xref: /openbmc/linux/kernel/sys.c (revision dba8b469)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/perf_event.h>
16 #include <linux/resource.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/gfp.h>
39 #include <linux/syscore_ops.h>
40 
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
45 
46 #include <linux/kmsg_dump.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/unistd.h>
51 
52 #ifndef SET_UNALIGN_CTL
53 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef GET_UNALIGN_CTL
56 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
57 #endif
58 #ifndef SET_FPEMU_CTL
59 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
60 #endif
61 #ifndef GET_FPEMU_CTL
62 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
63 #endif
64 #ifndef SET_FPEXC_CTL
65 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
66 #endif
67 #ifndef GET_FPEXC_CTL
68 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
69 #endif
70 #ifndef GET_ENDIAN
71 # define GET_ENDIAN(a,b)	(-EINVAL)
72 #endif
73 #ifndef SET_ENDIAN
74 # define SET_ENDIAN(a,b)	(-EINVAL)
75 #endif
76 #ifndef GET_TSC_CTL
77 # define GET_TSC_CTL(a)		(-EINVAL)
78 #endif
79 #ifndef SET_TSC_CTL
80 # define SET_TSC_CTL(a)		(-EINVAL)
81 #endif
82 
83 /*
84  * this is where the system-wide overflow UID and GID are defined, for
85  * architectures that now have 32-bit UID/GID but didn't in the past
86  */
87 
88 int overflowuid = DEFAULT_OVERFLOWUID;
89 int overflowgid = DEFAULT_OVERFLOWGID;
90 
91 #ifdef CONFIG_UID16
92 EXPORT_SYMBOL(overflowuid);
93 EXPORT_SYMBOL(overflowgid);
94 #endif
95 
96 /*
97  * the same as above, but for filesystems which can only store a 16-bit
98  * UID and GID. as such, this is needed on all architectures
99  */
100 
101 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
102 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
103 
104 EXPORT_SYMBOL(fs_overflowuid);
105 EXPORT_SYMBOL(fs_overflowgid);
106 
107 /*
108  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109  */
110 
111 int C_A_D = 1;
112 struct pid *cad_pid;
113 EXPORT_SYMBOL(cad_pid);
114 
115 /*
116  * If set, this is used for preparing the system to power off.
117  */
118 
119 void (*pm_power_off_prepare)(void);
120 
121 /*
122  * Returns true if current's euid is same as p's uid or euid,
123  * or has CAP_SYS_NICE to p's user_ns.
124  *
125  * Called with rcu_read_lock, creds are safe
126  */
127 static bool set_one_prio_perm(struct task_struct *p)
128 {
129 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
130 
131 	if (pcred->user->user_ns == cred->user->user_ns &&
132 	    (pcred->uid  == cred->euid ||
133 	     pcred->euid == cred->euid))
134 		return true;
135 	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
136 		return true;
137 	return false;
138 }
139 
140 /*
141  * set the priority of a task
142  * - the caller must hold the RCU read lock
143  */
144 static int set_one_prio(struct task_struct *p, int niceval, int error)
145 {
146 	int no_nice;
147 
148 	if (!set_one_prio_perm(p)) {
149 		error = -EPERM;
150 		goto out;
151 	}
152 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
153 		error = -EACCES;
154 		goto out;
155 	}
156 	no_nice = security_task_setnice(p, niceval);
157 	if (no_nice) {
158 		error = no_nice;
159 		goto out;
160 	}
161 	if (error == -ESRCH)
162 		error = 0;
163 	set_user_nice(p, niceval);
164 out:
165 	return error;
166 }
167 
168 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
169 {
170 	struct task_struct *g, *p;
171 	struct user_struct *user;
172 	const struct cred *cred = current_cred();
173 	int error = -EINVAL;
174 	struct pid *pgrp;
175 
176 	if (which > PRIO_USER || which < PRIO_PROCESS)
177 		goto out;
178 
179 	/* normalize: avoid signed division (rounding problems) */
180 	error = -ESRCH;
181 	if (niceval < -20)
182 		niceval = -20;
183 	if (niceval > 19)
184 		niceval = 19;
185 
186 	rcu_read_lock();
187 	read_lock(&tasklist_lock);
188 	switch (which) {
189 		case PRIO_PROCESS:
190 			if (who)
191 				p = find_task_by_vpid(who);
192 			else
193 				p = current;
194 			if (p)
195 				error = set_one_prio(p, niceval, error);
196 			break;
197 		case PRIO_PGRP:
198 			if (who)
199 				pgrp = find_vpid(who);
200 			else
201 				pgrp = task_pgrp(current);
202 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
203 				error = set_one_prio(p, niceval, error);
204 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
205 			break;
206 		case PRIO_USER:
207 			user = (struct user_struct *) cred->user;
208 			if (!who)
209 				who = cred->uid;
210 			else if ((who != cred->uid) &&
211 				 !(user = find_user(who)))
212 				goto out_unlock;	/* No processes for this user */
213 
214 			do_each_thread(g, p) {
215 				if (__task_cred(p)->uid == who)
216 					error = set_one_prio(p, niceval, error);
217 			} while_each_thread(g, p);
218 			if (who != cred->uid)
219 				free_uid(user);		/* For find_user() */
220 			break;
221 	}
222 out_unlock:
223 	read_unlock(&tasklist_lock);
224 	rcu_read_unlock();
225 out:
226 	return error;
227 }
228 
229 /*
230  * Ugh. To avoid negative return values, "getpriority()" will
231  * not return the normal nice-value, but a negated value that
232  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
233  * to stay compatible.
234  */
235 SYSCALL_DEFINE2(getpriority, int, which, int, who)
236 {
237 	struct task_struct *g, *p;
238 	struct user_struct *user;
239 	const struct cred *cred = current_cred();
240 	long niceval, retval = -ESRCH;
241 	struct pid *pgrp;
242 
243 	if (which > PRIO_USER || which < PRIO_PROCESS)
244 		return -EINVAL;
245 
246 	rcu_read_lock();
247 	read_lock(&tasklist_lock);
248 	switch (which) {
249 		case PRIO_PROCESS:
250 			if (who)
251 				p = find_task_by_vpid(who);
252 			else
253 				p = current;
254 			if (p) {
255 				niceval = 20 - task_nice(p);
256 				if (niceval > retval)
257 					retval = niceval;
258 			}
259 			break;
260 		case PRIO_PGRP:
261 			if (who)
262 				pgrp = find_vpid(who);
263 			else
264 				pgrp = task_pgrp(current);
265 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
266 				niceval = 20 - task_nice(p);
267 				if (niceval > retval)
268 					retval = niceval;
269 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
270 			break;
271 		case PRIO_USER:
272 			user = (struct user_struct *) cred->user;
273 			if (!who)
274 				who = cred->uid;
275 			else if ((who != cred->uid) &&
276 				 !(user = find_user(who)))
277 				goto out_unlock;	/* No processes for this user */
278 
279 			do_each_thread(g, p) {
280 				if (__task_cred(p)->uid == who) {
281 					niceval = 20 - task_nice(p);
282 					if (niceval > retval)
283 						retval = niceval;
284 				}
285 			} while_each_thread(g, p);
286 			if (who != cred->uid)
287 				free_uid(user);		/* for find_user() */
288 			break;
289 	}
290 out_unlock:
291 	read_unlock(&tasklist_lock);
292 	rcu_read_unlock();
293 
294 	return retval;
295 }
296 
297 /**
298  *	emergency_restart - reboot the system
299  *
300  *	Without shutting down any hardware or taking any locks
301  *	reboot the system.  This is called when we know we are in
302  *	trouble so this is our best effort to reboot.  This is
303  *	safe to call in interrupt context.
304  */
305 void emergency_restart(void)
306 {
307 	kmsg_dump(KMSG_DUMP_EMERG);
308 	machine_emergency_restart();
309 }
310 EXPORT_SYMBOL_GPL(emergency_restart);
311 
312 void kernel_restart_prepare(char *cmd)
313 {
314 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
315 	system_state = SYSTEM_RESTART;
316 	usermodehelper_disable();
317 	device_shutdown();
318 	syscore_shutdown();
319 }
320 
321 /**
322  *	register_reboot_notifier - Register function to be called at reboot time
323  *	@nb: Info about notifier function to be called
324  *
325  *	Registers a function with the list of functions
326  *	to be called at reboot time.
327  *
328  *	Currently always returns zero, as blocking_notifier_chain_register()
329  *	always returns zero.
330  */
331 int register_reboot_notifier(struct notifier_block *nb)
332 {
333 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
334 }
335 EXPORT_SYMBOL(register_reboot_notifier);
336 
337 /**
338  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
339  *	@nb: Hook to be unregistered
340  *
341  *	Unregisters a previously registered reboot
342  *	notifier function.
343  *
344  *	Returns zero on success, or %-ENOENT on failure.
345  */
346 int unregister_reboot_notifier(struct notifier_block *nb)
347 {
348 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
349 }
350 EXPORT_SYMBOL(unregister_reboot_notifier);
351 
352 /**
353  *	kernel_restart - reboot the system
354  *	@cmd: pointer to buffer containing command to execute for restart
355  *		or %NULL
356  *
357  *	Shutdown everything and perform a clean reboot.
358  *	This is not safe to call in interrupt context.
359  */
360 void kernel_restart(char *cmd)
361 {
362 	kernel_restart_prepare(cmd);
363 	if (!cmd)
364 		printk(KERN_EMERG "Restarting system.\n");
365 	else
366 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
367 	kmsg_dump(KMSG_DUMP_RESTART);
368 	machine_restart(cmd);
369 }
370 EXPORT_SYMBOL_GPL(kernel_restart);
371 
372 static void kernel_shutdown_prepare(enum system_states state)
373 {
374 	blocking_notifier_call_chain(&reboot_notifier_list,
375 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
376 	system_state = state;
377 	usermodehelper_disable();
378 	device_shutdown();
379 }
380 /**
381  *	kernel_halt - halt the system
382  *
383  *	Shutdown everything and perform a clean system halt.
384  */
385 void kernel_halt(void)
386 {
387 	kernel_shutdown_prepare(SYSTEM_HALT);
388 	syscore_shutdown();
389 	printk(KERN_EMERG "System halted.\n");
390 	kmsg_dump(KMSG_DUMP_HALT);
391 	machine_halt();
392 }
393 
394 EXPORT_SYMBOL_GPL(kernel_halt);
395 
396 /**
397  *	kernel_power_off - power_off the system
398  *
399  *	Shutdown everything and perform a clean system power_off.
400  */
401 void kernel_power_off(void)
402 {
403 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
404 	if (pm_power_off_prepare)
405 		pm_power_off_prepare();
406 	disable_nonboot_cpus();
407 	syscore_shutdown();
408 	printk(KERN_EMERG "Power down.\n");
409 	kmsg_dump(KMSG_DUMP_POWEROFF);
410 	machine_power_off();
411 }
412 EXPORT_SYMBOL_GPL(kernel_power_off);
413 
414 static DEFINE_MUTEX(reboot_mutex);
415 
416 /*
417  * Reboot system call: for obvious reasons only root may call it,
418  * and even root needs to set up some magic numbers in the registers
419  * so that some mistake won't make this reboot the whole machine.
420  * You can also set the meaning of the ctrl-alt-del-key here.
421  *
422  * reboot doesn't sync: do that yourself before calling this.
423  */
424 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
425 		void __user *, arg)
426 {
427 	char buffer[256];
428 	int ret = 0;
429 
430 	/* We only trust the superuser with rebooting the system. */
431 	if (!capable(CAP_SYS_BOOT))
432 		return -EPERM;
433 
434 	/* For safety, we require "magic" arguments. */
435 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
436 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
437 	                magic2 != LINUX_REBOOT_MAGIC2A &&
438 			magic2 != LINUX_REBOOT_MAGIC2B &&
439 	                magic2 != LINUX_REBOOT_MAGIC2C))
440 		return -EINVAL;
441 
442 	/* Instead of trying to make the power_off code look like
443 	 * halt when pm_power_off is not set do it the easy way.
444 	 */
445 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
446 		cmd = LINUX_REBOOT_CMD_HALT;
447 
448 	mutex_lock(&reboot_mutex);
449 	switch (cmd) {
450 	case LINUX_REBOOT_CMD_RESTART:
451 		kernel_restart(NULL);
452 		break;
453 
454 	case LINUX_REBOOT_CMD_CAD_ON:
455 		C_A_D = 1;
456 		break;
457 
458 	case LINUX_REBOOT_CMD_CAD_OFF:
459 		C_A_D = 0;
460 		break;
461 
462 	case LINUX_REBOOT_CMD_HALT:
463 		kernel_halt();
464 		do_exit(0);
465 		panic("cannot halt");
466 
467 	case LINUX_REBOOT_CMD_POWER_OFF:
468 		kernel_power_off();
469 		do_exit(0);
470 		break;
471 
472 	case LINUX_REBOOT_CMD_RESTART2:
473 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
474 			ret = -EFAULT;
475 			break;
476 		}
477 		buffer[sizeof(buffer) - 1] = '\0';
478 
479 		kernel_restart(buffer);
480 		break;
481 
482 #ifdef CONFIG_KEXEC
483 	case LINUX_REBOOT_CMD_KEXEC:
484 		ret = kernel_kexec();
485 		break;
486 #endif
487 
488 #ifdef CONFIG_HIBERNATION
489 	case LINUX_REBOOT_CMD_SW_SUSPEND:
490 		ret = hibernate();
491 		break;
492 #endif
493 
494 	default:
495 		ret = -EINVAL;
496 		break;
497 	}
498 	mutex_unlock(&reboot_mutex);
499 	return ret;
500 }
501 
502 static void deferred_cad(struct work_struct *dummy)
503 {
504 	kernel_restart(NULL);
505 }
506 
507 /*
508  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
509  * As it's called within an interrupt, it may NOT sync: the only choice
510  * is whether to reboot at once, or just ignore the ctrl-alt-del.
511  */
512 void ctrl_alt_del(void)
513 {
514 	static DECLARE_WORK(cad_work, deferred_cad);
515 
516 	if (C_A_D)
517 		schedule_work(&cad_work);
518 	else
519 		kill_cad_pid(SIGINT, 1);
520 }
521 
522 /*
523  * Unprivileged users may change the real gid to the effective gid
524  * or vice versa.  (BSD-style)
525  *
526  * If you set the real gid at all, or set the effective gid to a value not
527  * equal to the real gid, then the saved gid is set to the new effective gid.
528  *
529  * This makes it possible for a setgid program to completely drop its
530  * privileges, which is often a useful assertion to make when you are doing
531  * a security audit over a program.
532  *
533  * The general idea is that a program which uses just setregid() will be
534  * 100% compatible with BSD.  A program which uses just setgid() will be
535  * 100% compatible with POSIX with saved IDs.
536  *
537  * SMP: There are not races, the GIDs are checked only by filesystem
538  *      operations (as far as semantic preservation is concerned).
539  */
540 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
541 {
542 	const struct cred *old;
543 	struct cred *new;
544 	int retval;
545 
546 	new = prepare_creds();
547 	if (!new)
548 		return -ENOMEM;
549 	old = current_cred();
550 
551 	retval = -EPERM;
552 	if (rgid != (gid_t) -1) {
553 		if (old->gid == rgid ||
554 		    old->egid == rgid ||
555 		    nsown_capable(CAP_SETGID))
556 			new->gid = rgid;
557 		else
558 			goto error;
559 	}
560 	if (egid != (gid_t) -1) {
561 		if (old->gid == egid ||
562 		    old->egid == egid ||
563 		    old->sgid == egid ||
564 		    nsown_capable(CAP_SETGID))
565 			new->egid = egid;
566 		else
567 			goto error;
568 	}
569 
570 	if (rgid != (gid_t) -1 ||
571 	    (egid != (gid_t) -1 && egid != old->gid))
572 		new->sgid = new->egid;
573 	new->fsgid = new->egid;
574 
575 	return commit_creds(new);
576 
577 error:
578 	abort_creds(new);
579 	return retval;
580 }
581 
582 /*
583  * setgid() is implemented like SysV w/ SAVED_IDS
584  *
585  * SMP: Same implicit races as above.
586  */
587 SYSCALL_DEFINE1(setgid, gid_t, gid)
588 {
589 	const struct cred *old;
590 	struct cred *new;
591 	int retval;
592 
593 	new = prepare_creds();
594 	if (!new)
595 		return -ENOMEM;
596 	old = current_cred();
597 
598 	retval = -EPERM;
599 	if (nsown_capable(CAP_SETGID))
600 		new->gid = new->egid = new->sgid = new->fsgid = gid;
601 	else if (gid == old->gid || gid == old->sgid)
602 		new->egid = new->fsgid = gid;
603 	else
604 		goto error;
605 
606 	return commit_creds(new);
607 
608 error:
609 	abort_creds(new);
610 	return retval;
611 }
612 
613 /*
614  * change the user struct in a credentials set to match the new UID
615  */
616 static int set_user(struct cred *new)
617 {
618 	struct user_struct *new_user;
619 
620 	new_user = alloc_uid(current_user_ns(), new->uid);
621 	if (!new_user)
622 		return -EAGAIN;
623 
624 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
625 			new_user != INIT_USER) {
626 		free_uid(new_user);
627 		return -EAGAIN;
628 	}
629 
630 	free_uid(new->user);
631 	new->user = new_user;
632 	return 0;
633 }
634 
635 /*
636  * Unprivileged users may change the real uid to the effective uid
637  * or vice versa.  (BSD-style)
638  *
639  * If you set the real uid at all, or set the effective uid to a value not
640  * equal to the real uid, then the saved uid is set to the new effective uid.
641  *
642  * This makes it possible for a setuid program to completely drop its
643  * privileges, which is often a useful assertion to make when you are doing
644  * a security audit over a program.
645  *
646  * The general idea is that a program which uses just setreuid() will be
647  * 100% compatible with BSD.  A program which uses just setuid() will be
648  * 100% compatible with POSIX with saved IDs.
649  */
650 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
651 {
652 	const struct cred *old;
653 	struct cred *new;
654 	int retval;
655 
656 	new = prepare_creds();
657 	if (!new)
658 		return -ENOMEM;
659 	old = current_cred();
660 
661 	retval = -EPERM;
662 	if (ruid != (uid_t) -1) {
663 		new->uid = ruid;
664 		if (old->uid != ruid &&
665 		    old->euid != ruid &&
666 		    !nsown_capable(CAP_SETUID))
667 			goto error;
668 	}
669 
670 	if (euid != (uid_t) -1) {
671 		new->euid = euid;
672 		if (old->uid != euid &&
673 		    old->euid != euid &&
674 		    old->suid != euid &&
675 		    !nsown_capable(CAP_SETUID))
676 			goto error;
677 	}
678 
679 	if (new->uid != old->uid) {
680 		retval = set_user(new);
681 		if (retval < 0)
682 			goto error;
683 	}
684 	if (ruid != (uid_t) -1 ||
685 	    (euid != (uid_t) -1 && euid != old->uid))
686 		new->suid = new->euid;
687 	new->fsuid = new->euid;
688 
689 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
690 	if (retval < 0)
691 		goto error;
692 
693 	return commit_creds(new);
694 
695 error:
696 	abort_creds(new);
697 	return retval;
698 }
699 
700 /*
701  * setuid() is implemented like SysV with SAVED_IDS
702  *
703  * Note that SAVED_ID's is deficient in that a setuid root program
704  * like sendmail, for example, cannot set its uid to be a normal
705  * user and then switch back, because if you're root, setuid() sets
706  * the saved uid too.  If you don't like this, blame the bright people
707  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
708  * will allow a root program to temporarily drop privileges and be able to
709  * regain them by swapping the real and effective uid.
710  */
711 SYSCALL_DEFINE1(setuid, uid_t, uid)
712 {
713 	const struct cred *old;
714 	struct cred *new;
715 	int retval;
716 
717 	new = prepare_creds();
718 	if (!new)
719 		return -ENOMEM;
720 	old = current_cred();
721 
722 	retval = -EPERM;
723 	if (nsown_capable(CAP_SETUID)) {
724 		new->suid = new->uid = uid;
725 		if (uid != old->uid) {
726 			retval = set_user(new);
727 			if (retval < 0)
728 				goto error;
729 		}
730 	} else if (uid != old->uid && uid != new->suid) {
731 		goto error;
732 	}
733 
734 	new->fsuid = new->euid = uid;
735 
736 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
737 	if (retval < 0)
738 		goto error;
739 
740 	return commit_creds(new);
741 
742 error:
743 	abort_creds(new);
744 	return retval;
745 }
746 
747 
748 /*
749  * This function implements a generic ability to update ruid, euid,
750  * and suid.  This allows you to implement the 4.4 compatible seteuid().
751  */
752 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
753 {
754 	const struct cred *old;
755 	struct cred *new;
756 	int retval;
757 
758 	new = prepare_creds();
759 	if (!new)
760 		return -ENOMEM;
761 
762 	old = current_cred();
763 
764 	retval = -EPERM;
765 	if (!nsown_capable(CAP_SETUID)) {
766 		if (ruid != (uid_t) -1 && ruid != old->uid &&
767 		    ruid != old->euid  && ruid != old->suid)
768 			goto error;
769 		if (euid != (uid_t) -1 && euid != old->uid &&
770 		    euid != old->euid  && euid != old->suid)
771 			goto error;
772 		if (suid != (uid_t) -1 && suid != old->uid &&
773 		    suid != old->euid  && suid != old->suid)
774 			goto error;
775 	}
776 
777 	if (ruid != (uid_t) -1) {
778 		new->uid = ruid;
779 		if (ruid != old->uid) {
780 			retval = set_user(new);
781 			if (retval < 0)
782 				goto error;
783 		}
784 	}
785 	if (euid != (uid_t) -1)
786 		new->euid = euid;
787 	if (suid != (uid_t) -1)
788 		new->suid = suid;
789 	new->fsuid = new->euid;
790 
791 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
792 	if (retval < 0)
793 		goto error;
794 
795 	return commit_creds(new);
796 
797 error:
798 	abort_creds(new);
799 	return retval;
800 }
801 
802 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
803 {
804 	const struct cred *cred = current_cred();
805 	int retval;
806 
807 	if (!(retval   = put_user(cred->uid,  ruid)) &&
808 	    !(retval   = put_user(cred->euid, euid)))
809 		retval = put_user(cred->suid, suid);
810 
811 	return retval;
812 }
813 
814 /*
815  * Same as above, but for rgid, egid, sgid.
816  */
817 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
818 {
819 	const struct cred *old;
820 	struct cred *new;
821 	int retval;
822 
823 	new = prepare_creds();
824 	if (!new)
825 		return -ENOMEM;
826 	old = current_cred();
827 
828 	retval = -EPERM;
829 	if (!nsown_capable(CAP_SETGID)) {
830 		if (rgid != (gid_t) -1 && rgid != old->gid &&
831 		    rgid != old->egid  && rgid != old->sgid)
832 			goto error;
833 		if (egid != (gid_t) -1 && egid != old->gid &&
834 		    egid != old->egid  && egid != old->sgid)
835 			goto error;
836 		if (sgid != (gid_t) -1 && sgid != old->gid &&
837 		    sgid != old->egid  && sgid != old->sgid)
838 			goto error;
839 	}
840 
841 	if (rgid != (gid_t) -1)
842 		new->gid = rgid;
843 	if (egid != (gid_t) -1)
844 		new->egid = egid;
845 	if (sgid != (gid_t) -1)
846 		new->sgid = sgid;
847 	new->fsgid = new->egid;
848 
849 	return commit_creds(new);
850 
851 error:
852 	abort_creds(new);
853 	return retval;
854 }
855 
856 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
857 {
858 	const struct cred *cred = current_cred();
859 	int retval;
860 
861 	if (!(retval   = put_user(cred->gid,  rgid)) &&
862 	    !(retval   = put_user(cred->egid, egid)))
863 		retval = put_user(cred->sgid, sgid);
864 
865 	return retval;
866 }
867 
868 
869 /*
870  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
871  * is used for "access()" and for the NFS daemon (letting nfsd stay at
872  * whatever uid it wants to). It normally shadows "euid", except when
873  * explicitly set by setfsuid() or for access..
874  */
875 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
876 {
877 	const struct cred *old;
878 	struct cred *new;
879 	uid_t old_fsuid;
880 
881 	new = prepare_creds();
882 	if (!new)
883 		return current_fsuid();
884 	old = current_cred();
885 	old_fsuid = old->fsuid;
886 
887 	if (uid == old->uid  || uid == old->euid  ||
888 	    uid == old->suid || uid == old->fsuid ||
889 	    nsown_capable(CAP_SETUID)) {
890 		if (uid != old_fsuid) {
891 			new->fsuid = uid;
892 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
893 				goto change_okay;
894 		}
895 	}
896 
897 	abort_creds(new);
898 	return old_fsuid;
899 
900 change_okay:
901 	commit_creds(new);
902 	return old_fsuid;
903 }
904 
905 /*
906  * Samma på svenska..
907  */
908 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
909 {
910 	const struct cred *old;
911 	struct cred *new;
912 	gid_t old_fsgid;
913 
914 	new = prepare_creds();
915 	if (!new)
916 		return current_fsgid();
917 	old = current_cred();
918 	old_fsgid = old->fsgid;
919 
920 	if (gid == old->gid  || gid == old->egid  ||
921 	    gid == old->sgid || gid == old->fsgid ||
922 	    nsown_capable(CAP_SETGID)) {
923 		if (gid != old_fsgid) {
924 			new->fsgid = gid;
925 			goto change_okay;
926 		}
927 	}
928 
929 	abort_creds(new);
930 	return old_fsgid;
931 
932 change_okay:
933 	commit_creds(new);
934 	return old_fsgid;
935 }
936 
937 void do_sys_times(struct tms *tms)
938 {
939 	cputime_t tgutime, tgstime, cutime, cstime;
940 
941 	spin_lock_irq(&current->sighand->siglock);
942 	thread_group_times(current, &tgutime, &tgstime);
943 	cutime = current->signal->cutime;
944 	cstime = current->signal->cstime;
945 	spin_unlock_irq(&current->sighand->siglock);
946 	tms->tms_utime = cputime_to_clock_t(tgutime);
947 	tms->tms_stime = cputime_to_clock_t(tgstime);
948 	tms->tms_cutime = cputime_to_clock_t(cutime);
949 	tms->tms_cstime = cputime_to_clock_t(cstime);
950 }
951 
952 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
953 {
954 	if (tbuf) {
955 		struct tms tmp;
956 
957 		do_sys_times(&tmp);
958 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
959 			return -EFAULT;
960 	}
961 	force_successful_syscall_return();
962 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
963 }
964 
965 /*
966  * This needs some heavy checking ...
967  * I just haven't the stomach for it. I also don't fully
968  * understand sessions/pgrp etc. Let somebody who does explain it.
969  *
970  * OK, I think I have the protection semantics right.... this is really
971  * only important on a multi-user system anyway, to make sure one user
972  * can't send a signal to a process owned by another.  -TYT, 12/12/91
973  *
974  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
975  * LBT 04.03.94
976  */
977 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
978 {
979 	struct task_struct *p;
980 	struct task_struct *group_leader = current->group_leader;
981 	struct pid *pgrp;
982 	int err;
983 
984 	if (!pid)
985 		pid = task_pid_vnr(group_leader);
986 	if (!pgid)
987 		pgid = pid;
988 	if (pgid < 0)
989 		return -EINVAL;
990 	rcu_read_lock();
991 
992 	/* From this point forward we keep holding onto the tasklist lock
993 	 * so that our parent does not change from under us. -DaveM
994 	 */
995 	write_lock_irq(&tasklist_lock);
996 
997 	err = -ESRCH;
998 	p = find_task_by_vpid(pid);
999 	if (!p)
1000 		goto out;
1001 
1002 	err = -EINVAL;
1003 	if (!thread_group_leader(p))
1004 		goto out;
1005 
1006 	if (same_thread_group(p->real_parent, group_leader)) {
1007 		err = -EPERM;
1008 		if (task_session(p) != task_session(group_leader))
1009 			goto out;
1010 		err = -EACCES;
1011 		if (p->did_exec)
1012 			goto out;
1013 	} else {
1014 		err = -ESRCH;
1015 		if (p != group_leader)
1016 			goto out;
1017 	}
1018 
1019 	err = -EPERM;
1020 	if (p->signal->leader)
1021 		goto out;
1022 
1023 	pgrp = task_pid(p);
1024 	if (pgid != pid) {
1025 		struct task_struct *g;
1026 
1027 		pgrp = find_vpid(pgid);
1028 		g = pid_task(pgrp, PIDTYPE_PGID);
1029 		if (!g || task_session(g) != task_session(group_leader))
1030 			goto out;
1031 	}
1032 
1033 	err = security_task_setpgid(p, pgid);
1034 	if (err)
1035 		goto out;
1036 
1037 	if (task_pgrp(p) != pgrp)
1038 		change_pid(p, PIDTYPE_PGID, pgrp);
1039 
1040 	err = 0;
1041 out:
1042 	/* All paths lead to here, thus we are safe. -DaveM */
1043 	write_unlock_irq(&tasklist_lock);
1044 	rcu_read_unlock();
1045 	return err;
1046 }
1047 
1048 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1049 {
1050 	struct task_struct *p;
1051 	struct pid *grp;
1052 	int retval;
1053 
1054 	rcu_read_lock();
1055 	if (!pid)
1056 		grp = task_pgrp(current);
1057 	else {
1058 		retval = -ESRCH;
1059 		p = find_task_by_vpid(pid);
1060 		if (!p)
1061 			goto out;
1062 		grp = task_pgrp(p);
1063 		if (!grp)
1064 			goto out;
1065 
1066 		retval = security_task_getpgid(p);
1067 		if (retval)
1068 			goto out;
1069 	}
1070 	retval = pid_vnr(grp);
1071 out:
1072 	rcu_read_unlock();
1073 	return retval;
1074 }
1075 
1076 #ifdef __ARCH_WANT_SYS_GETPGRP
1077 
1078 SYSCALL_DEFINE0(getpgrp)
1079 {
1080 	return sys_getpgid(0);
1081 }
1082 
1083 #endif
1084 
1085 SYSCALL_DEFINE1(getsid, pid_t, pid)
1086 {
1087 	struct task_struct *p;
1088 	struct pid *sid;
1089 	int retval;
1090 
1091 	rcu_read_lock();
1092 	if (!pid)
1093 		sid = task_session(current);
1094 	else {
1095 		retval = -ESRCH;
1096 		p = find_task_by_vpid(pid);
1097 		if (!p)
1098 			goto out;
1099 		sid = task_session(p);
1100 		if (!sid)
1101 			goto out;
1102 
1103 		retval = security_task_getsid(p);
1104 		if (retval)
1105 			goto out;
1106 	}
1107 	retval = pid_vnr(sid);
1108 out:
1109 	rcu_read_unlock();
1110 	return retval;
1111 }
1112 
1113 SYSCALL_DEFINE0(setsid)
1114 {
1115 	struct task_struct *group_leader = current->group_leader;
1116 	struct pid *sid = task_pid(group_leader);
1117 	pid_t session = pid_vnr(sid);
1118 	int err = -EPERM;
1119 
1120 	write_lock_irq(&tasklist_lock);
1121 	/* Fail if I am already a session leader */
1122 	if (group_leader->signal->leader)
1123 		goto out;
1124 
1125 	/* Fail if a process group id already exists that equals the
1126 	 * proposed session id.
1127 	 */
1128 	if (pid_task(sid, PIDTYPE_PGID))
1129 		goto out;
1130 
1131 	group_leader->signal->leader = 1;
1132 	__set_special_pids(sid);
1133 
1134 	proc_clear_tty(group_leader);
1135 
1136 	err = session;
1137 out:
1138 	write_unlock_irq(&tasklist_lock);
1139 	if (err > 0) {
1140 		proc_sid_connector(group_leader);
1141 		sched_autogroup_create_attach(group_leader);
1142 	}
1143 	return err;
1144 }
1145 
1146 DECLARE_RWSEM(uts_sem);
1147 
1148 #ifdef COMPAT_UTS_MACHINE
1149 #define override_architecture(name) \
1150 	(personality(current->personality) == PER_LINUX32 && \
1151 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1152 		      sizeof(COMPAT_UTS_MACHINE)))
1153 #else
1154 #define override_architecture(name)	0
1155 #endif
1156 
1157 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1158 {
1159 	int errno = 0;
1160 
1161 	down_read(&uts_sem);
1162 	if (copy_to_user(name, utsname(), sizeof *name))
1163 		errno = -EFAULT;
1164 	up_read(&uts_sem);
1165 
1166 	if (!errno && override_architecture(name))
1167 		errno = -EFAULT;
1168 	return errno;
1169 }
1170 
1171 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1172 /*
1173  * Old cruft
1174  */
1175 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1176 {
1177 	int error = 0;
1178 
1179 	if (!name)
1180 		return -EFAULT;
1181 
1182 	down_read(&uts_sem);
1183 	if (copy_to_user(name, utsname(), sizeof(*name)))
1184 		error = -EFAULT;
1185 	up_read(&uts_sem);
1186 
1187 	if (!error && override_architecture(name))
1188 		error = -EFAULT;
1189 	return error;
1190 }
1191 
1192 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1193 {
1194 	int error;
1195 
1196 	if (!name)
1197 		return -EFAULT;
1198 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1199 		return -EFAULT;
1200 
1201 	down_read(&uts_sem);
1202 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1203 			       __OLD_UTS_LEN);
1204 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1205 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1206 				__OLD_UTS_LEN);
1207 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1208 	error |= __copy_to_user(&name->release, &utsname()->release,
1209 				__OLD_UTS_LEN);
1210 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1211 	error |= __copy_to_user(&name->version, &utsname()->version,
1212 				__OLD_UTS_LEN);
1213 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1214 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1215 				__OLD_UTS_LEN);
1216 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1217 	up_read(&uts_sem);
1218 
1219 	if (!error && override_architecture(name))
1220 		error = -EFAULT;
1221 	return error ? -EFAULT : 0;
1222 }
1223 #endif
1224 
1225 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1226 {
1227 	int errno;
1228 	char tmp[__NEW_UTS_LEN];
1229 
1230 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1231 		return -EPERM;
1232 
1233 	if (len < 0 || len > __NEW_UTS_LEN)
1234 		return -EINVAL;
1235 	down_write(&uts_sem);
1236 	errno = -EFAULT;
1237 	if (!copy_from_user(tmp, name, len)) {
1238 		struct new_utsname *u = utsname();
1239 
1240 		memcpy(u->nodename, tmp, len);
1241 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1242 		errno = 0;
1243 	}
1244 	up_write(&uts_sem);
1245 	return errno;
1246 }
1247 
1248 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1249 
1250 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1251 {
1252 	int i, errno;
1253 	struct new_utsname *u;
1254 
1255 	if (len < 0)
1256 		return -EINVAL;
1257 	down_read(&uts_sem);
1258 	u = utsname();
1259 	i = 1 + strlen(u->nodename);
1260 	if (i > len)
1261 		i = len;
1262 	errno = 0;
1263 	if (copy_to_user(name, u->nodename, i))
1264 		errno = -EFAULT;
1265 	up_read(&uts_sem);
1266 	return errno;
1267 }
1268 
1269 #endif
1270 
1271 /*
1272  * Only setdomainname; getdomainname can be implemented by calling
1273  * uname()
1274  */
1275 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1276 {
1277 	int errno;
1278 	char tmp[__NEW_UTS_LEN];
1279 
1280 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1281 		return -EPERM;
1282 	if (len < 0 || len > __NEW_UTS_LEN)
1283 		return -EINVAL;
1284 
1285 	down_write(&uts_sem);
1286 	errno = -EFAULT;
1287 	if (!copy_from_user(tmp, name, len)) {
1288 		struct new_utsname *u = utsname();
1289 
1290 		memcpy(u->domainname, tmp, len);
1291 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1292 		errno = 0;
1293 	}
1294 	up_write(&uts_sem);
1295 	return errno;
1296 }
1297 
1298 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1299 {
1300 	struct rlimit value;
1301 	int ret;
1302 
1303 	ret = do_prlimit(current, resource, NULL, &value);
1304 	if (!ret)
1305 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1306 
1307 	return ret;
1308 }
1309 
1310 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1311 
1312 /*
1313  *	Back compatibility for getrlimit. Needed for some apps.
1314  */
1315 
1316 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1317 		struct rlimit __user *, rlim)
1318 {
1319 	struct rlimit x;
1320 	if (resource >= RLIM_NLIMITS)
1321 		return -EINVAL;
1322 
1323 	task_lock(current->group_leader);
1324 	x = current->signal->rlim[resource];
1325 	task_unlock(current->group_leader);
1326 	if (x.rlim_cur > 0x7FFFFFFF)
1327 		x.rlim_cur = 0x7FFFFFFF;
1328 	if (x.rlim_max > 0x7FFFFFFF)
1329 		x.rlim_max = 0x7FFFFFFF;
1330 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1331 }
1332 
1333 #endif
1334 
1335 static inline bool rlim64_is_infinity(__u64 rlim64)
1336 {
1337 #if BITS_PER_LONG < 64
1338 	return rlim64 >= ULONG_MAX;
1339 #else
1340 	return rlim64 == RLIM64_INFINITY;
1341 #endif
1342 }
1343 
1344 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1345 {
1346 	if (rlim->rlim_cur == RLIM_INFINITY)
1347 		rlim64->rlim_cur = RLIM64_INFINITY;
1348 	else
1349 		rlim64->rlim_cur = rlim->rlim_cur;
1350 	if (rlim->rlim_max == RLIM_INFINITY)
1351 		rlim64->rlim_max = RLIM64_INFINITY;
1352 	else
1353 		rlim64->rlim_max = rlim->rlim_max;
1354 }
1355 
1356 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1357 {
1358 	if (rlim64_is_infinity(rlim64->rlim_cur))
1359 		rlim->rlim_cur = RLIM_INFINITY;
1360 	else
1361 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1362 	if (rlim64_is_infinity(rlim64->rlim_max))
1363 		rlim->rlim_max = RLIM_INFINITY;
1364 	else
1365 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1366 }
1367 
1368 /* make sure you are allowed to change @tsk limits before calling this */
1369 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1370 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1371 {
1372 	struct rlimit *rlim;
1373 	int retval = 0;
1374 
1375 	if (resource >= RLIM_NLIMITS)
1376 		return -EINVAL;
1377 	if (new_rlim) {
1378 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1379 			return -EINVAL;
1380 		if (resource == RLIMIT_NOFILE &&
1381 				new_rlim->rlim_max > sysctl_nr_open)
1382 			return -EPERM;
1383 	}
1384 
1385 	/* protect tsk->signal and tsk->sighand from disappearing */
1386 	read_lock(&tasklist_lock);
1387 	if (!tsk->sighand) {
1388 		retval = -ESRCH;
1389 		goto out;
1390 	}
1391 
1392 	rlim = tsk->signal->rlim + resource;
1393 	task_lock(tsk->group_leader);
1394 	if (new_rlim) {
1395 		/* Keep the capable check against init_user_ns until
1396 		   cgroups can contain all limits */
1397 		if (new_rlim->rlim_max > rlim->rlim_max &&
1398 				!capable(CAP_SYS_RESOURCE))
1399 			retval = -EPERM;
1400 		if (!retval)
1401 			retval = security_task_setrlimit(tsk->group_leader,
1402 					resource, new_rlim);
1403 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1404 			/*
1405 			 * The caller is asking for an immediate RLIMIT_CPU
1406 			 * expiry.  But we use the zero value to mean "it was
1407 			 * never set".  So let's cheat and make it one second
1408 			 * instead
1409 			 */
1410 			new_rlim->rlim_cur = 1;
1411 		}
1412 	}
1413 	if (!retval) {
1414 		if (old_rlim)
1415 			*old_rlim = *rlim;
1416 		if (new_rlim)
1417 			*rlim = *new_rlim;
1418 	}
1419 	task_unlock(tsk->group_leader);
1420 
1421 	/*
1422 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1423 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1424 	 * very long-standing error, and fixing it now risks breakage of
1425 	 * applications, so we live with it
1426 	 */
1427 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1428 			 new_rlim->rlim_cur != RLIM_INFINITY)
1429 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1430 out:
1431 	read_unlock(&tasklist_lock);
1432 	return retval;
1433 }
1434 
1435 /* rcu lock must be held */
1436 static int check_prlimit_permission(struct task_struct *task)
1437 {
1438 	const struct cred *cred = current_cred(), *tcred;
1439 
1440 	if (current == task)
1441 		return 0;
1442 
1443 	tcred = __task_cred(task);
1444 	if (cred->user->user_ns == tcred->user->user_ns &&
1445 	    (cred->uid == tcred->euid &&
1446 	     cred->uid == tcred->suid &&
1447 	     cred->uid == tcred->uid  &&
1448 	     cred->gid == tcred->egid &&
1449 	     cred->gid == tcred->sgid &&
1450 	     cred->gid == tcred->gid))
1451 		return 0;
1452 	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1453 		return 0;
1454 
1455 	return -EPERM;
1456 }
1457 
1458 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1459 		const struct rlimit64 __user *, new_rlim,
1460 		struct rlimit64 __user *, old_rlim)
1461 {
1462 	struct rlimit64 old64, new64;
1463 	struct rlimit old, new;
1464 	struct task_struct *tsk;
1465 	int ret;
1466 
1467 	if (new_rlim) {
1468 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1469 			return -EFAULT;
1470 		rlim64_to_rlim(&new64, &new);
1471 	}
1472 
1473 	rcu_read_lock();
1474 	tsk = pid ? find_task_by_vpid(pid) : current;
1475 	if (!tsk) {
1476 		rcu_read_unlock();
1477 		return -ESRCH;
1478 	}
1479 	ret = check_prlimit_permission(tsk);
1480 	if (ret) {
1481 		rcu_read_unlock();
1482 		return ret;
1483 	}
1484 	get_task_struct(tsk);
1485 	rcu_read_unlock();
1486 
1487 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1488 			old_rlim ? &old : NULL);
1489 
1490 	if (!ret && old_rlim) {
1491 		rlim_to_rlim64(&old, &old64);
1492 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1493 			ret = -EFAULT;
1494 	}
1495 
1496 	put_task_struct(tsk);
1497 	return ret;
1498 }
1499 
1500 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1501 {
1502 	struct rlimit new_rlim;
1503 
1504 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1505 		return -EFAULT;
1506 	return do_prlimit(current, resource, &new_rlim, NULL);
1507 }
1508 
1509 /*
1510  * It would make sense to put struct rusage in the task_struct,
1511  * except that would make the task_struct be *really big*.  After
1512  * task_struct gets moved into malloc'ed memory, it would
1513  * make sense to do this.  It will make moving the rest of the information
1514  * a lot simpler!  (Which we're not doing right now because we're not
1515  * measuring them yet).
1516  *
1517  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1518  * races with threads incrementing their own counters.  But since word
1519  * reads are atomic, we either get new values or old values and we don't
1520  * care which for the sums.  We always take the siglock to protect reading
1521  * the c* fields from p->signal from races with exit.c updating those
1522  * fields when reaping, so a sample either gets all the additions of a
1523  * given child after it's reaped, or none so this sample is before reaping.
1524  *
1525  * Locking:
1526  * We need to take the siglock for CHILDEREN, SELF and BOTH
1527  * for  the cases current multithreaded, non-current single threaded
1528  * non-current multithreaded.  Thread traversal is now safe with
1529  * the siglock held.
1530  * Strictly speaking, we donot need to take the siglock if we are current and
1531  * single threaded,  as no one else can take our signal_struct away, no one
1532  * else can  reap the  children to update signal->c* counters, and no one else
1533  * can race with the signal-> fields. If we do not take any lock, the
1534  * signal-> fields could be read out of order while another thread was just
1535  * exiting. So we should  place a read memory barrier when we avoid the lock.
1536  * On the writer side,  write memory barrier is implied in  __exit_signal
1537  * as __exit_signal releases  the siglock spinlock after updating the signal->
1538  * fields. But we don't do this yet to keep things simple.
1539  *
1540  */
1541 
1542 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1543 {
1544 	r->ru_nvcsw += t->nvcsw;
1545 	r->ru_nivcsw += t->nivcsw;
1546 	r->ru_minflt += t->min_flt;
1547 	r->ru_majflt += t->maj_flt;
1548 	r->ru_inblock += task_io_get_inblock(t);
1549 	r->ru_oublock += task_io_get_oublock(t);
1550 }
1551 
1552 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1553 {
1554 	struct task_struct *t;
1555 	unsigned long flags;
1556 	cputime_t tgutime, tgstime, utime, stime;
1557 	unsigned long maxrss = 0;
1558 
1559 	memset((char *) r, 0, sizeof *r);
1560 	utime = stime = cputime_zero;
1561 
1562 	if (who == RUSAGE_THREAD) {
1563 		task_times(current, &utime, &stime);
1564 		accumulate_thread_rusage(p, r);
1565 		maxrss = p->signal->maxrss;
1566 		goto out;
1567 	}
1568 
1569 	if (!lock_task_sighand(p, &flags))
1570 		return;
1571 
1572 	switch (who) {
1573 		case RUSAGE_BOTH:
1574 		case RUSAGE_CHILDREN:
1575 			utime = p->signal->cutime;
1576 			stime = p->signal->cstime;
1577 			r->ru_nvcsw = p->signal->cnvcsw;
1578 			r->ru_nivcsw = p->signal->cnivcsw;
1579 			r->ru_minflt = p->signal->cmin_flt;
1580 			r->ru_majflt = p->signal->cmaj_flt;
1581 			r->ru_inblock = p->signal->cinblock;
1582 			r->ru_oublock = p->signal->coublock;
1583 			maxrss = p->signal->cmaxrss;
1584 
1585 			if (who == RUSAGE_CHILDREN)
1586 				break;
1587 
1588 		case RUSAGE_SELF:
1589 			thread_group_times(p, &tgutime, &tgstime);
1590 			utime = cputime_add(utime, tgutime);
1591 			stime = cputime_add(stime, tgstime);
1592 			r->ru_nvcsw += p->signal->nvcsw;
1593 			r->ru_nivcsw += p->signal->nivcsw;
1594 			r->ru_minflt += p->signal->min_flt;
1595 			r->ru_majflt += p->signal->maj_flt;
1596 			r->ru_inblock += p->signal->inblock;
1597 			r->ru_oublock += p->signal->oublock;
1598 			if (maxrss < p->signal->maxrss)
1599 				maxrss = p->signal->maxrss;
1600 			t = p;
1601 			do {
1602 				accumulate_thread_rusage(t, r);
1603 				t = next_thread(t);
1604 			} while (t != p);
1605 			break;
1606 
1607 		default:
1608 			BUG();
1609 	}
1610 	unlock_task_sighand(p, &flags);
1611 
1612 out:
1613 	cputime_to_timeval(utime, &r->ru_utime);
1614 	cputime_to_timeval(stime, &r->ru_stime);
1615 
1616 	if (who != RUSAGE_CHILDREN) {
1617 		struct mm_struct *mm = get_task_mm(p);
1618 		if (mm) {
1619 			setmax_mm_hiwater_rss(&maxrss, mm);
1620 			mmput(mm);
1621 		}
1622 	}
1623 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1624 }
1625 
1626 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1627 {
1628 	struct rusage r;
1629 	k_getrusage(p, who, &r);
1630 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1631 }
1632 
1633 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1634 {
1635 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1636 	    who != RUSAGE_THREAD)
1637 		return -EINVAL;
1638 	return getrusage(current, who, ru);
1639 }
1640 
1641 SYSCALL_DEFINE1(umask, int, mask)
1642 {
1643 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1644 	return mask;
1645 }
1646 
1647 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1648 		unsigned long, arg4, unsigned long, arg5)
1649 {
1650 	struct task_struct *me = current;
1651 	unsigned char comm[sizeof(me->comm)];
1652 	long error;
1653 
1654 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1655 	if (error != -ENOSYS)
1656 		return error;
1657 
1658 	error = 0;
1659 	switch (option) {
1660 		case PR_SET_PDEATHSIG:
1661 			if (!valid_signal(arg2)) {
1662 				error = -EINVAL;
1663 				break;
1664 			}
1665 			me->pdeath_signal = arg2;
1666 			error = 0;
1667 			break;
1668 		case PR_GET_PDEATHSIG:
1669 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1670 			break;
1671 		case PR_GET_DUMPABLE:
1672 			error = get_dumpable(me->mm);
1673 			break;
1674 		case PR_SET_DUMPABLE:
1675 			if (arg2 < 0 || arg2 > 1) {
1676 				error = -EINVAL;
1677 				break;
1678 			}
1679 			set_dumpable(me->mm, arg2);
1680 			error = 0;
1681 			break;
1682 
1683 		case PR_SET_UNALIGN:
1684 			error = SET_UNALIGN_CTL(me, arg2);
1685 			break;
1686 		case PR_GET_UNALIGN:
1687 			error = GET_UNALIGN_CTL(me, arg2);
1688 			break;
1689 		case PR_SET_FPEMU:
1690 			error = SET_FPEMU_CTL(me, arg2);
1691 			break;
1692 		case PR_GET_FPEMU:
1693 			error = GET_FPEMU_CTL(me, arg2);
1694 			break;
1695 		case PR_SET_FPEXC:
1696 			error = SET_FPEXC_CTL(me, arg2);
1697 			break;
1698 		case PR_GET_FPEXC:
1699 			error = GET_FPEXC_CTL(me, arg2);
1700 			break;
1701 		case PR_GET_TIMING:
1702 			error = PR_TIMING_STATISTICAL;
1703 			break;
1704 		case PR_SET_TIMING:
1705 			if (arg2 != PR_TIMING_STATISTICAL)
1706 				error = -EINVAL;
1707 			else
1708 				error = 0;
1709 			break;
1710 
1711 		case PR_SET_NAME:
1712 			comm[sizeof(me->comm)-1] = 0;
1713 			if (strncpy_from_user(comm, (char __user *)arg2,
1714 					      sizeof(me->comm) - 1) < 0)
1715 				return -EFAULT;
1716 			set_task_comm(me, comm);
1717 			return 0;
1718 		case PR_GET_NAME:
1719 			get_task_comm(comm, me);
1720 			if (copy_to_user((char __user *)arg2, comm,
1721 					 sizeof(comm)))
1722 				return -EFAULT;
1723 			return 0;
1724 		case PR_GET_ENDIAN:
1725 			error = GET_ENDIAN(me, arg2);
1726 			break;
1727 		case PR_SET_ENDIAN:
1728 			error = SET_ENDIAN(me, arg2);
1729 			break;
1730 
1731 		case PR_GET_SECCOMP:
1732 			error = prctl_get_seccomp();
1733 			break;
1734 		case PR_SET_SECCOMP:
1735 			error = prctl_set_seccomp(arg2);
1736 			break;
1737 		case PR_GET_TSC:
1738 			error = GET_TSC_CTL(arg2);
1739 			break;
1740 		case PR_SET_TSC:
1741 			error = SET_TSC_CTL(arg2);
1742 			break;
1743 		case PR_TASK_PERF_EVENTS_DISABLE:
1744 			error = perf_event_task_disable();
1745 			break;
1746 		case PR_TASK_PERF_EVENTS_ENABLE:
1747 			error = perf_event_task_enable();
1748 			break;
1749 		case PR_GET_TIMERSLACK:
1750 			error = current->timer_slack_ns;
1751 			break;
1752 		case PR_SET_TIMERSLACK:
1753 			if (arg2 <= 0)
1754 				current->timer_slack_ns =
1755 					current->default_timer_slack_ns;
1756 			else
1757 				current->timer_slack_ns = arg2;
1758 			error = 0;
1759 			break;
1760 		case PR_MCE_KILL:
1761 			if (arg4 | arg5)
1762 				return -EINVAL;
1763 			switch (arg2) {
1764 			case PR_MCE_KILL_CLEAR:
1765 				if (arg3 != 0)
1766 					return -EINVAL;
1767 				current->flags &= ~PF_MCE_PROCESS;
1768 				break;
1769 			case PR_MCE_KILL_SET:
1770 				current->flags |= PF_MCE_PROCESS;
1771 				if (arg3 == PR_MCE_KILL_EARLY)
1772 					current->flags |= PF_MCE_EARLY;
1773 				else if (arg3 == PR_MCE_KILL_LATE)
1774 					current->flags &= ~PF_MCE_EARLY;
1775 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1776 					current->flags &=
1777 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1778 				else
1779 					return -EINVAL;
1780 				break;
1781 			default:
1782 				return -EINVAL;
1783 			}
1784 			error = 0;
1785 			break;
1786 		case PR_MCE_KILL_GET:
1787 			if (arg2 | arg3 | arg4 | arg5)
1788 				return -EINVAL;
1789 			if (current->flags & PF_MCE_PROCESS)
1790 				error = (current->flags & PF_MCE_EARLY) ?
1791 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1792 			else
1793 				error = PR_MCE_KILL_DEFAULT;
1794 			break;
1795 		default:
1796 			error = -EINVAL;
1797 			break;
1798 	}
1799 	return error;
1800 }
1801 
1802 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1803 		struct getcpu_cache __user *, unused)
1804 {
1805 	int err = 0;
1806 	int cpu = raw_smp_processor_id();
1807 	if (cpup)
1808 		err |= put_user(cpu, cpup);
1809 	if (nodep)
1810 		err |= put_user(cpu_to_node(cpu), nodep);
1811 	return err ? -EFAULT : 0;
1812 }
1813 
1814 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1815 
1816 static void argv_cleanup(struct subprocess_info *info)
1817 {
1818 	argv_free(info->argv);
1819 }
1820 
1821 /**
1822  * orderly_poweroff - Trigger an orderly system poweroff
1823  * @force: force poweroff if command execution fails
1824  *
1825  * This may be called from any context to trigger a system shutdown.
1826  * If the orderly shutdown fails, it will force an immediate shutdown.
1827  */
1828 int orderly_poweroff(bool force)
1829 {
1830 	int argc;
1831 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1832 	static char *envp[] = {
1833 		"HOME=/",
1834 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1835 		NULL
1836 	};
1837 	int ret = -ENOMEM;
1838 	struct subprocess_info *info;
1839 
1840 	if (argv == NULL) {
1841 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1842 		       __func__, poweroff_cmd);
1843 		goto out;
1844 	}
1845 
1846 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1847 	if (info == NULL) {
1848 		argv_free(argv);
1849 		goto out;
1850 	}
1851 
1852 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1853 
1854 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1855 
1856   out:
1857 	if (ret && force) {
1858 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1859 		       "forcing the issue\n");
1860 
1861 		/* I guess this should try to kick off some daemon to
1862 		   sync and poweroff asap.  Or not even bother syncing
1863 		   if we're doing an emergency shutdown? */
1864 		emergency_sync();
1865 		kernel_power_off();
1866 	}
1867 
1868 	return ret;
1869 }
1870 EXPORT_SYMBOL_GPL(orderly_poweroff);
1871