xref: /openbmc/linux/kernel/sys.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/unistd.h>
49 
50 #ifndef SET_UNALIGN_CTL
51 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef GET_UNALIGN_CTL
54 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef SET_FPEMU_CTL
57 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef GET_FPEMU_CTL
60 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef SET_FPEXC_CTL
63 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef GET_FPEXC_CTL
66 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_ENDIAN
69 # define GET_ENDIAN(a,b)	(-EINVAL)
70 #endif
71 #ifndef SET_ENDIAN
72 # define SET_ENDIAN(a,b)	(-EINVAL)
73 #endif
74 #ifndef GET_TSC_CTL
75 # define GET_TSC_CTL(a)		(-EINVAL)
76 #endif
77 #ifndef SET_TSC_CTL
78 # define SET_TSC_CTL(a)		(-EINVAL)
79 #endif
80 
81 /*
82  * this is where the system-wide overflow UID and GID are defined, for
83  * architectures that now have 32-bit UID/GID but didn't in the past
84  */
85 
86 int overflowuid = DEFAULT_OVERFLOWUID;
87 int overflowgid = DEFAULT_OVERFLOWGID;
88 
89 #ifdef CONFIG_UID16
90 EXPORT_SYMBOL(overflowuid);
91 EXPORT_SYMBOL(overflowgid);
92 #endif
93 
94 /*
95  * the same as above, but for filesystems which can only store a 16-bit
96  * UID and GID. as such, this is needed on all architectures
97  */
98 
99 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
100 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
101 
102 EXPORT_SYMBOL(fs_overflowuid);
103 EXPORT_SYMBOL(fs_overflowgid);
104 
105 /*
106  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107  */
108 
109 int C_A_D = 1;
110 struct pid *cad_pid;
111 EXPORT_SYMBOL(cad_pid);
112 
113 /*
114  * If set, this is used for preparing the system to power off.
115  */
116 
117 void (*pm_power_off_prepare)(void);
118 
119 /*
120  * set the priority of a task
121  * - the caller must hold the RCU read lock
122  */
123 static int set_one_prio(struct task_struct *p, int niceval, int error)
124 {
125 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126 	int no_nice;
127 
128 	if (pcred->uid  != cred->euid &&
129 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
130 		error = -EPERM;
131 		goto out;
132 	}
133 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
134 		error = -EACCES;
135 		goto out;
136 	}
137 	no_nice = security_task_setnice(p, niceval);
138 	if (no_nice) {
139 		error = no_nice;
140 		goto out;
141 	}
142 	if (error == -ESRCH)
143 		error = 0;
144 	set_user_nice(p, niceval);
145 out:
146 	return error;
147 }
148 
149 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
150 {
151 	struct task_struct *g, *p;
152 	struct user_struct *user;
153 	const struct cred *cred = current_cred();
154 	int error = -EINVAL;
155 	struct pid *pgrp;
156 
157 	if (which > PRIO_USER || which < PRIO_PROCESS)
158 		goto out;
159 
160 	/* normalize: avoid signed division (rounding problems) */
161 	error = -ESRCH;
162 	if (niceval < -20)
163 		niceval = -20;
164 	if (niceval > 19)
165 		niceval = 19;
166 
167 	rcu_read_lock();
168 	read_lock(&tasklist_lock);
169 	switch (which) {
170 		case PRIO_PROCESS:
171 			if (who)
172 				p = find_task_by_vpid(who);
173 			else
174 				p = current;
175 			if (p)
176 				error = set_one_prio(p, niceval, error);
177 			break;
178 		case PRIO_PGRP:
179 			if (who)
180 				pgrp = find_vpid(who);
181 			else
182 				pgrp = task_pgrp(current);
183 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
184 				error = set_one_prio(p, niceval, error);
185 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
186 			break;
187 		case PRIO_USER:
188 			user = (struct user_struct *) cred->user;
189 			if (!who)
190 				who = cred->uid;
191 			else if ((who != cred->uid) &&
192 				 !(user = find_user(who)))
193 				goto out_unlock;	/* No processes for this user */
194 
195 			do_each_thread(g, p) {
196 				if (__task_cred(p)->uid == who)
197 					error = set_one_prio(p, niceval, error);
198 			} while_each_thread(g, p);
199 			if (who != cred->uid)
200 				free_uid(user);		/* For find_user() */
201 			break;
202 	}
203 out_unlock:
204 	read_unlock(&tasklist_lock);
205 	rcu_read_unlock();
206 out:
207 	return error;
208 }
209 
210 /*
211  * Ugh. To avoid negative return values, "getpriority()" will
212  * not return the normal nice-value, but a negated value that
213  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
214  * to stay compatible.
215  */
216 SYSCALL_DEFINE2(getpriority, int, which, int, who)
217 {
218 	struct task_struct *g, *p;
219 	struct user_struct *user;
220 	const struct cred *cred = current_cred();
221 	long niceval, retval = -ESRCH;
222 	struct pid *pgrp;
223 
224 	if (which > PRIO_USER || which < PRIO_PROCESS)
225 		return -EINVAL;
226 
227 	rcu_read_lock();
228 	read_lock(&tasklist_lock);
229 	switch (which) {
230 		case PRIO_PROCESS:
231 			if (who)
232 				p = find_task_by_vpid(who);
233 			else
234 				p = current;
235 			if (p) {
236 				niceval = 20 - task_nice(p);
237 				if (niceval > retval)
238 					retval = niceval;
239 			}
240 			break;
241 		case PRIO_PGRP:
242 			if (who)
243 				pgrp = find_vpid(who);
244 			else
245 				pgrp = task_pgrp(current);
246 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247 				niceval = 20 - task_nice(p);
248 				if (niceval > retval)
249 					retval = niceval;
250 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
251 			break;
252 		case PRIO_USER:
253 			user = (struct user_struct *) cred->user;
254 			if (!who)
255 				who = cred->uid;
256 			else if ((who != cred->uid) &&
257 				 !(user = find_user(who)))
258 				goto out_unlock;	/* No processes for this user */
259 
260 			do_each_thread(g, p) {
261 				if (__task_cred(p)->uid == who) {
262 					niceval = 20 - task_nice(p);
263 					if (niceval > retval)
264 						retval = niceval;
265 				}
266 			} while_each_thread(g, p);
267 			if (who != cred->uid)
268 				free_uid(user);		/* for find_user() */
269 			break;
270 	}
271 out_unlock:
272 	read_unlock(&tasklist_lock);
273 	rcu_read_unlock();
274 
275 	return retval;
276 }
277 
278 /**
279  *	emergency_restart - reboot the system
280  *
281  *	Without shutting down any hardware or taking any locks
282  *	reboot the system.  This is called when we know we are in
283  *	trouble so this is our best effort to reboot.  This is
284  *	safe to call in interrupt context.
285  */
286 void emergency_restart(void)
287 {
288 	machine_emergency_restart();
289 }
290 EXPORT_SYMBOL_GPL(emergency_restart);
291 
292 void kernel_restart_prepare(char *cmd)
293 {
294 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
295 	system_state = SYSTEM_RESTART;
296 	device_shutdown();
297 	sysdev_shutdown();
298 }
299 
300 /**
301  *	kernel_restart - reboot the system
302  *	@cmd: pointer to buffer containing command to execute for restart
303  *		or %NULL
304  *
305  *	Shutdown everything and perform a clean reboot.
306  *	This is not safe to call in interrupt context.
307  */
308 void kernel_restart(char *cmd)
309 {
310 	kernel_restart_prepare(cmd);
311 	if (!cmd)
312 		printk(KERN_EMERG "Restarting system.\n");
313 	else
314 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
315 	machine_restart(cmd);
316 }
317 EXPORT_SYMBOL_GPL(kernel_restart);
318 
319 static void kernel_shutdown_prepare(enum system_states state)
320 {
321 	blocking_notifier_call_chain(&reboot_notifier_list,
322 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
323 	system_state = state;
324 	device_shutdown();
325 }
326 /**
327  *	kernel_halt - halt the system
328  *
329  *	Shutdown everything and perform a clean system halt.
330  */
331 void kernel_halt(void)
332 {
333 	kernel_shutdown_prepare(SYSTEM_HALT);
334 	sysdev_shutdown();
335 	printk(KERN_EMERG "System halted.\n");
336 	machine_halt();
337 }
338 
339 EXPORT_SYMBOL_GPL(kernel_halt);
340 
341 /**
342  *	kernel_power_off - power_off the system
343  *
344  *	Shutdown everything and perform a clean system power_off.
345  */
346 void kernel_power_off(void)
347 {
348 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
349 	if (pm_power_off_prepare)
350 		pm_power_off_prepare();
351 	disable_nonboot_cpus();
352 	sysdev_shutdown();
353 	printk(KERN_EMERG "Power down.\n");
354 	machine_power_off();
355 }
356 EXPORT_SYMBOL_GPL(kernel_power_off);
357 
358 static DEFINE_MUTEX(reboot_mutex);
359 
360 /*
361  * Reboot system call: for obvious reasons only root may call it,
362  * and even root needs to set up some magic numbers in the registers
363  * so that some mistake won't make this reboot the whole machine.
364  * You can also set the meaning of the ctrl-alt-del-key here.
365  *
366  * reboot doesn't sync: do that yourself before calling this.
367  */
368 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
369 		void __user *, arg)
370 {
371 	char buffer[256];
372 	int ret = 0;
373 
374 	/* We only trust the superuser with rebooting the system. */
375 	if (!capable(CAP_SYS_BOOT))
376 		return -EPERM;
377 
378 	/* For safety, we require "magic" arguments. */
379 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
380 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
381 	                magic2 != LINUX_REBOOT_MAGIC2A &&
382 			magic2 != LINUX_REBOOT_MAGIC2B &&
383 	                magic2 != LINUX_REBOOT_MAGIC2C))
384 		return -EINVAL;
385 
386 	/* Instead of trying to make the power_off code look like
387 	 * halt when pm_power_off is not set do it the easy way.
388 	 */
389 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
390 		cmd = LINUX_REBOOT_CMD_HALT;
391 
392 	mutex_lock(&reboot_mutex);
393 	switch (cmd) {
394 	case LINUX_REBOOT_CMD_RESTART:
395 		kernel_restart(NULL);
396 		break;
397 
398 	case LINUX_REBOOT_CMD_CAD_ON:
399 		C_A_D = 1;
400 		break;
401 
402 	case LINUX_REBOOT_CMD_CAD_OFF:
403 		C_A_D = 0;
404 		break;
405 
406 	case LINUX_REBOOT_CMD_HALT:
407 		kernel_halt();
408 		do_exit(0);
409 		panic("cannot halt");
410 
411 	case LINUX_REBOOT_CMD_POWER_OFF:
412 		kernel_power_off();
413 		do_exit(0);
414 		break;
415 
416 	case LINUX_REBOOT_CMD_RESTART2:
417 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
418 			ret = -EFAULT;
419 			break;
420 		}
421 		buffer[sizeof(buffer) - 1] = '\0';
422 
423 		kernel_restart(buffer);
424 		break;
425 
426 #ifdef CONFIG_KEXEC
427 	case LINUX_REBOOT_CMD_KEXEC:
428 		ret = kernel_kexec();
429 		break;
430 #endif
431 
432 #ifdef CONFIG_HIBERNATION
433 	case LINUX_REBOOT_CMD_SW_SUSPEND:
434 		ret = hibernate();
435 		break;
436 #endif
437 
438 	default:
439 		ret = -EINVAL;
440 		break;
441 	}
442 	mutex_unlock(&reboot_mutex);
443 	return ret;
444 }
445 
446 static void deferred_cad(struct work_struct *dummy)
447 {
448 	kernel_restart(NULL);
449 }
450 
451 /*
452  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
453  * As it's called within an interrupt, it may NOT sync: the only choice
454  * is whether to reboot at once, or just ignore the ctrl-alt-del.
455  */
456 void ctrl_alt_del(void)
457 {
458 	static DECLARE_WORK(cad_work, deferred_cad);
459 
460 	if (C_A_D)
461 		schedule_work(&cad_work);
462 	else
463 		kill_cad_pid(SIGINT, 1);
464 }
465 
466 /*
467  * Unprivileged users may change the real gid to the effective gid
468  * or vice versa.  (BSD-style)
469  *
470  * If you set the real gid at all, or set the effective gid to a value not
471  * equal to the real gid, then the saved gid is set to the new effective gid.
472  *
473  * This makes it possible for a setgid program to completely drop its
474  * privileges, which is often a useful assertion to make when you are doing
475  * a security audit over a program.
476  *
477  * The general idea is that a program which uses just setregid() will be
478  * 100% compatible with BSD.  A program which uses just setgid() will be
479  * 100% compatible with POSIX with saved IDs.
480  *
481  * SMP: There are not races, the GIDs are checked only by filesystem
482  *      operations (as far as semantic preservation is concerned).
483  */
484 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
485 {
486 	const struct cred *old;
487 	struct cred *new;
488 	int retval;
489 
490 	new = prepare_creds();
491 	if (!new)
492 		return -ENOMEM;
493 	old = current_cred();
494 
495 	retval = -EPERM;
496 	if (rgid != (gid_t) -1) {
497 		if (old->gid == rgid ||
498 		    old->egid == rgid ||
499 		    capable(CAP_SETGID))
500 			new->gid = rgid;
501 		else
502 			goto error;
503 	}
504 	if (egid != (gid_t) -1) {
505 		if (old->gid == egid ||
506 		    old->egid == egid ||
507 		    old->sgid == egid ||
508 		    capable(CAP_SETGID))
509 			new->egid = egid;
510 		else
511 			goto error;
512 	}
513 
514 	if (rgid != (gid_t) -1 ||
515 	    (egid != (gid_t) -1 && egid != old->gid))
516 		new->sgid = new->egid;
517 	new->fsgid = new->egid;
518 
519 	return commit_creds(new);
520 
521 error:
522 	abort_creds(new);
523 	return retval;
524 }
525 
526 /*
527  * setgid() is implemented like SysV w/ SAVED_IDS
528  *
529  * SMP: Same implicit races as above.
530  */
531 SYSCALL_DEFINE1(setgid, gid_t, gid)
532 {
533 	const struct cred *old;
534 	struct cred *new;
535 	int retval;
536 
537 	new = prepare_creds();
538 	if (!new)
539 		return -ENOMEM;
540 	old = current_cred();
541 
542 	retval = -EPERM;
543 	if (capable(CAP_SETGID))
544 		new->gid = new->egid = new->sgid = new->fsgid = gid;
545 	else if (gid == old->gid || gid == old->sgid)
546 		new->egid = new->fsgid = gid;
547 	else
548 		goto error;
549 
550 	return commit_creds(new);
551 
552 error:
553 	abort_creds(new);
554 	return retval;
555 }
556 
557 /*
558  * change the user struct in a credentials set to match the new UID
559  */
560 static int set_user(struct cred *new)
561 {
562 	struct user_struct *new_user;
563 
564 	new_user = alloc_uid(current_user_ns(), new->uid);
565 	if (!new_user)
566 		return -EAGAIN;
567 
568 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
569 			new_user != INIT_USER) {
570 		free_uid(new_user);
571 		return -EAGAIN;
572 	}
573 
574 	free_uid(new->user);
575 	new->user = new_user;
576 	return 0;
577 }
578 
579 /*
580  * Unprivileged users may change the real uid to the effective uid
581  * or vice versa.  (BSD-style)
582  *
583  * If you set the real uid at all, or set the effective uid to a value not
584  * equal to the real uid, then the saved uid is set to the new effective uid.
585  *
586  * This makes it possible for a setuid program to completely drop its
587  * privileges, which is often a useful assertion to make when you are doing
588  * a security audit over a program.
589  *
590  * The general idea is that a program which uses just setreuid() will be
591  * 100% compatible with BSD.  A program which uses just setuid() will be
592  * 100% compatible with POSIX with saved IDs.
593  */
594 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595 {
596 	const struct cred *old;
597 	struct cred *new;
598 	int retval;
599 
600 	new = prepare_creds();
601 	if (!new)
602 		return -ENOMEM;
603 	old = current_cred();
604 
605 	retval = -EPERM;
606 	if (ruid != (uid_t) -1) {
607 		new->uid = ruid;
608 		if (old->uid != ruid &&
609 		    old->euid != ruid &&
610 		    !capable(CAP_SETUID))
611 			goto error;
612 	}
613 
614 	if (euid != (uid_t) -1) {
615 		new->euid = euid;
616 		if (old->uid != euid &&
617 		    old->euid != euid &&
618 		    old->suid != euid &&
619 		    !capable(CAP_SETUID))
620 			goto error;
621 	}
622 
623 	if (new->uid != old->uid) {
624 		retval = set_user(new);
625 		if (retval < 0)
626 			goto error;
627 	}
628 	if (ruid != (uid_t) -1 ||
629 	    (euid != (uid_t) -1 && euid != old->uid))
630 		new->suid = new->euid;
631 	new->fsuid = new->euid;
632 
633 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
634 	if (retval < 0)
635 		goto error;
636 
637 	return commit_creds(new);
638 
639 error:
640 	abort_creds(new);
641 	return retval;
642 }
643 
644 /*
645  * setuid() is implemented like SysV with SAVED_IDS
646  *
647  * Note that SAVED_ID's is deficient in that a setuid root program
648  * like sendmail, for example, cannot set its uid to be a normal
649  * user and then switch back, because if you're root, setuid() sets
650  * the saved uid too.  If you don't like this, blame the bright people
651  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
652  * will allow a root program to temporarily drop privileges and be able to
653  * regain them by swapping the real and effective uid.
654  */
655 SYSCALL_DEFINE1(setuid, uid_t, uid)
656 {
657 	const struct cred *old;
658 	struct cred *new;
659 	int retval;
660 
661 	new = prepare_creds();
662 	if (!new)
663 		return -ENOMEM;
664 	old = current_cred();
665 
666 	retval = -EPERM;
667 	if (capable(CAP_SETUID)) {
668 		new->suid = new->uid = uid;
669 		if (uid != old->uid) {
670 			retval = set_user(new);
671 			if (retval < 0)
672 				goto error;
673 		}
674 	} else if (uid != old->uid && uid != new->suid) {
675 		goto error;
676 	}
677 
678 	new->fsuid = new->euid = uid;
679 
680 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
681 	if (retval < 0)
682 		goto error;
683 
684 	return commit_creds(new);
685 
686 error:
687 	abort_creds(new);
688 	return retval;
689 }
690 
691 
692 /*
693  * This function implements a generic ability to update ruid, euid,
694  * and suid.  This allows you to implement the 4.4 compatible seteuid().
695  */
696 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
697 {
698 	const struct cred *old;
699 	struct cred *new;
700 	int retval;
701 
702 	new = prepare_creds();
703 	if (!new)
704 		return -ENOMEM;
705 
706 	old = current_cred();
707 
708 	retval = -EPERM;
709 	if (!capable(CAP_SETUID)) {
710 		if (ruid != (uid_t) -1 && ruid != old->uid &&
711 		    ruid != old->euid  && ruid != old->suid)
712 			goto error;
713 		if (euid != (uid_t) -1 && euid != old->uid &&
714 		    euid != old->euid  && euid != old->suid)
715 			goto error;
716 		if (suid != (uid_t) -1 && suid != old->uid &&
717 		    suid != old->euid  && suid != old->suid)
718 			goto error;
719 	}
720 
721 	if (ruid != (uid_t) -1) {
722 		new->uid = ruid;
723 		if (ruid != old->uid) {
724 			retval = set_user(new);
725 			if (retval < 0)
726 				goto error;
727 		}
728 	}
729 	if (euid != (uid_t) -1)
730 		new->euid = euid;
731 	if (suid != (uid_t) -1)
732 		new->suid = suid;
733 	new->fsuid = new->euid;
734 
735 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736 	if (retval < 0)
737 		goto error;
738 
739 	return commit_creds(new);
740 
741 error:
742 	abort_creds(new);
743 	return retval;
744 }
745 
746 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
747 {
748 	const struct cred *cred = current_cred();
749 	int retval;
750 
751 	if (!(retval   = put_user(cred->uid,  ruid)) &&
752 	    !(retval   = put_user(cred->euid, euid)))
753 		retval = put_user(cred->suid, suid);
754 
755 	return retval;
756 }
757 
758 /*
759  * Same as above, but for rgid, egid, sgid.
760  */
761 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
762 {
763 	const struct cred *old;
764 	struct cred *new;
765 	int retval;
766 
767 	new = prepare_creds();
768 	if (!new)
769 		return -ENOMEM;
770 	old = current_cred();
771 
772 	retval = -EPERM;
773 	if (!capable(CAP_SETGID)) {
774 		if (rgid != (gid_t) -1 && rgid != old->gid &&
775 		    rgid != old->egid  && rgid != old->sgid)
776 			goto error;
777 		if (egid != (gid_t) -1 && egid != old->gid &&
778 		    egid != old->egid  && egid != old->sgid)
779 			goto error;
780 		if (sgid != (gid_t) -1 && sgid != old->gid &&
781 		    sgid != old->egid  && sgid != old->sgid)
782 			goto error;
783 	}
784 
785 	if (rgid != (gid_t) -1)
786 		new->gid = rgid;
787 	if (egid != (gid_t) -1)
788 		new->egid = egid;
789 	if (sgid != (gid_t) -1)
790 		new->sgid = sgid;
791 	new->fsgid = new->egid;
792 
793 	return commit_creds(new);
794 
795 error:
796 	abort_creds(new);
797 	return retval;
798 }
799 
800 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
801 {
802 	const struct cred *cred = current_cred();
803 	int retval;
804 
805 	if (!(retval   = put_user(cred->gid,  rgid)) &&
806 	    !(retval   = put_user(cred->egid, egid)))
807 		retval = put_user(cred->sgid, sgid);
808 
809 	return retval;
810 }
811 
812 
813 /*
814  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
815  * is used for "access()" and for the NFS daemon (letting nfsd stay at
816  * whatever uid it wants to). It normally shadows "euid", except when
817  * explicitly set by setfsuid() or for access..
818  */
819 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
820 {
821 	const struct cred *old;
822 	struct cred *new;
823 	uid_t old_fsuid;
824 
825 	new = prepare_creds();
826 	if (!new)
827 		return current_fsuid();
828 	old = current_cred();
829 	old_fsuid = old->fsuid;
830 
831 	if (uid == old->uid  || uid == old->euid  ||
832 	    uid == old->suid || uid == old->fsuid ||
833 	    capable(CAP_SETUID)) {
834 		if (uid != old_fsuid) {
835 			new->fsuid = uid;
836 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
837 				goto change_okay;
838 		}
839 	}
840 
841 	abort_creds(new);
842 	return old_fsuid;
843 
844 change_okay:
845 	commit_creds(new);
846 	return old_fsuid;
847 }
848 
849 /*
850  * Samma på svenska..
851  */
852 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
853 {
854 	const struct cred *old;
855 	struct cred *new;
856 	gid_t old_fsgid;
857 
858 	new = prepare_creds();
859 	if (!new)
860 		return current_fsgid();
861 	old = current_cred();
862 	old_fsgid = old->fsgid;
863 
864 	if (gid == old->gid  || gid == old->egid  ||
865 	    gid == old->sgid || gid == old->fsgid ||
866 	    capable(CAP_SETGID)) {
867 		if (gid != old_fsgid) {
868 			new->fsgid = gid;
869 			goto change_okay;
870 		}
871 	}
872 
873 	abort_creds(new);
874 	return old_fsgid;
875 
876 change_okay:
877 	commit_creds(new);
878 	return old_fsgid;
879 }
880 
881 void do_sys_times(struct tms *tms)
882 {
883 	cputime_t tgutime, tgstime, cutime, cstime;
884 
885 	spin_lock_irq(&current->sighand->siglock);
886 	thread_group_times(current, &tgutime, &tgstime);
887 	cutime = current->signal->cutime;
888 	cstime = current->signal->cstime;
889 	spin_unlock_irq(&current->sighand->siglock);
890 	tms->tms_utime = cputime_to_clock_t(tgutime);
891 	tms->tms_stime = cputime_to_clock_t(tgstime);
892 	tms->tms_cutime = cputime_to_clock_t(cutime);
893 	tms->tms_cstime = cputime_to_clock_t(cstime);
894 }
895 
896 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
897 {
898 	if (tbuf) {
899 		struct tms tmp;
900 
901 		do_sys_times(&tmp);
902 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
903 			return -EFAULT;
904 	}
905 	force_successful_syscall_return();
906 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
907 }
908 
909 /*
910  * This needs some heavy checking ...
911  * I just haven't the stomach for it. I also don't fully
912  * understand sessions/pgrp etc. Let somebody who does explain it.
913  *
914  * OK, I think I have the protection semantics right.... this is really
915  * only important on a multi-user system anyway, to make sure one user
916  * can't send a signal to a process owned by another.  -TYT, 12/12/91
917  *
918  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
919  * LBT 04.03.94
920  */
921 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
922 {
923 	struct task_struct *p;
924 	struct task_struct *group_leader = current->group_leader;
925 	struct pid *pgrp;
926 	int err;
927 
928 	if (!pid)
929 		pid = task_pid_vnr(group_leader);
930 	if (!pgid)
931 		pgid = pid;
932 	if (pgid < 0)
933 		return -EINVAL;
934 	rcu_read_lock();
935 
936 	/* From this point forward we keep holding onto the tasklist lock
937 	 * so that our parent does not change from under us. -DaveM
938 	 */
939 	write_lock_irq(&tasklist_lock);
940 
941 	err = -ESRCH;
942 	p = find_task_by_vpid(pid);
943 	if (!p)
944 		goto out;
945 
946 	err = -EINVAL;
947 	if (!thread_group_leader(p))
948 		goto out;
949 
950 	if (same_thread_group(p->real_parent, group_leader)) {
951 		err = -EPERM;
952 		if (task_session(p) != task_session(group_leader))
953 			goto out;
954 		err = -EACCES;
955 		if (p->did_exec)
956 			goto out;
957 	} else {
958 		err = -ESRCH;
959 		if (p != group_leader)
960 			goto out;
961 	}
962 
963 	err = -EPERM;
964 	if (p->signal->leader)
965 		goto out;
966 
967 	pgrp = task_pid(p);
968 	if (pgid != pid) {
969 		struct task_struct *g;
970 
971 		pgrp = find_vpid(pgid);
972 		g = pid_task(pgrp, PIDTYPE_PGID);
973 		if (!g || task_session(g) != task_session(group_leader))
974 			goto out;
975 	}
976 
977 	err = security_task_setpgid(p, pgid);
978 	if (err)
979 		goto out;
980 
981 	if (task_pgrp(p) != pgrp)
982 		change_pid(p, PIDTYPE_PGID, pgrp);
983 
984 	err = 0;
985 out:
986 	/* All paths lead to here, thus we are safe. -DaveM */
987 	write_unlock_irq(&tasklist_lock);
988 	rcu_read_unlock();
989 	return err;
990 }
991 
992 SYSCALL_DEFINE1(getpgid, pid_t, pid)
993 {
994 	struct task_struct *p;
995 	struct pid *grp;
996 	int retval;
997 
998 	rcu_read_lock();
999 	if (!pid)
1000 		grp = task_pgrp(current);
1001 	else {
1002 		retval = -ESRCH;
1003 		p = find_task_by_vpid(pid);
1004 		if (!p)
1005 			goto out;
1006 		grp = task_pgrp(p);
1007 		if (!grp)
1008 			goto out;
1009 
1010 		retval = security_task_getpgid(p);
1011 		if (retval)
1012 			goto out;
1013 	}
1014 	retval = pid_vnr(grp);
1015 out:
1016 	rcu_read_unlock();
1017 	return retval;
1018 }
1019 
1020 #ifdef __ARCH_WANT_SYS_GETPGRP
1021 
1022 SYSCALL_DEFINE0(getpgrp)
1023 {
1024 	return sys_getpgid(0);
1025 }
1026 
1027 #endif
1028 
1029 SYSCALL_DEFINE1(getsid, pid_t, pid)
1030 {
1031 	struct task_struct *p;
1032 	struct pid *sid;
1033 	int retval;
1034 
1035 	rcu_read_lock();
1036 	if (!pid)
1037 		sid = task_session(current);
1038 	else {
1039 		retval = -ESRCH;
1040 		p = find_task_by_vpid(pid);
1041 		if (!p)
1042 			goto out;
1043 		sid = task_session(p);
1044 		if (!sid)
1045 			goto out;
1046 
1047 		retval = security_task_getsid(p);
1048 		if (retval)
1049 			goto out;
1050 	}
1051 	retval = pid_vnr(sid);
1052 out:
1053 	rcu_read_unlock();
1054 	return retval;
1055 }
1056 
1057 SYSCALL_DEFINE0(setsid)
1058 {
1059 	struct task_struct *group_leader = current->group_leader;
1060 	struct pid *sid = task_pid(group_leader);
1061 	pid_t session = pid_vnr(sid);
1062 	int err = -EPERM;
1063 
1064 	write_lock_irq(&tasklist_lock);
1065 	/* Fail if I am already a session leader */
1066 	if (group_leader->signal->leader)
1067 		goto out;
1068 
1069 	/* Fail if a process group id already exists that equals the
1070 	 * proposed session id.
1071 	 */
1072 	if (pid_task(sid, PIDTYPE_PGID))
1073 		goto out;
1074 
1075 	group_leader->signal->leader = 1;
1076 	__set_special_pids(sid);
1077 
1078 	proc_clear_tty(group_leader);
1079 
1080 	err = session;
1081 out:
1082 	write_unlock_irq(&tasklist_lock);
1083 	if (err > 0) {
1084 		proc_sid_connector(group_leader);
1085 		sched_autogroup_create_attach(group_leader);
1086 	}
1087 	return err;
1088 }
1089 
1090 DECLARE_RWSEM(uts_sem);
1091 
1092 #ifdef COMPAT_UTS_MACHINE
1093 #define override_architecture(name) \
1094 	(personality(current->personality) == PER_LINUX32 && \
1095 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1096 		      sizeof(COMPAT_UTS_MACHINE)))
1097 #else
1098 #define override_architecture(name)	0
1099 #endif
1100 
1101 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1102 {
1103 	int errno = 0;
1104 
1105 	down_read(&uts_sem);
1106 	if (copy_to_user(name, utsname(), sizeof *name))
1107 		errno = -EFAULT;
1108 	up_read(&uts_sem);
1109 
1110 	if (!errno && override_architecture(name))
1111 		errno = -EFAULT;
1112 	return errno;
1113 }
1114 
1115 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1116 /*
1117  * Old cruft
1118  */
1119 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1120 {
1121 	int error = 0;
1122 
1123 	if (!name)
1124 		return -EFAULT;
1125 
1126 	down_read(&uts_sem);
1127 	if (copy_to_user(name, utsname(), sizeof(*name)))
1128 		error = -EFAULT;
1129 	up_read(&uts_sem);
1130 
1131 	if (!error && override_architecture(name))
1132 		error = -EFAULT;
1133 	return error;
1134 }
1135 
1136 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1137 {
1138 	int error;
1139 
1140 	if (!name)
1141 		return -EFAULT;
1142 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1143 		return -EFAULT;
1144 
1145 	down_read(&uts_sem);
1146 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1147 			       __OLD_UTS_LEN);
1148 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1149 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1150 				__OLD_UTS_LEN);
1151 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1152 	error |= __copy_to_user(&name->release, &utsname()->release,
1153 				__OLD_UTS_LEN);
1154 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1155 	error |= __copy_to_user(&name->version, &utsname()->version,
1156 				__OLD_UTS_LEN);
1157 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1158 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1159 				__OLD_UTS_LEN);
1160 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1161 	up_read(&uts_sem);
1162 
1163 	if (!error && override_architecture(name))
1164 		error = -EFAULT;
1165 	return error ? -EFAULT : 0;
1166 }
1167 #endif
1168 
1169 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1170 {
1171 	int errno;
1172 	char tmp[__NEW_UTS_LEN];
1173 
1174 	if (!capable(CAP_SYS_ADMIN))
1175 		return -EPERM;
1176 	if (len < 0 || len > __NEW_UTS_LEN)
1177 		return -EINVAL;
1178 	down_write(&uts_sem);
1179 	errno = -EFAULT;
1180 	if (!copy_from_user(tmp, name, len)) {
1181 		struct new_utsname *u = utsname();
1182 
1183 		memcpy(u->nodename, tmp, len);
1184 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1185 		errno = 0;
1186 	}
1187 	up_write(&uts_sem);
1188 	return errno;
1189 }
1190 
1191 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1192 
1193 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1194 {
1195 	int i, errno;
1196 	struct new_utsname *u;
1197 
1198 	if (len < 0)
1199 		return -EINVAL;
1200 	down_read(&uts_sem);
1201 	u = utsname();
1202 	i = 1 + strlen(u->nodename);
1203 	if (i > len)
1204 		i = len;
1205 	errno = 0;
1206 	if (copy_to_user(name, u->nodename, i))
1207 		errno = -EFAULT;
1208 	up_read(&uts_sem);
1209 	return errno;
1210 }
1211 
1212 #endif
1213 
1214 /*
1215  * Only setdomainname; getdomainname can be implemented by calling
1216  * uname()
1217  */
1218 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1219 {
1220 	int errno;
1221 	char tmp[__NEW_UTS_LEN];
1222 
1223 	if (!capable(CAP_SYS_ADMIN))
1224 		return -EPERM;
1225 	if (len < 0 || len > __NEW_UTS_LEN)
1226 		return -EINVAL;
1227 
1228 	down_write(&uts_sem);
1229 	errno = -EFAULT;
1230 	if (!copy_from_user(tmp, name, len)) {
1231 		struct new_utsname *u = utsname();
1232 
1233 		memcpy(u->domainname, tmp, len);
1234 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1235 		errno = 0;
1236 	}
1237 	up_write(&uts_sem);
1238 	return errno;
1239 }
1240 
1241 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1242 {
1243 	struct rlimit value;
1244 	int ret;
1245 
1246 	ret = do_prlimit(current, resource, NULL, &value);
1247 	if (!ret)
1248 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1249 
1250 	return ret;
1251 }
1252 
1253 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1254 
1255 /*
1256  *	Back compatibility for getrlimit. Needed for some apps.
1257  */
1258 
1259 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1260 		struct rlimit __user *, rlim)
1261 {
1262 	struct rlimit x;
1263 	if (resource >= RLIM_NLIMITS)
1264 		return -EINVAL;
1265 
1266 	task_lock(current->group_leader);
1267 	x = current->signal->rlim[resource];
1268 	task_unlock(current->group_leader);
1269 	if (x.rlim_cur > 0x7FFFFFFF)
1270 		x.rlim_cur = 0x7FFFFFFF;
1271 	if (x.rlim_max > 0x7FFFFFFF)
1272 		x.rlim_max = 0x7FFFFFFF;
1273 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1274 }
1275 
1276 #endif
1277 
1278 static inline bool rlim64_is_infinity(__u64 rlim64)
1279 {
1280 #if BITS_PER_LONG < 64
1281 	return rlim64 >= ULONG_MAX;
1282 #else
1283 	return rlim64 == RLIM64_INFINITY;
1284 #endif
1285 }
1286 
1287 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1288 {
1289 	if (rlim->rlim_cur == RLIM_INFINITY)
1290 		rlim64->rlim_cur = RLIM64_INFINITY;
1291 	else
1292 		rlim64->rlim_cur = rlim->rlim_cur;
1293 	if (rlim->rlim_max == RLIM_INFINITY)
1294 		rlim64->rlim_max = RLIM64_INFINITY;
1295 	else
1296 		rlim64->rlim_max = rlim->rlim_max;
1297 }
1298 
1299 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1300 {
1301 	if (rlim64_is_infinity(rlim64->rlim_cur))
1302 		rlim->rlim_cur = RLIM_INFINITY;
1303 	else
1304 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1305 	if (rlim64_is_infinity(rlim64->rlim_max))
1306 		rlim->rlim_max = RLIM_INFINITY;
1307 	else
1308 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1309 }
1310 
1311 /* make sure you are allowed to change @tsk limits before calling this */
1312 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1313 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1314 {
1315 	struct rlimit *rlim;
1316 	int retval = 0;
1317 
1318 	if (resource >= RLIM_NLIMITS)
1319 		return -EINVAL;
1320 	if (new_rlim) {
1321 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1322 			return -EINVAL;
1323 		if (resource == RLIMIT_NOFILE &&
1324 				new_rlim->rlim_max > sysctl_nr_open)
1325 			return -EPERM;
1326 	}
1327 
1328 	/* protect tsk->signal and tsk->sighand from disappearing */
1329 	read_lock(&tasklist_lock);
1330 	if (!tsk->sighand) {
1331 		retval = -ESRCH;
1332 		goto out;
1333 	}
1334 
1335 	rlim = tsk->signal->rlim + resource;
1336 	task_lock(tsk->group_leader);
1337 	if (new_rlim) {
1338 		if (new_rlim->rlim_max > rlim->rlim_max &&
1339 				!capable(CAP_SYS_RESOURCE))
1340 			retval = -EPERM;
1341 		if (!retval)
1342 			retval = security_task_setrlimit(tsk->group_leader,
1343 					resource, new_rlim);
1344 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1345 			/*
1346 			 * The caller is asking for an immediate RLIMIT_CPU
1347 			 * expiry.  But we use the zero value to mean "it was
1348 			 * never set".  So let's cheat and make it one second
1349 			 * instead
1350 			 */
1351 			new_rlim->rlim_cur = 1;
1352 		}
1353 	}
1354 	if (!retval) {
1355 		if (old_rlim)
1356 			*old_rlim = *rlim;
1357 		if (new_rlim)
1358 			*rlim = *new_rlim;
1359 	}
1360 	task_unlock(tsk->group_leader);
1361 
1362 	/*
1363 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1364 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1365 	 * very long-standing error, and fixing it now risks breakage of
1366 	 * applications, so we live with it
1367 	 */
1368 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1369 			 new_rlim->rlim_cur != RLIM_INFINITY)
1370 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1371 out:
1372 	read_unlock(&tasklist_lock);
1373 	return retval;
1374 }
1375 
1376 /* rcu lock must be held */
1377 static int check_prlimit_permission(struct task_struct *task)
1378 {
1379 	const struct cred *cred = current_cred(), *tcred;
1380 
1381 	tcred = __task_cred(task);
1382 	if ((cred->uid != tcred->euid ||
1383 	     cred->uid != tcred->suid ||
1384 	     cred->uid != tcred->uid  ||
1385 	     cred->gid != tcred->egid ||
1386 	     cred->gid != tcred->sgid ||
1387 	     cred->gid != tcred->gid) &&
1388 	     !capable(CAP_SYS_RESOURCE)) {
1389 		return -EPERM;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1396 		const struct rlimit64 __user *, new_rlim,
1397 		struct rlimit64 __user *, old_rlim)
1398 {
1399 	struct rlimit64 old64, new64;
1400 	struct rlimit old, new;
1401 	struct task_struct *tsk;
1402 	int ret;
1403 
1404 	if (new_rlim) {
1405 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1406 			return -EFAULT;
1407 		rlim64_to_rlim(&new64, &new);
1408 	}
1409 
1410 	rcu_read_lock();
1411 	tsk = pid ? find_task_by_vpid(pid) : current;
1412 	if (!tsk) {
1413 		rcu_read_unlock();
1414 		return -ESRCH;
1415 	}
1416 	ret = check_prlimit_permission(tsk);
1417 	if (ret) {
1418 		rcu_read_unlock();
1419 		return ret;
1420 	}
1421 	get_task_struct(tsk);
1422 	rcu_read_unlock();
1423 
1424 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1425 			old_rlim ? &old : NULL);
1426 
1427 	if (!ret && old_rlim) {
1428 		rlim_to_rlim64(&old, &old64);
1429 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1430 			ret = -EFAULT;
1431 	}
1432 
1433 	put_task_struct(tsk);
1434 	return ret;
1435 }
1436 
1437 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1438 {
1439 	struct rlimit new_rlim;
1440 
1441 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1442 		return -EFAULT;
1443 	return do_prlimit(current, resource, &new_rlim, NULL);
1444 }
1445 
1446 /*
1447  * It would make sense to put struct rusage in the task_struct,
1448  * except that would make the task_struct be *really big*.  After
1449  * task_struct gets moved into malloc'ed memory, it would
1450  * make sense to do this.  It will make moving the rest of the information
1451  * a lot simpler!  (Which we're not doing right now because we're not
1452  * measuring them yet).
1453  *
1454  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1455  * races with threads incrementing their own counters.  But since word
1456  * reads are atomic, we either get new values or old values and we don't
1457  * care which for the sums.  We always take the siglock to protect reading
1458  * the c* fields from p->signal from races with exit.c updating those
1459  * fields when reaping, so a sample either gets all the additions of a
1460  * given child after it's reaped, or none so this sample is before reaping.
1461  *
1462  * Locking:
1463  * We need to take the siglock for CHILDEREN, SELF and BOTH
1464  * for  the cases current multithreaded, non-current single threaded
1465  * non-current multithreaded.  Thread traversal is now safe with
1466  * the siglock held.
1467  * Strictly speaking, we donot need to take the siglock if we are current and
1468  * single threaded,  as no one else can take our signal_struct away, no one
1469  * else can  reap the  children to update signal->c* counters, and no one else
1470  * can race with the signal-> fields. If we do not take any lock, the
1471  * signal-> fields could be read out of order while another thread was just
1472  * exiting. So we should  place a read memory barrier when we avoid the lock.
1473  * On the writer side,  write memory barrier is implied in  __exit_signal
1474  * as __exit_signal releases  the siglock spinlock after updating the signal->
1475  * fields. But we don't do this yet to keep things simple.
1476  *
1477  */
1478 
1479 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1480 {
1481 	r->ru_nvcsw += t->nvcsw;
1482 	r->ru_nivcsw += t->nivcsw;
1483 	r->ru_minflt += t->min_flt;
1484 	r->ru_majflt += t->maj_flt;
1485 	r->ru_inblock += task_io_get_inblock(t);
1486 	r->ru_oublock += task_io_get_oublock(t);
1487 }
1488 
1489 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1490 {
1491 	struct task_struct *t;
1492 	unsigned long flags;
1493 	cputime_t tgutime, tgstime, utime, stime;
1494 	unsigned long maxrss = 0;
1495 
1496 	memset((char *) r, 0, sizeof *r);
1497 	utime = stime = cputime_zero;
1498 
1499 	if (who == RUSAGE_THREAD) {
1500 		task_times(current, &utime, &stime);
1501 		accumulate_thread_rusage(p, r);
1502 		maxrss = p->signal->maxrss;
1503 		goto out;
1504 	}
1505 
1506 	if (!lock_task_sighand(p, &flags))
1507 		return;
1508 
1509 	switch (who) {
1510 		case RUSAGE_BOTH:
1511 		case RUSAGE_CHILDREN:
1512 			utime = p->signal->cutime;
1513 			stime = p->signal->cstime;
1514 			r->ru_nvcsw = p->signal->cnvcsw;
1515 			r->ru_nivcsw = p->signal->cnivcsw;
1516 			r->ru_minflt = p->signal->cmin_flt;
1517 			r->ru_majflt = p->signal->cmaj_flt;
1518 			r->ru_inblock = p->signal->cinblock;
1519 			r->ru_oublock = p->signal->coublock;
1520 			maxrss = p->signal->cmaxrss;
1521 
1522 			if (who == RUSAGE_CHILDREN)
1523 				break;
1524 
1525 		case RUSAGE_SELF:
1526 			thread_group_times(p, &tgutime, &tgstime);
1527 			utime = cputime_add(utime, tgutime);
1528 			stime = cputime_add(stime, tgstime);
1529 			r->ru_nvcsw += p->signal->nvcsw;
1530 			r->ru_nivcsw += p->signal->nivcsw;
1531 			r->ru_minflt += p->signal->min_flt;
1532 			r->ru_majflt += p->signal->maj_flt;
1533 			r->ru_inblock += p->signal->inblock;
1534 			r->ru_oublock += p->signal->oublock;
1535 			if (maxrss < p->signal->maxrss)
1536 				maxrss = p->signal->maxrss;
1537 			t = p;
1538 			do {
1539 				accumulate_thread_rusage(t, r);
1540 				t = next_thread(t);
1541 			} while (t != p);
1542 			break;
1543 
1544 		default:
1545 			BUG();
1546 	}
1547 	unlock_task_sighand(p, &flags);
1548 
1549 out:
1550 	cputime_to_timeval(utime, &r->ru_utime);
1551 	cputime_to_timeval(stime, &r->ru_stime);
1552 
1553 	if (who != RUSAGE_CHILDREN) {
1554 		struct mm_struct *mm = get_task_mm(p);
1555 		if (mm) {
1556 			setmax_mm_hiwater_rss(&maxrss, mm);
1557 			mmput(mm);
1558 		}
1559 	}
1560 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1561 }
1562 
1563 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1564 {
1565 	struct rusage r;
1566 	k_getrusage(p, who, &r);
1567 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1568 }
1569 
1570 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1571 {
1572 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1573 	    who != RUSAGE_THREAD)
1574 		return -EINVAL;
1575 	return getrusage(current, who, ru);
1576 }
1577 
1578 SYSCALL_DEFINE1(umask, int, mask)
1579 {
1580 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1581 	return mask;
1582 }
1583 
1584 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1585 		unsigned long, arg4, unsigned long, arg5)
1586 {
1587 	struct task_struct *me = current;
1588 	unsigned char comm[sizeof(me->comm)];
1589 	long error;
1590 
1591 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1592 	if (error != -ENOSYS)
1593 		return error;
1594 
1595 	error = 0;
1596 	switch (option) {
1597 		case PR_SET_PDEATHSIG:
1598 			if (!valid_signal(arg2)) {
1599 				error = -EINVAL;
1600 				break;
1601 			}
1602 			me->pdeath_signal = arg2;
1603 			error = 0;
1604 			break;
1605 		case PR_GET_PDEATHSIG:
1606 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1607 			break;
1608 		case PR_GET_DUMPABLE:
1609 			error = get_dumpable(me->mm);
1610 			break;
1611 		case PR_SET_DUMPABLE:
1612 			if (arg2 < 0 || arg2 > 1) {
1613 				error = -EINVAL;
1614 				break;
1615 			}
1616 			set_dumpable(me->mm, arg2);
1617 			error = 0;
1618 			break;
1619 
1620 		case PR_SET_UNALIGN:
1621 			error = SET_UNALIGN_CTL(me, arg2);
1622 			break;
1623 		case PR_GET_UNALIGN:
1624 			error = GET_UNALIGN_CTL(me, arg2);
1625 			break;
1626 		case PR_SET_FPEMU:
1627 			error = SET_FPEMU_CTL(me, arg2);
1628 			break;
1629 		case PR_GET_FPEMU:
1630 			error = GET_FPEMU_CTL(me, arg2);
1631 			break;
1632 		case PR_SET_FPEXC:
1633 			error = SET_FPEXC_CTL(me, arg2);
1634 			break;
1635 		case PR_GET_FPEXC:
1636 			error = GET_FPEXC_CTL(me, arg2);
1637 			break;
1638 		case PR_GET_TIMING:
1639 			error = PR_TIMING_STATISTICAL;
1640 			break;
1641 		case PR_SET_TIMING:
1642 			if (arg2 != PR_TIMING_STATISTICAL)
1643 				error = -EINVAL;
1644 			else
1645 				error = 0;
1646 			break;
1647 
1648 		case PR_SET_NAME:
1649 			comm[sizeof(me->comm)-1] = 0;
1650 			if (strncpy_from_user(comm, (char __user *)arg2,
1651 					      sizeof(me->comm) - 1) < 0)
1652 				return -EFAULT;
1653 			set_task_comm(me, comm);
1654 			return 0;
1655 		case PR_GET_NAME:
1656 			get_task_comm(comm, me);
1657 			if (copy_to_user((char __user *)arg2, comm,
1658 					 sizeof(comm)))
1659 				return -EFAULT;
1660 			return 0;
1661 		case PR_GET_ENDIAN:
1662 			error = GET_ENDIAN(me, arg2);
1663 			break;
1664 		case PR_SET_ENDIAN:
1665 			error = SET_ENDIAN(me, arg2);
1666 			break;
1667 
1668 		case PR_GET_SECCOMP:
1669 			error = prctl_get_seccomp();
1670 			break;
1671 		case PR_SET_SECCOMP:
1672 			error = prctl_set_seccomp(arg2);
1673 			break;
1674 		case PR_GET_TSC:
1675 			error = GET_TSC_CTL(arg2);
1676 			break;
1677 		case PR_SET_TSC:
1678 			error = SET_TSC_CTL(arg2);
1679 			break;
1680 		case PR_TASK_PERF_EVENTS_DISABLE:
1681 			error = perf_event_task_disable();
1682 			break;
1683 		case PR_TASK_PERF_EVENTS_ENABLE:
1684 			error = perf_event_task_enable();
1685 			break;
1686 		case PR_GET_TIMERSLACK:
1687 			error = current->timer_slack_ns;
1688 			break;
1689 		case PR_SET_TIMERSLACK:
1690 			if (arg2 <= 0)
1691 				current->timer_slack_ns =
1692 					current->default_timer_slack_ns;
1693 			else
1694 				current->timer_slack_ns = arg2;
1695 			error = 0;
1696 			break;
1697 		case PR_MCE_KILL:
1698 			if (arg4 | arg5)
1699 				return -EINVAL;
1700 			switch (arg2) {
1701 			case PR_MCE_KILL_CLEAR:
1702 				if (arg3 != 0)
1703 					return -EINVAL;
1704 				current->flags &= ~PF_MCE_PROCESS;
1705 				break;
1706 			case PR_MCE_KILL_SET:
1707 				current->flags |= PF_MCE_PROCESS;
1708 				if (arg3 == PR_MCE_KILL_EARLY)
1709 					current->flags |= PF_MCE_EARLY;
1710 				else if (arg3 == PR_MCE_KILL_LATE)
1711 					current->flags &= ~PF_MCE_EARLY;
1712 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1713 					current->flags &=
1714 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1715 				else
1716 					return -EINVAL;
1717 				break;
1718 			default:
1719 				return -EINVAL;
1720 			}
1721 			error = 0;
1722 			break;
1723 		case PR_MCE_KILL_GET:
1724 			if (arg2 | arg3 | arg4 | arg5)
1725 				return -EINVAL;
1726 			if (current->flags & PF_MCE_PROCESS)
1727 				error = (current->flags & PF_MCE_EARLY) ?
1728 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1729 			else
1730 				error = PR_MCE_KILL_DEFAULT;
1731 			break;
1732 		default:
1733 			error = -EINVAL;
1734 			break;
1735 	}
1736 	return error;
1737 }
1738 
1739 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1740 		struct getcpu_cache __user *, unused)
1741 {
1742 	int err = 0;
1743 	int cpu = raw_smp_processor_id();
1744 	if (cpup)
1745 		err |= put_user(cpu, cpup);
1746 	if (nodep)
1747 		err |= put_user(cpu_to_node(cpu), nodep);
1748 	return err ? -EFAULT : 0;
1749 }
1750 
1751 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1752 
1753 static void argv_cleanup(struct subprocess_info *info)
1754 {
1755 	argv_free(info->argv);
1756 }
1757 
1758 /**
1759  * orderly_poweroff - Trigger an orderly system poweroff
1760  * @force: force poweroff if command execution fails
1761  *
1762  * This may be called from any context to trigger a system shutdown.
1763  * If the orderly shutdown fails, it will force an immediate shutdown.
1764  */
1765 int orderly_poweroff(bool force)
1766 {
1767 	int argc;
1768 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1769 	static char *envp[] = {
1770 		"HOME=/",
1771 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1772 		NULL
1773 	};
1774 	int ret = -ENOMEM;
1775 	struct subprocess_info *info;
1776 
1777 	if (argv == NULL) {
1778 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1779 		       __func__, poweroff_cmd);
1780 		goto out;
1781 	}
1782 
1783 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1784 	if (info == NULL) {
1785 		argv_free(argv);
1786 		goto out;
1787 	}
1788 
1789 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1790 
1791 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1792 
1793   out:
1794 	if (ret && force) {
1795 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1796 		       "forcing the issue\n");
1797 
1798 		/* I guess this should try to kick off some daemon to
1799 		   sync and poweroff asap.  Or not even bother syncing
1800 		   if we're doing an emergency shutdown? */
1801 		emergency_sync();
1802 		kernel_power_off();
1803 	}
1804 
1805 	return ret;
1806 }
1807 EXPORT_SYMBOL_GPL(orderly_poweroff);
1808