1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/export.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/reboot.h> 12 #include <linux/prctl.h> 13 #include <linux/highuid.h> 14 #include <linux/fs.h> 15 #include <linux/kmod.h> 16 #include <linux/perf_event.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/file.h> 40 #include <linux/mount.h> 41 #include <linux/gfp.h> 42 #include <linux/syscore_ops.h> 43 #include <linux/version.h> 44 #include <linux/ctype.h> 45 46 #include <linux/compat.h> 47 #include <linux/syscalls.h> 48 #include <linux/kprobes.h> 49 #include <linux/user_namespace.h> 50 #include <linux/binfmts.h> 51 52 #include <linux/sched.h> 53 #include <linux/rcupdate.h> 54 #include <linux/uidgid.h> 55 #include <linux/cred.h> 56 57 #include <linux/kmsg_dump.h> 58 /* Move somewhere else to avoid recompiling? */ 59 #include <generated/utsrelease.h> 60 61 #include <asm/uaccess.h> 62 #include <asm/io.h> 63 #include <asm/unistd.h> 64 65 #ifndef SET_UNALIGN_CTL 66 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 67 #endif 68 #ifndef GET_UNALIGN_CTL 69 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 70 #endif 71 #ifndef SET_FPEMU_CTL 72 # define SET_FPEMU_CTL(a,b) (-EINVAL) 73 #endif 74 #ifndef GET_FPEMU_CTL 75 # define GET_FPEMU_CTL(a,b) (-EINVAL) 76 #endif 77 #ifndef SET_FPEXC_CTL 78 # define SET_FPEXC_CTL(a,b) (-EINVAL) 79 #endif 80 #ifndef GET_FPEXC_CTL 81 # define GET_FPEXC_CTL(a,b) (-EINVAL) 82 #endif 83 #ifndef GET_ENDIAN 84 # define GET_ENDIAN(a,b) (-EINVAL) 85 #endif 86 #ifndef SET_ENDIAN 87 # define SET_ENDIAN(a,b) (-EINVAL) 88 #endif 89 #ifndef GET_TSC_CTL 90 # define GET_TSC_CTL(a) (-EINVAL) 91 #endif 92 #ifndef SET_TSC_CTL 93 # define SET_TSC_CTL(a) (-EINVAL) 94 #endif 95 96 /* 97 * this is where the system-wide overflow UID and GID are defined, for 98 * architectures that now have 32-bit UID/GID but didn't in the past 99 */ 100 101 int overflowuid = DEFAULT_OVERFLOWUID; 102 int overflowgid = DEFAULT_OVERFLOWGID; 103 104 EXPORT_SYMBOL(overflowuid); 105 EXPORT_SYMBOL(overflowgid); 106 107 /* 108 * the same as above, but for filesystems which can only store a 16-bit 109 * UID and GID. as such, this is needed on all architectures 110 */ 111 112 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 113 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 114 115 EXPORT_SYMBOL(fs_overflowuid); 116 EXPORT_SYMBOL(fs_overflowgid); 117 118 /* 119 * Returns true if current's euid is same as p's uid or euid, 120 * or has CAP_SYS_NICE to p's user_ns. 121 * 122 * Called with rcu_read_lock, creds are safe 123 */ 124 static bool set_one_prio_perm(struct task_struct *p) 125 { 126 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 127 128 if (uid_eq(pcred->uid, cred->euid) || 129 uid_eq(pcred->euid, cred->euid)) 130 return true; 131 if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) 132 return true; 133 return false; 134 } 135 136 /* 137 * set the priority of a task 138 * - the caller must hold the RCU read lock 139 */ 140 static int set_one_prio(struct task_struct *p, int niceval, int error) 141 { 142 int no_nice; 143 144 if (!set_one_prio_perm(p)) { 145 error = -EPERM; 146 goto out; 147 } 148 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 149 error = -EACCES; 150 goto out; 151 } 152 no_nice = security_task_setnice(p, niceval); 153 if (no_nice) { 154 error = no_nice; 155 goto out; 156 } 157 if (error == -ESRCH) 158 error = 0; 159 set_user_nice(p, niceval); 160 out: 161 return error; 162 } 163 164 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 165 { 166 struct task_struct *g, *p; 167 struct user_struct *user; 168 const struct cred *cred = current_cred(); 169 int error = -EINVAL; 170 struct pid *pgrp; 171 kuid_t uid; 172 173 if (which > PRIO_USER || which < PRIO_PROCESS) 174 goto out; 175 176 /* normalize: avoid signed division (rounding problems) */ 177 error = -ESRCH; 178 if (niceval < -20) 179 niceval = -20; 180 if (niceval > 19) 181 niceval = 19; 182 183 rcu_read_lock(); 184 read_lock(&tasklist_lock); 185 switch (which) { 186 case PRIO_PROCESS: 187 if (who) 188 p = find_task_by_vpid(who); 189 else 190 p = current; 191 if (p) 192 error = set_one_prio(p, niceval, error); 193 break; 194 case PRIO_PGRP: 195 if (who) 196 pgrp = find_vpid(who); 197 else 198 pgrp = task_pgrp(current); 199 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 200 error = set_one_prio(p, niceval, error); 201 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 202 break; 203 case PRIO_USER: 204 uid = make_kuid(cred->user_ns, who); 205 user = cred->user; 206 if (!who) 207 uid = cred->uid; 208 else if (!uid_eq(uid, cred->uid) && 209 !(user = find_user(uid))) 210 goto out_unlock; /* No processes for this user */ 211 212 do_each_thread(g, p) { 213 if (uid_eq(task_uid(p), uid)) 214 error = set_one_prio(p, niceval, error); 215 } while_each_thread(g, p); 216 if (!uid_eq(uid, cred->uid)) 217 free_uid(user); /* For find_user() */ 218 break; 219 } 220 out_unlock: 221 read_unlock(&tasklist_lock); 222 rcu_read_unlock(); 223 out: 224 return error; 225 } 226 227 /* 228 * Ugh. To avoid negative return values, "getpriority()" will 229 * not return the normal nice-value, but a negated value that 230 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 231 * to stay compatible. 232 */ 233 SYSCALL_DEFINE2(getpriority, int, which, int, who) 234 { 235 struct task_struct *g, *p; 236 struct user_struct *user; 237 const struct cred *cred = current_cred(); 238 long niceval, retval = -ESRCH; 239 struct pid *pgrp; 240 kuid_t uid; 241 242 if (which > PRIO_USER || which < PRIO_PROCESS) 243 return -EINVAL; 244 245 rcu_read_lock(); 246 read_lock(&tasklist_lock); 247 switch (which) { 248 case PRIO_PROCESS: 249 if (who) 250 p = find_task_by_vpid(who); 251 else 252 p = current; 253 if (p) { 254 niceval = 20 - task_nice(p); 255 if (niceval > retval) 256 retval = niceval; 257 } 258 break; 259 case PRIO_PGRP: 260 if (who) 261 pgrp = find_vpid(who); 262 else 263 pgrp = task_pgrp(current); 264 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 265 niceval = 20 - task_nice(p); 266 if (niceval > retval) 267 retval = niceval; 268 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 269 break; 270 case PRIO_USER: 271 uid = make_kuid(cred->user_ns, who); 272 user = cred->user; 273 if (!who) 274 uid = cred->uid; 275 else if (!uid_eq(uid, cred->uid) && 276 !(user = find_user(uid))) 277 goto out_unlock; /* No processes for this user */ 278 279 do_each_thread(g, p) { 280 if (uid_eq(task_uid(p), uid)) { 281 niceval = 20 - task_nice(p); 282 if (niceval > retval) 283 retval = niceval; 284 } 285 } while_each_thread(g, p); 286 if (!uid_eq(uid, cred->uid)) 287 free_uid(user); /* for find_user() */ 288 break; 289 } 290 out_unlock: 291 read_unlock(&tasklist_lock); 292 rcu_read_unlock(); 293 294 return retval; 295 } 296 297 /* 298 * Unprivileged users may change the real gid to the effective gid 299 * or vice versa. (BSD-style) 300 * 301 * If you set the real gid at all, or set the effective gid to a value not 302 * equal to the real gid, then the saved gid is set to the new effective gid. 303 * 304 * This makes it possible for a setgid program to completely drop its 305 * privileges, which is often a useful assertion to make when you are doing 306 * a security audit over a program. 307 * 308 * The general idea is that a program which uses just setregid() will be 309 * 100% compatible with BSD. A program which uses just setgid() will be 310 * 100% compatible with POSIX with saved IDs. 311 * 312 * SMP: There are not races, the GIDs are checked only by filesystem 313 * operations (as far as semantic preservation is concerned). 314 */ 315 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 316 { 317 struct user_namespace *ns = current_user_ns(); 318 const struct cred *old; 319 struct cred *new; 320 int retval; 321 kgid_t krgid, kegid; 322 323 krgid = make_kgid(ns, rgid); 324 kegid = make_kgid(ns, egid); 325 326 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 327 return -EINVAL; 328 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 329 return -EINVAL; 330 331 new = prepare_creds(); 332 if (!new) 333 return -ENOMEM; 334 old = current_cred(); 335 336 retval = -EPERM; 337 if (rgid != (gid_t) -1) { 338 if (gid_eq(old->gid, krgid) || 339 gid_eq(old->egid, krgid) || 340 ns_capable(old->user_ns, CAP_SETGID)) 341 new->gid = krgid; 342 else 343 goto error; 344 } 345 if (egid != (gid_t) -1) { 346 if (gid_eq(old->gid, kegid) || 347 gid_eq(old->egid, kegid) || 348 gid_eq(old->sgid, kegid) || 349 ns_capable(old->user_ns, CAP_SETGID)) 350 new->egid = kegid; 351 else 352 goto error; 353 } 354 355 if (rgid != (gid_t) -1 || 356 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) 357 new->sgid = new->egid; 358 new->fsgid = new->egid; 359 360 return commit_creds(new); 361 362 error: 363 abort_creds(new); 364 return retval; 365 } 366 367 /* 368 * setgid() is implemented like SysV w/ SAVED_IDS 369 * 370 * SMP: Same implicit races as above. 371 */ 372 SYSCALL_DEFINE1(setgid, gid_t, gid) 373 { 374 struct user_namespace *ns = current_user_ns(); 375 const struct cred *old; 376 struct cred *new; 377 int retval; 378 kgid_t kgid; 379 380 kgid = make_kgid(ns, gid); 381 if (!gid_valid(kgid)) 382 return -EINVAL; 383 384 new = prepare_creds(); 385 if (!new) 386 return -ENOMEM; 387 old = current_cred(); 388 389 retval = -EPERM; 390 if (ns_capable(old->user_ns, CAP_SETGID)) 391 new->gid = new->egid = new->sgid = new->fsgid = kgid; 392 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) 393 new->egid = new->fsgid = kgid; 394 else 395 goto error; 396 397 return commit_creds(new); 398 399 error: 400 abort_creds(new); 401 return retval; 402 } 403 404 /* 405 * change the user struct in a credentials set to match the new UID 406 */ 407 static int set_user(struct cred *new) 408 { 409 struct user_struct *new_user; 410 411 new_user = alloc_uid(new->uid); 412 if (!new_user) 413 return -EAGAIN; 414 415 /* 416 * We don't fail in case of NPROC limit excess here because too many 417 * poorly written programs don't check set*uid() return code, assuming 418 * it never fails if called by root. We may still enforce NPROC limit 419 * for programs doing set*uid()+execve() by harmlessly deferring the 420 * failure to the execve() stage. 421 */ 422 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 423 new_user != INIT_USER) 424 current->flags |= PF_NPROC_EXCEEDED; 425 else 426 current->flags &= ~PF_NPROC_EXCEEDED; 427 428 free_uid(new->user); 429 new->user = new_user; 430 return 0; 431 } 432 433 /* 434 * Unprivileged users may change the real uid to the effective uid 435 * or vice versa. (BSD-style) 436 * 437 * If you set the real uid at all, or set the effective uid to a value not 438 * equal to the real uid, then the saved uid is set to the new effective uid. 439 * 440 * This makes it possible for a setuid program to completely drop its 441 * privileges, which is often a useful assertion to make when you are doing 442 * a security audit over a program. 443 * 444 * The general idea is that a program which uses just setreuid() will be 445 * 100% compatible with BSD. A program which uses just setuid() will be 446 * 100% compatible with POSIX with saved IDs. 447 */ 448 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 449 { 450 struct user_namespace *ns = current_user_ns(); 451 const struct cred *old; 452 struct cred *new; 453 int retval; 454 kuid_t kruid, keuid; 455 456 kruid = make_kuid(ns, ruid); 457 keuid = make_kuid(ns, euid); 458 459 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 460 return -EINVAL; 461 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 462 return -EINVAL; 463 464 new = prepare_creds(); 465 if (!new) 466 return -ENOMEM; 467 old = current_cred(); 468 469 retval = -EPERM; 470 if (ruid != (uid_t) -1) { 471 new->uid = kruid; 472 if (!uid_eq(old->uid, kruid) && 473 !uid_eq(old->euid, kruid) && 474 !ns_capable(old->user_ns, CAP_SETUID)) 475 goto error; 476 } 477 478 if (euid != (uid_t) -1) { 479 new->euid = keuid; 480 if (!uid_eq(old->uid, keuid) && 481 !uid_eq(old->euid, keuid) && 482 !uid_eq(old->suid, keuid) && 483 !ns_capable(old->user_ns, CAP_SETUID)) 484 goto error; 485 } 486 487 if (!uid_eq(new->uid, old->uid)) { 488 retval = set_user(new); 489 if (retval < 0) 490 goto error; 491 } 492 if (ruid != (uid_t) -1 || 493 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) 494 new->suid = new->euid; 495 new->fsuid = new->euid; 496 497 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 498 if (retval < 0) 499 goto error; 500 501 return commit_creds(new); 502 503 error: 504 abort_creds(new); 505 return retval; 506 } 507 508 /* 509 * setuid() is implemented like SysV with SAVED_IDS 510 * 511 * Note that SAVED_ID's is deficient in that a setuid root program 512 * like sendmail, for example, cannot set its uid to be a normal 513 * user and then switch back, because if you're root, setuid() sets 514 * the saved uid too. If you don't like this, blame the bright people 515 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 516 * will allow a root program to temporarily drop privileges and be able to 517 * regain them by swapping the real and effective uid. 518 */ 519 SYSCALL_DEFINE1(setuid, uid_t, uid) 520 { 521 struct user_namespace *ns = current_user_ns(); 522 const struct cred *old; 523 struct cred *new; 524 int retval; 525 kuid_t kuid; 526 527 kuid = make_kuid(ns, uid); 528 if (!uid_valid(kuid)) 529 return -EINVAL; 530 531 new = prepare_creds(); 532 if (!new) 533 return -ENOMEM; 534 old = current_cred(); 535 536 retval = -EPERM; 537 if (ns_capable(old->user_ns, CAP_SETUID)) { 538 new->suid = new->uid = kuid; 539 if (!uid_eq(kuid, old->uid)) { 540 retval = set_user(new); 541 if (retval < 0) 542 goto error; 543 } 544 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { 545 goto error; 546 } 547 548 new->fsuid = new->euid = kuid; 549 550 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 551 if (retval < 0) 552 goto error; 553 554 return commit_creds(new); 555 556 error: 557 abort_creds(new); 558 return retval; 559 } 560 561 562 /* 563 * This function implements a generic ability to update ruid, euid, 564 * and suid. This allows you to implement the 4.4 compatible seteuid(). 565 */ 566 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 567 { 568 struct user_namespace *ns = current_user_ns(); 569 const struct cred *old; 570 struct cred *new; 571 int retval; 572 kuid_t kruid, keuid, ksuid; 573 574 kruid = make_kuid(ns, ruid); 575 keuid = make_kuid(ns, euid); 576 ksuid = make_kuid(ns, suid); 577 578 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 579 return -EINVAL; 580 581 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 582 return -EINVAL; 583 584 if ((suid != (uid_t) -1) && !uid_valid(ksuid)) 585 return -EINVAL; 586 587 new = prepare_creds(); 588 if (!new) 589 return -ENOMEM; 590 591 old = current_cred(); 592 593 retval = -EPERM; 594 if (!ns_capable(old->user_ns, CAP_SETUID)) { 595 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && 596 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) 597 goto error; 598 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && 599 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) 600 goto error; 601 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && 602 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) 603 goto error; 604 } 605 606 if (ruid != (uid_t) -1) { 607 new->uid = kruid; 608 if (!uid_eq(kruid, old->uid)) { 609 retval = set_user(new); 610 if (retval < 0) 611 goto error; 612 } 613 } 614 if (euid != (uid_t) -1) 615 new->euid = keuid; 616 if (suid != (uid_t) -1) 617 new->suid = ksuid; 618 new->fsuid = new->euid; 619 620 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 621 if (retval < 0) 622 goto error; 623 624 return commit_creds(new); 625 626 error: 627 abort_creds(new); 628 return retval; 629 } 630 631 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) 632 { 633 const struct cred *cred = current_cred(); 634 int retval; 635 uid_t ruid, euid, suid; 636 637 ruid = from_kuid_munged(cred->user_ns, cred->uid); 638 euid = from_kuid_munged(cred->user_ns, cred->euid); 639 suid = from_kuid_munged(cred->user_ns, cred->suid); 640 641 if (!(retval = put_user(ruid, ruidp)) && 642 !(retval = put_user(euid, euidp))) 643 retval = put_user(suid, suidp); 644 645 return retval; 646 } 647 648 /* 649 * Same as above, but for rgid, egid, sgid. 650 */ 651 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 652 { 653 struct user_namespace *ns = current_user_ns(); 654 const struct cred *old; 655 struct cred *new; 656 int retval; 657 kgid_t krgid, kegid, ksgid; 658 659 krgid = make_kgid(ns, rgid); 660 kegid = make_kgid(ns, egid); 661 ksgid = make_kgid(ns, sgid); 662 663 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 664 return -EINVAL; 665 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 666 return -EINVAL; 667 if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) 668 return -EINVAL; 669 670 new = prepare_creds(); 671 if (!new) 672 return -ENOMEM; 673 old = current_cred(); 674 675 retval = -EPERM; 676 if (!ns_capable(old->user_ns, CAP_SETGID)) { 677 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && 678 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) 679 goto error; 680 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && 681 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) 682 goto error; 683 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && 684 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) 685 goto error; 686 } 687 688 if (rgid != (gid_t) -1) 689 new->gid = krgid; 690 if (egid != (gid_t) -1) 691 new->egid = kegid; 692 if (sgid != (gid_t) -1) 693 new->sgid = ksgid; 694 new->fsgid = new->egid; 695 696 return commit_creds(new); 697 698 error: 699 abort_creds(new); 700 return retval; 701 } 702 703 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) 704 { 705 const struct cred *cred = current_cred(); 706 int retval; 707 gid_t rgid, egid, sgid; 708 709 rgid = from_kgid_munged(cred->user_ns, cred->gid); 710 egid = from_kgid_munged(cred->user_ns, cred->egid); 711 sgid = from_kgid_munged(cred->user_ns, cred->sgid); 712 713 if (!(retval = put_user(rgid, rgidp)) && 714 !(retval = put_user(egid, egidp))) 715 retval = put_user(sgid, sgidp); 716 717 return retval; 718 } 719 720 721 /* 722 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 723 * is used for "access()" and for the NFS daemon (letting nfsd stay at 724 * whatever uid it wants to). It normally shadows "euid", except when 725 * explicitly set by setfsuid() or for access.. 726 */ 727 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 728 { 729 const struct cred *old; 730 struct cred *new; 731 uid_t old_fsuid; 732 kuid_t kuid; 733 734 old = current_cred(); 735 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); 736 737 kuid = make_kuid(old->user_ns, uid); 738 if (!uid_valid(kuid)) 739 return old_fsuid; 740 741 new = prepare_creds(); 742 if (!new) 743 return old_fsuid; 744 745 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || 746 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || 747 ns_capable(old->user_ns, CAP_SETUID)) { 748 if (!uid_eq(kuid, old->fsuid)) { 749 new->fsuid = kuid; 750 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 751 goto change_okay; 752 } 753 } 754 755 abort_creds(new); 756 return old_fsuid; 757 758 change_okay: 759 commit_creds(new); 760 return old_fsuid; 761 } 762 763 /* 764 * Samma på svenska.. 765 */ 766 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 767 { 768 const struct cred *old; 769 struct cred *new; 770 gid_t old_fsgid; 771 kgid_t kgid; 772 773 old = current_cred(); 774 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); 775 776 kgid = make_kgid(old->user_ns, gid); 777 if (!gid_valid(kgid)) 778 return old_fsgid; 779 780 new = prepare_creds(); 781 if (!new) 782 return old_fsgid; 783 784 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || 785 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || 786 ns_capable(old->user_ns, CAP_SETGID)) { 787 if (!gid_eq(kgid, old->fsgid)) { 788 new->fsgid = kgid; 789 goto change_okay; 790 } 791 } 792 793 abort_creds(new); 794 return old_fsgid; 795 796 change_okay: 797 commit_creds(new); 798 return old_fsgid; 799 } 800 801 /** 802 * sys_getpid - return the thread group id of the current process 803 * 804 * Note, despite the name, this returns the tgid not the pid. The tgid and 805 * the pid are identical unless CLONE_THREAD was specified on clone() in 806 * which case the tgid is the same in all threads of the same group. 807 * 808 * This is SMP safe as current->tgid does not change. 809 */ 810 SYSCALL_DEFINE0(getpid) 811 { 812 return task_tgid_vnr(current); 813 } 814 815 /* Thread ID - the internal kernel "pid" */ 816 SYSCALL_DEFINE0(gettid) 817 { 818 return task_pid_vnr(current); 819 } 820 821 /* 822 * Accessing ->real_parent is not SMP-safe, it could 823 * change from under us. However, we can use a stale 824 * value of ->real_parent under rcu_read_lock(), see 825 * release_task()->call_rcu(delayed_put_task_struct). 826 */ 827 SYSCALL_DEFINE0(getppid) 828 { 829 int pid; 830 831 rcu_read_lock(); 832 pid = task_tgid_vnr(rcu_dereference(current->real_parent)); 833 rcu_read_unlock(); 834 835 return pid; 836 } 837 838 SYSCALL_DEFINE0(getuid) 839 { 840 /* Only we change this so SMP safe */ 841 return from_kuid_munged(current_user_ns(), current_uid()); 842 } 843 844 SYSCALL_DEFINE0(geteuid) 845 { 846 /* Only we change this so SMP safe */ 847 return from_kuid_munged(current_user_ns(), current_euid()); 848 } 849 850 SYSCALL_DEFINE0(getgid) 851 { 852 /* Only we change this so SMP safe */ 853 return from_kgid_munged(current_user_ns(), current_gid()); 854 } 855 856 SYSCALL_DEFINE0(getegid) 857 { 858 /* Only we change this so SMP safe */ 859 return from_kgid_munged(current_user_ns(), current_egid()); 860 } 861 862 void do_sys_times(struct tms *tms) 863 { 864 cputime_t tgutime, tgstime, cutime, cstime; 865 866 spin_lock_irq(¤t->sighand->siglock); 867 thread_group_cputime_adjusted(current, &tgutime, &tgstime); 868 cutime = current->signal->cutime; 869 cstime = current->signal->cstime; 870 spin_unlock_irq(¤t->sighand->siglock); 871 tms->tms_utime = cputime_to_clock_t(tgutime); 872 tms->tms_stime = cputime_to_clock_t(tgstime); 873 tms->tms_cutime = cputime_to_clock_t(cutime); 874 tms->tms_cstime = cputime_to_clock_t(cstime); 875 } 876 877 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 878 { 879 if (tbuf) { 880 struct tms tmp; 881 882 do_sys_times(&tmp); 883 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 884 return -EFAULT; 885 } 886 force_successful_syscall_return(); 887 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 888 } 889 890 /* 891 * This needs some heavy checking ... 892 * I just haven't the stomach for it. I also don't fully 893 * understand sessions/pgrp etc. Let somebody who does explain it. 894 * 895 * OK, I think I have the protection semantics right.... this is really 896 * only important on a multi-user system anyway, to make sure one user 897 * can't send a signal to a process owned by another. -TYT, 12/12/91 898 * 899 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 900 * LBT 04.03.94 901 */ 902 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 903 { 904 struct task_struct *p; 905 struct task_struct *group_leader = current->group_leader; 906 struct pid *pgrp; 907 int err; 908 909 if (!pid) 910 pid = task_pid_vnr(group_leader); 911 if (!pgid) 912 pgid = pid; 913 if (pgid < 0) 914 return -EINVAL; 915 rcu_read_lock(); 916 917 /* From this point forward we keep holding onto the tasklist lock 918 * so that our parent does not change from under us. -DaveM 919 */ 920 write_lock_irq(&tasklist_lock); 921 922 err = -ESRCH; 923 p = find_task_by_vpid(pid); 924 if (!p) 925 goto out; 926 927 err = -EINVAL; 928 if (!thread_group_leader(p)) 929 goto out; 930 931 if (same_thread_group(p->real_parent, group_leader)) { 932 err = -EPERM; 933 if (task_session(p) != task_session(group_leader)) 934 goto out; 935 err = -EACCES; 936 if (p->did_exec) 937 goto out; 938 } else { 939 err = -ESRCH; 940 if (p != group_leader) 941 goto out; 942 } 943 944 err = -EPERM; 945 if (p->signal->leader) 946 goto out; 947 948 pgrp = task_pid(p); 949 if (pgid != pid) { 950 struct task_struct *g; 951 952 pgrp = find_vpid(pgid); 953 g = pid_task(pgrp, PIDTYPE_PGID); 954 if (!g || task_session(g) != task_session(group_leader)) 955 goto out; 956 } 957 958 err = security_task_setpgid(p, pgid); 959 if (err) 960 goto out; 961 962 if (task_pgrp(p) != pgrp) 963 change_pid(p, PIDTYPE_PGID, pgrp); 964 965 err = 0; 966 out: 967 /* All paths lead to here, thus we are safe. -DaveM */ 968 write_unlock_irq(&tasklist_lock); 969 rcu_read_unlock(); 970 return err; 971 } 972 973 SYSCALL_DEFINE1(getpgid, pid_t, pid) 974 { 975 struct task_struct *p; 976 struct pid *grp; 977 int retval; 978 979 rcu_read_lock(); 980 if (!pid) 981 grp = task_pgrp(current); 982 else { 983 retval = -ESRCH; 984 p = find_task_by_vpid(pid); 985 if (!p) 986 goto out; 987 grp = task_pgrp(p); 988 if (!grp) 989 goto out; 990 991 retval = security_task_getpgid(p); 992 if (retval) 993 goto out; 994 } 995 retval = pid_vnr(grp); 996 out: 997 rcu_read_unlock(); 998 return retval; 999 } 1000 1001 #ifdef __ARCH_WANT_SYS_GETPGRP 1002 1003 SYSCALL_DEFINE0(getpgrp) 1004 { 1005 return sys_getpgid(0); 1006 } 1007 1008 #endif 1009 1010 SYSCALL_DEFINE1(getsid, pid_t, pid) 1011 { 1012 struct task_struct *p; 1013 struct pid *sid; 1014 int retval; 1015 1016 rcu_read_lock(); 1017 if (!pid) 1018 sid = task_session(current); 1019 else { 1020 retval = -ESRCH; 1021 p = find_task_by_vpid(pid); 1022 if (!p) 1023 goto out; 1024 sid = task_session(p); 1025 if (!sid) 1026 goto out; 1027 1028 retval = security_task_getsid(p); 1029 if (retval) 1030 goto out; 1031 } 1032 retval = pid_vnr(sid); 1033 out: 1034 rcu_read_unlock(); 1035 return retval; 1036 } 1037 1038 static void set_special_pids(struct pid *pid) 1039 { 1040 struct task_struct *curr = current->group_leader; 1041 1042 if (task_session(curr) != pid) 1043 change_pid(curr, PIDTYPE_SID, pid); 1044 1045 if (task_pgrp(curr) != pid) 1046 change_pid(curr, PIDTYPE_PGID, pid); 1047 } 1048 1049 SYSCALL_DEFINE0(setsid) 1050 { 1051 struct task_struct *group_leader = current->group_leader; 1052 struct pid *sid = task_pid(group_leader); 1053 pid_t session = pid_vnr(sid); 1054 int err = -EPERM; 1055 1056 write_lock_irq(&tasklist_lock); 1057 /* Fail if I am already a session leader */ 1058 if (group_leader->signal->leader) 1059 goto out; 1060 1061 /* Fail if a process group id already exists that equals the 1062 * proposed session id. 1063 */ 1064 if (pid_task(sid, PIDTYPE_PGID)) 1065 goto out; 1066 1067 group_leader->signal->leader = 1; 1068 set_special_pids(sid); 1069 1070 proc_clear_tty(group_leader); 1071 1072 err = session; 1073 out: 1074 write_unlock_irq(&tasklist_lock); 1075 if (err > 0) { 1076 proc_sid_connector(group_leader); 1077 sched_autogroup_create_attach(group_leader); 1078 } 1079 return err; 1080 } 1081 1082 DECLARE_RWSEM(uts_sem); 1083 1084 #ifdef COMPAT_UTS_MACHINE 1085 #define override_architecture(name) \ 1086 (personality(current->personality) == PER_LINUX32 && \ 1087 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1088 sizeof(COMPAT_UTS_MACHINE))) 1089 #else 1090 #define override_architecture(name) 0 1091 #endif 1092 1093 /* 1094 * Work around broken programs that cannot handle "Linux 3.0". 1095 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1096 */ 1097 static int override_release(char __user *release, size_t len) 1098 { 1099 int ret = 0; 1100 1101 if (current->personality & UNAME26) { 1102 const char *rest = UTS_RELEASE; 1103 char buf[65] = { 0 }; 1104 int ndots = 0; 1105 unsigned v; 1106 size_t copy; 1107 1108 while (*rest) { 1109 if (*rest == '.' && ++ndots >= 3) 1110 break; 1111 if (!isdigit(*rest) && *rest != '.') 1112 break; 1113 rest++; 1114 } 1115 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40; 1116 copy = clamp_t(size_t, len, 1, sizeof(buf)); 1117 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); 1118 ret = copy_to_user(release, buf, copy + 1); 1119 } 1120 return ret; 1121 } 1122 1123 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1124 { 1125 int errno = 0; 1126 1127 down_read(&uts_sem); 1128 if (copy_to_user(name, utsname(), sizeof *name)) 1129 errno = -EFAULT; 1130 up_read(&uts_sem); 1131 1132 if (!errno && override_release(name->release, sizeof(name->release))) 1133 errno = -EFAULT; 1134 if (!errno && override_architecture(name)) 1135 errno = -EFAULT; 1136 return errno; 1137 } 1138 1139 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1140 /* 1141 * Old cruft 1142 */ 1143 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1144 { 1145 int error = 0; 1146 1147 if (!name) 1148 return -EFAULT; 1149 1150 down_read(&uts_sem); 1151 if (copy_to_user(name, utsname(), sizeof(*name))) 1152 error = -EFAULT; 1153 up_read(&uts_sem); 1154 1155 if (!error && override_release(name->release, sizeof(name->release))) 1156 error = -EFAULT; 1157 if (!error && override_architecture(name)) 1158 error = -EFAULT; 1159 return error; 1160 } 1161 1162 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1163 { 1164 int error; 1165 1166 if (!name) 1167 return -EFAULT; 1168 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) 1169 return -EFAULT; 1170 1171 down_read(&uts_sem); 1172 error = __copy_to_user(&name->sysname, &utsname()->sysname, 1173 __OLD_UTS_LEN); 1174 error |= __put_user(0, name->sysname + __OLD_UTS_LEN); 1175 error |= __copy_to_user(&name->nodename, &utsname()->nodename, 1176 __OLD_UTS_LEN); 1177 error |= __put_user(0, name->nodename + __OLD_UTS_LEN); 1178 error |= __copy_to_user(&name->release, &utsname()->release, 1179 __OLD_UTS_LEN); 1180 error |= __put_user(0, name->release + __OLD_UTS_LEN); 1181 error |= __copy_to_user(&name->version, &utsname()->version, 1182 __OLD_UTS_LEN); 1183 error |= __put_user(0, name->version + __OLD_UTS_LEN); 1184 error |= __copy_to_user(&name->machine, &utsname()->machine, 1185 __OLD_UTS_LEN); 1186 error |= __put_user(0, name->machine + __OLD_UTS_LEN); 1187 up_read(&uts_sem); 1188 1189 if (!error && override_architecture(name)) 1190 error = -EFAULT; 1191 if (!error && override_release(name->release, sizeof(name->release))) 1192 error = -EFAULT; 1193 return error ? -EFAULT : 0; 1194 } 1195 #endif 1196 1197 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1198 { 1199 int errno; 1200 char tmp[__NEW_UTS_LEN]; 1201 1202 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1203 return -EPERM; 1204 1205 if (len < 0 || len > __NEW_UTS_LEN) 1206 return -EINVAL; 1207 down_write(&uts_sem); 1208 errno = -EFAULT; 1209 if (!copy_from_user(tmp, name, len)) { 1210 struct new_utsname *u = utsname(); 1211 1212 memcpy(u->nodename, tmp, len); 1213 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1214 errno = 0; 1215 uts_proc_notify(UTS_PROC_HOSTNAME); 1216 } 1217 up_write(&uts_sem); 1218 return errno; 1219 } 1220 1221 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1222 1223 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1224 { 1225 int i, errno; 1226 struct new_utsname *u; 1227 1228 if (len < 0) 1229 return -EINVAL; 1230 down_read(&uts_sem); 1231 u = utsname(); 1232 i = 1 + strlen(u->nodename); 1233 if (i > len) 1234 i = len; 1235 errno = 0; 1236 if (copy_to_user(name, u->nodename, i)) 1237 errno = -EFAULT; 1238 up_read(&uts_sem); 1239 return errno; 1240 } 1241 1242 #endif 1243 1244 /* 1245 * Only setdomainname; getdomainname can be implemented by calling 1246 * uname() 1247 */ 1248 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1249 { 1250 int errno; 1251 char tmp[__NEW_UTS_LEN]; 1252 1253 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1254 return -EPERM; 1255 if (len < 0 || len > __NEW_UTS_LEN) 1256 return -EINVAL; 1257 1258 down_write(&uts_sem); 1259 errno = -EFAULT; 1260 if (!copy_from_user(tmp, name, len)) { 1261 struct new_utsname *u = utsname(); 1262 1263 memcpy(u->domainname, tmp, len); 1264 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1265 errno = 0; 1266 uts_proc_notify(UTS_PROC_DOMAINNAME); 1267 } 1268 up_write(&uts_sem); 1269 return errno; 1270 } 1271 1272 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1273 { 1274 struct rlimit value; 1275 int ret; 1276 1277 ret = do_prlimit(current, resource, NULL, &value); 1278 if (!ret) 1279 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1280 1281 return ret; 1282 } 1283 1284 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1285 1286 /* 1287 * Back compatibility for getrlimit. Needed for some apps. 1288 */ 1289 1290 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1291 struct rlimit __user *, rlim) 1292 { 1293 struct rlimit x; 1294 if (resource >= RLIM_NLIMITS) 1295 return -EINVAL; 1296 1297 task_lock(current->group_leader); 1298 x = current->signal->rlim[resource]; 1299 task_unlock(current->group_leader); 1300 if (x.rlim_cur > 0x7FFFFFFF) 1301 x.rlim_cur = 0x7FFFFFFF; 1302 if (x.rlim_max > 0x7FFFFFFF) 1303 x.rlim_max = 0x7FFFFFFF; 1304 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1305 } 1306 1307 #endif 1308 1309 static inline bool rlim64_is_infinity(__u64 rlim64) 1310 { 1311 #if BITS_PER_LONG < 64 1312 return rlim64 >= ULONG_MAX; 1313 #else 1314 return rlim64 == RLIM64_INFINITY; 1315 #endif 1316 } 1317 1318 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1319 { 1320 if (rlim->rlim_cur == RLIM_INFINITY) 1321 rlim64->rlim_cur = RLIM64_INFINITY; 1322 else 1323 rlim64->rlim_cur = rlim->rlim_cur; 1324 if (rlim->rlim_max == RLIM_INFINITY) 1325 rlim64->rlim_max = RLIM64_INFINITY; 1326 else 1327 rlim64->rlim_max = rlim->rlim_max; 1328 } 1329 1330 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1331 { 1332 if (rlim64_is_infinity(rlim64->rlim_cur)) 1333 rlim->rlim_cur = RLIM_INFINITY; 1334 else 1335 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1336 if (rlim64_is_infinity(rlim64->rlim_max)) 1337 rlim->rlim_max = RLIM_INFINITY; 1338 else 1339 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1340 } 1341 1342 /* make sure you are allowed to change @tsk limits before calling this */ 1343 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1344 struct rlimit *new_rlim, struct rlimit *old_rlim) 1345 { 1346 struct rlimit *rlim; 1347 int retval = 0; 1348 1349 if (resource >= RLIM_NLIMITS) 1350 return -EINVAL; 1351 if (new_rlim) { 1352 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1353 return -EINVAL; 1354 if (resource == RLIMIT_NOFILE && 1355 new_rlim->rlim_max > sysctl_nr_open) 1356 return -EPERM; 1357 } 1358 1359 /* protect tsk->signal and tsk->sighand from disappearing */ 1360 read_lock(&tasklist_lock); 1361 if (!tsk->sighand) { 1362 retval = -ESRCH; 1363 goto out; 1364 } 1365 1366 rlim = tsk->signal->rlim + resource; 1367 task_lock(tsk->group_leader); 1368 if (new_rlim) { 1369 /* Keep the capable check against init_user_ns until 1370 cgroups can contain all limits */ 1371 if (new_rlim->rlim_max > rlim->rlim_max && 1372 !capable(CAP_SYS_RESOURCE)) 1373 retval = -EPERM; 1374 if (!retval) 1375 retval = security_task_setrlimit(tsk->group_leader, 1376 resource, new_rlim); 1377 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { 1378 /* 1379 * The caller is asking for an immediate RLIMIT_CPU 1380 * expiry. But we use the zero value to mean "it was 1381 * never set". So let's cheat and make it one second 1382 * instead 1383 */ 1384 new_rlim->rlim_cur = 1; 1385 } 1386 } 1387 if (!retval) { 1388 if (old_rlim) 1389 *old_rlim = *rlim; 1390 if (new_rlim) 1391 *rlim = *new_rlim; 1392 } 1393 task_unlock(tsk->group_leader); 1394 1395 /* 1396 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1397 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1398 * very long-standing error, and fixing it now risks breakage of 1399 * applications, so we live with it 1400 */ 1401 if (!retval && new_rlim && resource == RLIMIT_CPU && 1402 new_rlim->rlim_cur != RLIM_INFINITY) 1403 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1404 out: 1405 read_unlock(&tasklist_lock); 1406 return retval; 1407 } 1408 1409 /* rcu lock must be held */ 1410 static int check_prlimit_permission(struct task_struct *task) 1411 { 1412 const struct cred *cred = current_cred(), *tcred; 1413 1414 if (current == task) 1415 return 0; 1416 1417 tcred = __task_cred(task); 1418 if (uid_eq(cred->uid, tcred->euid) && 1419 uid_eq(cred->uid, tcred->suid) && 1420 uid_eq(cred->uid, tcred->uid) && 1421 gid_eq(cred->gid, tcred->egid) && 1422 gid_eq(cred->gid, tcred->sgid) && 1423 gid_eq(cred->gid, tcred->gid)) 1424 return 0; 1425 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) 1426 return 0; 1427 1428 return -EPERM; 1429 } 1430 1431 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1432 const struct rlimit64 __user *, new_rlim, 1433 struct rlimit64 __user *, old_rlim) 1434 { 1435 struct rlimit64 old64, new64; 1436 struct rlimit old, new; 1437 struct task_struct *tsk; 1438 int ret; 1439 1440 if (new_rlim) { 1441 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1442 return -EFAULT; 1443 rlim64_to_rlim(&new64, &new); 1444 } 1445 1446 rcu_read_lock(); 1447 tsk = pid ? find_task_by_vpid(pid) : current; 1448 if (!tsk) { 1449 rcu_read_unlock(); 1450 return -ESRCH; 1451 } 1452 ret = check_prlimit_permission(tsk); 1453 if (ret) { 1454 rcu_read_unlock(); 1455 return ret; 1456 } 1457 get_task_struct(tsk); 1458 rcu_read_unlock(); 1459 1460 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1461 old_rlim ? &old : NULL); 1462 1463 if (!ret && old_rlim) { 1464 rlim_to_rlim64(&old, &old64); 1465 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1466 ret = -EFAULT; 1467 } 1468 1469 put_task_struct(tsk); 1470 return ret; 1471 } 1472 1473 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1474 { 1475 struct rlimit new_rlim; 1476 1477 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1478 return -EFAULT; 1479 return do_prlimit(current, resource, &new_rlim, NULL); 1480 } 1481 1482 /* 1483 * It would make sense to put struct rusage in the task_struct, 1484 * except that would make the task_struct be *really big*. After 1485 * task_struct gets moved into malloc'ed memory, it would 1486 * make sense to do this. It will make moving the rest of the information 1487 * a lot simpler! (Which we're not doing right now because we're not 1488 * measuring them yet). 1489 * 1490 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1491 * races with threads incrementing their own counters. But since word 1492 * reads are atomic, we either get new values or old values and we don't 1493 * care which for the sums. We always take the siglock to protect reading 1494 * the c* fields from p->signal from races with exit.c updating those 1495 * fields when reaping, so a sample either gets all the additions of a 1496 * given child after it's reaped, or none so this sample is before reaping. 1497 * 1498 * Locking: 1499 * We need to take the siglock for CHILDEREN, SELF and BOTH 1500 * for the cases current multithreaded, non-current single threaded 1501 * non-current multithreaded. Thread traversal is now safe with 1502 * the siglock held. 1503 * Strictly speaking, we donot need to take the siglock if we are current and 1504 * single threaded, as no one else can take our signal_struct away, no one 1505 * else can reap the children to update signal->c* counters, and no one else 1506 * can race with the signal-> fields. If we do not take any lock, the 1507 * signal-> fields could be read out of order while another thread was just 1508 * exiting. So we should place a read memory barrier when we avoid the lock. 1509 * On the writer side, write memory barrier is implied in __exit_signal 1510 * as __exit_signal releases the siglock spinlock after updating the signal-> 1511 * fields. But we don't do this yet to keep things simple. 1512 * 1513 */ 1514 1515 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1516 { 1517 r->ru_nvcsw += t->nvcsw; 1518 r->ru_nivcsw += t->nivcsw; 1519 r->ru_minflt += t->min_flt; 1520 r->ru_majflt += t->maj_flt; 1521 r->ru_inblock += task_io_get_inblock(t); 1522 r->ru_oublock += task_io_get_oublock(t); 1523 } 1524 1525 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1526 { 1527 struct task_struct *t; 1528 unsigned long flags; 1529 cputime_t tgutime, tgstime, utime, stime; 1530 unsigned long maxrss = 0; 1531 1532 memset((char *) r, 0, sizeof *r); 1533 utime = stime = 0; 1534 1535 if (who == RUSAGE_THREAD) { 1536 task_cputime_adjusted(current, &utime, &stime); 1537 accumulate_thread_rusage(p, r); 1538 maxrss = p->signal->maxrss; 1539 goto out; 1540 } 1541 1542 if (!lock_task_sighand(p, &flags)) 1543 return; 1544 1545 switch (who) { 1546 case RUSAGE_BOTH: 1547 case RUSAGE_CHILDREN: 1548 utime = p->signal->cutime; 1549 stime = p->signal->cstime; 1550 r->ru_nvcsw = p->signal->cnvcsw; 1551 r->ru_nivcsw = p->signal->cnivcsw; 1552 r->ru_minflt = p->signal->cmin_flt; 1553 r->ru_majflt = p->signal->cmaj_flt; 1554 r->ru_inblock = p->signal->cinblock; 1555 r->ru_oublock = p->signal->coublock; 1556 maxrss = p->signal->cmaxrss; 1557 1558 if (who == RUSAGE_CHILDREN) 1559 break; 1560 1561 case RUSAGE_SELF: 1562 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1563 utime += tgutime; 1564 stime += tgstime; 1565 r->ru_nvcsw += p->signal->nvcsw; 1566 r->ru_nivcsw += p->signal->nivcsw; 1567 r->ru_minflt += p->signal->min_flt; 1568 r->ru_majflt += p->signal->maj_flt; 1569 r->ru_inblock += p->signal->inblock; 1570 r->ru_oublock += p->signal->oublock; 1571 if (maxrss < p->signal->maxrss) 1572 maxrss = p->signal->maxrss; 1573 t = p; 1574 do { 1575 accumulate_thread_rusage(t, r); 1576 t = next_thread(t); 1577 } while (t != p); 1578 break; 1579 1580 default: 1581 BUG(); 1582 } 1583 unlock_task_sighand(p, &flags); 1584 1585 out: 1586 cputime_to_timeval(utime, &r->ru_utime); 1587 cputime_to_timeval(stime, &r->ru_stime); 1588 1589 if (who != RUSAGE_CHILDREN) { 1590 struct mm_struct *mm = get_task_mm(p); 1591 if (mm) { 1592 setmax_mm_hiwater_rss(&maxrss, mm); 1593 mmput(mm); 1594 } 1595 } 1596 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1597 } 1598 1599 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1600 { 1601 struct rusage r; 1602 k_getrusage(p, who, &r); 1603 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1604 } 1605 1606 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1607 { 1608 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1609 who != RUSAGE_THREAD) 1610 return -EINVAL; 1611 return getrusage(current, who, ru); 1612 } 1613 1614 #ifdef CONFIG_COMPAT 1615 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) 1616 { 1617 struct rusage r; 1618 1619 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1620 who != RUSAGE_THREAD) 1621 return -EINVAL; 1622 1623 k_getrusage(current, who, &r); 1624 return put_compat_rusage(&r, ru); 1625 } 1626 #endif 1627 1628 SYSCALL_DEFINE1(umask, int, mask) 1629 { 1630 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1631 return mask; 1632 } 1633 1634 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) 1635 { 1636 struct fd exe; 1637 struct inode *inode; 1638 int err; 1639 1640 exe = fdget(fd); 1641 if (!exe.file) 1642 return -EBADF; 1643 1644 inode = file_inode(exe.file); 1645 1646 /* 1647 * Because the original mm->exe_file points to executable file, make 1648 * sure that this one is executable as well, to avoid breaking an 1649 * overall picture. 1650 */ 1651 err = -EACCES; 1652 if (!S_ISREG(inode->i_mode) || 1653 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC) 1654 goto exit; 1655 1656 err = inode_permission(inode, MAY_EXEC); 1657 if (err) 1658 goto exit; 1659 1660 down_write(&mm->mmap_sem); 1661 1662 /* 1663 * Forbid mm->exe_file change if old file still mapped. 1664 */ 1665 err = -EBUSY; 1666 if (mm->exe_file) { 1667 struct vm_area_struct *vma; 1668 1669 for (vma = mm->mmap; vma; vma = vma->vm_next) 1670 if (vma->vm_file && 1671 path_equal(&vma->vm_file->f_path, 1672 &mm->exe_file->f_path)) 1673 goto exit_unlock; 1674 } 1675 1676 /* 1677 * The symlink can be changed only once, just to disallow arbitrary 1678 * transitions malicious software might bring in. This means one 1679 * could make a snapshot over all processes running and monitor 1680 * /proc/pid/exe changes to notice unusual activity if needed. 1681 */ 1682 err = -EPERM; 1683 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags)) 1684 goto exit_unlock; 1685 1686 err = 0; 1687 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */ 1688 exit_unlock: 1689 up_write(&mm->mmap_sem); 1690 1691 exit: 1692 fdput(exe); 1693 return err; 1694 } 1695 1696 static int prctl_set_mm(int opt, unsigned long addr, 1697 unsigned long arg4, unsigned long arg5) 1698 { 1699 unsigned long rlim = rlimit(RLIMIT_DATA); 1700 struct mm_struct *mm = current->mm; 1701 struct vm_area_struct *vma; 1702 int error; 1703 1704 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV)) 1705 return -EINVAL; 1706 1707 if (!capable(CAP_SYS_RESOURCE)) 1708 return -EPERM; 1709 1710 if (opt == PR_SET_MM_EXE_FILE) 1711 return prctl_set_mm_exe_file(mm, (unsigned int)addr); 1712 1713 if (addr >= TASK_SIZE || addr < mmap_min_addr) 1714 return -EINVAL; 1715 1716 error = -EINVAL; 1717 1718 down_read(&mm->mmap_sem); 1719 vma = find_vma(mm, addr); 1720 1721 switch (opt) { 1722 case PR_SET_MM_START_CODE: 1723 mm->start_code = addr; 1724 break; 1725 case PR_SET_MM_END_CODE: 1726 mm->end_code = addr; 1727 break; 1728 case PR_SET_MM_START_DATA: 1729 mm->start_data = addr; 1730 break; 1731 case PR_SET_MM_END_DATA: 1732 mm->end_data = addr; 1733 break; 1734 1735 case PR_SET_MM_START_BRK: 1736 if (addr <= mm->end_data) 1737 goto out; 1738 1739 if (rlim < RLIM_INFINITY && 1740 (mm->brk - addr) + 1741 (mm->end_data - mm->start_data) > rlim) 1742 goto out; 1743 1744 mm->start_brk = addr; 1745 break; 1746 1747 case PR_SET_MM_BRK: 1748 if (addr <= mm->end_data) 1749 goto out; 1750 1751 if (rlim < RLIM_INFINITY && 1752 (addr - mm->start_brk) + 1753 (mm->end_data - mm->start_data) > rlim) 1754 goto out; 1755 1756 mm->brk = addr; 1757 break; 1758 1759 /* 1760 * If command line arguments and environment 1761 * are placed somewhere else on stack, we can 1762 * set them up here, ARG_START/END to setup 1763 * command line argumets and ENV_START/END 1764 * for environment. 1765 */ 1766 case PR_SET_MM_START_STACK: 1767 case PR_SET_MM_ARG_START: 1768 case PR_SET_MM_ARG_END: 1769 case PR_SET_MM_ENV_START: 1770 case PR_SET_MM_ENV_END: 1771 if (!vma) { 1772 error = -EFAULT; 1773 goto out; 1774 } 1775 if (opt == PR_SET_MM_START_STACK) 1776 mm->start_stack = addr; 1777 else if (opt == PR_SET_MM_ARG_START) 1778 mm->arg_start = addr; 1779 else if (opt == PR_SET_MM_ARG_END) 1780 mm->arg_end = addr; 1781 else if (opt == PR_SET_MM_ENV_START) 1782 mm->env_start = addr; 1783 else if (opt == PR_SET_MM_ENV_END) 1784 mm->env_end = addr; 1785 break; 1786 1787 /* 1788 * This doesn't move auxiliary vector itself 1789 * since it's pinned to mm_struct, but allow 1790 * to fill vector with new values. It's up 1791 * to a caller to provide sane values here 1792 * otherwise user space tools which use this 1793 * vector might be unhappy. 1794 */ 1795 case PR_SET_MM_AUXV: { 1796 unsigned long user_auxv[AT_VECTOR_SIZE]; 1797 1798 if (arg4 > sizeof(user_auxv)) 1799 goto out; 1800 up_read(&mm->mmap_sem); 1801 1802 if (copy_from_user(user_auxv, (const void __user *)addr, arg4)) 1803 return -EFAULT; 1804 1805 /* Make sure the last entry is always AT_NULL */ 1806 user_auxv[AT_VECTOR_SIZE - 2] = 0; 1807 user_auxv[AT_VECTOR_SIZE - 1] = 0; 1808 1809 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 1810 1811 task_lock(current); 1812 memcpy(mm->saved_auxv, user_auxv, arg4); 1813 task_unlock(current); 1814 1815 return 0; 1816 } 1817 default: 1818 goto out; 1819 } 1820 1821 error = 0; 1822 out: 1823 up_read(&mm->mmap_sem); 1824 return error; 1825 } 1826 1827 #ifdef CONFIG_CHECKPOINT_RESTORE 1828 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) 1829 { 1830 return put_user(me->clear_child_tid, tid_addr); 1831 } 1832 #else 1833 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) 1834 { 1835 return -EINVAL; 1836 } 1837 #endif 1838 1839 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 1840 unsigned long, arg4, unsigned long, arg5) 1841 { 1842 struct task_struct *me = current; 1843 unsigned char comm[sizeof(me->comm)]; 1844 long error; 1845 1846 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1847 if (error != -ENOSYS) 1848 return error; 1849 1850 error = 0; 1851 switch (option) { 1852 case PR_SET_PDEATHSIG: 1853 if (!valid_signal(arg2)) { 1854 error = -EINVAL; 1855 break; 1856 } 1857 me->pdeath_signal = arg2; 1858 break; 1859 case PR_GET_PDEATHSIG: 1860 error = put_user(me->pdeath_signal, (int __user *)arg2); 1861 break; 1862 case PR_GET_DUMPABLE: 1863 error = get_dumpable(me->mm); 1864 break; 1865 case PR_SET_DUMPABLE: 1866 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { 1867 error = -EINVAL; 1868 break; 1869 } 1870 set_dumpable(me->mm, arg2); 1871 break; 1872 1873 case PR_SET_UNALIGN: 1874 error = SET_UNALIGN_CTL(me, arg2); 1875 break; 1876 case PR_GET_UNALIGN: 1877 error = GET_UNALIGN_CTL(me, arg2); 1878 break; 1879 case PR_SET_FPEMU: 1880 error = SET_FPEMU_CTL(me, arg2); 1881 break; 1882 case PR_GET_FPEMU: 1883 error = GET_FPEMU_CTL(me, arg2); 1884 break; 1885 case PR_SET_FPEXC: 1886 error = SET_FPEXC_CTL(me, arg2); 1887 break; 1888 case PR_GET_FPEXC: 1889 error = GET_FPEXC_CTL(me, arg2); 1890 break; 1891 case PR_GET_TIMING: 1892 error = PR_TIMING_STATISTICAL; 1893 break; 1894 case PR_SET_TIMING: 1895 if (arg2 != PR_TIMING_STATISTICAL) 1896 error = -EINVAL; 1897 break; 1898 case PR_SET_NAME: 1899 comm[sizeof(me->comm) - 1] = 0; 1900 if (strncpy_from_user(comm, (char __user *)arg2, 1901 sizeof(me->comm) - 1) < 0) 1902 return -EFAULT; 1903 set_task_comm(me, comm); 1904 proc_comm_connector(me); 1905 break; 1906 case PR_GET_NAME: 1907 get_task_comm(comm, me); 1908 if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) 1909 return -EFAULT; 1910 break; 1911 case PR_GET_ENDIAN: 1912 error = GET_ENDIAN(me, arg2); 1913 break; 1914 case PR_SET_ENDIAN: 1915 error = SET_ENDIAN(me, arg2); 1916 break; 1917 case PR_GET_SECCOMP: 1918 error = prctl_get_seccomp(); 1919 break; 1920 case PR_SET_SECCOMP: 1921 error = prctl_set_seccomp(arg2, (char __user *)arg3); 1922 break; 1923 case PR_GET_TSC: 1924 error = GET_TSC_CTL(arg2); 1925 break; 1926 case PR_SET_TSC: 1927 error = SET_TSC_CTL(arg2); 1928 break; 1929 case PR_TASK_PERF_EVENTS_DISABLE: 1930 error = perf_event_task_disable(); 1931 break; 1932 case PR_TASK_PERF_EVENTS_ENABLE: 1933 error = perf_event_task_enable(); 1934 break; 1935 case PR_GET_TIMERSLACK: 1936 error = current->timer_slack_ns; 1937 break; 1938 case PR_SET_TIMERSLACK: 1939 if (arg2 <= 0) 1940 current->timer_slack_ns = 1941 current->default_timer_slack_ns; 1942 else 1943 current->timer_slack_ns = arg2; 1944 break; 1945 case PR_MCE_KILL: 1946 if (arg4 | arg5) 1947 return -EINVAL; 1948 switch (arg2) { 1949 case PR_MCE_KILL_CLEAR: 1950 if (arg3 != 0) 1951 return -EINVAL; 1952 current->flags &= ~PF_MCE_PROCESS; 1953 break; 1954 case PR_MCE_KILL_SET: 1955 current->flags |= PF_MCE_PROCESS; 1956 if (arg3 == PR_MCE_KILL_EARLY) 1957 current->flags |= PF_MCE_EARLY; 1958 else if (arg3 == PR_MCE_KILL_LATE) 1959 current->flags &= ~PF_MCE_EARLY; 1960 else if (arg3 == PR_MCE_KILL_DEFAULT) 1961 current->flags &= 1962 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 1963 else 1964 return -EINVAL; 1965 break; 1966 default: 1967 return -EINVAL; 1968 } 1969 break; 1970 case PR_MCE_KILL_GET: 1971 if (arg2 | arg3 | arg4 | arg5) 1972 return -EINVAL; 1973 if (current->flags & PF_MCE_PROCESS) 1974 error = (current->flags & PF_MCE_EARLY) ? 1975 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 1976 else 1977 error = PR_MCE_KILL_DEFAULT; 1978 break; 1979 case PR_SET_MM: 1980 error = prctl_set_mm(arg2, arg3, arg4, arg5); 1981 break; 1982 case PR_GET_TID_ADDRESS: 1983 error = prctl_get_tid_address(me, (int __user **)arg2); 1984 break; 1985 case PR_SET_CHILD_SUBREAPER: 1986 me->signal->is_child_subreaper = !!arg2; 1987 break; 1988 case PR_GET_CHILD_SUBREAPER: 1989 error = put_user(me->signal->is_child_subreaper, 1990 (int __user *)arg2); 1991 break; 1992 case PR_SET_NO_NEW_PRIVS: 1993 if (arg2 != 1 || arg3 || arg4 || arg5) 1994 return -EINVAL; 1995 1996 current->no_new_privs = 1; 1997 break; 1998 case PR_GET_NO_NEW_PRIVS: 1999 if (arg2 || arg3 || arg4 || arg5) 2000 return -EINVAL; 2001 return current->no_new_privs ? 1 : 0; 2002 default: 2003 error = -EINVAL; 2004 break; 2005 } 2006 return error; 2007 } 2008 2009 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 2010 struct getcpu_cache __user *, unused) 2011 { 2012 int err = 0; 2013 int cpu = raw_smp_processor_id(); 2014 if (cpup) 2015 err |= put_user(cpu, cpup); 2016 if (nodep) 2017 err |= put_user(cpu_to_node(cpu), nodep); 2018 return err ? -EFAULT : 0; 2019 } 2020 2021 /** 2022 * do_sysinfo - fill in sysinfo struct 2023 * @info: pointer to buffer to fill 2024 */ 2025 static int do_sysinfo(struct sysinfo *info) 2026 { 2027 unsigned long mem_total, sav_total; 2028 unsigned int mem_unit, bitcount; 2029 struct timespec tp; 2030 2031 memset(info, 0, sizeof(struct sysinfo)); 2032 2033 get_monotonic_boottime(&tp); 2034 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 2035 2036 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); 2037 2038 info->procs = nr_threads; 2039 2040 si_meminfo(info); 2041 si_swapinfo(info); 2042 2043 /* 2044 * If the sum of all the available memory (i.e. ram + swap) 2045 * is less than can be stored in a 32 bit unsigned long then 2046 * we can be binary compatible with 2.2.x kernels. If not, 2047 * well, in that case 2.2.x was broken anyways... 2048 * 2049 * -Erik Andersen <andersee@debian.org> 2050 */ 2051 2052 mem_total = info->totalram + info->totalswap; 2053 if (mem_total < info->totalram || mem_total < info->totalswap) 2054 goto out; 2055 bitcount = 0; 2056 mem_unit = info->mem_unit; 2057 while (mem_unit > 1) { 2058 bitcount++; 2059 mem_unit >>= 1; 2060 sav_total = mem_total; 2061 mem_total <<= 1; 2062 if (mem_total < sav_total) 2063 goto out; 2064 } 2065 2066 /* 2067 * If mem_total did not overflow, multiply all memory values by 2068 * info->mem_unit and set it to 1. This leaves things compatible 2069 * with 2.2.x, and also retains compatibility with earlier 2.4.x 2070 * kernels... 2071 */ 2072 2073 info->mem_unit = 1; 2074 info->totalram <<= bitcount; 2075 info->freeram <<= bitcount; 2076 info->sharedram <<= bitcount; 2077 info->bufferram <<= bitcount; 2078 info->totalswap <<= bitcount; 2079 info->freeswap <<= bitcount; 2080 info->totalhigh <<= bitcount; 2081 info->freehigh <<= bitcount; 2082 2083 out: 2084 return 0; 2085 } 2086 2087 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) 2088 { 2089 struct sysinfo val; 2090 2091 do_sysinfo(&val); 2092 2093 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 2094 return -EFAULT; 2095 2096 return 0; 2097 } 2098 2099 #ifdef CONFIG_COMPAT 2100 struct compat_sysinfo { 2101 s32 uptime; 2102 u32 loads[3]; 2103 u32 totalram; 2104 u32 freeram; 2105 u32 sharedram; 2106 u32 bufferram; 2107 u32 totalswap; 2108 u32 freeswap; 2109 u16 procs; 2110 u16 pad; 2111 u32 totalhigh; 2112 u32 freehigh; 2113 u32 mem_unit; 2114 char _f[20-2*sizeof(u32)-sizeof(int)]; 2115 }; 2116 2117 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) 2118 { 2119 struct sysinfo s; 2120 2121 do_sysinfo(&s); 2122 2123 /* Check to see if any memory value is too large for 32-bit and scale 2124 * down if needed 2125 */ 2126 if ((s.totalram >> 32) || (s.totalswap >> 32)) { 2127 int bitcount = 0; 2128 2129 while (s.mem_unit < PAGE_SIZE) { 2130 s.mem_unit <<= 1; 2131 bitcount++; 2132 } 2133 2134 s.totalram >>= bitcount; 2135 s.freeram >>= bitcount; 2136 s.sharedram >>= bitcount; 2137 s.bufferram >>= bitcount; 2138 s.totalswap >>= bitcount; 2139 s.freeswap >>= bitcount; 2140 s.totalhigh >>= bitcount; 2141 s.freehigh >>= bitcount; 2142 } 2143 2144 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) || 2145 __put_user(s.uptime, &info->uptime) || 2146 __put_user(s.loads[0], &info->loads[0]) || 2147 __put_user(s.loads[1], &info->loads[1]) || 2148 __put_user(s.loads[2], &info->loads[2]) || 2149 __put_user(s.totalram, &info->totalram) || 2150 __put_user(s.freeram, &info->freeram) || 2151 __put_user(s.sharedram, &info->sharedram) || 2152 __put_user(s.bufferram, &info->bufferram) || 2153 __put_user(s.totalswap, &info->totalswap) || 2154 __put_user(s.freeswap, &info->freeswap) || 2155 __put_user(s.procs, &info->procs) || 2156 __put_user(s.totalhigh, &info->totalhigh) || 2157 __put_user(s.freehigh, &info->freehigh) || 2158 __put_user(s.mem_unit, &info->mem_unit)) 2159 return -EFAULT; 2160 2161 return 0; 2162 } 2163 #endif /* CONFIG_COMPAT */ 2164