xref: /openbmc/linux/kernel/sys.c (revision e0f6d1a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
63 
64 #include <linux/kmsg_dump.h>
65 /* Move somewhere else to avoid recompiling? */
66 #include <generated/utsrelease.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/io.h>
70 #include <asm/unistd.h>
71 
72 #include "uid16.h"
73 
74 #ifndef SET_UNALIGN_CTL
75 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
76 #endif
77 #ifndef GET_UNALIGN_CTL
78 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
79 #endif
80 #ifndef SET_FPEMU_CTL
81 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef GET_FPEMU_CTL
84 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef SET_FPEXC_CTL
87 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef GET_FPEXC_CTL
90 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_ENDIAN
93 # define GET_ENDIAN(a, b)	(-EINVAL)
94 #endif
95 #ifndef SET_ENDIAN
96 # define SET_ENDIAN(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_TSC_CTL
99 # define GET_TSC_CTL(a)		(-EINVAL)
100 #endif
101 #ifndef SET_TSC_CTL
102 # define SET_TSC_CTL(a)		(-EINVAL)
103 #endif
104 #ifndef MPX_ENABLE_MANAGEMENT
105 # define MPX_ENABLE_MANAGEMENT()	(-EINVAL)
106 #endif
107 #ifndef MPX_DISABLE_MANAGEMENT
108 # define MPX_DISABLE_MANAGEMENT()	(-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a)		(-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b)	(-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a)		(-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL()		(-EINVAL)
121 #endif
122 
123 /*
124  * this is where the system-wide overflow UID and GID are defined, for
125  * architectures that now have 32-bit UID/GID but didn't in the past
126  */
127 
128 int overflowuid = DEFAULT_OVERFLOWUID;
129 int overflowgid = DEFAULT_OVERFLOWGID;
130 
131 EXPORT_SYMBOL(overflowuid);
132 EXPORT_SYMBOL(overflowgid);
133 
134 /*
135  * the same as above, but for filesystems which can only store a 16-bit
136  * UID and GID. as such, this is needed on all architectures
137  */
138 
139 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
140 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
141 
142 EXPORT_SYMBOL(fs_overflowuid);
143 EXPORT_SYMBOL(fs_overflowgid);
144 
145 /*
146  * Returns true if current's euid is same as p's uid or euid,
147  * or has CAP_SYS_NICE to p's user_ns.
148  *
149  * Called with rcu_read_lock, creds are safe
150  */
151 static bool set_one_prio_perm(struct task_struct *p)
152 {
153 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
154 
155 	if (uid_eq(pcred->uid,  cred->euid) ||
156 	    uid_eq(pcred->euid, cred->euid))
157 		return true;
158 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
159 		return true;
160 	return false;
161 }
162 
163 /*
164  * set the priority of a task
165  * - the caller must hold the RCU read lock
166  */
167 static int set_one_prio(struct task_struct *p, int niceval, int error)
168 {
169 	int no_nice;
170 
171 	if (!set_one_prio_perm(p)) {
172 		error = -EPERM;
173 		goto out;
174 	}
175 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
176 		error = -EACCES;
177 		goto out;
178 	}
179 	no_nice = security_task_setnice(p, niceval);
180 	if (no_nice) {
181 		error = no_nice;
182 		goto out;
183 	}
184 	if (error == -ESRCH)
185 		error = 0;
186 	set_user_nice(p, niceval);
187 out:
188 	return error;
189 }
190 
191 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
192 {
193 	struct task_struct *g, *p;
194 	struct user_struct *user;
195 	const struct cred *cred = current_cred();
196 	int error = -EINVAL;
197 	struct pid *pgrp;
198 	kuid_t uid;
199 
200 	if (which > PRIO_USER || which < PRIO_PROCESS)
201 		goto out;
202 
203 	/* normalize: avoid signed division (rounding problems) */
204 	error = -ESRCH;
205 	if (niceval < MIN_NICE)
206 		niceval = MIN_NICE;
207 	if (niceval > MAX_NICE)
208 		niceval = MAX_NICE;
209 
210 	rcu_read_lock();
211 	read_lock(&tasklist_lock);
212 	switch (which) {
213 	case PRIO_PROCESS:
214 		if (who)
215 			p = find_task_by_vpid(who);
216 		else
217 			p = current;
218 		if (p)
219 			error = set_one_prio(p, niceval, error);
220 		break;
221 	case PRIO_PGRP:
222 		if (who)
223 			pgrp = find_vpid(who);
224 		else
225 			pgrp = task_pgrp(current);
226 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
227 			error = set_one_prio(p, niceval, error);
228 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
229 		break;
230 	case PRIO_USER:
231 		uid = make_kuid(cred->user_ns, who);
232 		user = cred->user;
233 		if (!who)
234 			uid = cred->uid;
235 		else if (!uid_eq(uid, cred->uid)) {
236 			user = find_user(uid);
237 			if (!user)
238 				goto out_unlock;	/* No processes for this user */
239 		}
240 		do_each_thread(g, p) {
241 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
242 				error = set_one_prio(p, niceval, error);
243 		} while_each_thread(g, p);
244 		if (!uid_eq(uid, cred->uid))
245 			free_uid(user);		/* For find_user() */
246 		break;
247 	}
248 out_unlock:
249 	read_unlock(&tasklist_lock);
250 	rcu_read_unlock();
251 out:
252 	return error;
253 }
254 
255 /*
256  * Ugh. To avoid negative return values, "getpriority()" will
257  * not return the normal nice-value, but a negated value that
258  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
259  * to stay compatible.
260  */
261 SYSCALL_DEFINE2(getpriority, int, which, int, who)
262 {
263 	struct task_struct *g, *p;
264 	struct user_struct *user;
265 	const struct cred *cred = current_cred();
266 	long niceval, retval = -ESRCH;
267 	struct pid *pgrp;
268 	kuid_t uid;
269 
270 	if (which > PRIO_USER || which < PRIO_PROCESS)
271 		return -EINVAL;
272 
273 	rcu_read_lock();
274 	read_lock(&tasklist_lock);
275 	switch (which) {
276 	case PRIO_PROCESS:
277 		if (who)
278 			p = find_task_by_vpid(who);
279 		else
280 			p = current;
281 		if (p) {
282 			niceval = nice_to_rlimit(task_nice(p));
283 			if (niceval > retval)
284 				retval = niceval;
285 		}
286 		break;
287 	case PRIO_PGRP:
288 		if (who)
289 			pgrp = find_vpid(who);
290 		else
291 			pgrp = task_pgrp(current);
292 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
293 			niceval = nice_to_rlimit(task_nice(p));
294 			if (niceval > retval)
295 				retval = niceval;
296 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
297 		break;
298 	case PRIO_USER:
299 		uid = make_kuid(cred->user_ns, who);
300 		user = cred->user;
301 		if (!who)
302 			uid = cred->uid;
303 		else if (!uid_eq(uid, cred->uid)) {
304 			user = find_user(uid);
305 			if (!user)
306 				goto out_unlock;	/* No processes for this user */
307 		}
308 		do_each_thread(g, p) {
309 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
310 				niceval = nice_to_rlimit(task_nice(p));
311 				if (niceval > retval)
312 					retval = niceval;
313 			}
314 		} while_each_thread(g, p);
315 		if (!uid_eq(uid, cred->uid))
316 			free_uid(user);		/* for find_user() */
317 		break;
318 	}
319 out_unlock:
320 	read_unlock(&tasklist_lock);
321 	rcu_read_unlock();
322 
323 	return retval;
324 }
325 
326 /*
327  * Unprivileged users may change the real gid to the effective gid
328  * or vice versa.  (BSD-style)
329  *
330  * If you set the real gid at all, or set the effective gid to a value not
331  * equal to the real gid, then the saved gid is set to the new effective gid.
332  *
333  * This makes it possible for a setgid program to completely drop its
334  * privileges, which is often a useful assertion to make when you are doing
335  * a security audit over a program.
336  *
337  * The general idea is that a program which uses just setregid() will be
338  * 100% compatible with BSD.  A program which uses just setgid() will be
339  * 100% compatible with POSIX with saved IDs.
340  *
341  * SMP: There are not races, the GIDs are checked only by filesystem
342  *      operations (as far as semantic preservation is concerned).
343  */
344 #ifdef CONFIG_MULTIUSER
345 long __sys_setregid(gid_t rgid, gid_t egid)
346 {
347 	struct user_namespace *ns = current_user_ns();
348 	const struct cred *old;
349 	struct cred *new;
350 	int retval;
351 	kgid_t krgid, kegid;
352 
353 	krgid = make_kgid(ns, rgid);
354 	kegid = make_kgid(ns, egid);
355 
356 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
357 		return -EINVAL;
358 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
359 		return -EINVAL;
360 
361 	new = prepare_creds();
362 	if (!new)
363 		return -ENOMEM;
364 	old = current_cred();
365 
366 	retval = -EPERM;
367 	if (rgid != (gid_t) -1) {
368 		if (gid_eq(old->gid, krgid) ||
369 		    gid_eq(old->egid, krgid) ||
370 		    ns_capable(old->user_ns, CAP_SETGID))
371 			new->gid = krgid;
372 		else
373 			goto error;
374 	}
375 	if (egid != (gid_t) -1) {
376 		if (gid_eq(old->gid, kegid) ||
377 		    gid_eq(old->egid, kegid) ||
378 		    gid_eq(old->sgid, kegid) ||
379 		    ns_capable(old->user_ns, CAP_SETGID))
380 			new->egid = kegid;
381 		else
382 			goto error;
383 	}
384 
385 	if (rgid != (gid_t) -1 ||
386 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
387 		new->sgid = new->egid;
388 	new->fsgid = new->egid;
389 
390 	return commit_creds(new);
391 
392 error:
393 	abort_creds(new);
394 	return retval;
395 }
396 
397 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
398 {
399 	return __sys_setregid(rgid, egid);
400 }
401 
402 /*
403  * setgid() is implemented like SysV w/ SAVED_IDS
404  *
405  * SMP: Same implicit races as above.
406  */
407 long __sys_setgid(gid_t gid)
408 {
409 	struct user_namespace *ns = current_user_ns();
410 	const struct cred *old;
411 	struct cred *new;
412 	int retval;
413 	kgid_t kgid;
414 
415 	kgid = make_kgid(ns, gid);
416 	if (!gid_valid(kgid))
417 		return -EINVAL;
418 
419 	new = prepare_creds();
420 	if (!new)
421 		return -ENOMEM;
422 	old = current_cred();
423 
424 	retval = -EPERM;
425 	if (ns_capable(old->user_ns, CAP_SETGID))
426 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
427 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
428 		new->egid = new->fsgid = kgid;
429 	else
430 		goto error;
431 
432 	return commit_creds(new);
433 
434 error:
435 	abort_creds(new);
436 	return retval;
437 }
438 
439 SYSCALL_DEFINE1(setgid, gid_t, gid)
440 {
441 	return __sys_setgid(gid);
442 }
443 
444 /*
445  * change the user struct in a credentials set to match the new UID
446  */
447 static int set_user(struct cred *new)
448 {
449 	struct user_struct *new_user;
450 
451 	new_user = alloc_uid(new->uid);
452 	if (!new_user)
453 		return -EAGAIN;
454 
455 	/*
456 	 * We don't fail in case of NPROC limit excess here because too many
457 	 * poorly written programs don't check set*uid() return code, assuming
458 	 * it never fails if called by root.  We may still enforce NPROC limit
459 	 * for programs doing set*uid()+execve() by harmlessly deferring the
460 	 * failure to the execve() stage.
461 	 */
462 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
463 			new_user != INIT_USER)
464 		current->flags |= PF_NPROC_EXCEEDED;
465 	else
466 		current->flags &= ~PF_NPROC_EXCEEDED;
467 
468 	free_uid(new->user);
469 	new->user = new_user;
470 	return 0;
471 }
472 
473 /*
474  * Unprivileged users may change the real uid to the effective uid
475  * or vice versa.  (BSD-style)
476  *
477  * If you set the real uid at all, or set the effective uid to a value not
478  * equal to the real uid, then the saved uid is set to the new effective uid.
479  *
480  * This makes it possible for a setuid program to completely drop its
481  * privileges, which is often a useful assertion to make when you are doing
482  * a security audit over a program.
483  *
484  * The general idea is that a program which uses just setreuid() will be
485  * 100% compatible with BSD.  A program which uses just setuid() will be
486  * 100% compatible with POSIX with saved IDs.
487  */
488 long __sys_setreuid(uid_t ruid, uid_t euid)
489 {
490 	struct user_namespace *ns = current_user_ns();
491 	const struct cred *old;
492 	struct cred *new;
493 	int retval;
494 	kuid_t kruid, keuid;
495 
496 	kruid = make_kuid(ns, ruid);
497 	keuid = make_kuid(ns, euid);
498 
499 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
500 		return -EINVAL;
501 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
502 		return -EINVAL;
503 
504 	new = prepare_creds();
505 	if (!new)
506 		return -ENOMEM;
507 	old = current_cred();
508 
509 	retval = -EPERM;
510 	if (ruid != (uid_t) -1) {
511 		new->uid = kruid;
512 		if (!uid_eq(old->uid, kruid) &&
513 		    !uid_eq(old->euid, kruid) &&
514 		    !ns_capable(old->user_ns, CAP_SETUID))
515 			goto error;
516 	}
517 
518 	if (euid != (uid_t) -1) {
519 		new->euid = keuid;
520 		if (!uid_eq(old->uid, keuid) &&
521 		    !uid_eq(old->euid, keuid) &&
522 		    !uid_eq(old->suid, keuid) &&
523 		    !ns_capable(old->user_ns, CAP_SETUID))
524 			goto error;
525 	}
526 
527 	if (!uid_eq(new->uid, old->uid)) {
528 		retval = set_user(new);
529 		if (retval < 0)
530 			goto error;
531 	}
532 	if (ruid != (uid_t) -1 ||
533 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
534 		new->suid = new->euid;
535 	new->fsuid = new->euid;
536 
537 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
538 	if (retval < 0)
539 		goto error;
540 
541 	return commit_creds(new);
542 
543 error:
544 	abort_creds(new);
545 	return retval;
546 }
547 
548 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
549 {
550 	return __sys_setreuid(ruid, euid);
551 }
552 
553 /*
554  * setuid() is implemented like SysV with SAVED_IDS
555  *
556  * Note that SAVED_ID's is deficient in that a setuid root program
557  * like sendmail, for example, cannot set its uid to be a normal
558  * user and then switch back, because if you're root, setuid() sets
559  * the saved uid too.  If you don't like this, blame the bright people
560  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
561  * will allow a root program to temporarily drop privileges and be able to
562  * regain them by swapping the real and effective uid.
563  */
564 long __sys_setuid(uid_t uid)
565 {
566 	struct user_namespace *ns = current_user_ns();
567 	const struct cred *old;
568 	struct cred *new;
569 	int retval;
570 	kuid_t kuid;
571 
572 	kuid = make_kuid(ns, uid);
573 	if (!uid_valid(kuid))
574 		return -EINVAL;
575 
576 	new = prepare_creds();
577 	if (!new)
578 		return -ENOMEM;
579 	old = current_cred();
580 
581 	retval = -EPERM;
582 	if (ns_capable(old->user_ns, CAP_SETUID)) {
583 		new->suid = new->uid = kuid;
584 		if (!uid_eq(kuid, old->uid)) {
585 			retval = set_user(new);
586 			if (retval < 0)
587 				goto error;
588 		}
589 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
590 		goto error;
591 	}
592 
593 	new->fsuid = new->euid = kuid;
594 
595 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
596 	if (retval < 0)
597 		goto error;
598 
599 	return commit_creds(new);
600 
601 error:
602 	abort_creds(new);
603 	return retval;
604 }
605 
606 SYSCALL_DEFINE1(setuid, uid_t, uid)
607 {
608 	return __sys_setuid(uid);
609 }
610 
611 
612 /*
613  * This function implements a generic ability to update ruid, euid,
614  * and suid.  This allows you to implement the 4.4 compatible seteuid().
615  */
616 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
617 {
618 	struct user_namespace *ns = current_user_ns();
619 	const struct cred *old;
620 	struct cred *new;
621 	int retval;
622 	kuid_t kruid, keuid, ksuid;
623 
624 	kruid = make_kuid(ns, ruid);
625 	keuid = make_kuid(ns, euid);
626 	ksuid = make_kuid(ns, suid);
627 
628 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
629 		return -EINVAL;
630 
631 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
632 		return -EINVAL;
633 
634 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
635 		return -EINVAL;
636 
637 	new = prepare_creds();
638 	if (!new)
639 		return -ENOMEM;
640 
641 	old = current_cred();
642 
643 	retval = -EPERM;
644 	if (!ns_capable(old->user_ns, CAP_SETUID)) {
645 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
646 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
647 			goto error;
648 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
649 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
650 			goto error;
651 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
652 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
653 			goto error;
654 	}
655 
656 	if (ruid != (uid_t) -1) {
657 		new->uid = kruid;
658 		if (!uid_eq(kruid, old->uid)) {
659 			retval = set_user(new);
660 			if (retval < 0)
661 				goto error;
662 		}
663 	}
664 	if (euid != (uid_t) -1)
665 		new->euid = keuid;
666 	if (suid != (uid_t) -1)
667 		new->suid = ksuid;
668 	new->fsuid = new->euid;
669 
670 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
671 	if (retval < 0)
672 		goto error;
673 
674 	return commit_creds(new);
675 
676 error:
677 	abort_creds(new);
678 	return retval;
679 }
680 
681 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
682 {
683 	return __sys_setresuid(ruid, euid, suid);
684 }
685 
686 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
687 {
688 	const struct cred *cred = current_cred();
689 	int retval;
690 	uid_t ruid, euid, suid;
691 
692 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
693 	euid = from_kuid_munged(cred->user_ns, cred->euid);
694 	suid = from_kuid_munged(cred->user_ns, cred->suid);
695 
696 	retval = put_user(ruid, ruidp);
697 	if (!retval) {
698 		retval = put_user(euid, euidp);
699 		if (!retval)
700 			return put_user(suid, suidp);
701 	}
702 	return retval;
703 }
704 
705 /*
706  * Same as above, but for rgid, egid, sgid.
707  */
708 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
709 {
710 	struct user_namespace *ns = current_user_ns();
711 	const struct cred *old;
712 	struct cred *new;
713 	int retval;
714 	kgid_t krgid, kegid, ksgid;
715 
716 	krgid = make_kgid(ns, rgid);
717 	kegid = make_kgid(ns, egid);
718 	ksgid = make_kgid(ns, sgid);
719 
720 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
721 		return -EINVAL;
722 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
723 		return -EINVAL;
724 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
725 		return -EINVAL;
726 
727 	new = prepare_creds();
728 	if (!new)
729 		return -ENOMEM;
730 	old = current_cred();
731 
732 	retval = -EPERM;
733 	if (!ns_capable(old->user_ns, CAP_SETGID)) {
734 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
735 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
736 			goto error;
737 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
738 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
739 			goto error;
740 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
741 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
742 			goto error;
743 	}
744 
745 	if (rgid != (gid_t) -1)
746 		new->gid = krgid;
747 	if (egid != (gid_t) -1)
748 		new->egid = kegid;
749 	if (sgid != (gid_t) -1)
750 		new->sgid = ksgid;
751 	new->fsgid = new->egid;
752 
753 	return commit_creds(new);
754 
755 error:
756 	abort_creds(new);
757 	return retval;
758 }
759 
760 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
761 {
762 	return __sys_setresgid(rgid, egid, sgid);
763 }
764 
765 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
766 {
767 	const struct cred *cred = current_cred();
768 	int retval;
769 	gid_t rgid, egid, sgid;
770 
771 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
772 	egid = from_kgid_munged(cred->user_ns, cred->egid);
773 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
774 
775 	retval = put_user(rgid, rgidp);
776 	if (!retval) {
777 		retval = put_user(egid, egidp);
778 		if (!retval)
779 			retval = put_user(sgid, sgidp);
780 	}
781 
782 	return retval;
783 }
784 
785 
786 /*
787  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
788  * is used for "access()" and for the NFS daemon (letting nfsd stay at
789  * whatever uid it wants to). It normally shadows "euid", except when
790  * explicitly set by setfsuid() or for access..
791  */
792 long __sys_setfsuid(uid_t uid)
793 {
794 	const struct cred *old;
795 	struct cred *new;
796 	uid_t old_fsuid;
797 	kuid_t kuid;
798 
799 	old = current_cred();
800 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
801 
802 	kuid = make_kuid(old->user_ns, uid);
803 	if (!uid_valid(kuid))
804 		return old_fsuid;
805 
806 	new = prepare_creds();
807 	if (!new)
808 		return old_fsuid;
809 
810 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
811 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
812 	    ns_capable(old->user_ns, CAP_SETUID)) {
813 		if (!uid_eq(kuid, old->fsuid)) {
814 			new->fsuid = kuid;
815 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
816 				goto change_okay;
817 		}
818 	}
819 
820 	abort_creds(new);
821 	return old_fsuid;
822 
823 change_okay:
824 	commit_creds(new);
825 	return old_fsuid;
826 }
827 
828 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
829 {
830 	return __sys_setfsuid(uid);
831 }
832 
833 /*
834  * Samma på svenska..
835  */
836 long __sys_setfsgid(gid_t gid)
837 {
838 	const struct cred *old;
839 	struct cred *new;
840 	gid_t old_fsgid;
841 	kgid_t kgid;
842 
843 	old = current_cred();
844 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
845 
846 	kgid = make_kgid(old->user_ns, gid);
847 	if (!gid_valid(kgid))
848 		return old_fsgid;
849 
850 	new = prepare_creds();
851 	if (!new)
852 		return old_fsgid;
853 
854 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
855 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
856 	    ns_capable(old->user_ns, CAP_SETGID)) {
857 		if (!gid_eq(kgid, old->fsgid)) {
858 			new->fsgid = kgid;
859 			goto change_okay;
860 		}
861 	}
862 
863 	abort_creds(new);
864 	return old_fsgid;
865 
866 change_okay:
867 	commit_creds(new);
868 	return old_fsgid;
869 }
870 
871 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
872 {
873 	return __sys_setfsgid(gid);
874 }
875 #endif /* CONFIG_MULTIUSER */
876 
877 /**
878  * sys_getpid - return the thread group id of the current process
879  *
880  * Note, despite the name, this returns the tgid not the pid.  The tgid and
881  * the pid are identical unless CLONE_THREAD was specified on clone() in
882  * which case the tgid is the same in all threads of the same group.
883  *
884  * This is SMP safe as current->tgid does not change.
885  */
886 SYSCALL_DEFINE0(getpid)
887 {
888 	return task_tgid_vnr(current);
889 }
890 
891 /* Thread ID - the internal kernel "pid" */
892 SYSCALL_DEFINE0(gettid)
893 {
894 	return task_pid_vnr(current);
895 }
896 
897 /*
898  * Accessing ->real_parent is not SMP-safe, it could
899  * change from under us. However, we can use a stale
900  * value of ->real_parent under rcu_read_lock(), see
901  * release_task()->call_rcu(delayed_put_task_struct).
902  */
903 SYSCALL_DEFINE0(getppid)
904 {
905 	int pid;
906 
907 	rcu_read_lock();
908 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
909 	rcu_read_unlock();
910 
911 	return pid;
912 }
913 
914 SYSCALL_DEFINE0(getuid)
915 {
916 	/* Only we change this so SMP safe */
917 	return from_kuid_munged(current_user_ns(), current_uid());
918 }
919 
920 SYSCALL_DEFINE0(geteuid)
921 {
922 	/* Only we change this so SMP safe */
923 	return from_kuid_munged(current_user_ns(), current_euid());
924 }
925 
926 SYSCALL_DEFINE0(getgid)
927 {
928 	/* Only we change this so SMP safe */
929 	return from_kgid_munged(current_user_ns(), current_gid());
930 }
931 
932 SYSCALL_DEFINE0(getegid)
933 {
934 	/* Only we change this so SMP safe */
935 	return from_kgid_munged(current_user_ns(), current_egid());
936 }
937 
938 static void do_sys_times(struct tms *tms)
939 {
940 	u64 tgutime, tgstime, cutime, cstime;
941 
942 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
943 	cutime = current->signal->cutime;
944 	cstime = current->signal->cstime;
945 	tms->tms_utime = nsec_to_clock_t(tgutime);
946 	tms->tms_stime = nsec_to_clock_t(tgstime);
947 	tms->tms_cutime = nsec_to_clock_t(cutime);
948 	tms->tms_cstime = nsec_to_clock_t(cstime);
949 }
950 
951 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
952 {
953 	if (tbuf) {
954 		struct tms tmp;
955 
956 		do_sys_times(&tmp);
957 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
958 			return -EFAULT;
959 	}
960 	force_successful_syscall_return();
961 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
962 }
963 
964 #ifdef CONFIG_COMPAT
965 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
966 {
967 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
968 }
969 
970 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
971 {
972 	if (tbuf) {
973 		struct tms tms;
974 		struct compat_tms tmp;
975 
976 		do_sys_times(&tms);
977 		/* Convert our struct tms to the compat version. */
978 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
979 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
980 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
981 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
982 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
983 			return -EFAULT;
984 	}
985 	force_successful_syscall_return();
986 	return compat_jiffies_to_clock_t(jiffies);
987 }
988 #endif
989 
990 /*
991  * This needs some heavy checking ...
992  * I just haven't the stomach for it. I also don't fully
993  * understand sessions/pgrp etc. Let somebody who does explain it.
994  *
995  * OK, I think I have the protection semantics right.... this is really
996  * only important on a multi-user system anyway, to make sure one user
997  * can't send a signal to a process owned by another.  -TYT, 12/12/91
998  *
999  * !PF_FORKNOEXEC check to conform completely to POSIX.
1000  */
1001 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1002 {
1003 	struct task_struct *p;
1004 	struct task_struct *group_leader = current->group_leader;
1005 	struct pid *pgrp;
1006 	int err;
1007 
1008 	if (!pid)
1009 		pid = task_pid_vnr(group_leader);
1010 	if (!pgid)
1011 		pgid = pid;
1012 	if (pgid < 0)
1013 		return -EINVAL;
1014 	rcu_read_lock();
1015 
1016 	/* From this point forward we keep holding onto the tasklist lock
1017 	 * so that our parent does not change from under us. -DaveM
1018 	 */
1019 	write_lock_irq(&tasklist_lock);
1020 
1021 	err = -ESRCH;
1022 	p = find_task_by_vpid(pid);
1023 	if (!p)
1024 		goto out;
1025 
1026 	err = -EINVAL;
1027 	if (!thread_group_leader(p))
1028 		goto out;
1029 
1030 	if (same_thread_group(p->real_parent, group_leader)) {
1031 		err = -EPERM;
1032 		if (task_session(p) != task_session(group_leader))
1033 			goto out;
1034 		err = -EACCES;
1035 		if (!(p->flags & PF_FORKNOEXEC))
1036 			goto out;
1037 	} else {
1038 		err = -ESRCH;
1039 		if (p != group_leader)
1040 			goto out;
1041 	}
1042 
1043 	err = -EPERM;
1044 	if (p->signal->leader)
1045 		goto out;
1046 
1047 	pgrp = task_pid(p);
1048 	if (pgid != pid) {
1049 		struct task_struct *g;
1050 
1051 		pgrp = find_vpid(pgid);
1052 		g = pid_task(pgrp, PIDTYPE_PGID);
1053 		if (!g || task_session(g) != task_session(group_leader))
1054 			goto out;
1055 	}
1056 
1057 	err = security_task_setpgid(p, pgid);
1058 	if (err)
1059 		goto out;
1060 
1061 	if (task_pgrp(p) != pgrp)
1062 		change_pid(p, PIDTYPE_PGID, pgrp);
1063 
1064 	err = 0;
1065 out:
1066 	/* All paths lead to here, thus we are safe. -DaveM */
1067 	write_unlock_irq(&tasklist_lock);
1068 	rcu_read_unlock();
1069 	return err;
1070 }
1071 
1072 static int do_getpgid(pid_t pid)
1073 {
1074 	struct task_struct *p;
1075 	struct pid *grp;
1076 	int retval;
1077 
1078 	rcu_read_lock();
1079 	if (!pid)
1080 		grp = task_pgrp(current);
1081 	else {
1082 		retval = -ESRCH;
1083 		p = find_task_by_vpid(pid);
1084 		if (!p)
1085 			goto out;
1086 		grp = task_pgrp(p);
1087 		if (!grp)
1088 			goto out;
1089 
1090 		retval = security_task_getpgid(p);
1091 		if (retval)
1092 			goto out;
1093 	}
1094 	retval = pid_vnr(grp);
1095 out:
1096 	rcu_read_unlock();
1097 	return retval;
1098 }
1099 
1100 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1101 {
1102 	return do_getpgid(pid);
1103 }
1104 
1105 #ifdef __ARCH_WANT_SYS_GETPGRP
1106 
1107 SYSCALL_DEFINE0(getpgrp)
1108 {
1109 	return do_getpgid(0);
1110 }
1111 
1112 #endif
1113 
1114 SYSCALL_DEFINE1(getsid, pid_t, pid)
1115 {
1116 	struct task_struct *p;
1117 	struct pid *sid;
1118 	int retval;
1119 
1120 	rcu_read_lock();
1121 	if (!pid)
1122 		sid = task_session(current);
1123 	else {
1124 		retval = -ESRCH;
1125 		p = find_task_by_vpid(pid);
1126 		if (!p)
1127 			goto out;
1128 		sid = task_session(p);
1129 		if (!sid)
1130 			goto out;
1131 
1132 		retval = security_task_getsid(p);
1133 		if (retval)
1134 			goto out;
1135 	}
1136 	retval = pid_vnr(sid);
1137 out:
1138 	rcu_read_unlock();
1139 	return retval;
1140 }
1141 
1142 static void set_special_pids(struct pid *pid)
1143 {
1144 	struct task_struct *curr = current->group_leader;
1145 
1146 	if (task_session(curr) != pid)
1147 		change_pid(curr, PIDTYPE_SID, pid);
1148 
1149 	if (task_pgrp(curr) != pid)
1150 		change_pid(curr, PIDTYPE_PGID, pid);
1151 }
1152 
1153 int ksys_setsid(void)
1154 {
1155 	struct task_struct *group_leader = current->group_leader;
1156 	struct pid *sid = task_pid(group_leader);
1157 	pid_t session = pid_vnr(sid);
1158 	int err = -EPERM;
1159 
1160 	write_lock_irq(&tasklist_lock);
1161 	/* Fail if I am already a session leader */
1162 	if (group_leader->signal->leader)
1163 		goto out;
1164 
1165 	/* Fail if a process group id already exists that equals the
1166 	 * proposed session id.
1167 	 */
1168 	if (pid_task(sid, PIDTYPE_PGID))
1169 		goto out;
1170 
1171 	group_leader->signal->leader = 1;
1172 	set_special_pids(sid);
1173 
1174 	proc_clear_tty(group_leader);
1175 
1176 	err = session;
1177 out:
1178 	write_unlock_irq(&tasklist_lock);
1179 	if (err > 0) {
1180 		proc_sid_connector(group_leader);
1181 		sched_autogroup_create_attach(group_leader);
1182 	}
1183 	return err;
1184 }
1185 
1186 SYSCALL_DEFINE0(setsid)
1187 {
1188 	return ksys_setsid();
1189 }
1190 
1191 DECLARE_RWSEM(uts_sem);
1192 
1193 #ifdef COMPAT_UTS_MACHINE
1194 #define override_architecture(name) \
1195 	(personality(current->personality) == PER_LINUX32 && \
1196 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1197 		      sizeof(COMPAT_UTS_MACHINE)))
1198 #else
1199 #define override_architecture(name)	0
1200 #endif
1201 
1202 /*
1203  * Work around broken programs that cannot handle "Linux 3.0".
1204  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1205  * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1206  */
1207 static int override_release(char __user *release, size_t len)
1208 {
1209 	int ret = 0;
1210 
1211 	if (current->personality & UNAME26) {
1212 		const char *rest = UTS_RELEASE;
1213 		char buf[65] = { 0 };
1214 		int ndots = 0;
1215 		unsigned v;
1216 		size_t copy;
1217 
1218 		while (*rest) {
1219 			if (*rest == '.' && ++ndots >= 3)
1220 				break;
1221 			if (!isdigit(*rest) && *rest != '.')
1222 				break;
1223 			rest++;
1224 		}
1225 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1226 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1227 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1228 		ret = copy_to_user(release, buf, copy + 1);
1229 	}
1230 	return ret;
1231 }
1232 
1233 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1234 {
1235 	int errno = 0;
1236 
1237 	down_read(&uts_sem);
1238 	if (copy_to_user(name, utsname(), sizeof *name))
1239 		errno = -EFAULT;
1240 	up_read(&uts_sem);
1241 
1242 	if (!errno && override_release(name->release, sizeof(name->release)))
1243 		errno = -EFAULT;
1244 	if (!errno && override_architecture(name))
1245 		errno = -EFAULT;
1246 	return errno;
1247 }
1248 
1249 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1250 /*
1251  * Old cruft
1252  */
1253 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1254 {
1255 	int error = 0;
1256 
1257 	if (!name)
1258 		return -EFAULT;
1259 
1260 	down_read(&uts_sem);
1261 	if (copy_to_user(name, utsname(), sizeof(*name)))
1262 		error = -EFAULT;
1263 	up_read(&uts_sem);
1264 
1265 	if (!error && override_release(name->release, sizeof(name->release)))
1266 		error = -EFAULT;
1267 	if (!error && override_architecture(name))
1268 		error = -EFAULT;
1269 	return error;
1270 }
1271 
1272 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1273 {
1274 	int error;
1275 
1276 	if (!name)
1277 		return -EFAULT;
1278 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1279 		return -EFAULT;
1280 
1281 	down_read(&uts_sem);
1282 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1283 			       __OLD_UTS_LEN);
1284 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1285 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1286 				__OLD_UTS_LEN);
1287 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1288 	error |= __copy_to_user(&name->release, &utsname()->release,
1289 				__OLD_UTS_LEN);
1290 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1291 	error |= __copy_to_user(&name->version, &utsname()->version,
1292 				__OLD_UTS_LEN);
1293 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1294 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1295 				__OLD_UTS_LEN);
1296 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1297 	up_read(&uts_sem);
1298 
1299 	if (!error && override_architecture(name))
1300 		error = -EFAULT;
1301 	if (!error && override_release(name->release, sizeof(name->release)))
1302 		error = -EFAULT;
1303 	return error ? -EFAULT : 0;
1304 }
1305 #endif
1306 
1307 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1308 {
1309 	int errno;
1310 	char tmp[__NEW_UTS_LEN];
1311 
1312 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1313 		return -EPERM;
1314 
1315 	if (len < 0 || len > __NEW_UTS_LEN)
1316 		return -EINVAL;
1317 	down_write(&uts_sem);
1318 	errno = -EFAULT;
1319 	if (!copy_from_user(tmp, name, len)) {
1320 		struct new_utsname *u = utsname();
1321 
1322 		memcpy(u->nodename, tmp, len);
1323 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1324 		errno = 0;
1325 		uts_proc_notify(UTS_PROC_HOSTNAME);
1326 	}
1327 	up_write(&uts_sem);
1328 	return errno;
1329 }
1330 
1331 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1332 
1333 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1334 {
1335 	int i, errno;
1336 	struct new_utsname *u;
1337 
1338 	if (len < 0)
1339 		return -EINVAL;
1340 	down_read(&uts_sem);
1341 	u = utsname();
1342 	i = 1 + strlen(u->nodename);
1343 	if (i > len)
1344 		i = len;
1345 	errno = 0;
1346 	if (copy_to_user(name, u->nodename, i))
1347 		errno = -EFAULT;
1348 	up_read(&uts_sem);
1349 	return errno;
1350 }
1351 
1352 #endif
1353 
1354 /*
1355  * Only setdomainname; getdomainname can be implemented by calling
1356  * uname()
1357  */
1358 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359 {
1360 	int errno;
1361 	char tmp[__NEW_UTS_LEN];
1362 
1363 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364 		return -EPERM;
1365 	if (len < 0 || len > __NEW_UTS_LEN)
1366 		return -EINVAL;
1367 
1368 	down_write(&uts_sem);
1369 	errno = -EFAULT;
1370 	if (!copy_from_user(tmp, name, len)) {
1371 		struct new_utsname *u = utsname();
1372 
1373 		memcpy(u->domainname, tmp, len);
1374 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1375 		errno = 0;
1376 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1377 	}
1378 	up_write(&uts_sem);
1379 	return errno;
1380 }
1381 
1382 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1383 {
1384 	struct rlimit value;
1385 	int ret;
1386 
1387 	ret = do_prlimit(current, resource, NULL, &value);
1388 	if (!ret)
1389 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1390 
1391 	return ret;
1392 }
1393 
1394 #ifdef CONFIG_COMPAT
1395 
1396 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1397 		       struct compat_rlimit __user *, rlim)
1398 {
1399 	struct rlimit r;
1400 	struct compat_rlimit r32;
1401 
1402 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1403 		return -EFAULT;
1404 
1405 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1406 		r.rlim_cur = RLIM_INFINITY;
1407 	else
1408 		r.rlim_cur = r32.rlim_cur;
1409 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1410 		r.rlim_max = RLIM_INFINITY;
1411 	else
1412 		r.rlim_max = r32.rlim_max;
1413 	return do_prlimit(current, resource, &r, NULL);
1414 }
1415 
1416 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1417 		       struct compat_rlimit __user *, rlim)
1418 {
1419 	struct rlimit r;
1420 	int ret;
1421 
1422 	ret = do_prlimit(current, resource, NULL, &r);
1423 	if (!ret) {
1424 		struct compat_rlimit r32;
1425 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1426 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1427 		else
1428 			r32.rlim_cur = r.rlim_cur;
1429 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1430 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1431 		else
1432 			r32.rlim_max = r.rlim_max;
1433 
1434 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1435 			return -EFAULT;
1436 	}
1437 	return ret;
1438 }
1439 
1440 #endif
1441 
1442 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1443 
1444 /*
1445  *	Back compatibility for getrlimit. Needed for some apps.
1446  */
1447 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1448 		struct rlimit __user *, rlim)
1449 {
1450 	struct rlimit x;
1451 	if (resource >= RLIM_NLIMITS)
1452 		return -EINVAL;
1453 
1454 	task_lock(current->group_leader);
1455 	x = current->signal->rlim[resource];
1456 	task_unlock(current->group_leader);
1457 	if (x.rlim_cur > 0x7FFFFFFF)
1458 		x.rlim_cur = 0x7FFFFFFF;
1459 	if (x.rlim_max > 0x7FFFFFFF)
1460 		x.rlim_max = 0x7FFFFFFF;
1461 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1462 }
1463 
1464 #ifdef CONFIG_COMPAT
1465 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1466 		       struct compat_rlimit __user *, rlim)
1467 {
1468 	struct rlimit r;
1469 
1470 	if (resource >= RLIM_NLIMITS)
1471 		return -EINVAL;
1472 
1473 	task_lock(current->group_leader);
1474 	r = current->signal->rlim[resource];
1475 	task_unlock(current->group_leader);
1476 	if (r.rlim_cur > 0x7FFFFFFF)
1477 		r.rlim_cur = 0x7FFFFFFF;
1478 	if (r.rlim_max > 0x7FFFFFFF)
1479 		r.rlim_max = 0x7FFFFFFF;
1480 
1481 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1482 	    put_user(r.rlim_max, &rlim->rlim_max))
1483 		return -EFAULT;
1484 	return 0;
1485 }
1486 #endif
1487 
1488 #endif
1489 
1490 static inline bool rlim64_is_infinity(__u64 rlim64)
1491 {
1492 #if BITS_PER_LONG < 64
1493 	return rlim64 >= ULONG_MAX;
1494 #else
1495 	return rlim64 == RLIM64_INFINITY;
1496 #endif
1497 }
1498 
1499 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1500 {
1501 	if (rlim->rlim_cur == RLIM_INFINITY)
1502 		rlim64->rlim_cur = RLIM64_INFINITY;
1503 	else
1504 		rlim64->rlim_cur = rlim->rlim_cur;
1505 	if (rlim->rlim_max == RLIM_INFINITY)
1506 		rlim64->rlim_max = RLIM64_INFINITY;
1507 	else
1508 		rlim64->rlim_max = rlim->rlim_max;
1509 }
1510 
1511 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1512 {
1513 	if (rlim64_is_infinity(rlim64->rlim_cur))
1514 		rlim->rlim_cur = RLIM_INFINITY;
1515 	else
1516 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1517 	if (rlim64_is_infinity(rlim64->rlim_max))
1518 		rlim->rlim_max = RLIM_INFINITY;
1519 	else
1520 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1521 }
1522 
1523 /* make sure you are allowed to change @tsk limits before calling this */
1524 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1525 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1526 {
1527 	struct rlimit *rlim;
1528 	int retval = 0;
1529 
1530 	if (resource >= RLIM_NLIMITS)
1531 		return -EINVAL;
1532 	if (new_rlim) {
1533 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1534 			return -EINVAL;
1535 		if (resource == RLIMIT_NOFILE &&
1536 				new_rlim->rlim_max > sysctl_nr_open)
1537 			return -EPERM;
1538 	}
1539 
1540 	/* protect tsk->signal and tsk->sighand from disappearing */
1541 	read_lock(&tasklist_lock);
1542 	if (!tsk->sighand) {
1543 		retval = -ESRCH;
1544 		goto out;
1545 	}
1546 
1547 	rlim = tsk->signal->rlim + resource;
1548 	task_lock(tsk->group_leader);
1549 	if (new_rlim) {
1550 		/* Keep the capable check against init_user_ns until
1551 		   cgroups can contain all limits */
1552 		if (new_rlim->rlim_max > rlim->rlim_max &&
1553 				!capable(CAP_SYS_RESOURCE))
1554 			retval = -EPERM;
1555 		if (!retval)
1556 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1557 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1558 			/*
1559 			 * The caller is asking for an immediate RLIMIT_CPU
1560 			 * expiry.  But we use the zero value to mean "it was
1561 			 * never set".  So let's cheat and make it one second
1562 			 * instead
1563 			 */
1564 			new_rlim->rlim_cur = 1;
1565 		}
1566 	}
1567 	if (!retval) {
1568 		if (old_rlim)
1569 			*old_rlim = *rlim;
1570 		if (new_rlim)
1571 			*rlim = *new_rlim;
1572 	}
1573 	task_unlock(tsk->group_leader);
1574 
1575 	/*
1576 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1577 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1578 	 * very long-standing error, and fixing it now risks breakage of
1579 	 * applications, so we live with it
1580 	 */
1581 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1582 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1583 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1584 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1585 out:
1586 	read_unlock(&tasklist_lock);
1587 	return retval;
1588 }
1589 
1590 /* rcu lock must be held */
1591 static int check_prlimit_permission(struct task_struct *task,
1592 				    unsigned int flags)
1593 {
1594 	const struct cred *cred = current_cred(), *tcred;
1595 	bool id_match;
1596 
1597 	if (current == task)
1598 		return 0;
1599 
1600 	tcred = __task_cred(task);
1601 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1602 		    uid_eq(cred->uid, tcred->suid) &&
1603 		    uid_eq(cred->uid, tcred->uid)  &&
1604 		    gid_eq(cred->gid, tcred->egid) &&
1605 		    gid_eq(cred->gid, tcred->sgid) &&
1606 		    gid_eq(cred->gid, tcred->gid));
1607 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1608 		return -EPERM;
1609 
1610 	return security_task_prlimit(cred, tcred, flags);
1611 }
1612 
1613 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1614 		const struct rlimit64 __user *, new_rlim,
1615 		struct rlimit64 __user *, old_rlim)
1616 {
1617 	struct rlimit64 old64, new64;
1618 	struct rlimit old, new;
1619 	struct task_struct *tsk;
1620 	unsigned int checkflags = 0;
1621 	int ret;
1622 
1623 	if (old_rlim)
1624 		checkflags |= LSM_PRLIMIT_READ;
1625 
1626 	if (new_rlim) {
1627 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1628 			return -EFAULT;
1629 		rlim64_to_rlim(&new64, &new);
1630 		checkflags |= LSM_PRLIMIT_WRITE;
1631 	}
1632 
1633 	rcu_read_lock();
1634 	tsk = pid ? find_task_by_vpid(pid) : current;
1635 	if (!tsk) {
1636 		rcu_read_unlock();
1637 		return -ESRCH;
1638 	}
1639 	ret = check_prlimit_permission(tsk, checkflags);
1640 	if (ret) {
1641 		rcu_read_unlock();
1642 		return ret;
1643 	}
1644 	get_task_struct(tsk);
1645 	rcu_read_unlock();
1646 
1647 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1648 			old_rlim ? &old : NULL);
1649 
1650 	if (!ret && old_rlim) {
1651 		rlim_to_rlim64(&old, &old64);
1652 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1653 			ret = -EFAULT;
1654 	}
1655 
1656 	put_task_struct(tsk);
1657 	return ret;
1658 }
1659 
1660 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1661 {
1662 	struct rlimit new_rlim;
1663 
1664 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1665 		return -EFAULT;
1666 	return do_prlimit(current, resource, &new_rlim, NULL);
1667 }
1668 
1669 /*
1670  * It would make sense to put struct rusage in the task_struct,
1671  * except that would make the task_struct be *really big*.  After
1672  * task_struct gets moved into malloc'ed memory, it would
1673  * make sense to do this.  It will make moving the rest of the information
1674  * a lot simpler!  (Which we're not doing right now because we're not
1675  * measuring them yet).
1676  *
1677  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1678  * races with threads incrementing their own counters.  But since word
1679  * reads are atomic, we either get new values or old values and we don't
1680  * care which for the sums.  We always take the siglock to protect reading
1681  * the c* fields from p->signal from races with exit.c updating those
1682  * fields when reaping, so a sample either gets all the additions of a
1683  * given child after it's reaped, or none so this sample is before reaping.
1684  *
1685  * Locking:
1686  * We need to take the siglock for CHILDEREN, SELF and BOTH
1687  * for  the cases current multithreaded, non-current single threaded
1688  * non-current multithreaded.  Thread traversal is now safe with
1689  * the siglock held.
1690  * Strictly speaking, we donot need to take the siglock if we are current and
1691  * single threaded,  as no one else can take our signal_struct away, no one
1692  * else can  reap the  children to update signal->c* counters, and no one else
1693  * can race with the signal-> fields. If we do not take any lock, the
1694  * signal-> fields could be read out of order while another thread was just
1695  * exiting. So we should  place a read memory barrier when we avoid the lock.
1696  * On the writer side,  write memory barrier is implied in  __exit_signal
1697  * as __exit_signal releases  the siglock spinlock after updating the signal->
1698  * fields. But we don't do this yet to keep things simple.
1699  *
1700  */
1701 
1702 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1703 {
1704 	r->ru_nvcsw += t->nvcsw;
1705 	r->ru_nivcsw += t->nivcsw;
1706 	r->ru_minflt += t->min_flt;
1707 	r->ru_majflt += t->maj_flt;
1708 	r->ru_inblock += task_io_get_inblock(t);
1709 	r->ru_oublock += task_io_get_oublock(t);
1710 }
1711 
1712 void getrusage(struct task_struct *p, int who, struct rusage *r)
1713 {
1714 	struct task_struct *t;
1715 	unsigned long flags;
1716 	u64 tgutime, tgstime, utime, stime;
1717 	unsigned long maxrss = 0;
1718 
1719 	memset((char *)r, 0, sizeof (*r));
1720 	utime = stime = 0;
1721 
1722 	if (who == RUSAGE_THREAD) {
1723 		task_cputime_adjusted(current, &utime, &stime);
1724 		accumulate_thread_rusage(p, r);
1725 		maxrss = p->signal->maxrss;
1726 		goto out;
1727 	}
1728 
1729 	if (!lock_task_sighand(p, &flags))
1730 		return;
1731 
1732 	switch (who) {
1733 	case RUSAGE_BOTH:
1734 	case RUSAGE_CHILDREN:
1735 		utime = p->signal->cutime;
1736 		stime = p->signal->cstime;
1737 		r->ru_nvcsw = p->signal->cnvcsw;
1738 		r->ru_nivcsw = p->signal->cnivcsw;
1739 		r->ru_minflt = p->signal->cmin_flt;
1740 		r->ru_majflt = p->signal->cmaj_flt;
1741 		r->ru_inblock = p->signal->cinblock;
1742 		r->ru_oublock = p->signal->coublock;
1743 		maxrss = p->signal->cmaxrss;
1744 
1745 		if (who == RUSAGE_CHILDREN)
1746 			break;
1747 
1748 	case RUSAGE_SELF:
1749 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1750 		utime += tgutime;
1751 		stime += tgstime;
1752 		r->ru_nvcsw += p->signal->nvcsw;
1753 		r->ru_nivcsw += p->signal->nivcsw;
1754 		r->ru_minflt += p->signal->min_flt;
1755 		r->ru_majflt += p->signal->maj_flt;
1756 		r->ru_inblock += p->signal->inblock;
1757 		r->ru_oublock += p->signal->oublock;
1758 		if (maxrss < p->signal->maxrss)
1759 			maxrss = p->signal->maxrss;
1760 		t = p;
1761 		do {
1762 			accumulate_thread_rusage(t, r);
1763 		} while_each_thread(p, t);
1764 		break;
1765 
1766 	default:
1767 		BUG();
1768 	}
1769 	unlock_task_sighand(p, &flags);
1770 
1771 out:
1772 	r->ru_utime = ns_to_timeval(utime);
1773 	r->ru_stime = ns_to_timeval(stime);
1774 
1775 	if (who != RUSAGE_CHILDREN) {
1776 		struct mm_struct *mm = get_task_mm(p);
1777 
1778 		if (mm) {
1779 			setmax_mm_hiwater_rss(&maxrss, mm);
1780 			mmput(mm);
1781 		}
1782 	}
1783 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1784 }
1785 
1786 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1787 {
1788 	struct rusage r;
1789 
1790 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1791 	    who != RUSAGE_THREAD)
1792 		return -EINVAL;
1793 
1794 	getrusage(current, who, &r);
1795 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1796 }
1797 
1798 #ifdef CONFIG_COMPAT
1799 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1800 {
1801 	struct rusage r;
1802 
1803 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1804 	    who != RUSAGE_THREAD)
1805 		return -EINVAL;
1806 
1807 	getrusage(current, who, &r);
1808 	return put_compat_rusage(&r, ru);
1809 }
1810 #endif
1811 
1812 SYSCALL_DEFINE1(umask, int, mask)
1813 {
1814 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1815 	return mask;
1816 }
1817 
1818 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1819 {
1820 	struct fd exe;
1821 	struct file *old_exe, *exe_file;
1822 	struct inode *inode;
1823 	int err;
1824 
1825 	exe = fdget(fd);
1826 	if (!exe.file)
1827 		return -EBADF;
1828 
1829 	inode = file_inode(exe.file);
1830 
1831 	/*
1832 	 * Because the original mm->exe_file points to executable file, make
1833 	 * sure that this one is executable as well, to avoid breaking an
1834 	 * overall picture.
1835 	 */
1836 	err = -EACCES;
1837 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1838 		goto exit;
1839 
1840 	err = inode_permission(inode, MAY_EXEC);
1841 	if (err)
1842 		goto exit;
1843 
1844 	/*
1845 	 * Forbid mm->exe_file change if old file still mapped.
1846 	 */
1847 	exe_file = get_mm_exe_file(mm);
1848 	err = -EBUSY;
1849 	if (exe_file) {
1850 		struct vm_area_struct *vma;
1851 
1852 		down_read(&mm->mmap_sem);
1853 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1854 			if (!vma->vm_file)
1855 				continue;
1856 			if (path_equal(&vma->vm_file->f_path,
1857 				       &exe_file->f_path))
1858 				goto exit_err;
1859 		}
1860 
1861 		up_read(&mm->mmap_sem);
1862 		fput(exe_file);
1863 	}
1864 
1865 	err = 0;
1866 	/* set the new file, lockless */
1867 	get_file(exe.file);
1868 	old_exe = xchg(&mm->exe_file, exe.file);
1869 	if (old_exe)
1870 		fput(old_exe);
1871 exit:
1872 	fdput(exe);
1873 	return err;
1874 exit_err:
1875 	up_read(&mm->mmap_sem);
1876 	fput(exe_file);
1877 	goto exit;
1878 }
1879 
1880 /*
1881  * WARNING: we don't require any capability here so be very careful
1882  * in what is allowed for modification from userspace.
1883  */
1884 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1885 {
1886 	unsigned long mmap_max_addr = TASK_SIZE;
1887 	struct mm_struct *mm = current->mm;
1888 	int error = -EINVAL, i;
1889 
1890 	static const unsigned char offsets[] = {
1891 		offsetof(struct prctl_mm_map, start_code),
1892 		offsetof(struct prctl_mm_map, end_code),
1893 		offsetof(struct prctl_mm_map, start_data),
1894 		offsetof(struct prctl_mm_map, end_data),
1895 		offsetof(struct prctl_mm_map, start_brk),
1896 		offsetof(struct prctl_mm_map, brk),
1897 		offsetof(struct prctl_mm_map, start_stack),
1898 		offsetof(struct prctl_mm_map, arg_start),
1899 		offsetof(struct prctl_mm_map, arg_end),
1900 		offsetof(struct prctl_mm_map, env_start),
1901 		offsetof(struct prctl_mm_map, env_end),
1902 	};
1903 
1904 	/*
1905 	 * Make sure the members are not somewhere outside
1906 	 * of allowed address space.
1907 	 */
1908 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1909 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1910 
1911 		if ((unsigned long)val >= mmap_max_addr ||
1912 		    (unsigned long)val < mmap_min_addr)
1913 			goto out;
1914 	}
1915 
1916 	/*
1917 	 * Make sure the pairs are ordered.
1918 	 */
1919 #define __prctl_check_order(__m1, __op, __m2)				\
1920 	((unsigned long)prctl_map->__m1 __op				\
1921 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1922 	error  = __prctl_check_order(start_code, <, end_code);
1923 	error |= __prctl_check_order(start_data, <, end_data);
1924 	error |= __prctl_check_order(start_brk, <=, brk);
1925 	error |= __prctl_check_order(arg_start, <=, arg_end);
1926 	error |= __prctl_check_order(env_start, <=, env_end);
1927 	if (error)
1928 		goto out;
1929 #undef __prctl_check_order
1930 
1931 	error = -EINVAL;
1932 
1933 	/*
1934 	 * @brk should be after @end_data in traditional maps.
1935 	 */
1936 	if (prctl_map->start_brk <= prctl_map->end_data ||
1937 	    prctl_map->brk <= prctl_map->end_data)
1938 		goto out;
1939 
1940 	/*
1941 	 * Neither we should allow to override limits if they set.
1942 	 */
1943 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1944 			      prctl_map->start_brk, prctl_map->end_data,
1945 			      prctl_map->start_data))
1946 			goto out;
1947 
1948 	/*
1949 	 * Someone is trying to cheat the auxv vector.
1950 	 */
1951 	if (prctl_map->auxv_size) {
1952 		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1953 			goto out;
1954 	}
1955 
1956 	/*
1957 	 * Finally, make sure the caller has the rights to
1958 	 * change /proc/pid/exe link: only local sys admin should
1959 	 * be allowed to.
1960 	 */
1961 	if (prctl_map->exe_fd != (u32)-1) {
1962 		if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1963 			goto out;
1964 	}
1965 
1966 	error = 0;
1967 out:
1968 	return error;
1969 }
1970 
1971 #ifdef CONFIG_CHECKPOINT_RESTORE
1972 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1973 {
1974 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1975 	unsigned long user_auxv[AT_VECTOR_SIZE];
1976 	struct mm_struct *mm = current->mm;
1977 	int error;
1978 
1979 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1980 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1981 
1982 	if (opt == PR_SET_MM_MAP_SIZE)
1983 		return put_user((unsigned int)sizeof(prctl_map),
1984 				(unsigned int __user *)addr);
1985 
1986 	if (data_size != sizeof(prctl_map))
1987 		return -EINVAL;
1988 
1989 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1990 		return -EFAULT;
1991 
1992 	error = validate_prctl_map(&prctl_map);
1993 	if (error)
1994 		return error;
1995 
1996 	if (prctl_map.auxv_size) {
1997 		memset(user_auxv, 0, sizeof(user_auxv));
1998 		if (copy_from_user(user_auxv,
1999 				   (const void __user *)prctl_map.auxv,
2000 				   prctl_map.auxv_size))
2001 			return -EFAULT;
2002 
2003 		/* Last entry must be AT_NULL as specification requires */
2004 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2005 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2006 	}
2007 
2008 	if (prctl_map.exe_fd != (u32)-1) {
2009 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2010 		if (error)
2011 			return error;
2012 	}
2013 
2014 	down_write(&mm->mmap_sem);
2015 
2016 	/*
2017 	 * We don't validate if these members are pointing to
2018 	 * real present VMAs because application may have correspond
2019 	 * VMAs already unmapped and kernel uses these members for statistics
2020 	 * output in procfs mostly, except
2021 	 *
2022 	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
2023 	 *    for VMAs when updating these memvers so anything wrong written
2024 	 *    here cause kernel to swear at userspace program but won't lead
2025 	 *    to any problem in kernel itself
2026 	 */
2027 
2028 	mm->start_code	= prctl_map.start_code;
2029 	mm->end_code	= prctl_map.end_code;
2030 	mm->start_data	= prctl_map.start_data;
2031 	mm->end_data	= prctl_map.end_data;
2032 	mm->start_brk	= prctl_map.start_brk;
2033 	mm->brk		= prctl_map.brk;
2034 	mm->start_stack	= prctl_map.start_stack;
2035 	mm->arg_start	= prctl_map.arg_start;
2036 	mm->arg_end	= prctl_map.arg_end;
2037 	mm->env_start	= prctl_map.env_start;
2038 	mm->env_end	= prctl_map.env_end;
2039 
2040 	/*
2041 	 * Note this update of @saved_auxv is lockless thus
2042 	 * if someone reads this member in procfs while we're
2043 	 * updating -- it may get partly updated results. It's
2044 	 * known and acceptable trade off: we leave it as is to
2045 	 * not introduce additional locks here making the kernel
2046 	 * more complex.
2047 	 */
2048 	if (prctl_map.auxv_size)
2049 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2050 
2051 	up_write(&mm->mmap_sem);
2052 	return 0;
2053 }
2054 #endif /* CONFIG_CHECKPOINT_RESTORE */
2055 
2056 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2057 			  unsigned long len)
2058 {
2059 	/*
2060 	 * This doesn't move the auxiliary vector itself since it's pinned to
2061 	 * mm_struct, but it permits filling the vector with new values.  It's
2062 	 * up to the caller to provide sane values here, otherwise userspace
2063 	 * tools which use this vector might be unhappy.
2064 	 */
2065 	unsigned long user_auxv[AT_VECTOR_SIZE];
2066 
2067 	if (len > sizeof(user_auxv))
2068 		return -EINVAL;
2069 
2070 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2071 		return -EFAULT;
2072 
2073 	/* Make sure the last entry is always AT_NULL */
2074 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2075 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2076 
2077 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2078 
2079 	task_lock(current);
2080 	memcpy(mm->saved_auxv, user_auxv, len);
2081 	task_unlock(current);
2082 
2083 	return 0;
2084 }
2085 
2086 static int prctl_set_mm(int opt, unsigned long addr,
2087 			unsigned long arg4, unsigned long arg5)
2088 {
2089 	struct mm_struct *mm = current->mm;
2090 	struct prctl_mm_map prctl_map;
2091 	struct vm_area_struct *vma;
2092 	int error;
2093 
2094 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2095 			      opt != PR_SET_MM_MAP &&
2096 			      opt != PR_SET_MM_MAP_SIZE)))
2097 		return -EINVAL;
2098 
2099 #ifdef CONFIG_CHECKPOINT_RESTORE
2100 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2101 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2102 #endif
2103 
2104 	if (!capable(CAP_SYS_RESOURCE))
2105 		return -EPERM;
2106 
2107 	if (opt == PR_SET_MM_EXE_FILE)
2108 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2109 
2110 	if (opt == PR_SET_MM_AUXV)
2111 		return prctl_set_auxv(mm, addr, arg4);
2112 
2113 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2114 		return -EINVAL;
2115 
2116 	error = -EINVAL;
2117 
2118 	down_write(&mm->mmap_sem);
2119 	vma = find_vma(mm, addr);
2120 
2121 	prctl_map.start_code	= mm->start_code;
2122 	prctl_map.end_code	= mm->end_code;
2123 	prctl_map.start_data	= mm->start_data;
2124 	prctl_map.end_data	= mm->end_data;
2125 	prctl_map.start_brk	= mm->start_brk;
2126 	prctl_map.brk		= mm->brk;
2127 	prctl_map.start_stack	= mm->start_stack;
2128 	prctl_map.arg_start	= mm->arg_start;
2129 	prctl_map.arg_end	= mm->arg_end;
2130 	prctl_map.env_start	= mm->env_start;
2131 	prctl_map.env_end	= mm->env_end;
2132 	prctl_map.auxv		= NULL;
2133 	prctl_map.auxv_size	= 0;
2134 	prctl_map.exe_fd	= -1;
2135 
2136 	switch (opt) {
2137 	case PR_SET_MM_START_CODE:
2138 		prctl_map.start_code = addr;
2139 		break;
2140 	case PR_SET_MM_END_CODE:
2141 		prctl_map.end_code = addr;
2142 		break;
2143 	case PR_SET_MM_START_DATA:
2144 		prctl_map.start_data = addr;
2145 		break;
2146 	case PR_SET_MM_END_DATA:
2147 		prctl_map.end_data = addr;
2148 		break;
2149 	case PR_SET_MM_START_STACK:
2150 		prctl_map.start_stack = addr;
2151 		break;
2152 	case PR_SET_MM_START_BRK:
2153 		prctl_map.start_brk = addr;
2154 		break;
2155 	case PR_SET_MM_BRK:
2156 		prctl_map.brk = addr;
2157 		break;
2158 	case PR_SET_MM_ARG_START:
2159 		prctl_map.arg_start = addr;
2160 		break;
2161 	case PR_SET_MM_ARG_END:
2162 		prctl_map.arg_end = addr;
2163 		break;
2164 	case PR_SET_MM_ENV_START:
2165 		prctl_map.env_start = addr;
2166 		break;
2167 	case PR_SET_MM_ENV_END:
2168 		prctl_map.env_end = addr;
2169 		break;
2170 	default:
2171 		goto out;
2172 	}
2173 
2174 	error = validate_prctl_map(&prctl_map);
2175 	if (error)
2176 		goto out;
2177 
2178 	switch (opt) {
2179 	/*
2180 	 * If command line arguments and environment
2181 	 * are placed somewhere else on stack, we can
2182 	 * set them up here, ARG_START/END to setup
2183 	 * command line argumets and ENV_START/END
2184 	 * for environment.
2185 	 */
2186 	case PR_SET_MM_START_STACK:
2187 	case PR_SET_MM_ARG_START:
2188 	case PR_SET_MM_ARG_END:
2189 	case PR_SET_MM_ENV_START:
2190 	case PR_SET_MM_ENV_END:
2191 		if (!vma) {
2192 			error = -EFAULT;
2193 			goto out;
2194 		}
2195 	}
2196 
2197 	mm->start_code	= prctl_map.start_code;
2198 	mm->end_code	= prctl_map.end_code;
2199 	mm->start_data	= prctl_map.start_data;
2200 	mm->end_data	= prctl_map.end_data;
2201 	mm->start_brk	= prctl_map.start_brk;
2202 	mm->brk		= prctl_map.brk;
2203 	mm->start_stack	= prctl_map.start_stack;
2204 	mm->arg_start	= prctl_map.arg_start;
2205 	mm->arg_end	= prctl_map.arg_end;
2206 	mm->env_start	= prctl_map.env_start;
2207 	mm->env_end	= prctl_map.env_end;
2208 
2209 	error = 0;
2210 out:
2211 	up_write(&mm->mmap_sem);
2212 	return error;
2213 }
2214 
2215 #ifdef CONFIG_CHECKPOINT_RESTORE
2216 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2217 {
2218 	return put_user(me->clear_child_tid, tid_addr);
2219 }
2220 #else
2221 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2222 {
2223 	return -EINVAL;
2224 }
2225 #endif
2226 
2227 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2228 {
2229 	/*
2230 	 * If task has has_child_subreaper - all its decendants
2231 	 * already have these flag too and new decendants will
2232 	 * inherit it on fork, skip them.
2233 	 *
2234 	 * If we've found child_reaper - skip descendants in
2235 	 * it's subtree as they will never get out pidns.
2236 	 */
2237 	if (p->signal->has_child_subreaper ||
2238 	    is_child_reaper(task_pid(p)))
2239 		return 0;
2240 
2241 	p->signal->has_child_subreaper = 1;
2242 	return 1;
2243 }
2244 
2245 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2246 		unsigned long, arg4, unsigned long, arg5)
2247 {
2248 	struct task_struct *me = current;
2249 	unsigned char comm[sizeof(me->comm)];
2250 	long error;
2251 
2252 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2253 	if (error != -ENOSYS)
2254 		return error;
2255 
2256 	error = 0;
2257 	switch (option) {
2258 	case PR_SET_PDEATHSIG:
2259 		if (!valid_signal(arg2)) {
2260 			error = -EINVAL;
2261 			break;
2262 		}
2263 		me->pdeath_signal = arg2;
2264 		break;
2265 	case PR_GET_PDEATHSIG:
2266 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2267 		break;
2268 	case PR_GET_DUMPABLE:
2269 		error = get_dumpable(me->mm);
2270 		break;
2271 	case PR_SET_DUMPABLE:
2272 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2273 			error = -EINVAL;
2274 			break;
2275 		}
2276 		set_dumpable(me->mm, arg2);
2277 		break;
2278 
2279 	case PR_SET_UNALIGN:
2280 		error = SET_UNALIGN_CTL(me, arg2);
2281 		break;
2282 	case PR_GET_UNALIGN:
2283 		error = GET_UNALIGN_CTL(me, arg2);
2284 		break;
2285 	case PR_SET_FPEMU:
2286 		error = SET_FPEMU_CTL(me, arg2);
2287 		break;
2288 	case PR_GET_FPEMU:
2289 		error = GET_FPEMU_CTL(me, arg2);
2290 		break;
2291 	case PR_SET_FPEXC:
2292 		error = SET_FPEXC_CTL(me, arg2);
2293 		break;
2294 	case PR_GET_FPEXC:
2295 		error = GET_FPEXC_CTL(me, arg2);
2296 		break;
2297 	case PR_GET_TIMING:
2298 		error = PR_TIMING_STATISTICAL;
2299 		break;
2300 	case PR_SET_TIMING:
2301 		if (arg2 != PR_TIMING_STATISTICAL)
2302 			error = -EINVAL;
2303 		break;
2304 	case PR_SET_NAME:
2305 		comm[sizeof(me->comm) - 1] = 0;
2306 		if (strncpy_from_user(comm, (char __user *)arg2,
2307 				      sizeof(me->comm) - 1) < 0)
2308 			return -EFAULT;
2309 		set_task_comm(me, comm);
2310 		proc_comm_connector(me);
2311 		break;
2312 	case PR_GET_NAME:
2313 		get_task_comm(comm, me);
2314 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2315 			return -EFAULT;
2316 		break;
2317 	case PR_GET_ENDIAN:
2318 		error = GET_ENDIAN(me, arg2);
2319 		break;
2320 	case PR_SET_ENDIAN:
2321 		error = SET_ENDIAN(me, arg2);
2322 		break;
2323 	case PR_GET_SECCOMP:
2324 		error = prctl_get_seccomp();
2325 		break;
2326 	case PR_SET_SECCOMP:
2327 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2328 		break;
2329 	case PR_GET_TSC:
2330 		error = GET_TSC_CTL(arg2);
2331 		break;
2332 	case PR_SET_TSC:
2333 		error = SET_TSC_CTL(arg2);
2334 		break;
2335 	case PR_TASK_PERF_EVENTS_DISABLE:
2336 		error = perf_event_task_disable();
2337 		break;
2338 	case PR_TASK_PERF_EVENTS_ENABLE:
2339 		error = perf_event_task_enable();
2340 		break;
2341 	case PR_GET_TIMERSLACK:
2342 		if (current->timer_slack_ns > ULONG_MAX)
2343 			error = ULONG_MAX;
2344 		else
2345 			error = current->timer_slack_ns;
2346 		break;
2347 	case PR_SET_TIMERSLACK:
2348 		if (arg2 <= 0)
2349 			current->timer_slack_ns =
2350 					current->default_timer_slack_ns;
2351 		else
2352 			current->timer_slack_ns = arg2;
2353 		break;
2354 	case PR_MCE_KILL:
2355 		if (arg4 | arg5)
2356 			return -EINVAL;
2357 		switch (arg2) {
2358 		case PR_MCE_KILL_CLEAR:
2359 			if (arg3 != 0)
2360 				return -EINVAL;
2361 			current->flags &= ~PF_MCE_PROCESS;
2362 			break;
2363 		case PR_MCE_KILL_SET:
2364 			current->flags |= PF_MCE_PROCESS;
2365 			if (arg3 == PR_MCE_KILL_EARLY)
2366 				current->flags |= PF_MCE_EARLY;
2367 			else if (arg3 == PR_MCE_KILL_LATE)
2368 				current->flags &= ~PF_MCE_EARLY;
2369 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2370 				current->flags &=
2371 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2372 			else
2373 				return -EINVAL;
2374 			break;
2375 		default:
2376 			return -EINVAL;
2377 		}
2378 		break;
2379 	case PR_MCE_KILL_GET:
2380 		if (arg2 | arg3 | arg4 | arg5)
2381 			return -EINVAL;
2382 		if (current->flags & PF_MCE_PROCESS)
2383 			error = (current->flags & PF_MCE_EARLY) ?
2384 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2385 		else
2386 			error = PR_MCE_KILL_DEFAULT;
2387 		break;
2388 	case PR_SET_MM:
2389 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2390 		break;
2391 	case PR_GET_TID_ADDRESS:
2392 		error = prctl_get_tid_address(me, (int __user **)arg2);
2393 		break;
2394 	case PR_SET_CHILD_SUBREAPER:
2395 		me->signal->is_child_subreaper = !!arg2;
2396 		if (!arg2)
2397 			break;
2398 
2399 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2400 		break;
2401 	case PR_GET_CHILD_SUBREAPER:
2402 		error = put_user(me->signal->is_child_subreaper,
2403 				 (int __user *)arg2);
2404 		break;
2405 	case PR_SET_NO_NEW_PRIVS:
2406 		if (arg2 != 1 || arg3 || arg4 || arg5)
2407 			return -EINVAL;
2408 
2409 		task_set_no_new_privs(current);
2410 		break;
2411 	case PR_GET_NO_NEW_PRIVS:
2412 		if (arg2 || arg3 || arg4 || arg5)
2413 			return -EINVAL;
2414 		return task_no_new_privs(current) ? 1 : 0;
2415 	case PR_GET_THP_DISABLE:
2416 		if (arg2 || arg3 || arg4 || arg5)
2417 			return -EINVAL;
2418 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2419 		break;
2420 	case PR_SET_THP_DISABLE:
2421 		if (arg3 || arg4 || arg5)
2422 			return -EINVAL;
2423 		if (down_write_killable(&me->mm->mmap_sem))
2424 			return -EINTR;
2425 		if (arg2)
2426 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2427 		else
2428 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2429 		up_write(&me->mm->mmap_sem);
2430 		break;
2431 	case PR_MPX_ENABLE_MANAGEMENT:
2432 		if (arg2 || arg3 || arg4 || arg5)
2433 			return -EINVAL;
2434 		error = MPX_ENABLE_MANAGEMENT();
2435 		break;
2436 	case PR_MPX_DISABLE_MANAGEMENT:
2437 		if (arg2 || arg3 || arg4 || arg5)
2438 			return -EINVAL;
2439 		error = MPX_DISABLE_MANAGEMENT();
2440 		break;
2441 	case PR_SET_FP_MODE:
2442 		error = SET_FP_MODE(me, arg2);
2443 		break;
2444 	case PR_GET_FP_MODE:
2445 		error = GET_FP_MODE(me);
2446 		break;
2447 	case PR_SVE_SET_VL:
2448 		error = SVE_SET_VL(arg2);
2449 		break;
2450 	case PR_SVE_GET_VL:
2451 		error = SVE_GET_VL();
2452 		break;
2453 	default:
2454 		error = -EINVAL;
2455 		break;
2456 	}
2457 	return error;
2458 }
2459 
2460 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2461 		struct getcpu_cache __user *, unused)
2462 {
2463 	int err = 0;
2464 	int cpu = raw_smp_processor_id();
2465 
2466 	if (cpup)
2467 		err |= put_user(cpu, cpup);
2468 	if (nodep)
2469 		err |= put_user(cpu_to_node(cpu), nodep);
2470 	return err ? -EFAULT : 0;
2471 }
2472 
2473 /**
2474  * do_sysinfo - fill in sysinfo struct
2475  * @info: pointer to buffer to fill
2476  */
2477 static int do_sysinfo(struct sysinfo *info)
2478 {
2479 	unsigned long mem_total, sav_total;
2480 	unsigned int mem_unit, bitcount;
2481 	struct timespec tp;
2482 
2483 	memset(info, 0, sizeof(struct sysinfo));
2484 
2485 	get_monotonic_boottime(&tp);
2486 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2487 
2488 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2489 
2490 	info->procs = nr_threads;
2491 
2492 	si_meminfo(info);
2493 	si_swapinfo(info);
2494 
2495 	/*
2496 	 * If the sum of all the available memory (i.e. ram + swap)
2497 	 * is less than can be stored in a 32 bit unsigned long then
2498 	 * we can be binary compatible with 2.2.x kernels.  If not,
2499 	 * well, in that case 2.2.x was broken anyways...
2500 	 *
2501 	 *  -Erik Andersen <andersee@debian.org>
2502 	 */
2503 
2504 	mem_total = info->totalram + info->totalswap;
2505 	if (mem_total < info->totalram || mem_total < info->totalswap)
2506 		goto out;
2507 	bitcount = 0;
2508 	mem_unit = info->mem_unit;
2509 	while (mem_unit > 1) {
2510 		bitcount++;
2511 		mem_unit >>= 1;
2512 		sav_total = mem_total;
2513 		mem_total <<= 1;
2514 		if (mem_total < sav_total)
2515 			goto out;
2516 	}
2517 
2518 	/*
2519 	 * If mem_total did not overflow, multiply all memory values by
2520 	 * info->mem_unit and set it to 1.  This leaves things compatible
2521 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2522 	 * kernels...
2523 	 */
2524 
2525 	info->mem_unit = 1;
2526 	info->totalram <<= bitcount;
2527 	info->freeram <<= bitcount;
2528 	info->sharedram <<= bitcount;
2529 	info->bufferram <<= bitcount;
2530 	info->totalswap <<= bitcount;
2531 	info->freeswap <<= bitcount;
2532 	info->totalhigh <<= bitcount;
2533 	info->freehigh <<= bitcount;
2534 
2535 out:
2536 	return 0;
2537 }
2538 
2539 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2540 {
2541 	struct sysinfo val;
2542 
2543 	do_sysinfo(&val);
2544 
2545 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2546 		return -EFAULT;
2547 
2548 	return 0;
2549 }
2550 
2551 #ifdef CONFIG_COMPAT
2552 struct compat_sysinfo {
2553 	s32 uptime;
2554 	u32 loads[3];
2555 	u32 totalram;
2556 	u32 freeram;
2557 	u32 sharedram;
2558 	u32 bufferram;
2559 	u32 totalswap;
2560 	u32 freeswap;
2561 	u16 procs;
2562 	u16 pad;
2563 	u32 totalhigh;
2564 	u32 freehigh;
2565 	u32 mem_unit;
2566 	char _f[20-2*sizeof(u32)-sizeof(int)];
2567 };
2568 
2569 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2570 {
2571 	struct sysinfo s;
2572 
2573 	do_sysinfo(&s);
2574 
2575 	/* Check to see if any memory value is too large for 32-bit and scale
2576 	 *  down if needed
2577 	 */
2578 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2579 		int bitcount = 0;
2580 
2581 		while (s.mem_unit < PAGE_SIZE) {
2582 			s.mem_unit <<= 1;
2583 			bitcount++;
2584 		}
2585 
2586 		s.totalram >>= bitcount;
2587 		s.freeram >>= bitcount;
2588 		s.sharedram >>= bitcount;
2589 		s.bufferram >>= bitcount;
2590 		s.totalswap >>= bitcount;
2591 		s.freeswap >>= bitcount;
2592 		s.totalhigh >>= bitcount;
2593 		s.freehigh >>= bitcount;
2594 	}
2595 
2596 	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2597 	    __put_user(s.uptime, &info->uptime) ||
2598 	    __put_user(s.loads[0], &info->loads[0]) ||
2599 	    __put_user(s.loads[1], &info->loads[1]) ||
2600 	    __put_user(s.loads[2], &info->loads[2]) ||
2601 	    __put_user(s.totalram, &info->totalram) ||
2602 	    __put_user(s.freeram, &info->freeram) ||
2603 	    __put_user(s.sharedram, &info->sharedram) ||
2604 	    __put_user(s.bufferram, &info->bufferram) ||
2605 	    __put_user(s.totalswap, &info->totalswap) ||
2606 	    __put_user(s.freeswap, &info->freeswap) ||
2607 	    __put_user(s.procs, &info->procs) ||
2608 	    __put_user(s.totalhigh, &info->totalhigh) ||
2609 	    __put_user(s.freehigh, &info->freehigh) ||
2610 	    __put_user(s.mem_unit, &info->mem_unit))
2611 		return -EFAULT;
2612 
2613 	return 0;
2614 }
2615 #endif /* CONFIG_COMPAT */
2616