xref: /openbmc/linux/kernel/sys.c (revision d894fc60)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50 
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
55 
56 #include <linux/kmsg_dump.h>
57 /* Move somewhere else to avoid recompiling? */
58 #include <generated/utsrelease.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/io.h>
62 #include <asm/unistd.h>
63 
64 #ifndef SET_UNALIGN_CTL
65 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
66 #endif
67 #ifndef GET_UNALIGN_CTL
68 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
69 #endif
70 #ifndef SET_FPEMU_CTL
71 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
72 #endif
73 #ifndef GET_FPEMU_CTL
74 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
75 #endif
76 #ifndef SET_FPEXC_CTL
77 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
78 #endif
79 #ifndef GET_FPEXC_CTL
80 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
81 #endif
82 #ifndef GET_ENDIAN
83 # define GET_ENDIAN(a, b)	(-EINVAL)
84 #endif
85 #ifndef SET_ENDIAN
86 # define SET_ENDIAN(a, b)	(-EINVAL)
87 #endif
88 #ifndef GET_TSC_CTL
89 # define GET_TSC_CTL(a)		(-EINVAL)
90 #endif
91 #ifndef SET_TSC_CTL
92 # define SET_TSC_CTL(a)		(-EINVAL)
93 #endif
94 #ifndef MPX_ENABLE_MANAGEMENT
95 # define MPX_ENABLE_MANAGEMENT(a)	(-EINVAL)
96 #endif
97 #ifndef MPX_DISABLE_MANAGEMENT
98 # define MPX_DISABLE_MANAGEMENT(a)	(-EINVAL)
99 #endif
100 #ifndef GET_FP_MODE
101 # define GET_FP_MODE(a)		(-EINVAL)
102 #endif
103 #ifndef SET_FP_MODE
104 # define SET_FP_MODE(a,b)	(-EINVAL)
105 #endif
106 
107 /*
108  * this is where the system-wide overflow UID and GID are defined, for
109  * architectures that now have 32-bit UID/GID but didn't in the past
110  */
111 
112 int overflowuid = DEFAULT_OVERFLOWUID;
113 int overflowgid = DEFAULT_OVERFLOWGID;
114 
115 EXPORT_SYMBOL(overflowuid);
116 EXPORT_SYMBOL(overflowgid);
117 
118 /*
119  * the same as above, but for filesystems which can only store a 16-bit
120  * UID and GID. as such, this is needed on all architectures
121  */
122 
123 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125 
126 EXPORT_SYMBOL(fs_overflowuid);
127 EXPORT_SYMBOL(fs_overflowgid);
128 
129 /*
130  * Returns true if current's euid is same as p's uid or euid,
131  * or has CAP_SYS_NICE to p's user_ns.
132  *
133  * Called with rcu_read_lock, creds are safe
134  */
135 static bool set_one_prio_perm(struct task_struct *p)
136 {
137 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138 
139 	if (uid_eq(pcred->uid,  cred->euid) ||
140 	    uid_eq(pcred->euid, cred->euid))
141 		return true;
142 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
143 		return true;
144 	return false;
145 }
146 
147 /*
148  * set the priority of a task
149  * - the caller must hold the RCU read lock
150  */
151 static int set_one_prio(struct task_struct *p, int niceval, int error)
152 {
153 	int no_nice;
154 
155 	if (!set_one_prio_perm(p)) {
156 		error = -EPERM;
157 		goto out;
158 	}
159 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
160 		error = -EACCES;
161 		goto out;
162 	}
163 	no_nice = security_task_setnice(p, niceval);
164 	if (no_nice) {
165 		error = no_nice;
166 		goto out;
167 	}
168 	if (error == -ESRCH)
169 		error = 0;
170 	set_user_nice(p, niceval);
171 out:
172 	return error;
173 }
174 
175 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
176 {
177 	struct task_struct *g, *p;
178 	struct user_struct *user;
179 	const struct cred *cred = current_cred();
180 	int error = -EINVAL;
181 	struct pid *pgrp;
182 	kuid_t uid;
183 
184 	if (which > PRIO_USER || which < PRIO_PROCESS)
185 		goto out;
186 
187 	/* normalize: avoid signed division (rounding problems) */
188 	error = -ESRCH;
189 	if (niceval < MIN_NICE)
190 		niceval = MIN_NICE;
191 	if (niceval > MAX_NICE)
192 		niceval = MAX_NICE;
193 
194 	rcu_read_lock();
195 	read_lock(&tasklist_lock);
196 	switch (which) {
197 	case PRIO_PROCESS:
198 		if (who)
199 			p = find_task_by_vpid(who);
200 		else
201 			p = current;
202 		if (p)
203 			error = set_one_prio(p, niceval, error);
204 		break;
205 	case PRIO_PGRP:
206 		if (who)
207 			pgrp = find_vpid(who);
208 		else
209 			pgrp = task_pgrp(current);
210 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 			error = set_one_prio(p, niceval, error);
212 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 		break;
214 	case PRIO_USER:
215 		uid = make_kuid(cred->user_ns, who);
216 		user = cred->user;
217 		if (!who)
218 			uid = cred->uid;
219 		else if (!uid_eq(uid, cred->uid)) {
220 			user = find_user(uid);
221 			if (!user)
222 				goto out_unlock;	/* No processes for this user */
223 		}
224 		do_each_thread(g, p) {
225 			if (uid_eq(task_uid(p), uid))
226 				error = set_one_prio(p, niceval, error);
227 		} while_each_thread(g, p);
228 		if (!uid_eq(uid, cred->uid))
229 			free_uid(user);		/* For find_user() */
230 		break;
231 	}
232 out_unlock:
233 	read_unlock(&tasklist_lock);
234 	rcu_read_unlock();
235 out:
236 	return error;
237 }
238 
239 /*
240  * Ugh. To avoid negative return values, "getpriority()" will
241  * not return the normal nice-value, but a negated value that
242  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243  * to stay compatible.
244  */
245 SYSCALL_DEFINE2(getpriority, int, which, int, who)
246 {
247 	struct task_struct *g, *p;
248 	struct user_struct *user;
249 	const struct cred *cred = current_cred();
250 	long niceval, retval = -ESRCH;
251 	struct pid *pgrp;
252 	kuid_t uid;
253 
254 	if (which > PRIO_USER || which < PRIO_PROCESS)
255 		return -EINVAL;
256 
257 	rcu_read_lock();
258 	read_lock(&tasklist_lock);
259 	switch (which) {
260 	case PRIO_PROCESS:
261 		if (who)
262 			p = find_task_by_vpid(who);
263 		else
264 			p = current;
265 		if (p) {
266 			niceval = nice_to_rlimit(task_nice(p));
267 			if (niceval > retval)
268 				retval = niceval;
269 		}
270 		break;
271 	case PRIO_PGRP:
272 		if (who)
273 			pgrp = find_vpid(who);
274 		else
275 			pgrp = task_pgrp(current);
276 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 			niceval = nice_to_rlimit(task_nice(p));
278 			if (niceval > retval)
279 				retval = niceval;
280 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 		break;
282 	case PRIO_USER:
283 		uid = make_kuid(cred->user_ns, who);
284 		user = cred->user;
285 		if (!who)
286 			uid = cred->uid;
287 		else if (!uid_eq(uid, cred->uid)) {
288 			user = find_user(uid);
289 			if (!user)
290 				goto out_unlock;	/* No processes for this user */
291 		}
292 		do_each_thread(g, p) {
293 			if (uid_eq(task_uid(p), uid)) {
294 				niceval = nice_to_rlimit(task_nice(p));
295 				if (niceval > retval)
296 					retval = niceval;
297 			}
298 		} while_each_thread(g, p);
299 		if (!uid_eq(uid, cred->uid))
300 			free_uid(user);		/* for find_user() */
301 		break;
302 	}
303 out_unlock:
304 	read_unlock(&tasklist_lock);
305 	rcu_read_unlock();
306 
307 	return retval;
308 }
309 
310 /*
311  * Unprivileged users may change the real gid to the effective gid
312  * or vice versa.  (BSD-style)
313  *
314  * If you set the real gid at all, or set the effective gid to a value not
315  * equal to the real gid, then the saved gid is set to the new effective gid.
316  *
317  * This makes it possible for a setgid program to completely drop its
318  * privileges, which is often a useful assertion to make when you are doing
319  * a security audit over a program.
320  *
321  * The general idea is that a program which uses just setregid() will be
322  * 100% compatible with BSD.  A program which uses just setgid() will be
323  * 100% compatible with POSIX with saved IDs.
324  *
325  * SMP: There are not races, the GIDs are checked only by filesystem
326  *      operations (as far as semantic preservation is concerned).
327  */
328 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
329 {
330 	struct user_namespace *ns = current_user_ns();
331 	const struct cred *old;
332 	struct cred *new;
333 	int retval;
334 	kgid_t krgid, kegid;
335 
336 	krgid = make_kgid(ns, rgid);
337 	kegid = make_kgid(ns, egid);
338 
339 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
340 		return -EINVAL;
341 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
342 		return -EINVAL;
343 
344 	new = prepare_creds();
345 	if (!new)
346 		return -ENOMEM;
347 	old = current_cred();
348 
349 	retval = -EPERM;
350 	if (rgid != (gid_t) -1) {
351 		if (gid_eq(old->gid, krgid) ||
352 		    gid_eq(old->egid, krgid) ||
353 		    ns_capable(old->user_ns, CAP_SETGID))
354 			new->gid = krgid;
355 		else
356 			goto error;
357 	}
358 	if (egid != (gid_t) -1) {
359 		if (gid_eq(old->gid, kegid) ||
360 		    gid_eq(old->egid, kegid) ||
361 		    gid_eq(old->sgid, kegid) ||
362 		    ns_capable(old->user_ns, CAP_SETGID))
363 			new->egid = kegid;
364 		else
365 			goto error;
366 	}
367 
368 	if (rgid != (gid_t) -1 ||
369 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
370 		new->sgid = new->egid;
371 	new->fsgid = new->egid;
372 
373 	return commit_creds(new);
374 
375 error:
376 	abort_creds(new);
377 	return retval;
378 }
379 
380 /*
381  * setgid() is implemented like SysV w/ SAVED_IDS
382  *
383  * SMP: Same implicit races as above.
384  */
385 SYSCALL_DEFINE1(setgid, gid_t, gid)
386 {
387 	struct user_namespace *ns = current_user_ns();
388 	const struct cred *old;
389 	struct cred *new;
390 	int retval;
391 	kgid_t kgid;
392 
393 	kgid = make_kgid(ns, gid);
394 	if (!gid_valid(kgid))
395 		return -EINVAL;
396 
397 	new = prepare_creds();
398 	if (!new)
399 		return -ENOMEM;
400 	old = current_cred();
401 
402 	retval = -EPERM;
403 	if (ns_capable(old->user_ns, CAP_SETGID))
404 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
405 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
406 		new->egid = new->fsgid = kgid;
407 	else
408 		goto error;
409 
410 	return commit_creds(new);
411 
412 error:
413 	abort_creds(new);
414 	return retval;
415 }
416 
417 /*
418  * change the user struct in a credentials set to match the new UID
419  */
420 static int set_user(struct cred *new)
421 {
422 	struct user_struct *new_user;
423 
424 	new_user = alloc_uid(new->uid);
425 	if (!new_user)
426 		return -EAGAIN;
427 
428 	/*
429 	 * We don't fail in case of NPROC limit excess here because too many
430 	 * poorly written programs don't check set*uid() return code, assuming
431 	 * it never fails if called by root.  We may still enforce NPROC limit
432 	 * for programs doing set*uid()+execve() by harmlessly deferring the
433 	 * failure to the execve() stage.
434 	 */
435 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
436 			new_user != INIT_USER)
437 		current->flags |= PF_NPROC_EXCEEDED;
438 	else
439 		current->flags &= ~PF_NPROC_EXCEEDED;
440 
441 	free_uid(new->user);
442 	new->user = new_user;
443 	return 0;
444 }
445 
446 /*
447  * Unprivileged users may change the real uid to the effective uid
448  * or vice versa.  (BSD-style)
449  *
450  * If you set the real uid at all, or set the effective uid to a value not
451  * equal to the real uid, then the saved uid is set to the new effective uid.
452  *
453  * This makes it possible for a setuid program to completely drop its
454  * privileges, which is often a useful assertion to make when you are doing
455  * a security audit over a program.
456  *
457  * The general idea is that a program which uses just setreuid() will be
458  * 100% compatible with BSD.  A program which uses just setuid() will be
459  * 100% compatible with POSIX with saved IDs.
460  */
461 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
462 {
463 	struct user_namespace *ns = current_user_ns();
464 	const struct cred *old;
465 	struct cred *new;
466 	int retval;
467 	kuid_t kruid, keuid;
468 
469 	kruid = make_kuid(ns, ruid);
470 	keuid = make_kuid(ns, euid);
471 
472 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
473 		return -EINVAL;
474 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
475 		return -EINVAL;
476 
477 	new = prepare_creds();
478 	if (!new)
479 		return -ENOMEM;
480 	old = current_cred();
481 
482 	retval = -EPERM;
483 	if (ruid != (uid_t) -1) {
484 		new->uid = kruid;
485 		if (!uid_eq(old->uid, kruid) &&
486 		    !uid_eq(old->euid, kruid) &&
487 		    !ns_capable(old->user_ns, CAP_SETUID))
488 			goto error;
489 	}
490 
491 	if (euid != (uid_t) -1) {
492 		new->euid = keuid;
493 		if (!uid_eq(old->uid, keuid) &&
494 		    !uid_eq(old->euid, keuid) &&
495 		    !uid_eq(old->suid, keuid) &&
496 		    !ns_capable(old->user_ns, CAP_SETUID))
497 			goto error;
498 	}
499 
500 	if (!uid_eq(new->uid, old->uid)) {
501 		retval = set_user(new);
502 		if (retval < 0)
503 			goto error;
504 	}
505 	if (ruid != (uid_t) -1 ||
506 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
507 		new->suid = new->euid;
508 	new->fsuid = new->euid;
509 
510 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
511 	if (retval < 0)
512 		goto error;
513 
514 	return commit_creds(new);
515 
516 error:
517 	abort_creds(new);
518 	return retval;
519 }
520 
521 /*
522  * setuid() is implemented like SysV with SAVED_IDS
523  *
524  * Note that SAVED_ID's is deficient in that a setuid root program
525  * like sendmail, for example, cannot set its uid to be a normal
526  * user and then switch back, because if you're root, setuid() sets
527  * the saved uid too.  If you don't like this, blame the bright people
528  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
529  * will allow a root program to temporarily drop privileges and be able to
530  * regain them by swapping the real and effective uid.
531  */
532 SYSCALL_DEFINE1(setuid, uid_t, uid)
533 {
534 	struct user_namespace *ns = current_user_ns();
535 	const struct cred *old;
536 	struct cred *new;
537 	int retval;
538 	kuid_t kuid;
539 
540 	kuid = make_kuid(ns, uid);
541 	if (!uid_valid(kuid))
542 		return -EINVAL;
543 
544 	new = prepare_creds();
545 	if (!new)
546 		return -ENOMEM;
547 	old = current_cred();
548 
549 	retval = -EPERM;
550 	if (ns_capable(old->user_ns, CAP_SETUID)) {
551 		new->suid = new->uid = kuid;
552 		if (!uid_eq(kuid, old->uid)) {
553 			retval = set_user(new);
554 			if (retval < 0)
555 				goto error;
556 		}
557 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
558 		goto error;
559 	}
560 
561 	new->fsuid = new->euid = kuid;
562 
563 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
564 	if (retval < 0)
565 		goto error;
566 
567 	return commit_creds(new);
568 
569 error:
570 	abort_creds(new);
571 	return retval;
572 }
573 
574 
575 /*
576  * This function implements a generic ability to update ruid, euid,
577  * and suid.  This allows you to implement the 4.4 compatible seteuid().
578  */
579 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
580 {
581 	struct user_namespace *ns = current_user_ns();
582 	const struct cred *old;
583 	struct cred *new;
584 	int retval;
585 	kuid_t kruid, keuid, ksuid;
586 
587 	kruid = make_kuid(ns, ruid);
588 	keuid = make_kuid(ns, euid);
589 	ksuid = make_kuid(ns, suid);
590 
591 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
592 		return -EINVAL;
593 
594 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
595 		return -EINVAL;
596 
597 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
598 		return -EINVAL;
599 
600 	new = prepare_creds();
601 	if (!new)
602 		return -ENOMEM;
603 
604 	old = current_cred();
605 
606 	retval = -EPERM;
607 	if (!ns_capable(old->user_ns, CAP_SETUID)) {
608 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
609 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
610 			goto error;
611 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
612 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
613 			goto error;
614 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
615 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
616 			goto error;
617 	}
618 
619 	if (ruid != (uid_t) -1) {
620 		new->uid = kruid;
621 		if (!uid_eq(kruid, old->uid)) {
622 			retval = set_user(new);
623 			if (retval < 0)
624 				goto error;
625 		}
626 	}
627 	if (euid != (uid_t) -1)
628 		new->euid = keuid;
629 	if (suid != (uid_t) -1)
630 		new->suid = ksuid;
631 	new->fsuid = new->euid;
632 
633 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
634 	if (retval < 0)
635 		goto error;
636 
637 	return commit_creds(new);
638 
639 error:
640 	abort_creds(new);
641 	return retval;
642 }
643 
644 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
645 {
646 	const struct cred *cred = current_cred();
647 	int retval;
648 	uid_t ruid, euid, suid;
649 
650 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
651 	euid = from_kuid_munged(cred->user_ns, cred->euid);
652 	suid = from_kuid_munged(cred->user_ns, cred->suid);
653 
654 	retval = put_user(ruid, ruidp);
655 	if (!retval) {
656 		retval = put_user(euid, euidp);
657 		if (!retval)
658 			return put_user(suid, suidp);
659 	}
660 	return retval;
661 }
662 
663 /*
664  * Same as above, but for rgid, egid, sgid.
665  */
666 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
667 {
668 	struct user_namespace *ns = current_user_ns();
669 	const struct cred *old;
670 	struct cred *new;
671 	int retval;
672 	kgid_t krgid, kegid, ksgid;
673 
674 	krgid = make_kgid(ns, rgid);
675 	kegid = make_kgid(ns, egid);
676 	ksgid = make_kgid(ns, sgid);
677 
678 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
679 		return -EINVAL;
680 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
681 		return -EINVAL;
682 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
683 		return -EINVAL;
684 
685 	new = prepare_creds();
686 	if (!new)
687 		return -ENOMEM;
688 	old = current_cred();
689 
690 	retval = -EPERM;
691 	if (!ns_capable(old->user_ns, CAP_SETGID)) {
692 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
693 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
694 			goto error;
695 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
696 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
697 			goto error;
698 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
699 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
700 			goto error;
701 	}
702 
703 	if (rgid != (gid_t) -1)
704 		new->gid = krgid;
705 	if (egid != (gid_t) -1)
706 		new->egid = kegid;
707 	if (sgid != (gid_t) -1)
708 		new->sgid = ksgid;
709 	new->fsgid = new->egid;
710 
711 	return commit_creds(new);
712 
713 error:
714 	abort_creds(new);
715 	return retval;
716 }
717 
718 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
719 {
720 	const struct cred *cred = current_cred();
721 	int retval;
722 	gid_t rgid, egid, sgid;
723 
724 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
725 	egid = from_kgid_munged(cred->user_ns, cred->egid);
726 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
727 
728 	retval = put_user(rgid, rgidp);
729 	if (!retval) {
730 		retval = put_user(egid, egidp);
731 		if (!retval)
732 			retval = put_user(sgid, sgidp);
733 	}
734 
735 	return retval;
736 }
737 
738 
739 /*
740  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
741  * is used for "access()" and for the NFS daemon (letting nfsd stay at
742  * whatever uid it wants to). It normally shadows "euid", except when
743  * explicitly set by setfsuid() or for access..
744  */
745 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
746 {
747 	const struct cred *old;
748 	struct cred *new;
749 	uid_t old_fsuid;
750 	kuid_t kuid;
751 
752 	old = current_cred();
753 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
754 
755 	kuid = make_kuid(old->user_ns, uid);
756 	if (!uid_valid(kuid))
757 		return old_fsuid;
758 
759 	new = prepare_creds();
760 	if (!new)
761 		return old_fsuid;
762 
763 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
764 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
765 	    ns_capable(old->user_ns, CAP_SETUID)) {
766 		if (!uid_eq(kuid, old->fsuid)) {
767 			new->fsuid = kuid;
768 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
769 				goto change_okay;
770 		}
771 	}
772 
773 	abort_creds(new);
774 	return old_fsuid;
775 
776 change_okay:
777 	commit_creds(new);
778 	return old_fsuid;
779 }
780 
781 /*
782  * Samma på svenska..
783  */
784 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
785 {
786 	const struct cred *old;
787 	struct cred *new;
788 	gid_t old_fsgid;
789 	kgid_t kgid;
790 
791 	old = current_cred();
792 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
793 
794 	kgid = make_kgid(old->user_ns, gid);
795 	if (!gid_valid(kgid))
796 		return old_fsgid;
797 
798 	new = prepare_creds();
799 	if (!new)
800 		return old_fsgid;
801 
802 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
803 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
804 	    ns_capable(old->user_ns, CAP_SETGID)) {
805 		if (!gid_eq(kgid, old->fsgid)) {
806 			new->fsgid = kgid;
807 			goto change_okay;
808 		}
809 	}
810 
811 	abort_creds(new);
812 	return old_fsgid;
813 
814 change_okay:
815 	commit_creds(new);
816 	return old_fsgid;
817 }
818 
819 /**
820  * sys_getpid - return the thread group id of the current process
821  *
822  * Note, despite the name, this returns the tgid not the pid.  The tgid and
823  * the pid are identical unless CLONE_THREAD was specified on clone() in
824  * which case the tgid is the same in all threads of the same group.
825  *
826  * This is SMP safe as current->tgid does not change.
827  */
828 SYSCALL_DEFINE0(getpid)
829 {
830 	return task_tgid_vnr(current);
831 }
832 
833 /* Thread ID - the internal kernel "pid" */
834 SYSCALL_DEFINE0(gettid)
835 {
836 	return task_pid_vnr(current);
837 }
838 
839 /*
840  * Accessing ->real_parent is not SMP-safe, it could
841  * change from under us. However, we can use a stale
842  * value of ->real_parent under rcu_read_lock(), see
843  * release_task()->call_rcu(delayed_put_task_struct).
844  */
845 SYSCALL_DEFINE0(getppid)
846 {
847 	int pid;
848 
849 	rcu_read_lock();
850 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
851 	rcu_read_unlock();
852 
853 	return pid;
854 }
855 
856 SYSCALL_DEFINE0(getuid)
857 {
858 	/* Only we change this so SMP safe */
859 	return from_kuid_munged(current_user_ns(), current_uid());
860 }
861 
862 SYSCALL_DEFINE0(geteuid)
863 {
864 	/* Only we change this so SMP safe */
865 	return from_kuid_munged(current_user_ns(), current_euid());
866 }
867 
868 SYSCALL_DEFINE0(getgid)
869 {
870 	/* Only we change this so SMP safe */
871 	return from_kgid_munged(current_user_ns(), current_gid());
872 }
873 
874 SYSCALL_DEFINE0(getegid)
875 {
876 	/* Only we change this so SMP safe */
877 	return from_kgid_munged(current_user_ns(), current_egid());
878 }
879 
880 void do_sys_times(struct tms *tms)
881 {
882 	cputime_t tgutime, tgstime, cutime, cstime;
883 
884 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
885 	cutime = current->signal->cutime;
886 	cstime = current->signal->cstime;
887 	tms->tms_utime = cputime_to_clock_t(tgutime);
888 	tms->tms_stime = cputime_to_clock_t(tgstime);
889 	tms->tms_cutime = cputime_to_clock_t(cutime);
890 	tms->tms_cstime = cputime_to_clock_t(cstime);
891 }
892 
893 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
894 {
895 	if (tbuf) {
896 		struct tms tmp;
897 
898 		do_sys_times(&tmp);
899 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
900 			return -EFAULT;
901 	}
902 	force_successful_syscall_return();
903 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
904 }
905 
906 /*
907  * This needs some heavy checking ...
908  * I just haven't the stomach for it. I also don't fully
909  * understand sessions/pgrp etc. Let somebody who does explain it.
910  *
911  * OK, I think I have the protection semantics right.... this is really
912  * only important on a multi-user system anyway, to make sure one user
913  * can't send a signal to a process owned by another.  -TYT, 12/12/91
914  *
915  * !PF_FORKNOEXEC check to conform completely to POSIX.
916  */
917 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
918 {
919 	struct task_struct *p;
920 	struct task_struct *group_leader = current->group_leader;
921 	struct pid *pgrp;
922 	int err;
923 
924 	if (!pid)
925 		pid = task_pid_vnr(group_leader);
926 	if (!pgid)
927 		pgid = pid;
928 	if (pgid < 0)
929 		return -EINVAL;
930 	rcu_read_lock();
931 
932 	/* From this point forward we keep holding onto the tasklist lock
933 	 * so that our parent does not change from under us. -DaveM
934 	 */
935 	write_lock_irq(&tasklist_lock);
936 
937 	err = -ESRCH;
938 	p = find_task_by_vpid(pid);
939 	if (!p)
940 		goto out;
941 
942 	err = -EINVAL;
943 	if (!thread_group_leader(p))
944 		goto out;
945 
946 	if (same_thread_group(p->real_parent, group_leader)) {
947 		err = -EPERM;
948 		if (task_session(p) != task_session(group_leader))
949 			goto out;
950 		err = -EACCES;
951 		if (!(p->flags & PF_FORKNOEXEC))
952 			goto out;
953 	} else {
954 		err = -ESRCH;
955 		if (p != group_leader)
956 			goto out;
957 	}
958 
959 	err = -EPERM;
960 	if (p->signal->leader)
961 		goto out;
962 
963 	pgrp = task_pid(p);
964 	if (pgid != pid) {
965 		struct task_struct *g;
966 
967 		pgrp = find_vpid(pgid);
968 		g = pid_task(pgrp, PIDTYPE_PGID);
969 		if (!g || task_session(g) != task_session(group_leader))
970 			goto out;
971 	}
972 
973 	err = security_task_setpgid(p, pgid);
974 	if (err)
975 		goto out;
976 
977 	if (task_pgrp(p) != pgrp)
978 		change_pid(p, PIDTYPE_PGID, pgrp);
979 
980 	err = 0;
981 out:
982 	/* All paths lead to here, thus we are safe. -DaveM */
983 	write_unlock_irq(&tasklist_lock);
984 	rcu_read_unlock();
985 	return err;
986 }
987 
988 SYSCALL_DEFINE1(getpgid, pid_t, pid)
989 {
990 	struct task_struct *p;
991 	struct pid *grp;
992 	int retval;
993 
994 	rcu_read_lock();
995 	if (!pid)
996 		grp = task_pgrp(current);
997 	else {
998 		retval = -ESRCH;
999 		p = find_task_by_vpid(pid);
1000 		if (!p)
1001 			goto out;
1002 		grp = task_pgrp(p);
1003 		if (!grp)
1004 			goto out;
1005 
1006 		retval = security_task_getpgid(p);
1007 		if (retval)
1008 			goto out;
1009 	}
1010 	retval = pid_vnr(grp);
1011 out:
1012 	rcu_read_unlock();
1013 	return retval;
1014 }
1015 
1016 #ifdef __ARCH_WANT_SYS_GETPGRP
1017 
1018 SYSCALL_DEFINE0(getpgrp)
1019 {
1020 	return sys_getpgid(0);
1021 }
1022 
1023 #endif
1024 
1025 SYSCALL_DEFINE1(getsid, pid_t, pid)
1026 {
1027 	struct task_struct *p;
1028 	struct pid *sid;
1029 	int retval;
1030 
1031 	rcu_read_lock();
1032 	if (!pid)
1033 		sid = task_session(current);
1034 	else {
1035 		retval = -ESRCH;
1036 		p = find_task_by_vpid(pid);
1037 		if (!p)
1038 			goto out;
1039 		sid = task_session(p);
1040 		if (!sid)
1041 			goto out;
1042 
1043 		retval = security_task_getsid(p);
1044 		if (retval)
1045 			goto out;
1046 	}
1047 	retval = pid_vnr(sid);
1048 out:
1049 	rcu_read_unlock();
1050 	return retval;
1051 }
1052 
1053 static void set_special_pids(struct pid *pid)
1054 {
1055 	struct task_struct *curr = current->group_leader;
1056 
1057 	if (task_session(curr) != pid)
1058 		change_pid(curr, PIDTYPE_SID, pid);
1059 
1060 	if (task_pgrp(curr) != pid)
1061 		change_pid(curr, PIDTYPE_PGID, pid);
1062 }
1063 
1064 SYSCALL_DEFINE0(setsid)
1065 {
1066 	struct task_struct *group_leader = current->group_leader;
1067 	struct pid *sid = task_pid(group_leader);
1068 	pid_t session = pid_vnr(sid);
1069 	int err = -EPERM;
1070 
1071 	write_lock_irq(&tasklist_lock);
1072 	/* Fail if I am already a session leader */
1073 	if (group_leader->signal->leader)
1074 		goto out;
1075 
1076 	/* Fail if a process group id already exists that equals the
1077 	 * proposed session id.
1078 	 */
1079 	if (pid_task(sid, PIDTYPE_PGID))
1080 		goto out;
1081 
1082 	group_leader->signal->leader = 1;
1083 	set_special_pids(sid);
1084 
1085 	proc_clear_tty(group_leader);
1086 
1087 	err = session;
1088 out:
1089 	write_unlock_irq(&tasklist_lock);
1090 	if (err > 0) {
1091 		proc_sid_connector(group_leader);
1092 		sched_autogroup_create_attach(group_leader);
1093 	}
1094 	return err;
1095 }
1096 
1097 DECLARE_RWSEM(uts_sem);
1098 
1099 #ifdef COMPAT_UTS_MACHINE
1100 #define override_architecture(name) \
1101 	(personality(current->personality) == PER_LINUX32 && \
1102 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1103 		      sizeof(COMPAT_UTS_MACHINE)))
1104 #else
1105 #define override_architecture(name)	0
1106 #endif
1107 
1108 /*
1109  * Work around broken programs that cannot handle "Linux 3.0".
1110  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1111  */
1112 static int override_release(char __user *release, size_t len)
1113 {
1114 	int ret = 0;
1115 
1116 	if (current->personality & UNAME26) {
1117 		const char *rest = UTS_RELEASE;
1118 		char buf[65] = { 0 };
1119 		int ndots = 0;
1120 		unsigned v;
1121 		size_t copy;
1122 
1123 		while (*rest) {
1124 			if (*rest == '.' && ++ndots >= 3)
1125 				break;
1126 			if (!isdigit(*rest) && *rest != '.')
1127 				break;
1128 			rest++;
1129 		}
1130 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1131 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1132 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1133 		ret = copy_to_user(release, buf, copy + 1);
1134 	}
1135 	return ret;
1136 }
1137 
1138 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1139 {
1140 	int errno = 0;
1141 
1142 	down_read(&uts_sem);
1143 	if (copy_to_user(name, utsname(), sizeof *name))
1144 		errno = -EFAULT;
1145 	up_read(&uts_sem);
1146 
1147 	if (!errno && override_release(name->release, sizeof(name->release)))
1148 		errno = -EFAULT;
1149 	if (!errno && override_architecture(name))
1150 		errno = -EFAULT;
1151 	return errno;
1152 }
1153 
1154 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1155 /*
1156  * Old cruft
1157  */
1158 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1159 {
1160 	int error = 0;
1161 
1162 	if (!name)
1163 		return -EFAULT;
1164 
1165 	down_read(&uts_sem);
1166 	if (copy_to_user(name, utsname(), sizeof(*name)))
1167 		error = -EFAULT;
1168 	up_read(&uts_sem);
1169 
1170 	if (!error && override_release(name->release, sizeof(name->release)))
1171 		error = -EFAULT;
1172 	if (!error && override_architecture(name))
1173 		error = -EFAULT;
1174 	return error;
1175 }
1176 
1177 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1178 {
1179 	int error;
1180 
1181 	if (!name)
1182 		return -EFAULT;
1183 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1184 		return -EFAULT;
1185 
1186 	down_read(&uts_sem);
1187 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1188 			       __OLD_UTS_LEN);
1189 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1190 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1191 				__OLD_UTS_LEN);
1192 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1193 	error |= __copy_to_user(&name->release, &utsname()->release,
1194 				__OLD_UTS_LEN);
1195 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1196 	error |= __copy_to_user(&name->version, &utsname()->version,
1197 				__OLD_UTS_LEN);
1198 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1199 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1200 				__OLD_UTS_LEN);
1201 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1202 	up_read(&uts_sem);
1203 
1204 	if (!error && override_architecture(name))
1205 		error = -EFAULT;
1206 	if (!error && override_release(name->release, sizeof(name->release)))
1207 		error = -EFAULT;
1208 	return error ? -EFAULT : 0;
1209 }
1210 #endif
1211 
1212 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1213 {
1214 	int errno;
1215 	char tmp[__NEW_UTS_LEN];
1216 
1217 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1218 		return -EPERM;
1219 
1220 	if (len < 0 || len > __NEW_UTS_LEN)
1221 		return -EINVAL;
1222 	down_write(&uts_sem);
1223 	errno = -EFAULT;
1224 	if (!copy_from_user(tmp, name, len)) {
1225 		struct new_utsname *u = utsname();
1226 
1227 		memcpy(u->nodename, tmp, len);
1228 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1229 		errno = 0;
1230 		uts_proc_notify(UTS_PROC_HOSTNAME);
1231 	}
1232 	up_write(&uts_sem);
1233 	return errno;
1234 }
1235 
1236 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1237 
1238 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1239 {
1240 	int i, errno;
1241 	struct new_utsname *u;
1242 
1243 	if (len < 0)
1244 		return -EINVAL;
1245 	down_read(&uts_sem);
1246 	u = utsname();
1247 	i = 1 + strlen(u->nodename);
1248 	if (i > len)
1249 		i = len;
1250 	errno = 0;
1251 	if (copy_to_user(name, u->nodename, i))
1252 		errno = -EFAULT;
1253 	up_read(&uts_sem);
1254 	return errno;
1255 }
1256 
1257 #endif
1258 
1259 /*
1260  * Only setdomainname; getdomainname can be implemented by calling
1261  * uname()
1262  */
1263 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1264 {
1265 	int errno;
1266 	char tmp[__NEW_UTS_LEN];
1267 
1268 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1269 		return -EPERM;
1270 	if (len < 0 || len > __NEW_UTS_LEN)
1271 		return -EINVAL;
1272 
1273 	down_write(&uts_sem);
1274 	errno = -EFAULT;
1275 	if (!copy_from_user(tmp, name, len)) {
1276 		struct new_utsname *u = utsname();
1277 
1278 		memcpy(u->domainname, tmp, len);
1279 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1280 		errno = 0;
1281 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1282 	}
1283 	up_write(&uts_sem);
1284 	return errno;
1285 }
1286 
1287 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1288 {
1289 	struct rlimit value;
1290 	int ret;
1291 
1292 	ret = do_prlimit(current, resource, NULL, &value);
1293 	if (!ret)
1294 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1295 
1296 	return ret;
1297 }
1298 
1299 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1300 
1301 /*
1302  *	Back compatibility for getrlimit. Needed for some apps.
1303  */
1304 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1305 		struct rlimit __user *, rlim)
1306 {
1307 	struct rlimit x;
1308 	if (resource >= RLIM_NLIMITS)
1309 		return -EINVAL;
1310 
1311 	task_lock(current->group_leader);
1312 	x = current->signal->rlim[resource];
1313 	task_unlock(current->group_leader);
1314 	if (x.rlim_cur > 0x7FFFFFFF)
1315 		x.rlim_cur = 0x7FFFFFFF;
1316 	if (x.rlim_max > 0x7FFFFFFF)
1317 		x.rlim_max = 0x7FFFFFFF;
1318 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1319 }
1320 
1321 #endif
1322 
1323 static inline bool rlim64_is_infinity(__u64 rlim64)
1324 {
1325 #if BITS_PER_LONG < 64
1326 	return rlim64 >= ULONG_MAX;
1327 #else
1328 	return rlim64 == RLIM64_INFINITY;
1329 #endif
1330 }
1331 
1332 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1333 {
1334 	if (rlim->rlim_cur == RLIM_INFINITY)
1335 		rlim64->rlim_cur = RLIM64_INFINITY;
1336 	else
1337 		rlim64->rlim_cur = rlim->rlim_cur;
1338 	if (rlim->rlim_max == RLIM_INFINITY)
1339 		rlim64->rlim_max = RLIM64_INFINITY;
1340 	else
1341 		rlim64->rlim_max = rlim->rlim_max;
1342 }
1343 
1344 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1345 {
1346 	if (rlim64_is_infinity(rlim64->rlim_cur))
1347 		rlim->rlim_cur = RLIM_INFINITY;
1348 	else
1349 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1350 	if (rlim64_is_infinity(rlim64->rlim_max))
1351 		rlim->rlim_max = RLIM_INFINITY;
1352 	else
1353 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1354 }
1355 
1356 /* make sure you are allowed to change @tsk limits before calling this */
1357 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1358 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1359 {
1360 	struct rlimit *rlim;
1361 	int retval = 0;
1362 
1363 	if (resource >= RLIM_NLIMITS)
1364 		return -EINVAL;
1365 	if (new_rlim) {
1366 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1367 			return -EINVAL;
1368 		if (resource == RLIMIT_NOFILE &&
1369 				new_rlim->rlim_max > sysctl_nr_open)
1370 			return -EPERM;
1371 	}
1372 
1373 	/* protect tsk->signal and tsk->sighand from disappearing */
1374 	read_lock(&tasklist_lock);
1375 	if (!tsk->sighand) {
1376 		retval = -ESRCH;
1377 		goto out;
1378 	}
1379 
1380 	rlim = tsk->signal->rlim + resource;
1381 	task_lock(tsk->group_leader);
1382 	if (new_rlim) {
1383 		/* Keep the capable check against init_user_ns until
1384 		   cgroups can contain all limits */
1385 		if (new_rlim->rlim_max > rlim->rlim_max &&
1386 				!capable(CAP_SYS_RESOURCE))
1387 			retval = -EPERM;
1388 		if (!retval)
1389 			retval = security_task_setrlimit(tsk->group_leader,
1390 					resource, new_rlim);
1391 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1392 			/*
1393 			 * The caller is asking for an immediate RLIMIT_CPU
1394 			 * expiry.  But we use the zero value to mean "it was
1395 			 * never set".  So let's cheat and make it one second
1396 			 * instead
1397 			 */
1398 			new_rlim->rlim_cur = 1;
1399 		}
1400 	}
1401 	if (!retval) {
1402 		if (old_rlim)
1403 			*old_rlim = *rlim;
1404 		if (new_rlim)
1405 			*rlim = *new_rlim;
1406 	}
1407 	task_unlock(tsk->group_leader);
1408 
1409 	/*
1410 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1411 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1412 	 * very long-standing error, and fixing it now risks breakage of
1413 	 * applications, so we live with it
1414 	 */
1415 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1416 			 new_rlim->rlim_cur != RLIM_INFINITY)
1417 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1418 out:
1419 	read_unlock(&tasklist_lock);
1420 	return retval;
1421 }
1422 
1423 /* rcu lock must be held */
1424 static int check_prlimit_permission(struct task_struct *task)
1425 {
1426 	const struct cred *cred = current_cred(), *tcred;
1427 
1428 	if (current == task)
1429 		return 0;
1430 
1431 	tcred = __task_cred(task);
1432 	if (uid_eq(cred->uid, tcred->euid) &&
1433 	    uid_eq(cred->uid, tcred->suid) &&
1434 	    uid_eq(cred->uid, tcred->uid)  &&
1435 	    gid_eq(cred->gid, tcred->egid) &&
1436 	    gid_eq(cred->gid, tcred->sgid) &&
1437 	    gid_eq(cred->gid, tcred->gid))
1438 		return 0;
1439 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1440 		return 0;
1441 
1442 	return -EPERM;
1443 }
1444 
1445 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1446 		const struct rlimit64 __user *, new_rlim,
1447 		struct rlimit64 __user *, old_rlim)
1448 {
1449 	struct rlimit64 old64, new64;
1450 	struct rlimit old, new;
1451 	struct task_struct *tsk;
1452 	int ret;
1453 
1454 	if (new_rlim) {
1455 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1456 			return -EFAULT;
1457 		rlim64_to_rlim(&new64, &new);
1458 	}
1459 
1460 	rcu_read_lock();
1461 	tsk = pid ? find_task_by_vpid(pid) : current;
1462 	if (!tsk) {
1463 		rcu_read_unlock();
1464 		return -ESRCH;
1465 	}
1466 	ret = check_prlimit_permission(tsk);
1467 	if (ret) {
1468 		rcu_read_unlock();
1469 		return ret;
1470 	}
1471 	get_task_struct(tsk);
1472 	rcu_read_unlock();
1473 
1474 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1475 			old_rlim ? &old : NULL);
1476 
1477 	if (!ret && old_rlim) {
1478 		rlim_to_rlim64(&old, &old64);
1479 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1480 			ret = -EFAULT;
1481 	}
1482 
1483 	put_task_struct(tsk);
1484 	return ret;
1485 }
1486 
1487 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1488 {
1489 	struct rlimit new_rlim;
1490 
1491 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1492 		return -EFAULT;
1493 	return do_prlimit(current, resource, &new_rlim, NULL);
1494 }
1495 
1496 /*
1497  * It would make sense to put struct rusage in the task_struct,
1498  * except that would make the task_struct be *really big*.  After
1499  * task_struct gets moved into malloc'ed memory, it would
1500  * make sense to do this.  It will make moving the rest of the information
1501  * a lot simpler!  (Which we're not doing right now because we're not
1502  * measuring them yet).
1503  *
1504  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1505  * races with threads incrementing their own counters.  But since word
1506  * reads are atomic, we either get new values or old values and we don't
1507  * care which for the sums.  We always take the siglock to protect reading
1508  * the c* fields from p->signal from races with exit.c updating those
1509  * fields when reaping, so a sample either gets all the additions of a
1510  * given child after it's reaped, or none so this sample is before reaping.
1511  *
1512  * Locking:
1513  * We need to take the siglock for CHILDEREN, SELF and BOTH
1514  * for  the cases current multithreaded, non-current single threaded
1515  * non-current multithreaded.  Thread traversal is now safe with
1516  * the siglock held.
1517  * Strictly speaking, we donot need to take the siglock if we are current and
1518  * single threaded,  as no one else can take our signal_struct away, no one
1519  * else can  reap the  children to update signal->c* counters, and no one else
1520  * can race with the signal-> fields. If we do not take any lock, the
1521  * signal-> fields could be read out of order while another thread was just
1522  * exiting. So we should  place a read memory barrier when we avoid the lock.
1523  * On the writer side,  write memory barrier is implied in  __exit_signal
1524  * as __exit_signal releases  the siglock spinlock after updating the signal->
1525  * fields. But we don't do this yet to keep things simple.
1526  *
1527  */
1528 
1529 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1530 {
1531 	r->ru_nvcsw += t->nvcsw;
1532 	r->ru_nivcsw += t->nivcsw;
1533 	r->ru_minflt += t->min_flt;
1534 	r->ru_majflt += t->maj_flt;
1535 	r->ru_inblock += task_io_get_inblock(t);
1536 	r->ru_oublock += task_io_get_oublock(t);
1537 }
1538 
1539 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1540 {
1541 	struct task_struct *t;
1542 	unsigned long flags;
1543 	cputime_t tgutime, tgstime, utime, stime;
1544 	unsigned long maxrss = 0;
1545 
1546 	memset((char *)r, 0, sizeof (*r));
1547 	utime = stime = 0;
1548 
1549 	if (who == RUSAGE_THREAD) {
1550 		task_cputime_adjusted(current, &utime, &stime);
1551 		accumulate_thread_rusage(p, r);
1552 		maxrss = p->signal->maxrss;
1553 		goto out;
1554 	}
1555 
1556 	if (!lock_task_sighand(p, &flags))
1557 		return;
1558 
1559 	switch (who) {
1560 	case RUSAGE_BOTH:
1561 	case RUSAGE_CHILDREN:
1562 		utime = p->signal->cutime;
1563 		stime = p->signal->cstime;
1564 		r->ru_nvcsw = p->signal->cnvcsw;
1565 		r->ru_nivcsw = p->signal->cnivcsw;
1566 		r->ru_minflt = p->signal->cmin_flt;
1567 		r->ru_majflt = p->signal->cmaj_flt;
1568 		r->ru_inblock = p->signal->cinblock;
1569 		r->ru_oublock = p->signal->coublock;
1570 		maxrss = p->signal->cmaxrss;
1571 
1572 		if (who == RUSAGE_CHILDREN)
1573 			break;
1574 
1575 	case RUSAGE_SELF:
1576 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1577 		utime += tgutime;
1578 		stime += tgstime;
1579 		r->ru_nvcsw += p->signal->nvcsw;
1580 		r->ru_nivcsw += p->signal->nivcsw;
1581 		r->ru_minflt += p->signal->min_flt;
1582 		r->ru_majflt += p->signal->maj_flt;
1583 		r->ru_inblock += p->signal->inblock;
1584 		r->ru_oublock += p->signal->oublock;
1585 		if (maxrss < p->signal->maxrss)
1586 			maxrss = p->signal->maxrss;
1587 		t = p;
1588 		do {
1589 			accumulate_thread_rusage(t, r);
1590 		} while_each_thread(p, t);
1591 		break;
1592 
1593 	default:
1594 		BUG();
1595 	}
1596 	unlock_task_sighand(p, &flags);
1597 
1598 out:
1599 	cputime_to_timeval(utime, &r->ru_utime);
1600 	cputime_to_timeval(stime, &r->ru_stime);
1601 
1602 	if (who != RUSAGE_CHILDREN) {
1603 		struct mm_struct *mm = get_task_mm(p);
1604 
1605 		if (mm) {
1606 			setmax_mm_hiwater_rss(&maxrss, mm);
1607 			mmput(mm);
1608 		}
1609 	}
1610 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1611 }
1612 
1613 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1614 {
1615 	struct rusage r;
1616 
1617 	k_getrusage(p, who, &r);
1618 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1619 }
1620 
1621 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1622 {
1623 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1624 	    who != RUSAGE_THREAD)
1625 		return -EINVAL;
1626 	return getrusage(current, who, ru);
1627 }
1628 
1629 #ifdef CONFIG_COMPAT
1630 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1631 {
1632 	struct rusage r;
1633 
1634 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1635 	    who != RUSAGE_THREAD)
1636 		return -EINVAL;
1637 
1638 	k_getrusage(current, who, &r);
1639 	return put_compat_rusage(&r, ru);
1640 }
1641 #endif
1642 
1643 SYSCALL_DEFINE1(umask, int, mask)
1644 {
1645 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1646 	return mask;
1647 }
1648 
1649 static int prctl_set_mm_exe_file_locked(struct mm_struct *mm, unsigned int fd)
1650 {
1651 	struct fd exe;
1652 	struct inode *inode;
1653 	int err;
1654 
1655 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1656 
1657 	exe = fdget(fd);
1658 	if (!exe.file)
1659 		return -EBADF;
1660 
1661 	inode = file_inode(exe.file);
1662 
1663 	/*
1664 	 * Because the original mm->exe_file points to executable file, make
1665 	 * sure that this one is executable as well, to avoid breaking an
1666 	 * overall picture.
1667 	 */
1668 	err = -EACCES;
1669 	if (!S_ISREG(inode->i_mode)	||
1670 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1671 		goto exit;
1672 
1673 	err = inode_permission(inode, MAY_EXEC);
1674 	if (err)
1675 		goto exit;
1676 
1677 	/*
1678 	 * Forbid mm->exe_file change if old file still mapped.
1679 	 */
1680 	err = -EBUSY;
1681 	if (mm->exe_file) {
1682 		struct vm_area_struct *vma;
1683 
1684 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1685 			if (vma->vm_file &&
1686 			    path_equal(&vma->vm_file->f_path,
1687 				       &mm->exe_file->f_path))
1688 				goto exit;
1689 	}
1690 
1691 	/*
1692 	 * The symlink can be changed only once, just to disallow arbitrary
1693 	 * transitions malicious software might bring in. This means one
1694 	 * could make a snapshot over all processes running and monitor
1695 	 * /proc/pid/exe changes to notice unusual activity if needed.
1696 	 */
1697 	err = -EPERM;
1698 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1699 		goto exit;
1700 
1701 	err = 0;
1702 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1703 exit:
1704 	fdput(exe);
1705 	return err;
1706 }
1707 
1708 #ifdef CONFIG_CHECKPOINT_RESTORE
1709 /*
1710  * WARNING: we don't require any capability here so be very careful
1711  * in what is allowed for modification from userspace.
1712  */
1713 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1714 {
1715 	unsigned long mmap_max_addr = TASK_SIZE;
1716 	struct mm_struct *mm = current->mm;
1717 	int error = -EINVAL, i;
1718 
1719 	static const unsigned char offsets[] = {
1720 		offsetof(struct prctl_mm_map, start_code),
1721 		offsetof(struct prctl_mm_map, end_code),
1722 		offsetof(struct prctl_mm_map, start_data),
1723 		offsetof(struct prctl_mm_map, end_data),
1724 		offsetof(struct prctl_mm_map, start_brk),
1725 		offsetof(struct prctl_mm_map, brk),
1726 		offsetof(struct prctl_mm_map, start_stack),
1727 		offsetof(struct prctl_mm_map, arg_start),
1728 		offsetof(struct prctl_mm_map, arg_end),
1729 		offsetof(struct prctl_mm_map, env_start),
1730 		offsetof(struct prctl_mm_map, env_end),
1731 	};
1732 
1733 	/*
1734 	 * Make sure the members are not somewhere outside
1735 	 * of allowed address space.
1736 	 */
1737 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1738 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1739 
1740 		if ((unsigned long)val >= mmap_max_addr ||
1741 		    (unsigned long)val < mmap_min_addr)
1742 			goto out;
1743 	}
1744 
1745 	/*
1746 	 * Make sure the pairs are ordered.
1747 	 */
1748 #define __prctl_check_order(__m1, __op, __m2)				\
1749 	((unsigned long)prctl_map->__m1 __op				\
1750 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1751 	error  = __prctl_check_order(start_code, <, end_code);
1752 	error |= __prctl_check_order(start_data, <, end_data);
1753 	error |= __prctl_check_order(start_brk, <=, brk);
1754 	error |= __prctl_check_order(arg_start, <=, arg_end);
1755 	error |= __prctl_check_order(env_start, <=, env_end);
1756 	if (error)
1757 		goto out;
1758 #undef __prctl_check_order
1759 
1760 	error = -EINVAL;
1761 
1762 	/*
1763 	 * @brk should be after @end_data in traditional maps.
1764 	 */
1765 	if (prctl_map->start_brk <= prctl_map->end_data ||
1766 	    prctl_map->brk <= prctl_map->end_data)
1767 		goto out;
1768 
1769 	/*
1770 	 * Neither we should allow to override limits if they set.
1771 	 */
1772 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1773 			      prctl_map->start_brk, prctl_map->end_data,
1774 			      prctl_map->start_data))
1775 			goto out;
1776 
1777 	/*
1778 	 * Someone is trying to cheat the auxv vector.
1779 	 */
1780 	if (prctl_map->auxv_size) {
1781 		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1782 			goto out;
1783 	}
1784 
1785 	/*
1786 	 * Finally, make sure the caller has the rights to
1787 	 * change /proc/pid/exe link: only local root should
1788 	 * be allowed to.
1789 	 */
1790 	if (prctl_map->exe_fd != (u32)-1) {
1791 		struct user_namespace *ns = current_user_ns();
1792 		const struct cred *cred = current_cred();
1793 
1794 		if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1795 		    !gid_eq(cred->gid, make_kgid(ns, 0)))
1796 			goto out;
1797 	}
1798 
1799 	error = 0;
1800 out:
1801 	return error;
1802 }
1803 
1804 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1805 {
1806 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1807 	unsigned long user_auxv[AT_VECTOR_SIZE];
1808 	struct mm_struct *mm = current->mm;
1809 	int error;
1810 
1811 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1812 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1813 
1814 	if (opt == PR_SET_MM_MAP_SIZE)
1815 		return put_user((unsigned int)sizeof(prctl_map),
1816 				(unsigned int __user *)addr);
1817 
1818 	if (data_size != sizeof(prctl_map))
1819 		return -EINVAL;
1820 
1821 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1822 		return -EFAULT;
1823 
1824 	error = validate_prctl_map(&prctl_map);
1825 	if (error)
1826 		return error;
1827 
1828 	if (prctl_map.auxv_size) {
1829 		memset(user_auxv, 0, sizeof(user_auxv));
1830 		if (copy_from_user(user_auxv,
1831 				   (const void __user *)prctl_map.auxv,
1832 				   prctl_map.auxv_size))
1833 			return -EFAULT;
1834 
1835 		/* Last entry must be AT_NULL as specification requires */
1836 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1837 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1838 	}
1839 
1840 	down_write(&mm->mmap_sem);
1841 	if (prctl_map.exe_fd != (u32)-1)
1842 		error = prctl_set_mm_exe_file_locked(mm, prctl_map.exe_fd);
1843 	downgrade_write(&mm->mmap_sem);
1844 	if (error)
1845 		goto out;
1846 
1847 	/*
1848 	 * We don't validate if these members are pointing to
1849 	 * real present VMAs because application may have correspond
1850 	 * VMAs already unmapped and kernel uses these members for statistics
1851 	 * output in procfs mostly, except
1852 	 *
1853 	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
1854 	 *    for VMAs when updating these memvers so anything wrong written
1855 	 *    here cause kernel to swear at userspace program but won't lead
1856 	 *    to any problem in kernel itself
1857 	 */
1858 
1859 	mm->start_code	= prctl_map.start_code;
1860 	mm->end_code	= prctl_map.end_code;
1861 	mm->start_data	= prctl_map.start_data;
1862 	mm->end_data	= prctl_map.end_data;
1863 	mm->start_brk	= prctl_map.start_brk;
1864 	mm->brk		= prctl_map.brk;
1865 	mm->start_stack	= prctl_map.start_stack;
1866 	mm->arg_start	= prctl_map.arg_start;
1867 	mm->arg_end	= prctl_map.arg_end;
1868 	mm->env_start	= prctl_map.env_start;
1869 	mm->env_end	= prctl_map.env_end;
1870 
1871 	/*
1872 	 * Note this update of @saved_auxv is lockless thus
1873 	 * if someone reads this member in procfs while we're
1874 	 * updating -- it may get partly updated results. It's
1875 	 * known and acceptable trade off: we leave it as is to
1876 	 * not introduce additional locks here making the kernel
1877 	 * more complex.
1878 	 */
1879 	if (prctl_map.auxv_size)
1880 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1881 
1882 	error = 0;
1883 out:
1884 	up_read(&mm->mmap_sem);
1885 	return error;
1886 }
1887 #endif /* CONFIG_CHECKPOINT_RESTORE */
1888 
1889 static int prctl_set_mm(int opt, unsigned long addr,
1890 			unsigned long arg4, unsigned long arg5)
1891 {
1892 	struct mm_struct *mm = current->mm;
1893 	struct vm_area_struct *vma;
1894 	int error;
1895 
1896 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1897 			      opt != PR_SET_MM_MAP &&
1898 			      opt != PR_SET_MM_MAP_SIZE)))
1899 		return -EINVAL;
1900 
1901 #ifdef CONFIG_CHECKPOINT_RESTORE
1902 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1903 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1904 #endif
1905 
1906 	if (!capable(CAP_SYS_RESOURCE))
1907 		return -EPERM;
1908 
1909 	if (opt == PR_SET_MM_EXE_FILE) {
1910 		down_write(&mm->mmap_sem);
1911 		error = prctl_set_mm_exe_file_locked(mm, (unsigned int)addr);
1912 		up_write(&mm->mmap_sem);
1913 		return error;
1914 	}
1915 
1916 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1917 		return -EINVAL;
1918 
1919 	error = -EINVAL;
1920 
1921 	down_read(&mm->mmap_sem);
1922 	vma = find_vma(mm, addr);
1923 
1924 	switch (opt) {
1925 	case PR_SET_MM_START_CODE:
1926 		mm->start_code = addr;
1927 		break;
1928 	case PR_SET_MM_END_CODE:
1929 		mm->end_code = addr;
1930 		break;
1931 	case PR_SET_MM_START_DATA:
1932 		mm->start_data = addr;
1933 		break;
1934 	case PR_SET_MM_END_DATA:
1935 		mm->end_data = addr;
1936 		break;
1937 
1938 	case PR_SET_MM_START_BRK:
1939 		if (addr <= mm->end_data)
1940 			goto out;
1941 
1942 		if (check_data_rlimit(rlimit(RLIMIT_DATA), mm->brk, addr,
1943 				      mm->end_data, mm->start_data))
1944 			goto out;
1945 
1946 		mm->start_brk = addr;
1947 		break;
1948 
1949 	case PR_SET_MM_BRK:
1950 		if (addr <= mm->end_data)
1951 			goto out;
1952 
1953 		if (check_data_rlimit(rlimit(RLIMIT_DATA), addr, mm->start_brk,
1954 				      mm->end_data, mm->start_data))
1955 			goto out;
1956 
1957 		mm->brk = addr;
1958 		break;
1959 
1960 	/*
1961 	 * If command line arguments and environment
1962 	 * are placed somewhere else on stack, we can
1963 	 * set them up here, ARG_START/END to setup
1964 	 * command line argumets and ENV_START/END
1965 	 * for environment.
1966 	 */
1967 	case PR_SET_MM_START_STACK:
1968 	case PR_SET_MM_ARG_START:
1969 	case PR_SET_MM_ARG_END:
1970 	case PR_SET_MM_ENV_START:
1971 	case PR_SET_MM_ENV_END:
1972 		if (!vma) {
1973 			error = -EFAULT;
1974 			goto out;
1975 		}
1976 		if (opt == PR_SET_MM_START_STACK)
1977 			mm->start_stack = addr;
1978 		else if (opt == PR_SET_MM_ARG_START)
1979 			mm->arg_start = addr;
1980 		else if (opt == PR_SET_MM_ARG_END)
1981 			mm->arg_end = addr;
1982 		else if (opt == PR_SET_MM_ENV_START)
1983 			mm->env_start = addr;
1984 		else if (opt == PR_SET_MM_ENV_END)
1985 			mm->env_end = addr;
1986 		break;
1987 
1988 	/*
1989 	 * This doesn't move auxiliary vector itself
1990 	 * since it's pinned to mm_struct, but allow
1991 	 * to fill vector with new values. It's up
1992 	 * to a caller to provide sane values here
1993 	 * otherwise user space tools which use this
1994 	 * vector might be unhappy.
1995 	 */
1996 	case PR_SET_MM_AUXV: {
1997 		unsigned long user_auxv[AT_VECTOR_SIZE];
1998 
1999 		if (arg4 > sizeof(user_auxv))
2000 			goto out;
2001 		up_read(&mm->mmap_sem);
2002 
2003 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2004 			return -EFAULT;
2005 
2006 		/* Make sure the last entry is always AT_NULL */
2007 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
2008 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
2009 
2010 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2011 
2012 		task_lock(current);
2013 		memcpy(mm->saved_auxv, user_auxv, arg4);
2014 		task_unlock(current);
2015 
2016 		return 0;
2017 	}
2018 	default:
2019 		goto out;
2020 	}
2021 
2022 	error = 0;
2023 out:
2024 	up_read(&mm->mmap_sem);
2025 	return error;
2026 }
2027 
2028 #ifdef CONFIG_CHECKPOINT_RESTORE
2029 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2030 {
2031 	return put_user(me->clear_child_tid, tid_addr);
2032 }
2033 #else
2034 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2035 {
2036 	return -EINVAL;
2037 }
2038 #endif
2039 
2040 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2041 		unsigned long, arg4, unsigned long, arg5)
2042 {
2043 	struct task_struct *me = current;
2044 	unsigned char comm[sizeof(me->comm)];
2045 	long error;
2046 
2047 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2048 	if (error != -ENOSYS)
2049 		return error;
2050 
2051 	error = 0;
2052 	switch (option) {
2053 	case PR_SET_PDEATHSIG:
2054 		if (!valid_signal(arg2)) {
2055 			error = -EINVAL;
2056 			break;
2057 		}
2058 		me->pdeath_signal = arg2;
2059 		break;
2060 	case PR_GET_PDEATHSIG:
2061 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2062 		break;
2063 	case PR_GET_DUMPABLE:
2064 		error = get_dumpable(me->mm);
2065 		break;
2066 	case PR_SET_DUMPABLE:
2067 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2068 			error = -EINVAL;
2069 			break;
2070 		}
2071 		set_dumpable(me->mm, arg2);
2072 		break;
2073 
2074 	case PR_SET_UNALIGN:
2075 		error = SET_UNALIGN_CTL(me, arg2);
2076 		break;
2077 	case PR_GET_UNALIGN:
2078 		error = GET_UNALIGN_CTL(me, arg2);
2079 		break;
2080 	case PR_SET_FPEMU:
2081 		error = SET_FPEMU_CTL(me, arg2);
2082 		break;
2083 	case PR_GET_FPEMU:
2084 		error = GET_FPEMU_CTL(me, arg2);
2085 		break;
2086 	case PR_SET_FPEXC:
2087 		error = SET_FPEXC_CTL(me, arg2);
2088 		break;
2089 	case PR_GET_FPEXC:
2090 		error = GET_FPEXC_CTL(me, arg2);
2091 		break;
2092 	case PR_GET_TIMING:
2093 		error = PR_TIMING_STATISTICAL;
2094 		break;
2095 	case PR_SET_TIMING:
2096 		if (arg2 != PR_TIMING_STATISTICAL)
2097 			error = -EINVAL;
2098 		break;
2099 	case PR_SET_NAME:
2100 		comm[sizeof(me->comm) - 1] = 0;
2101 		if (strncpy_from_user(comm, (char __user *)arg2,
2102 				      sizeof(me->comm) - 1) < 0)
2103 			return -EFAULT;
2104 		set_task_comm(me, comm);
2105 		proc_comm_connector(me);
2106 		break;
2107 	case PR_GET_NAME:
2108 		get_task_comm(comm, me);
2109 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2110 			return -EFAULT;
2111 		break;
2112 	case PR_GET_ENDIAN:
2113 		error = GET_ENDIAN(me, arg2);
2114 		break;
2115 	case PR_SET_ENDIAN:
2116 		error = SET_ENDIAN(me, arg2);
2117 		break;
2118 	case PR_GET_SECCOMP:
2119 		error = prctl_get_seccomp();
2120 		break;
2121 	case PR_SET_SECCOMP:
2122 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2123 		break;
2124 	case PR_GET_TSC:
2125 		error = GET_TSC_CTL(arg2);
2126 		break;
2127 	case PR_SET_TSC:
2128 		error = SET_TSC_CTL(arg2);
2129 		break;
2130 	case PR_TASK_PERF_EVENTS_DISABLE:
2131 		error = perf_event_task_disable();
2132 		break;
2133 	case PR_TASK_PERF_EVENTS_ENABLE:
2134 		error = perf_event_task_enable();
2135 		break;
2136 	case PR_GET_TIMERSLACK:
2137 		error = current->timer_slack_ns;
2138 		break;
2139 	case PR_SET_TIMERSLACK:
2140 		if (arg2 <= 0)
2141 			current->timer_slack_ns =
2142 					current->default_timer_slack_ns;
2143 		else
2144 			current->timer_slack_ns = arg2;
2145 		break;
2146 	case PR_MCE_KILL:
2147 		if (arg4 | arg5)
2148 			return -EINVAL;
2149 		switch (arg2) {
2150 		case PR_MCE_KILL_CLEAR:
2151 			if (arg3 != 0)
2152 				return -EINVAL;
2153 			current->flags &= ~PF_MCE_PROCESS;
2154 			break;
2155 		case PR_MCE_KILL_SET:
2156 			current->flags |= PF_MCE_PROCESS;
2157 			if (arg3 == PR_MCE_KILL_EARLY)
2158 				current->flags |= PF_MCE_EARLY;
2159 			else if (arg3 == PR_MCE_KILL_LATE)
2160 				current->flags &= ~PF_MCE_EARLY;
2161 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2162 				current->flags &=
2163 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2164 			else
2165 				return -EINVAL;
2166 			break;
2167 		default:
2168 			return -EINVAL;
2169 		}
2170 		break;
2171 	case PR_MCE_KILL_GET:
2172 		if (arg2 | arg3 | arg4 | arg5)
2173 			return -EINVAL;
2174 		if (current->flags & PF_MCE_PROCESS)
2175 			error = (current->flags & PF_MCE_EARLY) ?
2176 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2177 		else
2178 			error = PR_MCE_KILL_DEFAULT;
2179 		break;
2180 	case PR_SET_MM:
2181 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2182 		break;
2183 	case PR_GET_TID_ADDRESS:
2184 		error = prctl_get_tid_address(me, (int __user **)arg2);
2185 		break;
2186 	case PR_SET_CHILD_SUBREAPER:
2187 		me->signal->is_child_subreaper = !!arg2;
2188 		break;
2189 	case PR_GET_CHILD_SUBREAPER:
2190 		error = put_user(me->signal->is_child_subreaper,
2191 				 (int __user *)arg2);
2192 		break;
2193 	case PR_SET_NO_NEW_PRIVS:
2194 		if (arg2 != 1 || arg3 || arg4 || arg5)
2195 			return -EINVAL;
2196 
2197 		task_set_no_new_privs(current);
2198 		break;
2199 	case PR_GET_NO_NEW_PRIVS:
2200 		if (arg2 || arg3 || arg4 || arg5)
2201 			return -EINVAL;
2202 		return task_no_new_privs(current) ? 1 : 0;
2203 	case PR_GET_THP_DISABLE:
2204 		if (arg2 || arg3 || arg4 || arg5)
2205 			return -EINVAL;
2206 		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2207 		break;
2208 	case PR_SET_THP_DISABLE:
2209 		if (arg3 || arg4 || arg5)
2210 			return -EINVAL;
2211 		down_write(&me->mm->mmap_sem);
2212 		if (arg2)
2213 			me->mm->def_flags |= VM_NOHUGEPAGE;
2214 		else
2215 			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2216 		up_write(&me->mm->mmap_sem);
2217 		break;
2218 	case PR_MPX_ENABLE_MANAGEMENT:
2219 		if (arg2 || arg3 || arg4 || arg5)
2220 			return -EINVAL;
2221 		error = MPX_ENABLE_MANAGEMENT(me);
2222 		break;
2223 	case PR_MPX_DISABLE_MANAGEMENT:
2224 		if (arg2 || arg3 || arg4 || arg5)
2225 			return -EINVAL;
2226 		error = MPX_DISABLE_MANAGEMENT(me);
2227 		break;
2228 	case PR_SET_FP_MODE:
2229 		error = SET_FP_MODE(me, arg2);
2230 		break;
2231 	case PR_GET_FP_MODE:
2232 		error = GET_FP_MODE(me);
2233 		break;
2234 	default:
2235 		error = -EINVAL;
2236 		break;
2237 	}
2238 	return error;
2239 }
2240 
2241 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2242 		struct getcpu_cache __user *, unused)
2243 {
2244 	int err = 0;
2245 	int cpu = raw_smp_processor_id();
2246 
2247 	if (cpup)
2248 		err |= put_user(cpu, cpup);
2249 	if (nodep)
2250 		err |= put_user(cpu_to_node(cpu), nodep);
2251 	return err ? -EFAULT : 0;
2252 }
2253 
2254 /**
2255  * do_sysinfo - fill in sysinfo struct
2256  * @info: pointer to buffer to fill
2257  */
2258 static int do_sysinfo(struct sysinfo *info)
2259 {
2260 	unsigned long mem_total, sav_total;
2261 	unsigned int mem_unit, bitcount;
2262 	struct timespec tp;
2263 
2264 	memset(info, 0, sizeof(struct sysinfo));
2265 
2266 	get_monotonic_boottime(&tp);
2267 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2268 
2269 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2270 
2271 	info->procs = nr_threads;
2272 
2273 	si_meminfo(info);
2274 	si_swapinfo(info);
2275 
2276 	/*
2277 	 * If the sum of all the available memory (i.e. ram + swap)
2278 	 * is less than can be stored in a 32 bit unsigned long then
2279 	 * we can be binary compatible with 2.2.x kernels.  If not,
2280 	 * well, in that case 2.2.x was broken anyways...
2281 	 *
2282 	 *  -Erik Andersen <andersee@debian.org>
2283 	 */
2284 
2285 	mem_total = info->totalram + info->totalswap;
2286 	if (mem_total < info->totalram || mem_total < info->totalswap)
2287 		goto out;
2288 	bitcount = 0;
2289 	mem_unit = info->mem_unit;
2290 	while (mem_unit > 1) {
2291 		bitcount++;
2292 		mem_unit >>= 1;
2293 		sav_total = mem_total;
2294 		mem_total <<= 1;
2295 		if (mem_total < sav_total)
2296 			goto out;
2297 	}
2298 
2299 	/*
2300 	 * If mem_total did not overflow, multiply all memory values by
2301 	 * info->mem_unit and set it to 1.  This leaves things compatible
2302 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2303 	 * kernels...
2304 	 */
2305 
2306 	info->mem_unit = 1;
2307 	info->totalram <<= bitcount;
2308 	info->freeram <<= bitcount;
2309 	info->sharedram <<= bitcount;
2310 	info->bufferram <<= bitcount;
2311 	info->totalswap <<= bitcount;
2312 	info->freeswap <<= bitcount;
2313 	info->totalhigh <<= bitcount;
2314 	info->freehigh <<= bitcount;
2315 
2316 out:
2317 	return 0;
2318 }
2319 
2320 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2321 {
2322 	struct sysinfo val;
2323 
2324 	do_sysinfo(&val);
2325 
2326 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2327 		return -EFAULT;
2328 
2329 	return 0;
2330 }
2331 
2332 #ifdef CONFIG_COMPAT
2333 struct compat_sysinfo {
2334 	s32 uptime;
2335 	u32 loads[3];
2336 	u32 totalram;
2337 	u32 freeram;
2338 	u32 sharedram;
2339 	u32 bufferram;
2340 	u32 totalswap;
2341 	u32 freeswap;
2342 	u16 procs;
2343 	u16 pad;
2344 	u32 totalhigh;
2345 	u32 freehigh;
2346 	u32 mem_unit;
2347 	char _f[20-2*sizeof(u32)-sizeof(int)];
2348 };
2349 
2350 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2351 {
2352 	struct sysinfo s;
2353 
2354 	do_sysinfo(&s);
2355 
2356 	/* Check to see if any memory value is too large for 32-bit and scale
2357 	 *  down if needed
2358 	 */
2359 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2360 		int bitcount = 0;
2361 
2362 		while (s.mem_unit < PAGE_SIZE) {
2363 			s.mem_unit <<= 1;
2364 			bitcount++;
2365 		}
2366 
2367 		s.totalram >>= bitcount;
2368 		s.freeram >>= bitcount;
2369 		s.sharedram >>= bitcount;
2370 		s.bufferram >>= bitcount;
2371 		s.totalswap >>= bitcount;
2372 		s.freeswap >>= bitcount;
2373 		s.totalhigh >>= bitcount;
2374 		s.freehigh >>= bitcount;
2375 	}
2376 
2377 	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2378 	    __put_user(s.uptime, &info->uptime) ||
2379 	    __put_user(s.loads[0], &info->loads[0]) ||
2380 	    __put_user(s.loads[1], &info->loads[1]) ||
2381 	    __put_user(s.loads[2], &info->loads[2]) ||
2382 	    __put_user(s.totalram, &info->totalram) ||
2383 	    __put_user(s.freeram, &info->freeram) ||
2384 	    __put_user(s.sharedram, &info->sharedram) ||
2385 	    __put_user(s.bufferram, &info->bufferram) ||
2386 	    __put_user(s.totalswap, &info->totalswap) ||
2387 	    __put_user(s.freeswap, &info->freeswap) ||
2388 	    __put_user(s.procs, &info->procs) ||
2389 	    __put_user(s.totalhigh, &info->totalhigh) ||
2390 	    __put_user(s.freehigh, &info->freehigh) ||
2391 	    __put_user(s.mem_unit, &info->mem_unit))
2392 		return -EFAULT;
2393 
2394 	return 0;
2395 }
2396 #endif /* CONFIG_COMPAT */
2397