1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/reboot.h> 12 #include <linux/prctl.h> 13 #include <linux/highuid.h> 14 #include <linux/fs.h> 15 #include <linux/perf_event.h> 16 #include <linux/resource.h> 17 #include <linux/kernel.h> 18 #include <linux/kexec.h> 19 #include <linux/workqueue.h> 20 #include <linux/capability.h> 21 #include <linux/device.h> 22 #include <linux/key.h> 23 #include <linux/times.h> 24 #include <linux/posix-timers.h> 25 #include <linux/security.h> 26 #include <linux/dcookies.h> 27 #include <linux/suspend.h> 28 #include <linux/tty.h> 29 #include <linux/signal.h> 30 #include <linux/cn_proc.h> 31 #include <linux/getcpu.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/seccomp.h> 34 #include <linux/cpu.h> 35 #include <linux/personality.h> 36 #include <linux/ptrace.h> 37 #include <linux/fs_struct.h> 38 #include <linux/gfp.h> 39 #include <linux/syscore_ops.h> 40 #include <linux/version.h> 41 #include <linux/ctype.h> 42 43 #include <linux/compat.h> 44 #include <linux/syscalls.h> 45 #include <linux/kprobes.h> 46 #include <linux/user_namespace.h> 47 48 #include <linux/kmsg_dump.h> 49 /* Move somewhere else to avoid recompiling? */ 50 #include <generated/utsrelease.h> 51 52 #include <asm/uaccess.h> 53 #include <asm/io.h> 54 #include <asm/unistd.h> 55 56 #ifndef SET_UNALIGN_CTL 57 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 58 #endif 59 #ifndef GET_UNALIGN_CTL 60 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 61 #endif 62 #ifndef SET_FPEMU_CTL 63 # define SET_FPEMU_CTL(a,b) (-EINVAL) 64 #endif 65 #ifndef GET_FPEMU_CTL 66 # define GET_FPEMU_CTL(a,b) (-EINVAL) 67 #endif 68 #ifndef SET_FPEXC_CTL 69 # define SET_FPEXC_CTL(a,b) (-EINVAL) 70 #endif 71 #ifndef GET_FPEXC_CTL 72 # define GET_FPEXC_CTL(a,b) (-EINVAL) 73 #endif 74 #ifndef GET_ENDIAN 75 # define GET_ENDIAN(a,b) (-EINVAL) 76 #endif 77 #ifndef SET_ENDIAN 78 # define SET_ENDIAN(a,b) (-EINVAL) 79 #endif 80 #ifndef GET_TSC_CTL 81 # define GET_TSC_CTL(a) (-EINVAL) 82 #endif 83 #ifndef SET_TSC_CTL 84 # define SET_TSC_CTL(a) (-EINVAL) 85 #endif 86 87 /* 88 * this is where the system-wide overflow UID and GID are defined, for 89 * architectures that now have 32-bit UID/GID but didn't in the past 90 */ 91 92 int overflowuid = DEFAULT_OVERFLOWUID; 93 int overflowgid = DEFAULT_OVERFLOWGID; 94 95 #ifdef CONFIG_UID16 96 EXPORT_SYMBOL(overflowuid); 97 EXPORT_SYMBOL(overflowgid); 98 #endif 99 100 /* 101 * the same as above, but for filesystems which can only store a 16-bit 102 * UID and GID. as such, this is needed on all architectures 103 */ 104 105 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 106 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 107 108 EXPORT_SYMBOL(fs_overflowuid); 109 EXPORT_SYMBOL(fs_overflowgid); 110 111 /* 112 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 113 */ 114 115 int C_A_D = 1; 116 struct pid *cad_pid; 117 EXPORT_SYMBOL(cad_pid); 118 119 /* 120 * If set, this is used for preparing the system to power off. 121 */ 122 123 void (*pm_power_off_prepare)(void); 124 125 /* 126 * Returns true if current's euid is same as p's uid or euid, 127 * or has CAP_SYS_NICE to p's user_ns. 128 * 129 * Called with rcu_read_lock, creds are safe 130 */ 131 static bool set_one_prio_perm(struct task_struct *p) 132 { 133 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 134 135 if (pcred->user->user_ns == cred->user->user_ns && 136 (pcred->uid == cred->euid || 137 pcred->euid == cred->euid)) 138 return true; 139 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE)) 140 return true; 141 return false; 142 } 143 144 /* 145 * set the priority of a task 146 * - the caller must hold the RCU read lock 147 */ 148 static int set_one_prio(struct task_struct *p, int niceval, int error) 149 { 150 int no_nice; 151 152 if (!set_one_prio_perm(p)) { 153 error = -EPERM; 154 goto out; 155 } 156 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 157 error = -EACCES; 158 goto out; 159 } 160 no_nice = security_task_setnice(p, niceval); 161 if (no_nice) { 162 error = no_nice; 163 goto out; 164 } 165 if (error == -ESRCH) 166 error = 0; 167 set_user_nice(p, niceval); 168 out: 169 return error; 170 } 171 172 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 173 { 174 struct task_struct *g, *p; 175 struct user_struct *user; 176 const struct cred *cred = current_cred(); 177 int error = -EINVAL; 178 struct pid *pgrp; 179 180 if (which > PRIO_USER || which < PRIO_PROCESS) 181 goto out; 182 183 /* normalize: avoid signed division (rounding problems) */ 184 error = -ESRCH; 185 if (niceval < -20) 186 niceval = -20; 187 if (niceval > 19) 188 niceval = 19; 189 190 rcu_read_lock(); 191 read_lock(&tasklist_lock); 192 switch (which) { 193 case PRIO_PROCESS: 194 if (who) 195 p = find_task_by_vpid(who); 196 else 197 p = current; 198 if (p) 199 error = set_one_prio(p, niceval, error); 200 break; 201 case PRIO_PGRP: 202 if (who) 203 pgrp = find_vpid(who); 204 else 205 pgrp = task_pgrp(current); 206 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 207 error = set_one_prio(p, niceval, error); 208 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 209 break; 210 case PRIO_USER: 211 user = (struct user_struct *) cred->user; 212 if (!who) 213 who = cred->uid; 214 else if ((who != cred->uid) && 215 !(user = find_user(who))) 216 goto out_unlock; /* No processes for this user */ 217 218 do_each_thread(g, p) { 219 if (__task_cred(p)->uid == who) 220 error = set_one_prio(p, niceval, error); 221 } while_each_thread(g, p); 222 if (who != cred->uid) 223 free_uid(user); /* For find_user() */ 224 break; 225 } 226 out_unlock: 227 read_unlock(&tasklist_lock); 228 rcu_read_unlock(); 229 out: 230 return error; 231 } 232 233 /* 234 * Ugh. To avoid negative return values, "getpriority()" will 235 * not return the normal nice-value, but a negated value that 236 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 237 * to stay compatible. 238 */ 239 SYSCALL_DEFINE2(getpriority, int, which, int, who) 240 { 241 struct task_struct *g, *p; 242 struct user_struct *user; 243 const struct cred *cred = current_cred(); 244 long niceval, retval = -ESRCH; 245 struct pid *pgrp; 246 247 if (which > PRIO_USER || which < PRIO_PROCESS) 248 return -EINVAL; 249 250 rcu_read_lock(); 251 read_lock(&tasklist_lock); 252 switch (which) { 253 case PRIO_PROCESS: 254 if (who) 255 p = find_task_by_vpid(who); 256 else 257 p = current; 258 if (p) { 259 niceval = 20 - task_nice(p); 260 if (niceval > retval) 261 retval = niceval; 262 } 263 break; 264 case PRIO_PGRP: 265 if (who) 266 pgrp = find_vpid(who); 267 else 268 pgrp = task_pgrp(current); 269 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 270 niceval = 20 - task_nice(p); 271 if (niceval > retval) 272 retval = niceval; 273 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 274 break; 275 case PRIO_USER: 276 user = (struct user_struct *) cred->user; 277 if (!who) 278 who = cred->uid; 279 else if ((who != cred->uid) && 280 !(user = find_user(who))) 281 goto out_unlock; /* No processes for this user */ 282 283 do_each_thread(g, p) { 284 if (__task_cred(p)->uid == who) { 285 niceval = 20 - task_nice(p); 286 if (niceval > retval) 287 retval = niceval; 288 } 289 } while_each_thread(g, p); 290 if (who != cred->uid) 291 free_uid(user); /* for find_user() */ 292 break; 293 } 294 out_unlock: 295 read_unlock(&tasklist_lock); 296 rcu_read_unlock(); 297 298 return retval; 299 } 300 301 /** 302 * emergency_restart - reboot the system 303 * 304 * Without shutting down any hardware or taking any locks 305 * reboot the system. This is called when we know we are in 306 * trouble so this is our best effort to reboot. This is 307 * safe to call in interrupt context. 308 */ 309 void emergency_restart(void) 310 { 311 kmsg_dump(KMSG_DUMP_EMERG); 312 machine_emergency_restart(); 313 } 314 EXPORT_SYMBOL_GPL(emergency_restart); 315 316 void kernel_restart_prepare(char *cmd) 317 { 318 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 319 system_state = SYSTEM_RESTART; 320 usermodehelper_disable(); 321 device_shutdown(); 322 syscore_shutdown(); 323 } 324 325 /** 326 * register_reboot_notifier - Register function to be called at reboot time 327 * @nb: Info about notifier function to be called 328 * 329 * Registers a function with the list of functions 330 * to be called at reboot time. 331 * 332 * Currently always returns zero, as blocking_notifier_chain_register() 333 * always returns zero. 334 */ 335 int register_reboot_notifier(struct notifier_block *nb) 336 { 337 return blocking_notifier_chain_register(&reboot_notifier_list, nb); 338 } 339 EXPORT_SYMBOL(register_reboot_notifier); 340 341 /** 342 * unregister_reboot_notifier - Unregister previously registered reboot notifier 343 * @nb: Hook to be unregistered 344 * 345 * Unregisters a previously registered reboot 346 * notifier function. 347 * 348 * Returns zero on success, or %-ENOENT on failure. 349 */ 350 int unregister_reboot_notifier(struct notifier_block *nb) 351 { 352 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); 353 } 354 EXPORT_SYMBOL(unregister_reboot_notifier); 355 356 /** 357 * kernel_restart - reboot the system 358 * @cmd: pointer to buffer containing command to execute for restart 359 * or %NULL 360 * 361 * Shutdown everything and perform a clean reboot. 362 * This is not safe to call in interrupt context. 363 */ 364 void kernel_restart(char *cmd) 365 { 366 kernel_restart_prepare(cmd); 367 if (!cmd) 368 printk(KERN_EMERG "Restarting system.\n"); 369 else 370 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 371 kmsg_dump(KMSG_DUMP_RESTART); 372 machine_restart(cmd); 373 } 374 EXPORT_SYMBOL_GPL(kernel_restart); 375 376 static void kernel_shutdown_prepare(enum system_states state) 377 { 378 blocking_notifier_call_chain(&reboot_notifier_list, 379 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 380 system_state = state; 381 usermodehelper_disable(); 382 device_shutdown(); 383 } 384 /** 385 * kernel_halt - halt the system 386 * 387 * Shutdown everything and perform a clean system halt. 388 */ 389 void kernel_halt(void) 390 { 391 kernel_shutdown_prepare(SYSTEM_HALT); 392 syscore_shutdown(); 393 printk(KERN_EMERG "System halted.\n"); 394 kmsg_dump(KMSG_DUMP_HALT); 395 machine_halt(); 396 } 397 398 EXPORT_SYMBOL_GPL(kernel_halt); 399 400 /** 401 * kernel_power_off - power_off the system 402 * 403 * Shutdown everything and perform a clean system power_off. 404 */ 405 void kernel_power_off(void) 406 { 407 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 408 if (pm_power_off_prepare) 409 pm_power_off_prepare(); 410 disable_nonboot_cpus(); 411 syscore_shutdown(); 412 printk(KERN_EMERG "Power down.\n"); 413 kmsg_dump(KMSG_DUMP_POWEROFF); 414 machine_power_off(); 415 } 416 EXPORT_SYMBOL_GPL(kernel_power_off); 417 418 static DEFINE_MUTEX(reboot_mutex); 419 420 /* 421 * Reboot system call: for obvious reasons only root may call it, 422 * and even root needs to set up some magic numbers in the registers 423 * so that some mistake won't make this reboot the whole machine. 424 * You can also set the meaning of the ctrl-alt-del-key here. 425 * 426 * reboot doesn't sync: do that yourself before calling this. 427 */ 428 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, 429 void __user *, arg) 430 { 431 char buffer[256]; 432 int ret = 0; 433 434 /* We only trust the superuser with rebooting the system. */ 435 if (!capable(CAP_SYS_BOOT)) 436 return -EPERM; 437 438 /* For safety, we require "magic" arguments. */ 439 if (magic1 != LINUX_REBOOT_MAGIC1 || 440 (magic2 != LINUX_REBOOT_MAGIC2 && 441 magic2 != LINUX_REBOOT_MAGIC2A && 442 magic2 != LINUX_REBOOT_MAGIC2B && 443 magic2 != LINUX_REBOOT_MAGIC2C)) 444 return -EINVAL; 445 446 /* Instead of trying to make the power_off code look like 447 * halt when pm_power_off is not set do it the easy way. 448 */ 449 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 450 cmd = LINUX_REBOOT_CMD_HALT; 451 452 mutex_lock(&reboot_mutex); 453 switch (cmd) { 454 case LINUX_REBOOT_CMD_RESTART: 455 kernel_restart(NULL); 456 break; 457 458 case LINUX_REBOOT_CMD_CAD_ON: 459 C_A_D = 1; 460 break; 461 462 case LINUX_REBOOT_CMD_CAD_OFF: 463 C_A_D = 0; 464 break; 465 466 case LINUX_REBOOT_CMD_HALT: 467 kernel_halt(); 468 do_exit(0); 469 panic("cannot halt"); 470 471 case LINUX_REBOOT_CMD_POWER_OFF: 472 kernel_power_off(); 473 do_exit(0); 474 break; 475 476 case LINUX_REBOOT_CMD_RESTART2: 477 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 478 ret = -EFAULT; 479 break; 480 } 481 buffer[sizeof(buffer) - 1] = '\0'; 482 483 kernel_restart(buffer); 484 break; 485 486 #ifdef CONFIG_KEXEC 487 case LINUX_REBOOT_CMD_KEXEC: 488 ret = kernel_kexec(); 489 break; 490 #endif 491 492 #ifdef CONFIG_HIBERNATION 493 case LINUX_REBOOT_CMD_SW_SUSPEND: 494 ret = hibernate(); 495 break; 496 #endif 497 498 default: 499 ret = -EINVAL; 500 break; 501 } 502 mutex_unlock(&reboot_mutex); 503 return ret; 504 } 505 506 static void deferred_cad(struct work_struct *dummy) 507 { 508 kernel_restart(NULL); 509 } 510 511 /* 512 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 513 * As it's called within an interrupt, it may NOT sync: the only choice 514 * is whether to reboot at once, or just ignore the ctrl-alt-del. 515 */ 516 void ctrl_alt_del(void) 517 { 518 static DECLARE_WORK(cad_work, deferred_cad); 519 520 if (C_A_D) 521 schedule_work(&cad_work); 522 else 523 kill_cad_pid(SIGINT, 1); 524 } 525 526 /* 527 * Unprivileged users may change the real gid to the effective gid 528 * or vice versa. (BSD-style) 529 * 530 * If you set the real gid at all, or set the effective gid to a value not 531 * equal to the real gid, then the saved gid is set to the new effective gid. 532 * 533 * This makes it possible for a setgid program to completely drop its 534 * privileges, which is often a useful assertion to make when you are doing 535 * a security audit over a program. 536 * 537 * The general idea is that a program which uses just setregid() will be 538 * 100% compatible with BSD. A program which uses just setgid() will be 539 * 100% compatible with POSIX with saved IDs. 540 * 541 * SMP: There are not races, the GIDs are checked only by filesystem 542 * operations (as far as semantic preservation is concerned). 543 */ 544 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 545 { 546 const struct cred *old; 547 struct cred *new; 548 int retval; 549 550 new = prepare_creds(); 551 if (!new) 552 return -ENOMEM; 553 old = current_cred(); 554 555 retval = -EPERM; 556 if (rgid != (gid_t) -1) { 557 if (old->gid == rgid || 558 old->egid == rgid || 559 nsown_capable(CAP_SETGID)) 560 new->gid = rgid; 561 else 562 goto error; 563 } 564 if (egid != (gid_t) -1) { 565 if (old->gid == egid || 566 old->egid == egid || 567 old->sgid == egid || 568 nsown_capable(CAP_SETGID)) 569 new->egid = egid; 570 else 571 goto error; 572 } 573 574 if (rgid != (gid_t) -1 || 575 (egid != (gid_t) -1 && egid != old->gid)) 576 new->sgid = new->egid; 577 new->fsgid = new->egid; 578 579 return commit_creds(new); 580 581 error: 582 abort_creds(new); 583 return retval; 584 } 585 586 /* 587 * setgid() is implemented like SysV w/ SAVED_IDS 588 * 589 * SMP: Same implicit races as above. 590 */ 591 SYSCALL_DEFINE1(setgid, gid_t, gid) 592 { 593 const struct cred *old; 594 struct cred *new; 595 int retval; 596 597 new = prepare_creds(); 598 if (!new) 599 return -ENOMEM; 600 old = current_cred(); 601 602 retval = -EPERM; 603 if (nsown_capable(CAP_SETGID)) 604 new->gid = new->egid = new->sgid = new->fsgid = gid; 605 else if (gid == old->gid || gid == old->sgid) 606 new->egid = new->fsgid = gid; 607 else 608 goto error; 609 610 return commit_creds(new); 611 612 error: 613 abort_creds(new); 614 return retval; 615 } 616 617 /* 618 * change the user struct in a credentials set to match the new UID 619 */ 620 static int set_user(struct cred *new) 621 { 622 struct user_struct *new_user; 623 624 new_user = alloc_uid(current_user_ns(), new->uid); 625 if (!new_user) 626 return -EAGAIN; 627 628 /* 629 * We don't fail in case of NPROC limit excess here because too many 630 * poorly written programs don't check set*uid() return code, assuming 631 * it never fails if called by root. We may still enforce NPROC limit 632 * for programs doing set*uid()+execve() by harmlessly deferring the 633 * failure to the execve() stage. 634 */ 635 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 636 new_user != INIT_USER) 637 current->flags |= PF_NPROC_EXCEEDED; 638 else 639 current->flags &= ~PF_NPROC_EXCEEDED; 640 641 free_uid(new->user); 642 new->user = new_user; 643 return 0; 644 } 645 646 /* 647 * Unprivileged users may change the real uid to the effective uid 648 * or vice versa. (BSD-style) 649 * 650 * If you set the real uid at all, or set the effective uid to a value not 651 * equal to the real uid, then the saved uid is set to the new effective uid. 652 * 653 * This makes it possible for a setuid program to completely drop its 654 * privileges, which is often a useful assertion to make when you are doing 655 * a security audit over a program. 656 * 657 * The general idea is that a program which uses just setreuid() will be 658 * 100% compatible with BSD. A program which uses just setuid() will be 659 * 100% compatible with POSIX with saved IDs. 660 */ 661 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 662 { 663 const struct cred *old; 664 struct cred *new; 665 int retval; 666 667 new = prepare_creds(); 668 if (!new) 669 return -ENOMEM; 670 old = current_cred(); 671 672 retval = -EPERM; 673 if (ruid != (uid_t) -1) { 674 new->uid = ruid; 675 if (old->uid != ruid && 676 old->euid != ruid && 677 !nsown_capable(CAP_SETUID)) 678 goto error; 679 } 680 681 if (euid != (uid_t) -1) { 682 new->euid = euid; 683 if (old->uid != euid && 684 old->euid != euid && 685 old->suid != euid && 686 !nsown_capable(CAP_SETUID)) 687 goto error; 688 } 689 690 if (new->uid != old->uid) { 691 retval = set_user(new); 692 if (retval < 0) 693 goto error; 694 } 695 if (ruid != (uid_t) -1 || 696 (euid != (uid_t) -1 && euid != old->uid)) 697 new->suid = new->euid; 698 new->fsuid = new->euid; 699 700 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 701 if (retval < 0) 702 goto error; 703 704 return commit_creds(new); 705 706 error: 707 abort_creds(new); 708 return retval; 709 } 710 711 /* 712 * setuid() is implemented like SysV with SAVED_IDS 713 * 714 * Note that SAVED_ID's is deficient in that a setuid root program 715 * like sendmail, for example, cannot set its uid to be a normal 716 * user and then switch back, because if you're root, setuid() sets 717 * the saved uid too. If you don't like this, blame the bright people 718 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 719 * will allow a root program to temporarily drop privileges and be able to 720 * regain them by swapping the real and effective uid. 721 */ 722 SYSCALL_DEFINE1(setuid, uid_t, uid) 723 { 724 const struct cred *old; 725 struct cred *new; 726 int retval; 727 728 new = prepare_creds(); 729 if (!new) 730 return -ENOMEM; 731 old = current_cred(); 732 733 retval = -EPERM; 734 if (nsown_capable(CAP_SETUID)) { 735 new->suid = new->uid = uid; 736 if (uid != old->uid) { 737 retval = set_user(new); 738 if (retval < 0) 739 goto error; 740 } 741 } else if (uid != old->uid && uid != new->suid) { 742 goto error; 743 } 744 745 new->fsuid = new->euid = uid; 746 747 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 748 if (retval < 0) 749 goto error; 750 751 return commit_creds(new); 752 753 error: 754 abort_creds(new); 755 return retval; 756 } 757 758 759 /* 760 * This function implements a generic ability to update ruid, euid, 761 * and suid. This allows you to implement the 4.4 compatible seteuid(). 762 */ 763 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 764 { 765 const struct cred *old; 766 struct cred *new; 767 int retval; 768 769 new = prepare_creds(); 770 if (!new) 771 return -ENOMEM; 772 773 old = current_cred(); 774 775 retval = -EPERM; 776 if (!nsown_capable(CAP_SETUID)) { 777 if (ruid != (uid_t) -1 && ruid != old->uid && 778 ruid != old->euid && ruid != old->suid) 779 goto error; 780 if (euid != (uid_t) -1 && euid != old->uid && 781 euid != old->euid && euid != old->suid) 782 goto error; 783 if (suid != (uid_t) -1 && suid != old->uid && 784 suid != old->euid && suid != old->suid) 785 goto error; 786 } 787 788 if (ruid != (uid_t) -1) { 789 new->uid = ruid; 790 if (ruid != old->uid) { 791 retval = set_user(new); 792 if (retval < 0) 793 goto error; 794 } 795 } 796 if (euid != (uid_t) -1) 797 new->euid = euid; 798 if (suid != (uid_t) -1) 799 new->suid = suid; 800 new->fsuid = new->euid; 801 802 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 803 if (retval < 0) 804 goto error; 805 806 return commit_creds(new); 807 808 error: 809 abort_creds(new); 810 return retval; 811 } 812 813 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) 814 { 815 const struct cred *cred = current_cred(); 816 int retval; 817 818 if (!(retval = put_user(cred->uid, ruid)) && 819 !(retval = put_user(cred->euid, euid))) 820 retval = put_user(cred->suid, suid); 821 822 return retval; 823 } 824 825 /* 826 * Same as above, but for rgid, egid, sgid. 827 */ 828 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 829 { 830 const struct cred *old; 831 struct cred *new; 832 int retval; 833 834 new = prepare_creds(); 835 if (!new) 836 return -ENOMEM; 837 old = current_cred(); 838 839 retval = -EPERM; 840 if (!nsown_capable(CAP_SETGID)) { 841 if (rgid != (gid_t) -1 && rgid != old->gid && 842 rgid != old->egid && rgid != old->sgid) 843 goto error; 844 if (egid != (gid_t) -1 && egid != old->gid && 845 egid != old->egid && egid != old->sgid) 846 goto error; 847 if (sgid != (gid_t) -1 && sgid != old->gid && 848 sgid != old->egid && sgid != old->sgid) 849 goto error; 850 } 851 852 if (rgid != (gid_t) -1) 853 new->gid = rgid; 854 if (egid != (gid_t) -1) 855 new->egid = egid; 856 if (sgid != (gid_t) -1) 857 new->sgid = sgid; 858 new->fsgid = new->egid; 859 860 return commit_creds(new); 861 862 error: 863 abort_creds(new); 864 return retval; 865 } 866 867 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) 868 { 869 const struct cred *cred = current_cred(); 870 int retval; 871 872 if (!(retval = put_user(cred->gid, rgid)) && 873 !(retval = put_user(cred->egid, egid))) 874 retval = put_user(cred->sgid, sgid); 875 876 return retval; 877 } 878 879 880 /* 881 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 882 * is used for "access()" and for the NFS daemon (letting nfsd stay at 883 * whatever uid it wants to). It normally shadows "euid", except when 884 * explicitly set by setfsuid() or for access.. 885 */ 886 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 887 { 888 const struct cred *old; 889 struct cred *new; 890 uid_t old_fsuid; 891 892 new = prepare_creds(); 893 if (!new) 894 return current_fsuid(); 895 old = current_cred(); 896 old_fsuid = old->fsuid; 897 898 if (uid == old->uid || uid == old->euid || 899 uid == old->suid || uid == old->fsuid || 900 nsown_capable(CAP_SETUID)) { 901 if (uid != old_fsuid) { 902 new->fsuid = uid; 903 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 904 goto change_okay; 905 } 906 } 907 908 abort_creds(new); 909 return old_fsuid; 910 911 change_okay: 912 commit_creds(new); 913 return old_fsuid; 914 } 915 916 /* 917 * Samma på svenska.. 918 */ 919 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 920 { 921 const struct cred *old; 922 struct cred *new; 923 gid_t old_fsgid; 924 925 new = prepare_creds(); 926 if (!new) 927 return current_fsgid(); 928 old = current_cred(); 929 old_fsgid = old->fsgid; 930 931 if (gid == old->gid || gid == old->egid || 932 gid == old->sgid || gid == old->fsgid || 933 nsown_capable(CAP_SETGID)) { 934 if (gid != old_fsgid) { 935 new->fsgid = gid; 936 goto change_okay; 937 } 938 } 939 940 abort_creds(new); 941 return old_fsgid; 942 943 change_okay: 944 commit_creds(new); 945 return old_fsgid; 946 } 947 948 void do_sys_times(struct tms *tms) 949 { 950 cputime_t tgutime, tgstime, cutime, cstime; 951 952 spin_lock_irq(¤t->sighand->siglock); 953 thread_group_times(current, &tgutime, &tgstime); 954 cutime = current->signal->cutime; 955 cstime = current->signal->cstime; 956 spin_unlock_irq(¤t->sighand->siglock); 957 tms->tms_utime = cputime_to_clock_t(tgutime); 958 tms->tms_stime = cputime_to_clock_t(tgstime); 959 tms->tms_cutime = cputime_to_clock_t(cutime); 960 tms->tms_cstime = cputime_to_clock_t(cstime); 961 } 962 963 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 964 { 965 if (tbuf) { 966 struct tms tmp; 967 968 do_sys_times(&tmp); 969 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 970 return -EFAULT; 971 } 972 force_successful_syscall_return(); 973 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 974 } 975 976 /* 977 * This needs some heavy checking ... 978 * I just haven't the stomach for it. I also don't fully 979 * understand sessions/pgrp etc. Let somebody who does explain it. 980 * 981 * OK, I think I have the protection semantics right.... this is really 982 * only important on a multi-user system anyway, to make sure one user 983 * can't send a signal to a process owned by another. -TYT, 12/12/91 984 * 985 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 986 * LBT 04.03.94 987 */ 988 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 989 { 990 struct task_struct *p; 991 struct task_struct *group_leader = current->group_leader; 992 struct pid *pgrp; 993 int err; 994 995 if (!pid) 996 pid = task_pid_vnr(group_leader); 997 if (!pgid) 998 pgid = pid; 999 if (pgid < 0) 1000 return -EINVAL; 1001 rcu_read_lock(); 1002 1003 /* From this point forward we keep holding onto the tasklist lock 1004 * so that our parent does not change from under us. -DaveM 1005 */ 1006 write_lock_irq(&tasklist_lock); 1007 1008 err = -ESRCH; 1009 p = find_task_by_vpid(pid); 1010 if (!p) 1011 goto out; 1012 1013 err = -EINVAL; 1014 if (!thread_group_leader(p)) 1015 goto out; 1016 1017 if (same_thread_group(p->real_parent, group_leader)) { 1018 err = -EPERM; 1019 if (task_session(p) != task_session(group_leader)) 1020 goto out; 1021 err = -EACCES; 1022 if (p->did_exec) 1023 goto out; 1024 } else { 1025 err = -ESRCH; 1026 if (p != group_leader) 1027 goto out; 1028 } 1029 1030 err = -EPERM; 1031 if (p->signal->leader) 1032 goto out; 1033 1034 pgrp = task_pid(p); 1035 if (pgid != pid) { 1036 struct task_struct *g; 1037 1038 pgrp = find_vpid(pgid); 1039 g = pid_task(pgrp, PIDTYPE_PGID); 1040 if (!g || task_session(g) != task_session(group_leader)) 1041 goto out; 1042 } 1043 1044 err = security_task_setpgid(p, pgid); 1045 if (err) 1046 goto out; 1047 1048 if (task_pgrp(p) != pgrp) 1049 change_pid(p, PIDTYPE_PGID, pgrp); 1050 1051 err = 0; 1052 out: 1053 /* All paths lead to here, thus we are safe. -DaveM */ 1054 write_unlock_irq(&tasklist_lock); 1055 rcu_read_unlock(); 1056 return err; 1057 } 1058 1059 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1060 { 1061 struct task_struct *p; 1062 struct pid *grp; 1063 int retval; 1064 1065 rcu_read_lock(); 1066 if (!pid) 1067 grp = task_pgrp(current); 1068 else { 1069 retval = -ESRCH; 1070 p = find_task_by_vpid(pid); 1071 if (!p) 1072 goto out; 1073 grp = task_pgrp(p); 1074 if (!grp) 1075 goto out; 1076 1077 retval = security_task_getpgid(p); 1078 if (retval) 1079 goto out; 1080 } 1081 retval = pid_vnr(grp); 1082 out: 1083 rcu_read_unlock(); 1084 return retval; 1085 } 1086 1087 #ifdef __ARCH_WANT_SYS_GETPGRP 1088 1089 SYSCALL_DEFINE0(getpgrp) 1090 { 1091 return sys_getpgid(0); 1092 } 1093 1094 #endif 1095 1096 SYSCALL_DEFINE1(getsid, pid_t, pid) 1097 { 1098 struct task_struct *p; 1099 struct pid *sid; 1100 int retval; 1101 1102 rcu_read_lock(); 1103 if (!pid) 1104 sid = task_session(current); 1105 else { 1106 retval = -ESRCH; 1107 p = find_task_by_vpid(pid); 1108 if (!p) 1109 goto out; 1110 sid = task_session(p); 1111 if (!sid) 1112 goto out; 1113 1114 retval = security_task_getsid(p); 1115 if (retval) 1116 goto out; 1117 } 1118 retval = pid_vnr(sid); 1119 out: 1120 rcu_read_unlock(); 1121 return retval; 1122 } 1123 1124 SYSCALL_DEFINE0(setsid) 1125 { 1126 struct task_struct *group_leader = current->group_leader; 1127 struct pid *sid = task_pid(group_leader); 1128 pid_t session = pid_vnr(sid); 1129 int err = -EPERM; 1130 1131 write_lock_irq(&tasklist_lock); 1132 /* Fail if I am already a session leader */ 1133 if (group_leader->signal->leader) 1134 goto out; 1135 1136 /* Fail if a process group id already exists that equals the 1137 * proposed session id. 1138 */ 1139 if (pid_task(sid, PIDTYPE_PGID)) 1140 goto out; 1141 1142 group_leader->signal->leader = 1; 1143 __set_special_pids(sid); 1144 1145 proc_clear_tty(group_leader); 1146 1147 err = session; 1148 out: 1149 write_unlock_irq(&tasklist_lock); 1150 if (err > 0) { 1151 proc_sid_connector(group_leader); 1152 sched_autogroup_create_attach(group_leader); 1153 } 1154 return err; 1155 } 1156 1157 DECLARE_RWSEM(uts_sem); 1158 1159 #ifdef COMPAT_UTS_MACHINE 1160 #define override_architecture(name) \ 1161 (personality(current->personality) == PER_LINUX32 && \ 1162 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1163 sizeof(COMPAT_UTS_MACHINE))) 1164 #else 1165 #define override_architecture(name) 0 1166 #endif 1167 1168 /* 1169 * Work around broken programs that cannot handle "Linux 3.0". 1170 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1171 */ 1172 static int override_release(char __user *release, int len) 1173 { 1174 int ret = 0; 1175 char buf[len]; 1176 1177 if (current->personality & UNAME26) { 1178 char *rest = UTS_RELEASE; 1179 int ndots = 0; 1180 unsigned v; 1181 1182 while (*rest) { 1183 if (*rest == '.' && ++ndots >= 3) 1184 break; 1185 if (!isdigit(*rest) && *rest != '.') 1186 break; 1187 rest++; 1188 } 1189 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40; 1190 snprintf(buf, len, "2.6.%u%s", v, rest); 1191 ret = copy_to_user(release, buf, len); 1192 } 1193 return ret; 1194 } 1195 1196 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1197 { 1198 int errno = 0; 1199 1200 down_read(&uts_sem); 1201 if (copy_to_user(name, utsname(), sizeof *name)) 1202 errno = -EFAULT; 1203 up_read(&uts_sem); 1204 1205 if (!errno && override_release(name->release, sizeof(name->release))) 1206 errno = -EFAULT; 1207 if (!errno && override_architecture(name)) 1208 errno = -EFAULT; 1209 return errno; 1210 } 1211 1212 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1213 /* 1214 * Old cruft 1215 */ 1216 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1217 { 1218 int error = 0; 1219 1220 if (!name) 1221 return -EFAULT; 1222 1223 down_read(&uts_sem); 1224 if (copy_to_user(name, utsname(), sizeof(*name))) 1225 error = -EFAULT; 1226 up_read(&uts_sem); 1227 1228 if (!error && override_release(name->release, sizeof(name->release))) 1229 error = -EFAULT; 1230 if (!error && override_architecture(name)) 1231 error = -EFAULT; 1232 return error; 1233 } 1234 1235 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1236 { 1237 int error; 1238 1239 if (!name) 1240 return -EFAULT; 1241 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) 1242 return -EFAULT; 1243 1244 down_read(&uts_sem); 1245 error = __copy_to_user(&name->sysname, &utsname()->sysname, 1246 __OLD_UTS_LEN); 1247 error |= __put_user(0, name->sysname + __OLD_UTS_LEN); 1248 error |= __copy_to_user(&name->nodename, &utsname()->nodename, 1249 __OLD_UTS_LEN); 1250 error |= __put_user(0, name->nodename + __OLD_UTS_LEN); 1251 error |= __copy_to_user(&name->release, &utsname()->release, 1252 __OLD_UTS_LEN); 1253 error |= __put_user(0, name->release + __OLD_UTS_LEN); 1254 error |= __copy_to_user(&name->version, &utsname()->version, 1255 __OLD_UTS_LEN); 1256 error |= __put_user(0, name->version + __OLD_UTS_LEN); 1257 error |= __copy_to_user(&name->machine, &utsname()->machine, 1258 __OLD_UTS_LEN); 1259 error |= __put_user(0, name->machine + __OLD_UTS_LEN); 1260 up_read(&uts_sem); 1261 1262 if (!error && override_architecture(name)) 1263 error = -EFAULT; 1264 if (!error && override_release(name->release, sizeof(name->release))) 1265 error = -EFAULT; 1266 return error ? -EFAULT : 0; 1267 } 1268 #endif 1269 1270 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1271 { 1272 int errno; 1273 char tmp[__NEW_UTS_LEN]; 1274 1275 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1276 return -EPERM; 1277 1278 if (len < 0 || len > __NEW_UTS_LEN) 1279 return -EINVAL; 1280 down_write(&uts_sem); 1281 errno = -EFAULT; 1282 if (!copy_from_user(tmp, name, len)) { 1283 struct new_utsname *u = utsname(); 1284 1285 memcpy(u->nodename, tmp, len); 1286 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1287 errno = 0; 1288 } 1289 up_write(&uts_sem); 1290 return errno; 1291 } 1292 1293 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1294 1295 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1296 { 1297 int i, errno; 1298 struct new_utsname *u; 1299 1300 if (len < 0) 1301 return -EINVAL; 1302 down_read(&uts_sem); 1303 u = utsname(); 1304 i = 1 + strlen(u->nodename); 1305 if (i > len) 1306 i = len; 1307 errno = 0; 1308 if (copy_to_user(name, u->nodename, i)) 1309 errno = -EFAULT; 1310 up_read(&uts_sem); 1311 return errno; 1312 } 1313 1314 #endif 1315 1316 /* 1317 * Only setdomainname; getdomainname can be implemented by calling 1318 * uname() 1319 */ 1320 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1321 { 1322 int errno; 1323 char tmp[__NEW_UTS_LEN]; 1324 1325 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1326 return -EPERM; 1327 if (len < 0 || len > __NEW_UTS_LEN) 1328 return -EINVAL; 1329 1330 down_write(&uts_sem); 1331 errno = -EFAULT; 1332 if (!copy_from_user(tmp, name, len)) { 1333 struct new_utsname *u = utsname(); 1334 1335 memcpy(u->domainname, tmp, len); 1336 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1337 errno = 0; 1338 } 1339 up_write(&uts_sem); 1340 return errno; 1341 } 1342 1343 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1344 { 1345 struct rlimit value; 1346 int ret; 1347 1348 ret = do_prlimit(current, resource, NULL, &value); 1349 if (!ret) 1350 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1351 1352 return ret; 1353 } 1354 1355 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1356 1357 /* 1358 * Back compatibility for getrlimit. Needed for some apps. 1359 */ 1360 1361 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1362 struct rlimit __user *, rlim) 1363 { 1364 struct rlimit x; 1365 if (resource >= RLIM_NLIMITS) 1366 return -EINVAL; 1367 1368 task_lock(current->group_leader); 1369 x = current->signal->rlim[resource]; 1370 task_unlock(current->group_leader); 1371 if (x.rlim_cur > 0x7FFFFFFF) 1372 x.rlim_cur = 0x7FFFFFFF; 1373 if (x.rlim_max > 0x7FFFFFFF) 1374 x.rlim_max = 0x7FFFFFFF; 1375 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1376 } 1377 1378 #endif 1379 1380 static inline bool rlim64_is_infinity(__u64 rlim64) 1381 { 1382 #if BITS_PER_LONG < 64 1383 return rlim64 >= ULONG_MAX; 1384 #else 1385 return rlim64 == RLIM64_INFINITY; 1386 #endif 1387 } 1388 1389 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1390 { 1391 if (rlim->rlim_cur == RLIM_INFINITY) 1392 rlim64->rlim_cur = RLIM64_INFINITY; 1393 else 1394 rlim64->rlim_cur = rlim->rlim_cur; 1395 if (rlim->rlim_max == RLIM_INFINITY) 1396 rlim64->rlim_max = RLIM64_INFINITY; 1397 else 1398 rlim64->rlim_max = rlim->rlim_max; 1399 } 1400 1401 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1402 { 1403 if (rlim64_is_infinity(rlim64->rlim_cur)) 1404 rlim->rlim_cur = RLIM_INFINITY; 1405 else 1406 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1407 if (rlim64_is_infinity(rlim64->rlim_max)) 1408 rlim->rlim_max = RLIM_INFINITY; 1409 else 1410 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1411 } 1412 1413 /* make sure you are allowed to change @tsk limits before calling this */ 1414 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1415 struct rlimit *new_rlim, struct rlimit *old_rlim) 1416 { 1417 struct rlimit *rlim; 1418 int retval = 0; 1419 1420 if (resource >= RLIM_NLIMITS) 1421 return -EINVAL; 1422 if (new_rlim) { 1423 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1424 return -EINVAL; 1425 if (resource == RLIMIT_NOFILE && 1426 new_rlim->rlim_max > sysctl_nr_open) 1427 return -EPERM; 1428 } 1429 1430 /* protect tsk->signal and tsk->sighand from disappearing */ 1431 read_lock(&tasklist_lock); 1432 if (!tsk->sighand) { 1433 retval = -ESRCH; 1434 goto out; 1435 } 1436 1437 rlim = tsk->signal->rlim + resource; 1438 task_lock(tsk->group_leader); 1439 if (new_rlim) { 1440 /* Keep the capable check against init_user_ns until 1441 cgroups can contain all limits */ 1442 if (new_rlim->rlim_max > rlim->rlim_max && 1443 !capable(CAP_SYS_RESOURCE)) 1444 retval = -EPERM; 1445 if (!retval) 1446 retval = security_task_setrlimit(tsk->group_leader, 1447 resource, new_rlim); 1448 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { 1449 /* 1450 * The caller is asking for an immediate RLIMIT_CPU 1451 * expiry. But we use the zero value to mean "it was 1452 * never set". So let's cheat and make it one second 1453 * instead 1454 */ 1455 new_rlim->rlim_cur = 1; 1456 } 1457 } 1458 if (!retval) { 1459 if (old_rlim) 1460 *old_rlim = *rlim; 1461 if (new_rlim) 1462 *rlim = *new_rlim; 1463 } 1464 task_unlock(tsk->group_leader); 1465 1466 /* 1467 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1468 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1469 * very long-standing error, and fixing it now risks breakage of 1470 * applications, so we live with it 1471 */ 1472 if (!retval && new_rlim && resource == RLIMIT_CPU && 1473 new_rlim->rlim_cur != RLIM_INFINITY) 1474 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1475 out: 1476 read_unlock(&tasklist_lock); 1477 return retval; 1478 } 1479 1480 /* rcu lock must be held */ 1481 static int check_prlimit_permission(struct task_struct *task) 1482 { 1483 const struct cred *cred = current_cred(), *tcred; 1484 1485 if (current == task) 1486 return 0; 1487 1488 tcred = __task_cred(task); 1489 if (cred->user->user_ns == tcred->user->user_ns && 1490 (cred->uid == tcred->euid && 1491 cred->uid == tcred->suid && 1492 cred->uid == tcred->uid && 1493 cred->gid == tcred->egid && 1494 cred->gid == tcred->sgid && 1495 cred->gid == tcred->gid)) 1496 return 0; 1497 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE)) 1498 return 0; 1499 1500 return -EPERM; 1501 } 1502 1503 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1504 const struct rlimit64 __user *, new_rlim, 1505 struct rlimit64 __user *, old_rlim) 1506 { 1507 struct rlimit64 old64, new64; 1508 struct rlimit old, new; 1509 struct task_struct *tsk; 1510 int ret; 1511 1512 if (new_rlim) { 1513 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1514 return -EFAULT; 1515 rlim64_to_rlim(&new64, &new); 1516 } 1517 1518 rcu_read_lock(); 1519 tsk = pid ? find_task_by_vpid(pid) : current; 1520 if (!tsk) { 1521 rcu_read_unlock(); 1522 return -ESRCH; 1523 } 1524 ret = check_prlimit_permission(tsk); 1525 if (ret) { 1526 rcu_read_unlock(); 1527 return ret; 1528 } 1529 get_task_struct(tsk); 1530 rcu_read_unlock(); 1531 1532 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1533 old_rlim ? &old : NULL); 1534 1535 if (!ret && old_rlim) { 1536 rlim_to_rlim64(&old, &old64); 1537 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1538 ret = -EFAULT; 1539 } 1540 1541 put_task_struct(tsk); 1542 return ret; 1543 } 1544 1545 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1546 { 1547 struct rlimit new_rlim; 1548 1549 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1550 return -EFAULT; 1551 return do_prlimit(current, resource, &new_rlim, NULL); 1552 } 1553 1554 /* 1555 * It would make sense to put struct rusage in the task_struct, 1556 * except that would make the task_struct be *really big*. After 1557 * task_struct gets moved into malloc'ed memory, it would 1558 * make sense to do this. It will make moving the rest of the information 1559 * a lot simpler! (Which we're not doing right now because we're not 1560 * measuring them yet). 1561 * 1562 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1563 * races with threads incrementing their own counters. But since word 1564 * reads are atomic, we either get new values or old values and we don't 1565 * care which for the sums. We always take the siglock to protect reading 1566 * the c* fields from p->signal from races with exit.c updating those 1567 * fields when reaping, so a sample either gets all the additions of a 1568 * given child after it's reaped, or none so this sample is before reaping. 1569 * 1570 * Locking: 1571 * We need to take the siglock for CHILDEREN, SELF and BOTH 1572 * for the cases current multithreaded, non-current single threaded 1573 * non-current multithreaded. Thread traversal is now safe with 1574 * the siglock held. 1575 * Strictly speaking, we donot need to take the siglock if we are current and 1576 * single threaded, as no one else can take our signal_struct away, no one 1577 * else can reap the children to update signal->c* counters, and no one else 1578 * can race with the signal-> fields. If we do not take any lock, the 1579 * signal-> fields could be read out of order while another thread was just 1580 * exiting. So we should place a read memory barrier when we avoid the lock. 1581 * On the writer side, write memory barrier is implied in __exit_signal 1582 * as __exit_signal releases the siglock spinlock after updating the signal-> 1583 * fields. But we don't do this yet to keep things simple. 1584 * 1585 */ 1586 1587 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1588 { 1589 r->ru_nvcsw += t->nvcsw; 1590 r->ru_nivcsw += t->nivcsw; 1591 r->ru_minflt += t->min_flt; 1592 r->ru_majflt += t->maj_flt; 1593 r->ru_inblock += task_io_get_inblock(t); 1594 r->ru_oublock += task_io_get_oublock(t); 1595 } 1596 1597 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1598 { 1599 struct task_struct *t; 1600 unsigned long flags; 1601 cputime_t tgutime, tgstime, utime, stime; 1602 unsigned long maxrss = 0; 1603 1604 memset((char *) r, 0, sizeof *r); 1605 utime = stime = cputime_zero; 1606 1607 if (who == RUSAGE_THREAD) { 1608 task_times(current, &utime, &stime); 1609 accumulate_thread_rusage(p, r); 1610 maxrss = p->signal->maxrss; 1611 goto out; 1612 } 1613 1614 if (!lock_task_sighand(p, &flags)) 1615 return; 1616 1617 switch (who) { 1618 case RUSAGE_BOTH: 1619 case RUSAGE_CHILDREN: 1620 utime = p->signal->cutime; 1621 stime = p->signal->cstime; 1622 r->ru_nvcsw = p->signal->cnvcsw; 1623 r->ru_nivcsw = p->signal->cnivcsw; 1624 r->ru_minflt = p->signal->cmin_flt; 1625 r->ru_majflt = p->signal->cmaj_flt; 1626 r->ru_inblock = p->signal->cinblock; 1627 r->ru_oublock = p->signal->coublock; 1628 maxrss = p->signal->cmaxrss; 1629 1630 if (who == RUSAGE_CHILDREN) 1631 break; 1632 1633 case RUSAGE_SELF: 1634 thread_group_times(p, &tgutime, &tgstime); 1635 utime = cputime_add(utime, tgutime); 1636 stime = cputime_add(stime, tgstime); 1637 r->ru_nvcsw += p->signal->nvcsw; 1638 r->ru_nivcsw += p->signal->nivcsw; 1639 r->ru_minflt += p->signal->min_flt; 1640 r->ru_majflt += p->signal->maj_flt; 1641 r->ru_inblock += p->signal->inblock; 1642 r->ru_oublock += p->signal->oublock; 1643 if (maxrss < p->signal->maxrss) 1644 maxrss = p->signal->maxrss; 1645 t = p; 1646 do { 1647 accumulate_thread_rusage(t, r); 1648 t = next_thread(t); 1649 } while (t != p); 1650 break; 1651 1652 default: 1653 BUG(); 1654 } 1655 unlock_task_sighand(p, &flags); 1656 1657 out: 1658 cputime_to_timeval(utime, &r->ru_utime); 1659 cputime_to_timeval(stime, &r->ru_stime); 1660 1661 if (who != RUSAGE_CHILDREN) { 1662 struct mm_struct *mm = get_task_mm(p); 1663 if (mm) { 1664 setmax_mm_hiwater_rss(&maxrss, mm); 1665 mmput(mm); 1666 } 1667 } 1668 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1669 } 1670 1671 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1672 { 1673 struct rusage r; 1674 k_getrusage(p, who, &r); 1675 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1676 } 1677 1678 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1679 { 1680 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1681 who != RUSAGE_THREAD) 1682 return -EINVAL; 1683 return getrusage(current, who, ru); 1684 } 1685 1686 SYSCALL_DEFINE1(umask, int, mask) 1687 { 1688 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1689 return mask; 1690 } 1691 1692 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 1693 unsigned long, arg4, unsigned long, arg5) 1694 { 1695 struct task_struct *me = current; 1696 unsigned char comm[sizeof(me->comm)]; 1697 long error; 1698 1699 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1700 if (error != -ENOSYS) 1701 return error; 1702 1703 error = 0; 1704 switch (option) { 1705 case PR_SET_PDEATHSIG: 1706 if (!valid_signal(arg2)) { 1707 error = -EINVAL; 1708 break; 1709 } 1710 me->pdeath_signal = arg2; 1711 error = 0; 1712 break; 1713 case PR_GET_PDEATHSIG: 1714 error = put_user(me->pdeath_signal, (int __user *)arg2); 1715 break; 1716 case PR_GET_DUMPABLE: 1717 error = get_dumpable(me->mm); 1718 break; 1719 case PR_SET_DUMPABLE: 1720 if (arg2 < 0 || arg2 > 1) { 1721 error = -EINVAL; 1722 break; 1723 } 1724 set_dumpable(me->mm, arg2); 1725 error = 0; 1726 break; 1727 1728 case PR_SET_UNALIGN: 1729 error = SET_UNALIGN_CTL(me, arg2); 1730 break; 1731 case PR_GET_UNALIGN: 1732 error = GET_UNALIGN_CTL(me, arg2); 1733 break; 1734 case PR_SET_FPEMU: 1735 error = SET_FPEMU_CTL(me, arg2); 1736 break; 1737 case PR_GET_FPEMU: 1738 error = GET_FPEMU_CTL(me, arg2); 1739 break; 1740 case PR_SET_FPEXC: 1741 error = SET_FPEXC_CTL(me, arg2); 1742 break; 1743 case PR_GET_FPEXC: 1744 error = GET_FPEXC_CTL(me, arg2); 1745 break; 1746 case PR_GET_TIMING: 1747 error = PR_TIMING_STATISTICAL; 1748 break; 1749 case PR_SET_TIMING: 1750 if (arg2 != PR_TIMING_STATISTICAL) 1751 error = -EINVAL; 1752 else 1753 error = 0; 1754 break; 1755 1756 case PR_SET_NAME: 1757 comm[sizeof(me->comm)-1] = 0; 1758 if (strncpy_from_user(comm, (char __user *)arg2, 1759 sizeof(me->comm) - 1) < 0) 1760 return -EFAULT; 1761 set_task_comm(me, comm); 1762 return 0; 1763 case PR_GET_NAME: 1764 get_task_comm(comm, me); 1765 if (copy_to_user((char __user *)arg2, comm, 1766 sizeof(comm))) 1767 return -EFAULT; 1768 return 0; 1769 case PR_GET_ENDIAN: 1770 error = GET_ENDIAN(me, arg2); 1771 break; 1772 case PR_SET_ENDIAN: 1773 error = SET_ENDIAN(me, arg2); 1774 break; 1775 1776 case PR_GET_SECCOMP: 1777 error = prctl_get_seccomp(); 1778 break; 1779 case PR_SET_SECCOMP: 1780 error = prctl_set_seccomp(arg2); 1781 break; 1782 case PR_GET_TSC: 1783 error = GET_TSC_CTL(arg2); 1784 break; 1785 case PR_SET_TSC: 1786 error = SET_TSC_CTL(arg2); 1787 break; 1788 case PR_TASK_PERF_EVENTS_DISABLE: 1789 error = perf_event_task_disable(); 1790 break; 1791 case PR_TASK_PERF_EVENTS_ENABLE: 1792 error = perf_event_task_enable(); 1793 break; 1794 case PR_GET_TIMERSLACK: 1795 error = current->timer_slack_ns; 1796 break; 1797 case PR_SET_TIMERSLACK: 1798 if (arg2 <= 0) 1799 current->timer_slack_ns = 1800 current->default_timer_slack_ns; 1801 else 1802 current->timer_slack_ns = arg2; 1803 error = 0; 1804 break; 1805 case PR_MCE_KILL: 1806 if (arg4 | arg5) 1807 return -EINVAL; 1808 switch (arg2) { 1809 case PR_MCE_KILL_CLEAR: 1810 if (arg3 != 0) 1811 return -EINVAL; 1812 current->flags &= ~PF_MCE_PROCESS; 1813 break; 1814 case PR_MCE_KILL_SET: 1815 current->flags |= PF_MCE_PROCESS; 1816 if (arg3 == PR_MCE_KILL_EARLY) 1817 current->flags |= PF_MCE_EARLY; 1818 else if (arg3 == PR_MCE_KILL_LATE) 1819 current->flags &= ~PF_MCE_EARLY; 1820 else if (arg3 == PR_MCE_KILL_DEFAULT) 1821 current->flags &= 1822 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 1823 else 1824 return -EINVAL; 1825 break; 1826 default: 1827 return -EINVAL; 1828 } 1829 error = 0; 1830 break; 1831 case PR_MCE_KILL_GET: 1832 if (arg2 | arg3 | arg4 | arg5) 1833 return -EINVAL; 1834 if (current->flags & PF_MCE_PROCESS) 1835 error = (current->flags & PF_MCE_EARLY) ? 1836 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 1837 else 1838 error = PR_MCE_KILL_DEFAULT; 1839 break; 1840 default: 1841 error = -EINVAL; 1842 break; 1843 } 1844 return error; 1845 } 1846 1847 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 1848 struct getcpu_cache __user *, unused) 1849 { 1850 int err = 0; 1851 int cpu = raw_smp_processor_id(); 1852 if (cpup) 1853 err |= put_user(cpu, cpup); 1854 if (nodep) 1855 err |= put_user(cpu_to_node(cpu), nodep); 1856 return err ? -EFAULT : 0; 1857 } 1858 1859 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1860 1861 static void argv_cleanup(struct subprocess_info *info) 1862 { 1863 argv_free(info->argv); 1864 } 1865 1866 /** 1867 * orderly_poweroff - Trigger an orderly system poweroff 1868 * @force: force poweroff if command execution fails 1869 * 1870 * This may be called from any context to trigger a system shutdown. 1871 * If the orderly shutdown fails, it will force an immediate shutdown. 1872 */ 1873 int orderly_poweroff(bool force) 1874 { 1875 int argc; 1876 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1877 static char *envp[] = { 1878 "HOME=/", 1879 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1880 NULL 1881 }; 1882 int ret = -ENOMEM; 1883 struct subprocess_info *info; 1884 1885 if (argv == NULL) { 1886 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1887 __func__, poweroff_cmd); 1888 goto out; 1889 } 1890 1891 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 1892 if (info == NULL) { 1893 argv_free(argv); 1894 goto out; 1895 } 1896 1897 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); 1898 1899 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1900 1901 out: 1902 if (ret && force) { 1903 printk(KERN_WARNING "Failed to start orderly shutdown: " 1904 "forcing the issue\n"); 1905 1906 /* I guess this should try to kick off some daemon to 1907 sync and poweroff asap. Or not even bother syncing 1908 if we're doing an emergency shutdown? */ 1909 emergency_sync(); 1910 kernel_power_off(); 1911 } 1912 1913 return ret; 1914 } 1915 EXPORT_SYMBOL_GPL(orderly_poweroff); 1916