT;
2328 		set_task_comm(me, comm);
2329 		proc_comm_connector(me);
2330 		break;
2331 	case PR_GET_NAME:
2332 		get_task_comm(comm, me);
2333 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2334 			return -EFAULT;
2335 		break;
2336 	case PR_GET_ENDIAN:
2337 		error = GET_ENDIAN(me, arg2);
2338 		break;
2339 	case PR_SET_ENDIAN:
2340 		error = SET_ENDIAN(me, arg2);
2341 		break;
2342 	case PR_GET_SECCOMP:
2343 		error = prctl_get_seccomp();
2344 		break;
2345 	case PR_SET_SECCOMP:
2346 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2347 		break;
2348 	case PR_GET_TSC:
2349 		error = GET_TSC_CTL(arg2);
2350 		break;
2351 	case PR_SET_TSC:
2352 		error = SET_TSC_CTL(arg2);
2353 		break;
2354 	case PR_TASK_PERF_EVENTS_DISABLE:
2355 		error = perf_event_task_disable();
2356 		break;
2357 	case PR_TASK_PERF_EVENTS_ENABLE:
2358 		error = perf_event_task_enable();
2359 		break;
2360 	case PR_GET_TIMERSLACK:
2361 		if (current->timer_slack_ns > ULONG_MAX)
2362 			error = ULONG_MAX;
2363 		else
2364 			error = current->timer_slack_ns;
2365 		break;
2366 	case PR_SET_TIMERSLACK:
2367 		if (arg2 <= 0)
2368 			current->timer_slack_ns =
2369 					current->default_timer_slack_ns;
2370 		else
2371 			current->timer_slack_ns = arg2;
2372 		break;
2373 	case PR_MCE_KILL:
2374 		if (arg4 | arg5)
2375 			return -EINVAL;
2376 		switch (arg2) {
2377 		case PR_MCE_KILL_CLEAR:
2378 			if (arg3 != 0)
2379 				return -EINVAL;
2380 			current->flags &= ~PF_MCE_PROCESS;
2381 			break;
2382 		case PR_MCE_KILL_SET:
2383 			current->flags |= PF_MCE_PROCESS;
2384 			if (arg3 == PR_MCE_KILL_EARLY)
2385 				current->flags |= PF_MCE_EARLY;
2386 			else if (arg3 == PR_MCE_KILL_LATE)
2387 				current->flags &= ~PF_MCE_EARLY;
2388 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2389 				current->flags &=
2390 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2391 			else
2392 				return -EINVAL;
2393 			break;
2394 		default:
2395 			return -EINVAL;
2396 		}
2397 		break;
2398 	case PR_MCE_KILL_GET:
2399 		if (arg2 | arg3 | arg4 | arg5)
2400 			return -EINVAL;
2401 		if (current->flags & PF_MCE_PROCESS)
2402 			error = (current->flags & PF_MCE_EARLY) ?
2403 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2404 		else
2405 			error = PR_MCE_KILL_DEFAULT;
2406 		break;
2407 	case PR_SET_MM:
2408 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2409 		break;
2410 	case PR_GET_TID_ADDRESS:
2411 		error = prctl_get_tid_address(me, (int __user **)arg2);
2412 		break;
2413 	case PR_SET_CHILD_SUBREAPER:
2414 		me->signal->is_child_subreaper = !!arg2;
2415 		if (!arg2)
2416 			break;
2417 
2418 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2419 		break;
2420 	case PR_GET_CHILD_SUBREAPER:
2421 		error = put_user(me->signal->is_child_subreaper,
2422 				 (int __user *)arg2);
2423 		break;
2424 	case PR_SET_NO_NEW_PRIVS:
2425 		if (arg2 != 1 || arg3 || arg4 || arg5)
2426 			return -EINVAL;
2427 
2428 		task_set_no_new_privs(current);
2429 		break;
2430 	case PR_GET_NO_NEW_PRIVS:
2431 		if (arg2 || arg3 || arg4 || arg5)
2432 			return -EINVAL;
2433 		return task_no_new_privs(current) ? 1 : 0;
2434 	case PR_GET_THP_DISABLE:
2435 		if (arg2 || arg3 || arg4 || arg5)
2436 			return -EINVAL;
2437 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2438 		break;
2439 	case PR_SET_THP_DISABLE:
2440 		if (arg3 || arg4 || arg5)
2441 			return -EINVAL;
2442 		if (down_write_killable(&me->mm->mmap_sem))
2443 			return -EINTR;
2444 		if (arg2)
2445 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2446 		else
2447 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2448 		up_write(&me->mm->mmap_sem);
2449 		break;
2450 	case PR_MPX_ENABLE_MANAGEMENT:
2451 		if (arg2 || arg3 || arg4 || arg5)
2452 			return -EINVAL;
2453 		error = MPX_ENABLE_MANAGEMENT();
2454 		break;
2455 	case PR_MPX_DISABLE_MANAGEMENT:
2456 		if (arg2 || arg3 || arg4 || arg5)
2457 			return -EINVAL;
2458 		error = MPX_DISABLE_MANAGEMENT();
2459 		break;
2460 	case PR_SET_FP_MODE:
2461 		error = SET_FP_MODE(me, arg2);
2462 		break;
2463 	case PR_GET_FP_MODE:
2464 		error = GET_FP_MODE(me);
2465 		break;
2466 	case PR_SVE_SET_VL:
2467 		error = SVE_SET_VL(arg2);
2468 		break;
2469 	case PR_SVE_GET_VL:
2470 		error = SVE_GET_VL();
2471 		break;
2472 	case PR_GET_SPECULATION_CTRL:
2473 		if (arg3 || arg4 || arg5)
2474 			return -EINVAL;
2475 		error = arch_prctl_spec_ctrl_get(me, arg2);
2476 		break;
2477 	case PR_SET_SPECULATION_CTRL:
2478 		if (arg4 || arg5)
2479 			return -EINVAL;
2480 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2481 		break;
2482 	case PR_PAC_RESET_KEYS:
2483 		if (arg3 || arg4 || arg5)
2484 			return -EINVAL;
2485 		error = PAC_RESET_KEYS(me, arg2);
2486 		break;
2487 	default:
2488 		error = -EINVAL;
2489 		break;
2490 	}
2491 	return error;
2492 }
2493 
2494 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2495 		struct getcpu_cache __user *, unused)
2496 {
2497 	int err = 0;
2498 	int cpu = raw_smp_processor_id();
2499 
2500 	if (cpup)
2501 		err |= put_user(cpu, cpup);
2502 	if (nodep)
2503 		err |= put_user(cpu_to_node(cpu), nodep);
2504 	return err ? -EFAULT : 0;
2505 }
2506 
2507 /**
2508  * do_sysinfo - fill in sysinfo struct
2509  * @info: pointer to buffer to fill
2510  */
2511 static int do_sysinfo(struct sysinfo *info)
2512 {
2513 	unsigned long mem_total, sav_total;
2514 	unsigned int mem_unit, bitcount;
2515 	struct timespec64 tp;
2516 
2517 	memset(info, 0, sizeof(struct sysinfo));
2518 
2519 	ktime_get_boottime_ts64(&tp);
2520 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2521 
2522 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2523 
2524 	info->procs = nr_threads;
2525 
2526 	si_meminfo(info);
2527 	si_swapinfo(info);
2528 
2529 	/*
2530 	 * If the sum of all the available memory (i.e. ram + swap)
2531 	 * is less than can be stored in a 32 bit unsigned long then
2532 	 * we can be binary compatible with 2.2.x kernels.  If not,
2533 	 * well, in that case 2.2.x was broken anyways...
2534 	 *
2535 	 *  -Erik Andersen <andersee@debian.org>
2536 	 */
2537 
2538 	mem_total = info->totalram + info->totalswap;
2539 	if (mem_total < info->totalram || mem_total < info->totalswap)
2540 		goto out;
2541 	bitcount = 0;
2542 	mem_unit = info->mem_unit;
2543 	while (mem_unit > 1) {
2544 		bitcount++;
2545 		mem_unit >>= 1;
2546 		sav_total = mem_total;
2547 		mem_total <<= 1;
2548 		if (mem_total < sav_total)
2549 			goto out;
2550 	}
2551 
2552 	/*
2553 	 * If mem_total did not overflow, multiply all memory values by
2554 	 * info->mem_unit and set it to 1.  This leaves things compatible
2555 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2556 	 * kernels...
2557 	 */
2558 
2559 	info->mem_unit = 1;
2560 	info->totalram <<= bitcount;
2561 	info->freeram <<= bitcount;
2562 	info->sharedram <<= bitcount;
2563 	info->bufferram <<= bitcount;
2564 	info->totalswap <<= bitcount;
2565 	info->freeswap <<= bitcount;
2566 	info->totalhigh <<= bitcount;
2567 	info->freehigh <<= bitcount;
2568 
2569 out:
2570 	return 0;
2571 }
2572 
2573 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2574 {
2575 	struct sysinfo val;
2576 
2577 	do_sysinfo(&val);
2578 
2579 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2580 		return -EFAULT;
2581 
2582 	return 0;
2583 }
2584 
2585 #ifdef CONFIG_COMPAT
2586 struct compat_sysinfo {
2587 	s32 uptime;
2588 	u32 loads[3];
2589 	u32 totalram;
2590 	u32 freeram;
2591 	u32 sharedram;
2592 	u32 bufferram;
2593 	u32 totalswap;
2594 	u32 freeswap;
2595 	u16 procs;
2596 	u16 pad;
2597 	u32 totalhigh;
2598 	u32 freehigh;
2599 	u32 mem_unit;
2600 	char _f[20-2*sizeof(u32)-sizeof(int)];
2601 };
2602 
2603 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2604 {
2605 	struct sysinfo s;
2606 
2607 	do_sysinfo(&s);
2608 
2609 	/* Check to see if any memory value is too large for 32-bit and scale
2610 	 *  down if needed
2611 	 */
2612 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2613 		int bitcount = 0;
2614 
2615 		while (s.mem_unit < PAGE_SIZE) {
2616 			s.mem_unit <<= 1;
2617 			bitcount++;
2618 		}
2619 
2620 		s.totalram >>= bitcount;
2621 		s.freeram >>= bitcount;
2622 		s.sharedram >>= bitcount;
2623 		s.bufferram >>= bitcount;
2624 		s.totalswap >>= bitcount;
2625 		s.freeswap >>= bitcount;
2626 		s.totalhigh >>= bitcount;
2627 		s.freehigh >>= bitcount;
2628 	}
2629 
2630 	if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2631 	    __put_user(s.uptime, &info->uptime) ||
2632 	    __put_user(s.loads[0], &info->loads[0]) ||
2633 	    __put_user(s.loads[1], &info->loads[1]) ||
2634 	    __put_user(s.loads[2], &info->loads[2]) ||
2635 	    __put_user(s.totalram, &info->totalram) ||
2636 	    __put_user(s.freeram, &info->freeram) ||
2637 	    __put_user(s.sharedram, &info->sharedram) ||
2638 	    __put_user(s.bufferram, &info->bufferram) ||
2639 	    __put_user(s.totalswap, &info->totalswap) ||
2640 	    __put_user(s.freeswap, &info->freeswap) ||
2641 	    __put_user(s.procs, &info->procs) ||
2642 	    __put_user(s.totalhigh, &info->totalhigh) ||
2643 	    __put_user(s.freehigh, &info->freehigh) ||
2644 	    __put_user(s.mem_unit, &info->mem_unit))
2645 		return -EFAULT;
2646 
2647 	return 0;
2648 }
2649 #endif /* CONFIG_COMPAT */
2650