xref: /openbmc/linux/kernel/sys.c (revision 9c1f8594)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/perf_event.h>
16 #include <linux/resource.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/gfp.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/version.h>
41 #include <linux/ctype.h>
42 
43 #include <linux/compat.h>
44 #include <linux/syscalls.h>
45 #include <linux/kprobes.h>
46 #include <linux/user_namespace.h>
47 
48 #include <linux/kmsg_dump.h>
49 /* Move somewhere else to avoid recompiling? */
50 #include <generated/utsrelease.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/unistd.h>
55 
56 #ifndef SET_UNALIGN_CTL
57 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef GET_UNALIGN_CTL
60 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef SET_FPEMU_CTL
63 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef GET_FPEMU_CTL
66 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef SET_FPEXC_CTL
69 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef GET_FPEXC_CTL
72 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
73 #endif
74 #ifndef GET_ENDIAN
75 # define GET_ENDIAN(a,b)	(-EINVAL)
76 #endif
77 #ifndef SET_ENDIAN
78 # define SET_ENDIAN(a,b)	(-EINVAL)
79 #endif
80 #ifndef GET_TSC_CTL
81 # define GET_TSC_CTL(a)		(-EINVAL)
82 #endif
83 #ifndef SET_TSC_CTL
84 # define SET_TSC_CTL(a)		(-EINVAL)
85 #endif
86 
87 /*
88  * this is where the system-wide overflow UID and GID are defined, for
89  * architectures that now have 32-bit UID/GID but didn't in the past
90  */
91 
92 int overflowuid = DEFAULT_OVERFLOWUID;
93 int overflowgid = DEFAULT_OVERFLOWGID;
94 
95 #ifdef CONFIG_UID16
96 EXPORT_SYMBOL(overflowuid);
97 EXPORT_SYMBOL(overflowgid);
98 #endif
99 
100 /*
101  * the same as above, but for filesystems which can only store a 16-bit
102  * UID and GID. as such, this is needed on all architectures
103  */
104 
105 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
106 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
107 
108 EXPORT_SYMBOL(fs_overflowuid);
109 EXPORT_SYMBOL(fs_overflowgid);
110 
111 /*
112  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
113  */
114 
115 int C_A_D = 1;
116 struct pid *cad_pid;
117 EXPORT_SYMBOL(cad_pid);
118 
119 /*
120  * If set, this is used for preparing the system to power off.
121  */
122 
123 void (*pm_power_off_prepare)(void);
124 
125 /*
126  * Returns true if current's euid is same as p's uid or euid,
127  * or has CAP_SYS_NICE to p's user_ns.
128  *
129  * Called with rcu_read_lock, creds are safe
130  */
131 static bool set_one_prio_perm(struct task_struct *p)
132 {
133 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
134 
135 	if (pcred->user->user_ns == cred->user->user_ns &&
136 	    (pcred->uid  == cred->euid ||
137 	     pcred->euid == cred->euid))
138 		return true;
139 	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
140 		return true;
141 	return false;
142 }
143 
144 /*
145  * set the priority of a task
146  * - the caller must hold the RCU read lock
147  */
148 static int set_one_prio(struct task_struct *p, int niceval, int error)
149 {
150 	int no_nice;
151 
152 	if (!set_one_prio_perm(p)) {
153 		error = -EPERM;
154 		goto out;
155 	}
156 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
157 		error = -EACCES;
158 		goto out;
159 	}
160 	no_nice = security_task_setnice(p, niceval);
161 	if (no_nice) {
162 		error = no_nice;
163 		goto out;
164 	}
165 	if (error == -ESRCH)
166 		error = 0;
167 	set_user_nice(p, niceval);
168 out:
169 	return error;
170 }
171 
172 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
173 {
174 	struct task_struct *g, *p;
175 	struct user_struct *user;
176 	const struct cred *cred = current_cred();
177 	int error = -EINVAL;
178 	struct pid *pgrp;
179 
180 	if (which > PRIO_USER || which < PRIO_PROCESS)
181 		goto out;
182 
183 	/* normalize: avoid signed division (rounding problems) */
184 	error = -ESRCH;
185 	if (niceval < -20)
186 		niceval = -20;
187 	if (niceval > 19)
188 		niceval = 19;
189 
190 	rcu_read_lock();
191 	read_lock(&tasklist_lock);
192 	switch (which) {
193 		case PRIO_PROCESS:
194 			if (who)
195 				p = find_task_by_vpid(who);
196 			else
197 				p = current;
198 			if (p)
199 				error = set_one_prio(p, niceval, error);
200 			break;
201 		case PRIO_PGRP:
202 			if (who)
203 				pgrp = find_vpid(who);
204 			else
205 				pgrp = task_pgrp(current);
206 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
207 				error = set_one_prio(p, niceval, error);
208 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
209 			break;
210 		case PRIO_USER:
211 			user = (struct user_struct *) cred->user;
212 			if (!who)
213 				who = cred->uid;
214 			else if ((who != cred->uid) &&
215 				 !(user = find_user(who)))
216 				goto out_unlock;	/* No processes for this user */
217 
218 			do_each_thread(g, p) {
219 				if (__task_cred(p)->uid == who)
220 					error = set_one_prio(p, niceval, error);
221 			} while_each_thread(g, p);
222 			if (who != cred->uid)
223 				free_uid(user);		/* For find_user() */
224 			break;
225 	}
226 out_unlock:
227 	read_unlock(&tasklist_lock);
228 	rcu_read_unlock();
229 out:
230 	return error;
231 }
232 
233 /*
234  * Ugh. To avoid negative return values, "getpriority()" will
235  * not return the normal nice-value, but a negated value that
236  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237  * to stay compatible.
238  */
239 SYSCALL_DEFINE2(getpriority, int, which, int, who)
240 {
241 	struct task_struct *g, *p;
242 	struct user_struct *user;
243 	const struct cred *cred = current_cred();
244 	long niceval, retval = -ESRCH;
245 	struct pid *pgrp;
246 
247 	if (which > PRIO_USER || which < PRIO_PROCESS)
248 		return -EINVAL;
249 
250 	rcu_read_lock();
251 	read_lock(&tasklist_lock);
252 	switch (which) {
253 		case PRIO_PROCESS:
254 			if (who)
255 				p = find_task_by_vpid(who);
256 			else
257 				p = current;
258 			if (p) {
259 				niceval = 20 - task_nice(p);
260 				if (niceval > retval)
261 					retval = niceval;
262 			}
263 			break;
264 		case PRIO_PGRP:
265 			if (who)
266 				pgrp = find_vpid(who);
267 			else
268 				pgrp = task_pgrp(current);
269 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
270 				niceval = 20 - task_nice(p);
271 				if (niceval > retval)
272 					retval = niceval;
273 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
274 			break;
275 		case PRIO_USER:
276 			user = (struct user_struct *) cred->user;
277 			if (!who)
278 				who = cred->uid;
279 			else if ((who != cred->uid) &&
280 				 !(user = find_user(who)))
281 				goto out_unlock;	/* No processes for this user */
282 
283 			do_each_thread(g, p) {
284 				if (__task_cred(p)->uid == who) {
285 					niceval = 20 - task_nice(p);
286 					if (niceval > retval)
287 						retval = niceval;
288 				}
289 			} while_each_thread(g, p);
290 			if (who != cred->uid)
291 				free_uid(user);		/* for find_user() */
292 			break;
293 	}
294 out_unlock:
295 	read_unlock(&tasklist_lock);
296 	rcu_read_unlock();
297 
298 	return retval;
299 }
300 
301 /**
302  *	emergency_restart - reboot the system
303  *
304  *	Without shutting down any hardware or taking any locks
305  *	reboot the system.  This is called when we know we are in
306  *	trouble so this is our best effort to reboot.  This is
307  *	safe to call in interrupt context.
308  */
309 void emergency_restart(void)
310 {
311 	kmsg_dump(KMSG_DUMP_EMERG);
312 	machine_emergency_restart();
313 }
314 EXPORT_SYMBOL_GPL(emergency_restart);
315 
316 void kernel_restart_prepare(char *cmd)
317 {
318 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
319 	system_state = SYSTEM_RESTART;
320 	usermodehelper_disable();
321 	device_shutdown();
322 	syscore_shutdown();
323 }
324 
325 /**
326  *	register_reboot_notifier - Register function to be called at reboot time
327  *	@nb: Info about notifier function to be called
328  *
329  *	Registers a function with the list of functions
330  *	to be called at reboot time.
331  *
332  *	Currently always returns zero, as blocking_notifier_chain_register()
333  *	always returns zero.
334  */
335 int register_reboot_notifier(struct notifier_block *nb)
336 {
337 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
338 }
339 EXPORT_SYMBOL(register_reboot_notifier);
340 
341 /**
342  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
343  *	@nb: Hook to be unregistered
344  *
345  *	Unregisters a previously registered reboot
346  *	notifier function.
347  *
348  *	Returns zero on success, or %-ENOENT on failure.
349  */
350 int unregister_reboot_notifier(struct notifier_block *nb)
351 {
352 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
353 }
354 EXPORT_SYMBOL(unregister_reboot_notifier);
355 
356 /**
357  *	kernel_restart - reboot the system
358  *	@cmd: pointer to buffer containing command to execute for restart
359  *		or %NULL
360  *
361  *	Shutdown everything and perform a clean reboot.
362  *	This is not safe to call in interrupt context.
363  */
364 void kernel_restart(char *cmd)
365 {
366 	kernel_restart_prepare(cmd);
367 	if (!cmd)
368 		printk(KERN_EMERG "Restarting system.\n");
369 	else
370 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
371 	kmsg_dump(KMSG_DUMP_RESTART);
372 	machine_restart(cmd);
373 }
374 EXPORT_SYMBOL_GPL(kernel_restart);
375 
376 static void kernel_shutdown_prepare(enum system_states state)
377 {
378 	blocking_notifier_call_chain(&reboot_notifier_list,
379 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
380 	system_state = state;
381 	usermodehelper_disable();
382 	device_shutdown();
383 }
384 /**
385  *	kernel_halt - halt the system
386  *
387  *	Shutdown everything and perform a clean system halt.
388  */
389 void kernel_halt(void)
390 {
391 	kernel_shutdown_prepare(SYSTEM_HALT);
392 	syscore_shutdown();
393 	printk(KERN_EMERG "System halted.\n");
394 	kmsg_dump(KMSG_DUMP_HALT);
395 	machine_halt();
396 }
397 
398 EXPORT_SYMBOL_GPL(kernel_halt);
399 
400 /**
401  *	kernel_power_off - power_off the system
402  *
403  *	Shutdown everything and perform a clean system power_off.
404  */
405 void kernel_power_off(void)
406 {
407 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
408 	if (pm_power_off_prepare)
409 		pm_power_off_prepare();
410 	disable_nonboot_cpus();
411 	syscore_shutdown();
412 	printk(KERN_EMERG "Power down.\n");
413 	kmsg_dump(KMSG_DUMP_POWEROFF);
414 	machine_power_off();
415 }
416 EXPORT_SYMBOL_GPL(kernel_power_off);
417 
418 static DEFINE_MUTEX(reboot_mutex);
419 
420 /*
421  * Reboot system call: for obvious reasons only root may call it,
422  * and even root needs to set up some magic numbers in the registers
423  * so that some mistake won't make this reboot the whole machine.
424  * You can also set the meaning of the ctrl-alt-del-key here.
425  *
426  * reboot doesn't sync: do that yourself before calling this.
427  */
428 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
429 		void __user *, arg)
430 {
431 	char buffer[256];
432 	int ret = 0;
433 
434 	/* We only trust the superuser with rebooting the system. */
435 	if (!capable(CAP_SYS_BOOT))
436 		return -EPERM;
437 
438 	/* For safety, we require "magic" arguments. */
439 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
440 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
441 	                magic2 != LINUX_REBOOT_MAGIC2A &&
442 			magic2 != LINUX_REBOOT_MAGIC2B &&
443 	                magic2 != LINUX_REBOOT_MAGIC2C))
444 		return -EINVAL;
445 
446 	/* Instead of trying to make the power_off code look like
447 	 * halt when pm_power_off is not set do it the easy way.
448 	 */
449 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
450 		cmd = LINUX_REBOOT_CMD_HALT;
451 
452 	mutex_lock(&reboot_mutex);
453 	switch (cmd) {
454 	case LINUX_REBOOT_CMD_RESTART:
455 		kernel_restart(NULL);
456 		break;
457 
458 	case LINUX_REBOOT_CMD_CAD_ON:
459 		C_A_D = 1;
460 		break;
461 
462 	case LINUX_REBOOT_CMD_CAD_OFF:
463 		C_A_D = 0;
464 		break;
465 
466 	case LINUX_REBOOT_CMD_HALT:
467 		kernel_halt();
468 		do_exit(0);
469 		panic("cannot halt");
470 
471 	case LINUX_REBOOT_CMD_POWER_OFF:
472 		kernel_power_off();
473 		do_exit(0);
474 		break;
475 
476 	case LINUX_REBOOT_CMD_RESTART2:
477 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
478 			ret = -EFAULT;
479 			break;
480 		}
481 		buffer[sizeof(buffer) - 1] = '\0';
482 
483 		kernel_restart(buffer);
484 		break;
485 
486 #ifdef CONFIG_KEXEC
487 	case LINUX_REBOOT_CMD_KEXEC:
488 		ret = kernel_kexec();
489 		break;
490 #endif
491 
492 #ifdef CONFIG_HIBERNATION
493 	case LINUX_REBOOT_CMD_SW_SUSPEND:
494 		ret = hibernate();
495 		break;
496 #endif
497 
498 	default:
499 		ret = -EINVAL;
500 		break;
501 	}
502 	mutex_unlock(&reboot_mutex);
503 	return ret;
504 }
505 
506 static void deferred_cad(struct work_struct *dummy)
507 {
508 	kernel_restart(NULL);
509 }
510 
511 /*
512  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
513  * As it's called within an interrupt, it may NOT sync: the only choice
514  * is whether to reboot at once, or just ignore the ctrl-alt-del.
515  */
516 void ctrl_alt_del(void)
517 {
518 	static DECLARE_WORK(cad_work, deferred_cad);
519 
520 	if (C_A_D)
521 		schedule_work(&cad_work);
522 	else
523 		kill_cad_pid(SIGINT, 1);
524 }
525 
526 /*
527  * Unprivileged users may change the real gid to the effective gid
528  * or vice versa.  (BSD-style)
529  *
530  * If you set the real gid at all, or set the effective gid to a value not
531  * equal to the real gid, then the saved gid is set to the new effective gid.
532  *
533  * This makes it possible for a setgid program to completely drop its
534  * privileges, which is often a useful assertion to make when you are doing
535  * a security audit over a program.
536  *
537  * The general idea is that a program which uses just setregid() will be
538  * 100% compatible with BSD.  A program which uses just setgid() will be
539  * 100% compatible with POSIX with saved IDs.
540  *
541  * SMP: There are not races, the GIDs are checked only by filesystem
542  *      operations (as far as semantic preservation is concerned).
543  */
544 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
545 {
546 	const struct cred *old;
547 	struct cred *new;
548 	int retval;
549 
550 	new = prepare_creds();
551 	if (!new)
552 		return -ENOMEM;
553 	old = current_cred();
554 
555 	retval = -EPERM;
556 	if (rgid != (gid_t) -1) {
557 		if (old->gid == rgid ||
558 		    old->egid == rgid ||
559 		    nsown_capable(CAP_SETGID))
560 			new->gid = rgid;
561 		else
562 			goto error;
563 	}
564 	if (egid != (gid_t) -1) {
565 		if (old->gid == egid ||
566 		    old->egid == egid ||
567 		    old->sgid == egid ||
568 		    nsown_capable(CAP_SETGID))
569 			new->egid = egid;
570 		else
571 			goto error;
572 	}
573 
574 	if (rgid != (gid_t) -1 ||
575 	    (egid != (gid_t) -1 && egid != old->gid))
576 		new->sgid = new->egid;
577 	new->fsgid = new->egid;
578 
579 	return commit_creds(new);
580 
581 error:
582 	abort_creds(new);
583 	return retval;
584 }
585 
586 /*
587  * setgid() is implemented like SysV w/ SAVED_IDS
588  *
589  * SMP: Same implicit races as above.
590  */
591 SYSCALL_DEFINE1(setgid, gid_t, gid)
592 {
593 	const struct cred *old;
594 	struct cred *new;
595 	int retval;
596 
597 	new = prepare_creds();
598 	if (!new)
599 		return -ENOMEM;
600 	old = current_cred();
601 
602 	retval = -EPERM;
603 	if (nsown_capable(CAP_SETGID))
604 		new->gid = new->egid = new->sgid = new->fsgid = gid;
605 	else if (gid == old->gid || gid == old->sgid)
606 		new->egid = new->fsgid = gid;
607 	else
608 		goto error;
609 
610 	return commit_creds(new);
611 
612 error:
613 	abort_creds(new);
614 	return retval;
615 }
616 
617 /*
618  * change the user struct in a credentials set to match the new UID
619  */
620 static int set_user(struct cred *new)
621 {
622 	struct user_struct *new_user;
623 
624 	new_user = alloc_uid(current_user_ns(), new->uid);
625 	if (!new_user)
626 		return -EAGAIN;
627 
628 	/*
629 	 * We don't fail in case of NPROC limit excess here because too many
630 	 * poorly written programs don't check set*uid() return code, assuming
631 	 * it never fails if called by root.  We may still enforce NPROC limit
632 	 * for programs doing set*uid()+execve() by harmlessly deferring the
633 	 * failure to the execve() stage.
634 	 */
635 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
636 			new_user != INIT_USER)
637 		current->flags |= PF_NPROC_EXCEEDED;
638 	else
639 		current->flags &= ~PF_NPROC_EXCEEDED;
640 
641 	free_uid(new->user);
642 	new->user = new_user;
643 	return 0;
644 }
645 
646 /*
647  * Unprivileged users may change the real uid to the effective uid
648  * or vice versa.  (BSD-style)
649  *
650  * If you set the real uid at all, or set the effective uid to a value not
651  * equal to the real uid, then the saved uid is set to the new effective uid.
652  *
653  * This makes it possible for a setuid program to completely drop its
654  * privileges, which is often a useful assertion to make when you are doing
655  * a security audit over a program.
656  *
657  * The general idea is that a program which uses just setreuid() will be
658  * 100% compatible with BSD.  A program which uses just setuid() will be
659  * 100% compatible with POSIX with saved IDs.
660  */
661 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
662 {
663 	const struct cred *old;
664 	struct cred *new;
665 	int retval;
666 
667 	new = prepare_creds();
668 	if (!new)
669 		return -ENOMEM;
670 	old = current_cred();
671 
672 	retval = -EPERM;
673 	if (ruid != (uid_t) -1) {
674 		new->uid = ruid;
675 		if (old->uid != ruid &&
676 		    old->euid != ruid &&
677 		    !nsown_capable(CAP_SETUID))
678 			goto error;
679 	}
680 
681 	if (euid != (uid_t) -1) {
682 		new->euid = euid;
683 		if (old->uid != euid &&
684 		    old->euid != euid &&
685 		    old->suid != euid &&
686 		    !nsown_capable(CAP_SETUID))
687 			goto error;
688 	}
689 
690 	if (new->uid != old->uid) {
691 		retval = set_user(new);
692 		if (retval < 0)
693 			goto error;
694 	}
695 	if (ruid != (uid_t) -1 ||
696 	    (euid != (uid_t) -1 && euid != old->uid))
697 		new->suid = new->euid;
698 	new->fsuid = new->euid;
699 
700 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
701 	if (retval < 0)
702 		goto error;
703 
704 	return commit_creds(new);
705 
706 error:
707 	abort_creds(new);
708 	return retval;
709 }
710 
711 /*
712  * setuid() is implemented like SysV with SAVED_IDS
713  *
714  * Note that SAVED_ID's is deficient in that a setuid root program
715  * like sendmail, for example, cannot set its uid to be a normal
716  * user and then switch back, because if you're root, setuid() sets
717  * the saved uid too.  If you don't like this, blame the bright people
718  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
719  * will allow a root program to temporarily drop privileges and be able to
720  * regain them by swapping the real and effective uid.
721  */
722 SYSCALL_DEFINE1(setuid, uid_t, uid)
723 {
724 	const struct cred *old;
725 	struct cred *new;
726 	int retval;
727 
728 	new = prepare_creds();
729 	if (!new)
730 		return -ENOMEM;
731 	old = current_cred();
732 
733 	retval = -EPERM;
734 	if (nsown_capable(CAP_SETUID)) {
735 		new->suid = new->uid = uid;
736 		if (uid != old->uid) {
737 			retval = set_user(new);
738 			if (retval < 0)
739 				goto error;
740 		}
741 	} else if (uid != old->uid && uid != new->suid) {
742 		goto error;
743 	}
744 
745 	new->fsuid = new->euid = uid;
746 
747 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
748 	if (retval < 0)
749 		goto error;
750 
751 	return commit_creds(new);
752 
753 error:
754 	abort_creds(new);
755 	return retval;
756 }
757 
758 
759 /*
760  * This function implements a generic ability to update ruid, euid,
761  * and suid.  This allows you to implement the 4.4 compatible seteuid().
762  */
763 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
764 {
765 	const struct cred *old;
766 	struct cred *new;
767 	int retval;
768 
769 	new = prepare_creds();
770 	if (!new)
771 		return -ENOMEM;
772 
773 	old = current_cred();
774 
775 	retval = -EPERM;
776 	if (!nsown_capable(CAP_SETUID)) {
777 		if (ruid != (uid_t) -1 && ruid != old->uid &&
778 		    ruid != old->euid  && ruid != old->suid)
779 			goto error;
780 		if (euid != (uid_t) -1 && euid != old->uid &&
781 		    euid != old->euid  && euid != old->suid)
782 			goto error;
783 		if (suid != (uid_t) -1 && suid != old->uid &&
784 		    suid != old->euid  && suid != old->suid)
785 			goto error;
786 	}
787 
788 	if (ruid != (uid_t) -1) {
789 		new->uid = ruid;
790 		if (ruid != old->uid) {
791 			retval = set_user(new);
792 			if (retval < 0)
793 				goto error;
794 		}
795 	}
796 	if (euid != (uid_t) -1)
797 		new->euid = euid;
798 	if (suid != (uid_t) -1)
799 		new->suid = suid;
800 	new->fsuid = new->euid;
801 
802 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
803 	if (retval < 0)
804 		goto error;
805 
806 	return commit_creds(new);
807 
808 error:
809 	abort_creds(new);
810 	return retval;
811 }
812 
813 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
814 {
815 	const struct cred *cred = current_cred();
816 	int retval;
817 
818 	if (!(retval   = put_user(cred->uid,  ruid)) &&
819 	    !(retval   = put_user(cred->euid, euid)))
820 		retval = put_user(cred->suid, suid);
821 
822 	return retval;
823 }
824 
825 /*
826  * Same as above, but for rgid, egid, sgid.
827  */
828 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
829 {
830 	const struct cred *old;
831 	struct cred *new;
832 	int retval;
833 
834 	new = prepare_creds();
835 	if (!new)
836 		return -ENOMEM;
837 	old = current_cred();
838 
839 	retval = -EPERM;
840 	if (!nsown_capable(CAP_SETGID)) {
841 		if (rgid != (gid_t) -1 && rgid != old->gid &&
842 		    rgid != old->egid  && rgid != old->sgid)
843 			goto error;
844 		if (egid != (gid_t) -1 && egid != old->gid &&
845 		    egid != old->egid  && egid != old->sgid)
846 			goto error;
847 		if (sgid != (gid_t) -1 && sgid != old->gid &&
848 		    sgid != old->egid  && sgid != old->sgid)
849 			goto error;
850 	}
851 
852 	if (rgid != (gid_t) -1)
853 		new->gid = rgid;
854 	if (egid != (gid_t) -1)
855 		new->egid = egid;
856 	if (sgid != (gid_t) -1)
857 		new->sgid = sgid;
858 	new->fsgid = new->egid;
859 
860 	return commit_creds(new);
861 
862 error:
863 	abort_creds(new);
864 	return retval;
865 }
866 
867 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
868 {
869 	const struct cred *cred = current_cred();
870 	int retval;
871 
872 	if (!(retval   = put_user(cred->gid,  rgid)) &&
873 	    !(retval   = put_user(cred->egid, egid)))
874 		retval = put_user(cred->sgid, sgid);
875 
876 	return retval;
877 }
878 
879 
880 /*
881  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
882  * is used for "access()" and for the NFS daemon (letting nfsd stay at
883  * whatever uid it wants to). It normally shadows "euid", except when
884  * explicitly set by setfsuid() or for access..
885  */
886 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
887 {
888 	const struct cred *old;
889 	struct cred *new;
890 	uid_t old_fsuid;
891 
892 	new = prepare_creds();
893 	if (!new)
894 		return current_fsuid();
895 	old = current_cred();
896 	old_fsuid = old->fsuid;
897 
898 	if (uid == old->uid  || uid == old->euid  ||
899 	    uid == old->suid || uid == old->fsuid ||
900 	    nsown_capable(CAP_SETUID)) {
901 		if (uid != old_fsuid) {
902 			new->fsuid = uid;
903 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
904 				goto change_okay;
905 		}
906 	}
907 
908 	abort_creds(new);
909 	return old_fsuid;
910 
911 change_okay:
912 	commit_creds(new);
913 	return old_fsuid;
914 }
915 
916 /*
917  * Samma på svenska..
918  */
919 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
920 {
921 	const struct cred *old;
922 	struct cred *new;
923 	gid_t old_fsgid;
924 
925 	new = prepare_creds();
926 	if (!new)
927 		return current_fsgid();
928 	old = current_cred();
929 	old_fsgid = old->fsgid;
930 
931 	if (gid == old->gid  || gid == old->egid  ||
932 	    gid == old->sgid || gid == old->fsgid ||
933 	    nsown_capable(CAP_SETGID)) {
934 		if (gid != old_fsgid) {
935 			new->fsgid = gid;
936 			goto change_okay;
937 		}
938 	}
939 
940 	abort_creds(new);
941 	return old_fsgid;
942 
943 change_okay:
944 	commit_creds(new);
945 	return old_fsgid;
946 }
947 
948 void do_sys_times(struct tms *tms)
949 {
950 	cputime_t tgutime, tgstime, cutime, cstime;
951 
952 	spin_lock_irq(&current->sighand->siglock);
953 	thread_group_times(current, &tgutime, &tgstime);
954 	cutime = current->signal->cutime;
955 	cstime = current->signal->cstime;
956 	spin_unlock_irq(&current->sighand->siglock);
957 	tms->tms_utime = cputime_to_clock_t(tgutime);
958 	tms->tms_stime = cputime_to_clock_t(tgstime);
959 	tms->tms_cutime = cputime_to_clock_t(cutime);
960 	tms->tms_cstime = cputime_to_clock_t(cstime);
961 }
962 
963 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
964 {
965 	if (tbuf) {
966 		struct tms tmp;
967 
968 		do_sys_times(&tmp);
969 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
970 			return -EFAULT;
971 	}
972 	force_successful_syscall_return();
973 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
974 }
975 
976 /*
977  * This needs some heavy checking ...
978  * I just haven't the stomach for it. I also don't fully
979  * understand sessions/pgrp etc. Let somebody who does explain it.
980  *
981  * OK, I think I have the protection semantics right.... this is really
982  * only important on a multi-user system anyway, to make sure one user
983  * can't send a signal to a process owned by another.  -TYT, 12/12/91
984  *
985  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
986  * LBT 04.03.94
987  */
988 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
989 {
990 	struct task_struct *p;
991 	struct task_struct *group_leader = current->group_leader;
992 	struct pid *pgrp;
993 	int err;
994 
995 	if (!pid)
996 		pid = task_pid_vnr(group_leader);
997 	if (!pgid)
998 		pgid = pid;
999 	if (pgid < 0)
1000 		return -EINVAL;
1001 	rcu_read_lock();
1002 
1003 	/* From this point forward we keep holding onto the tasklist lock
1004 	 * so that our parent does not change from under us. -DaveM
1005 	 */
1006 	write_lock_irq(&tasklist_lock);
1007 
1008 	err = -ESRCH;
1009 	p = find_task_by_vpid(pid);
1010 	if (!p)
1011 		goto out;
1012 
1013 	err = -EINVAL;
1014 	if (!thread_group_leader(p))
1015 		goto out;
1016 
1017 	if (same_thread_group(p->real_parent, group_leader)) {
1018 		err = -EPERM;
1019 		if (task_session(p) != task_session(group_leader))
1020 			goto out;
1021 		err = -EACCES;
1022 		if (p->did_exec)
1023 			goto out;
1024 	} else {
1025 		err = -ESRCH;
1026 		if (p != group_leader)
1027 			goto out;
1028 	}
1029 
1030 	err = -EPERM;
1031 	if (p->signal->leader)
1032 		goto out;
1033 
1034 	pgrp = task_pid(p);
1035 	if (pgid != pid) {
1036 		struct task_struct *g;
1037 
1038 		pgrp = find_vpid(pgid);
1039 		g = pid_task(pgrp, PIDTYPE_PGID);
1040 		if (!g || task_session(g) != task_session(group_leader))
1041 			goto out;
1042 	}
1043 
1044 	err = security_task_setpgid(p, pgid);
1045 	if (err)
1046 		goto out;
1047 
1048 	if (task_pgrp(p) != pgrp)
1049 		change_pid(p, PIDTYPE_PGID, pgrp);
1050 
1051 	err = 0;
1052 out:
1053 	/* All paths lead to here, thus we are safe. -DaveM */
1054 	write_unlock_irq(&tasklist_lock);
1055 	rcu_read_unlock();
1056 	return err;
1057 }
1058 
1059 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1060 {
1061 	struct task_struct *p;
1062 	struct pid *grp;
1063 	int retval;
1064 
1065 	rcu_read_lock();
1066 	if (!pid)
1067 		grp = task_pgrp(current);
1068 	else {
1069 		retval = -ESRCH;
1070 		p = find_task_by_vpid(pid);
1071 		if (!p)
1072 			goto out;
1073 		grp = task_pgrp(p);
1074 		if (!grp)
1075 			goto out;
1076 
1077 		retval = security_task_getpgid(p);
1078 		if (retval)
1079 			goto out;
1080 	}
1081 	retval = pid_vnr(grp);
1082 out:
1083 	rcu_read_unlock();
1084 	return retval;
1085 }
1086 
1087 #ifdef __ARCH_WANT_SYS_GETPGRP
1088 
1089 SYSCALL_DEFINE0(getpgrp)
1090 {
1091 	return sys_getpgid(0);
1092 }
1093 
1094 #endif
1095 
1096 SYSCALL_DEFINE1(getsid, pid_t, pid)
1097 {
1098 	struct task_struct *p;
1099 	struct pid *sid;
1100 	int retval;
1101 
1102 	rcu_read_lock();
1103 	if (!pid)
1104 		sid = task_session(current);
1105 	else {
1106 		retval = -ESRCH;
1107 		p = find_task_by_vpid(pid);
1108 		if (!p)
1109 			goto out;
1110 		sid = task_session(p);
1111 		if (!sid)
1112 			goto out;
1113 
1114 		retval = security_task_getsid(p);
1115 		if (retval)
1116 			goto out;
1117 	}
1118 	retval = pid_vnr(sid);
1119 out:
1120 	rcu_read_unlock();
1121 	return retval;
1122 }
1123 
1124 SYSCALL_DEFINE0(setsid)
1125 {
1126 	struct task_struct *group_leader = current->group_leader;
1127 	struct pid *sid = task_pid(group_leader);
1128 	pid_t session = pid_vnr(sid);
1129 	int err = -EPERM;
1130 
1131 	write_lock_irq(&tasklist_lock);
1132 	/* Fail if I am already a session leader */
1133 	if (group_leader->signal->leader)
1134 		goto out;
1135 
1136 	/* Fail if a process group id already exists that equals the
1137 	 * proposed session id.
1138 	 */
1139 	if (pid_task(sid, PIDTYPE_PGID))
1140 		goto out;
1141 
1142 	group_leader->signal->leader = 1;
1143 	__set_special_pids(sid);
1144 
1145 	proc_clear_tty(group_leader);
1146 
1147 	err = session;
1148 out:
1149 	write_unlock_irq(&tasklist_lock);
1150 	if (err > 0) {
1151 		proc_sid_connector(group_leader);
1152 		sched_autogroup_create_attach(group_leader);
1153 	}
1154 	return err;
1155 }
1156 
1157 DECLARE_RWSEM(uts_sem);
1158 
1159 #ifdef COMPAT_UTS_MACHINE
1160 #define override_architecture(name) \
1161 	(personality(current->personality) == PER_LINUX32 && \
1162 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1163 		      sizeof(COMPAT_UTS_MACHINE)))
1164 #else
1165 #define override_architecture(name)	0
1166 #endif
1167 
1168 /*
1169  * Work around broken programs that cannot handle "Linux 3.0".
1170  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1171  */
1172 static int override_release(char __user *release, int len)
1173 {
1174 	int ret = 0;
1175 	char buf[len];
1176 
1177 	if (current->personality & UNAME26) {
1178 		char *rest = UTS_RELEASE;
1179 		int ndots = 0;
1180 		unsigned v;
1181 
1182 		while (*rest) {
1183 			if (*rest == '.' && ++ndots >= 3)
1184 				break;
1185 			if (!isdigit(*rest) && *rest != '.')
1186 				break;
1187 			rest++;
1188 		}
1189 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1190 		snprintf(buf, len, "2.6.%u%s", v, rest);
1191 		ret = copy_to_user(release, buf, len);
1192 	}
1193 	return ret;
1194 }
1195 
1196 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1197 {
1198 	int errno = 0;
1199 
1200 	down_read(&uts_sem);
1201 	if (copy_to_user(name, utsname(), sizeof *name))
1202 		errno = -EFAULT;
1203 	up_read(&uts_sem);
1204 
1205 	if (!errno && override_release(name->release, sizeof(name->release)))
1206 		errno = -EFAULT;
1207 	if (!errno && override_architecture(name))
1208 		errno = -EFAULT;
1209 	return errno;
1210 }
1211 
1212 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1213 /*
1214  * Old cruft
1215  */
1216 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1217 {
1218 	int error = 0;
1219 
1220 	if (!name)
1221 		return -EFAULT;
1222 
1223 	down_read(&uts_sem);
1224 	if (copy_to_user(name, utsname(), sizeof(*name)))
1225 		error = -EFAULT;
1226 	up_read(&uts_sem);
1227 
1228 	if (!error && override_release(name->release, sizeof(name->release)))
1229 		error = -EFAULT;
1230 	if (!error && override_architecture(name))
1231 		error = -EFAULT;
1232 	return error;
1233 }
1234 
1235 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1236 {
1237 	int error;
1238 
1239 	if (!name)
1240 		return -EFAULT;
1241 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1242 		return -EFAULT;
1243 
1244 	down_read(&uts_sem);
1245 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1246 			       __OLD_UTS_LEN);
1247 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1248 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1249 				__OLD_UTS_LEN);
1250 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1251 	error |= __copy_to_user(&name->release, &utsname()->release,
1252 				__OLD_UTS_LEN);
1253 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1254 	error |= __copy_to_user(&name->version, &utsname()->version,
1255 				__OLD_UTS_LEN);
1256 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1257 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1258 				__OLD_UTS_LEN);
1259 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1260 	up_read(&uts_sem);
1261 
1262 	if (!error && override_architecture(name))
1263 		error = -EFAULT;
1264 	if (!error && override_release(name->release, sizeof(name->release)))
1265 		error = -EFAULT;
1266 	return error ? -EFAULT : 0;
1267 }
1268 #endif
1269 
1270 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1271 {
1272 	int errno;
1273 	char tmp[__NEW_UTS_LEN];
1274 
1275 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1276 		return -EPERM;
1277 
1278 	if (len < 0 || len > __NEW_UTS_LEN)
1279 		return -EINVAL;
1280 	down_write(&uts_sem);
1281 	errno = -EFAULT;
1282 	if (!copy_from_user(tmp, name, len)) {
1283 		struct new_utsname *u = utsname();
1284 
1285 		memcpy(u->nodename, tmp, len);
1286 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1287 		errno = 0;
1288 	}
1289 	up_write(&uts_sem);
1290 	return errno;
1291 }
1292 
1293 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1294 
1295 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1296 {
1297 	int i, errno;
1298 	struct new_utsname *u;
1299 
1300 	if (len < 0)
1301 		return -EINVAL;
1302 	down_read(&uts_sem);
1303 	u = utsname();
1304 	i = 1 + strlen(u->nodename);
1305 	if (i > len)
1306 		i = len;
1307 	errno = 0;
1308 	if (copy_to_user(name, u->nodename, i))
1309 		errno = -EFAULT;
1310 	up_read(&uts_sem);
1311 	return errno;
1312 }
1313 
1314 #endif
1315 
1316 /*
1317  * Only setdomainname; getdomainname can be implemented by calling
1318  * uname()
1319  */
1320 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1321 {
1322 	int errno;
1323 	char tmp[__NEW_UTS_LEN];
1324 
1325 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1326 		return -EPERM;
1327 	if (len < 0 || len > __NEW_UTS_LEN)
1328 		return -EINVAL;
1329 
1330 	down_write(&uts_sem);
1331 	errno = -EFAULT;
1332 	if (!copy_from_user(tmp, name, len)) {
1333 		struct new_utsname *u = utsname();
1334 
1335 		memcpy(u->domainname, tmp, len);
1336 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1337 		errno = 0;
1338 	}
1339 	up_write(&uts_sem);
1340 	return errno;
1341 }
1342 
1343 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1344 {
1345 	struct rlimit value;
1346 	int ret;
1347 
1348 	ret = do_prlimit(current, resource, NULL, &value);
1349 	if (!ret)
1350 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1351 
1352 	return ret;
1353 }
1354 
1355 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1356 
1357 /*
1358  *	Back compatibility for getrlimit. Needed for some apps.
1359  */
1360 
1361 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1362 		struct rlimit __user *, rlim)
1363 {
1364 	struct rlimit x;
1365 	if (resource >= RLIM_NLIMITS)
1366 		return -EINVAL;
1367 
1368 	task_lock(current->group_leader);
1369 	x = current->signal->rlim[resource];
1370 	task_unlock(current->group_leader);
1371 	if (x.rlim_cur > 0x7FFFFFFF)
1372 		x.rlim_cur = 0x7FFFFFFF;
1373 	if (x.rlim_max > 0x7FFFFFFF)
1374 		x.rlim_max = 0x7FFFFFFF;
1375 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1376 }
1377 
1378 #endif
1379 
1380 static inline bool rlim64_is_infinity(__u64 rlim64)
1381 {
1382 #if BITS_PER_LONG < 64
1383 	return rlim64 >= ULONG_MAX;
1384 #else
1385 	return rlim64 == RLIM64_INFINITY;
1386 #endif
1387 }
1388 
1389 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1390 {
1391 	if (rlim->rlim_cur == RLIM_INFINITY)
1392 		rlim64->rlim_cur = RLIM64_INFINITY;
1393 	else
1394 		rlim64->rlim_cur = rlim->rlim_cur;
1395 	if (rlim->rlim_max == RLIM_INFINITY)
1396 		rlim64->rlim_max = RLIM64_INFINITY;
1397 	else
1398 		rlim64->rlim_max = rlim->rlim_max;
1399 }
1400 
1401 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1402 {
1403 	if (rlim64_is_infinity(rlim64->rlim_cur))
1404 		rlim->rlim_cur = RLIM_INFINITY;
1405 	else
1406 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1407 	if (rlim64_is_infinity(rlim64->rlim_max))
1408 		rlim->rlim_max = RLIM_INFINITY;
1409 	else
1410 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1411 }
1412 
1413 /* make sure you are allowed to change @tsk limits before calling this */
1414 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1415 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1416 {
1417 	struct rlimit *rlim;
1418 	int retval = 0;
1419 
1420 	if (resource >= RLIM_NLIMITS)
1421 		return -EINVAL;
1422 	if (new_rlim) {
1423 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1424 			return -EINVAL;
1425 		if (resource == RLIMIT_NOFILE &&
1426 				new_rlim->rlim_max > sysctl_nr_open)
1427 			return -EPERM;
1428 	}
1429 
1430 	/* protect tsk->signal and tsk->sighand from disappearing */
1431 	read_lock(&tasklist_lock);
1432 	if (!tsk->sighand) {
1433 		retval = -ESRCH;
1434 		goto out;
1435 	}
1436 
1437 	rlim = tsk->signal->rlim + resource;
1438 	task_lock(tsk->group_leader);
1439 	if (new_rlim) {
1440 		/* Keep the capable check against init_user_ns until
1441 		   cgroups can contain all limits */
1442 		if (new_rlim->rlim_max > rlim->rlim_max &&
1443 				!capable(CAP_SYS_RESOURCE))
1444 			retval = -EPERM;
1445 		if (!retval)
1446 			retval = security_task_setrlimit(tsk->group_leader,
1447 					resource, new_rlim);
1448 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1449 			/*
1450 			 * The caller is asking for an immediate RLIMIT_CPU
1451 			 * expiry.  But we use the zero value to mean "it was
1452 			 * never set".  So let's cheat and make it one second
1453 			 * instead
1454 			 */
1455 			new_rlim->rlim_cur = 1;
1456 		}
1457 	}
1458 	if (!retval) {
1459 		if (old_rlim)
1460 			*old_rlim = *rlim;
1461 		if (new_rlim)
1462 			*rlim = *new_rlim;
1463 	}
1464 	task_unlock(tsk->group_leader);
1465 
1466 	/*
1467 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1468 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1469 	 * very long-standing error, and fixing it now risks breakage of
1470 	 * applications, so we live with it
1471 	 */
1472 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1473 			 new_rlim->rlim_cur != RLIM_INFINITY)
1474 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1475 out:
1476 	read_unlock(&tasklist_lock);
1477 	return retval;
1478 }
1479 
1480 /* rcu lock must be held */
1481 static int check_prlimit_permission(struct task_struct *task)
1482 {
1483 	const struct cred *cred = current_cred(), *tcred;
1484 
1485 	if (current == task)
1486 		return 0;
1487 
1488 	tcred = __task_cred(task);
1489 	if (cred->user->user_ns == tcred->user->user_ns &&
1490 	    (cred->uid == tcred->euid &&
1491 	     cred->uid == tcred->suid &&
1492 	     cred->uid == tcred->uid  &&
1493 	     cred->gid == tcred->egid &&
1494 	     cred->gid == tcred->sgid &&
1495 	     cred->gid == tcred->gid))
1496 		return 0;
1497 	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1498 		return 0;
1499 
1500 	return -EPERM;
1501 }
1502 
1503 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1504 		const struct rlimit64 __user *, new_rlim,
1505 		struct rlimit64 __user *, old_rlim)
1506 {
1507 	struct rlimit64 old64, new64;
1508 	struct rlimit old, new;
1509 	struct task_struct *tsk;
1510 	int ret;
1511 
1512 	if (new_rlim) {
1513 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1514 			return -EFAULT;
1515 		rlim64_to_rlim(&new64, &new);
1516 	}
1517 
1518 	rcu_read_lock();
1519 	tsk = pid ? find_task_by_vpid(pid) : current;
1520 	if (!tsk) {
1521 		rcu_read_unlock();
1522 		return -ESRCH;
1523 	}
1524 	ret = check_prlimit_permission(tsk);
1525 	if (ret) {
1526 		rcu_read_unlock();
1527 		return ret;
1528 	}
1529 	get_task_struct(tsk);
1530 	rcu_read_unlock();
1531 
1532 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1533 			old_rlim ? &old : NULL);
1534 
1535 	if (!ret && old_rlim) {
1536 		rlim_to_rlim64(&old, &old64);
1537 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1538 			ret = -EFAULT;
1539 	}
1540 
1541 	put_task_struct(tsk);
1542 	return ret;
1543 }
1544 
1545 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1546 {
1547 	struct rlimit new_rlim;
1548 
1549 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1550 		return -EFAULT;
1551 	return do_prlimit(current, resource, &new_rlim, NULL);
1552 }
1553 
1554 /*
1555  * It would make sense to put struct rusage in the task_struct,
1556  * except that would make the task_struct be *really big*.  After
1557  * task_struct gets moved into malloc'ed memory, it would
1558  * make sense to do this.  It will make moving the rest of the information
1559  * a lot simpler!  (Which we're not doing right now because we're not
1560  * measuring them yet).
1561  *
1562  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1563  * races with threads incrementing their own counters.  But since word
1564  * reads are atomic, we either get new values or old values and we don't
1565  * care which for the sums.  We always take the siglock to protect reading
1566  * the c* fields from p->signal from races with exit.c updating those
1567  * fields when reaping, so a sample either gets all the additions of a
1568  * given child after it's reaped, or none so this sample is before reaping.
1569  *
1570  * Locking:
1571  * We need to take the siglock for CHILDEREN, SELF and BOTH
1572  * for  the cases current multithreaded, non-current single threaded
1573  * non-current multithreaded.  Thread traversal is now safe with
1574  * the siglock held.
1575  * Strictly speaking, we donot need to take the siglock if we are current and
1576  * single threaded,  as no one else can take our signal_struct away, no one
1577  * else can  reap the  children to update signal->c* counters, and no one else
1578  * can race with the signal-> fields. If we do not take any lock, the
1579  * signal-> fields could be read out of order while another thread was just
1580  * exiting. So we should  place a read memory barrier when we avoid the lock.
1581  * On the writer side,  write memory barrier is implied in  __exit_signal
1582  * as __exit_signal releases  the siglock spinlock after updating the signal->
1583  * fields. But we don't do this yet to keep things simple.
1584  *
1585  */
1586 
1587 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1588 {
1589 	r->ru_nvcsw += t->nvcsw;
1590 	r->ru_nivcsw += t->nivcsw;
1591 	r->ru_minflt += t->min_flt;
1592 	r->ru_majflt += t->maj_flt;
1593 	r->ru_inblock += task_io_get_inblock(t);
1594 	r->ru_oublock += task_io_get_oublock(t);
1595 }
1596 
1597 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1598 {
1599 	struct task_struct *t;
1600 	unsigned long flags;
1601 	cputime_t tgutime, tgstime, utime, stime;
1602 	unsigned long maxrss = 0;
1603 
1604 	memset((char *) r, 0, sizeof *r);
1605 	utime = stime = cputime_zero;
1606 
1607 	if (who == RUSAGE_THREAD) {
1608 		task_times(current, &utime, &stime);
1609 		accumulate_thread_rusage(p, r);
1610 		maxrss = p->signal->maxrss;
1611 		goto out;
1612 	}
1613 
1614 	if (!lock_task_sighand(p, &flags))
1615 		return;
1616 
1617 	switch (who) {
1618 		case RUSAGE_BOTH:
1619 		case RUSAGE_CHILDREN:
1620 			utime = p->signal->cutime;
1621 			stime = p->signal->cstime;
1622 			r->ru_nvcsw = p->signal->cnvcsw;
1623 			r->ru_nivcsw = p->signal->cnivcsw;
1624 			r->ru_minflt = p->signal->cmin_flt;
1625 			r->ru_majflt = p->signal->cmaj_flt;
1626 			r->ru_inblock = p->signal->cinblock;
1627 			r->ru_oublock = p->signal->coublock;
1628 			maxrss = p->signal->cmaxrss;
1629 
1630 			if (who == RUSAGE_CHILDREN)
1631 				break;
1632 
1633 		case RUSAGE_SELF:
1634 			thread_group_times(p, &tgutime, &tgstime);
1635 			utime = cputime_add(utime, tgutime);
1636 			stime = cputime_add(stime, tgstime);
1637 			r->ru_nvcsw += p->signal->nvcsw;
1638 			r->ru_nivcsw += p->signal->nivcsw;
1639 			r->ru_minflt += p->signal->min_flt;
1640 			r->ru_majflt += p->signal->maj_flt;
1641 			r->ru_inblock += p->signal->inblock;
1642 			r->ru_oublock += p->signal->oublock;
1643 			if (maxrss < p->signal->maxrss)
1644 				maxrss = p->signal->maxrss;
1645 			t = p;
1646 			do {
1647 				accumulate_thread_rusage(t, r);
1648 				t = next_thread(t);
1649 			} while (t != p);
1650 			break;
1651 
1652 		default:
1653 			BUG();
1654 	}
1655 	unlock_task_sighand(p, &flags);
1656 
1657 out:
1658 	cputime_to_timeval(utime, &r->ru_utime);
1659 	cputime_to_timeval(stime, &r->ru_stime);
1660 
1661 	if (who != RUSAGE_CHILDREN) {
1662 		struct mm_struct *mm = get_task_mm(p);
1663 		if (mm) {
1664 			setmax_mm_hiwater_rss(&maxrss, mm);
1665 			mmput(mm);
1666 		}
1667 	}
1668 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1669 }
1670 
1671 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1672 {
1673 	struct rusage r;
1674 	k_getrusage(p, who, &r);
1675 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1676 }
1677 
1678 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1679 {
1680 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1681 	    who != RUSAGE_THREAD)
1682 		return -EINVAL;
1683 	return getrusage(current, who, ru);
1684 }
1685 
1686 SYSCALL_DEFINE1(umask, int, mask)
1687 {
1688 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1689 	return mask;
1690 }
1691 
1692 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1693 		unsigned long, arg4, unsigned long, arg5)
1694 {
1695 	struct task_struct *me = current;
1696 	unsigned char comm[sizeof(me->comm)];
1697 	long error;
1698 
1699 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1700 	if (error != -ENOSYS)
1701 		return error;
1702 
1703 	error = 0;
1704 	switch (option) {
1705 		case PR_SET_PDEATHSIG:
1706 			if (!valid_signal(arg2)) {
1707 				error = -EINVAL;
1708 				break;
1709 			}
1710 			me->pdeath_signal = arg2;
1711 			error = 0;
1712 			break;
1713 		case PR_GET_PDEATHSIG:
1714 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1715 			break;
1716 		case PR_GET_DUMPABLE:
1717 			error = get_dumpable(me->mm);
1718 			break;
1719 		case PR_SET_DUMPABLE:
1720 			if (arg2 < 0 || arg2 > 1) {
1721 				error = -EINVAL;
1722 				break;
1723 			}
1724 			set_dumpable(me->mm, arg2);
1725 			error = 0;
1726 			break;
1727 
1728 		case PR_SET_UNALIGN:
1729 			error = SET_UNALIGN_CTL(me, arg2);
1730 			break;
1731 		case PR_GET_UNALIGN:
1732 			error = GET_UNALIGN_CTL(me, arg2);
1733 			break;
1734 		case PR_SET_FPEMU:
1735 			error = SET_FPEMU_CTL(me, arg2);
1736 			break;
1737 		case PR_GET_FPEMU:
1738 			error = GET_FPEMU_CTL(me, arg2);
1739 			break;
1740 		case PR_SET_FPEXC:
1741 			error = SET_FPEXC_CTL(me, arg2);
1742 			break;
1743 		case PR_GET_FPEXC:
1744 			error = GET_FPEXC_CTL(me, arg2);
1745 			break;
1746 		case PR_GET_TIMING:
1747 			error = PR_TIMING_STATISTICAL;
1748 			break;
1749 		case PR_SET_TIMING:
1750 			if (arg2 != PR_TIMING_STATISTICAL)
1751 				error = -EINVAL;
1752 			else
1753 				error = 0;
1754 			break;
1755 
1756 		case PR_SET_NAME:
1757 			comm[sizeof(me->comm)-1] = 0;
1758 			if (strncpy_from_user(comm, (char __user *)arg2,
1759 					      sizeof(me->comm) - 1) < 0)
1760 				return -EFAULT;
1761 			set_task_comm(me, comm);
1762 			return 0;
1763 		case PR_GET_NAME:
1764 			get_task_comm(comm, me);
1765 			if (copy_to_user((char __user *)arg2, comm,
1766 					 sizeof(comm)))
1767 				return -EFAULT;
1768 			return 0;
1769 		case PR_GET_ENDIAN:
1770 			error = GET_ENDIAN(me, arg2);
1771 			break;
1772 		case PR_SET_ENDIAN:
1773 			error = SET_ENDIAN(me, arg2);
1774 			break;
1775 
1776 		case PR_GET_SECCOMP:
1777 			error = prctl_get_seccomp();
1778 			break;
1779 		case PR_SET_SECCOMP:
1780 			error = prctl_set_seccomp(arg2);
1781 			break;
1782 		case PR_GET_TSC:
1783 			error = GET_TSC_CTL(arg2);
1784 			break;
1785 		case PR_SET_TSC:
1786 			error = SET_TSC_CTL(arg2);
1787 			break;
1788 		case PR_TASK_PERF_EVENTS_DISABLE:
1789 			error = perf_event_task_disable();
1790 			break;
1791 		case PR_TASK_PERF_EVENTS_ENABLE:
1792 			error = perf_event_task_enable();
1793 			break;
1794 		case PR_GET_TIMERSLACK:
1795 			error = current->timer_slack_ns;
1796 			break;
1797 		case PR_SET_TIMERSLACK:
1798 			if (arg2 <= 0)
1799 				current->timer_slack_ns =
1800 					current->default_timer_slack_ns;
1801 			else
1802 				current->timer_slack_ns = arg2;
1803 			error = 0;
1804 			break;
1805 		case PR_MCE_KILL:
1806 			if (arg4 | arg5)
1807 				return -EINVAL;
1808 			switch (arg2) {
1809 			case PR_MCE_KILL_CLEAR:
1810 				if (arg3 != 0)
1811 					return -EINVAL;
1812 				current->flags &= ~PF_MCE_PROCESS;
1813 				break;
1814 			case PR_MCE_KILL_SET:
1815 				current->flags |= PF_MCE_PROCESS;
1816 				if (arg3 == PR_MCE_KILL_EARLY)
1817 					current->flags |= PF_MCE_EARLY;
1818 				else if (arg3 == PR_MCE_KILL_LATE)
1819 					current->flags &= ~PF_MCE_EARLY;
1820 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1821 					current->flags &=
1822 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1823 				else
1824 					return -EINVAL;
1825 				break;
1826 			default:
1827 				return -EINVAL;
1828 			}
1829 			error = 0;
1830 			break;
1831 		case PR_MCE_KILL_GET:
1832 			if (arg2 | arg3 | arg4 | arg5)
1833 				return -EINVAL;
1834 			if (current->flags & PF_MCE_PROCESS)
1835 				error = (current->flags & PF_MCE_EARLY) ?
1836 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1837 			else
1838 				error = PR_MCE_KILL_DEFAULT;
1839 			break;
1840 		default:
1841 			error = -EINVAL;
1842 			break;
1843 	}
1844 	return error;
1845 }
1846 
1847 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1848 		struct getcpu_cache __user *, unused)
1849 {
1850 	int err = 0;
1851 	int cpu = raw_smp_processor_id();
1852 	if (cpup)
1853 		err |= put_user(cpu, cpup);
1854 	if (nodep)
1855 		err |= put_user(cpu_to_node(cpu), nodep);
1856 	return err ? -EFAULT : 0;
1857 }
1858 
1859 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1860 
1861 static void argv_cleanup(struct subprocess_info *info)
1862 {
1863 	argv_free(info->argv);
1864 }
1865 
1866 /**
1867  * orderly_poweroff - Trigger an orderly system poweroff
1868  * @force: force poweroff if command execution fails
1869  *
1870  * This may be called from any context to trigger a system shutdown.
1871  * If the orderly shutdown fails, it will force an immediate shutdown.
1872  */
1873 int orderly_poweroff(bool force)
1874 {
1875 	int argc;
1876 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1877 	static char *envp[] = {
1878 		"HOME=/",
1879 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1880 		NULL
1881 	};
1882 	int ret = -ENOMEM;
1883 	struct subprocess_info *info;
1884 
1885 	if (argv == NULL) {
1886 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1887 		       __func__, poweroff_cmd);
1888 		goto out;
1889 	}
1890 
1891 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1892 	if (info == NULL) {
1893 		argv_free(argv);
1894 		goto out;
1895 	}
1896 
1897 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1898 
1899 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1900 
1901   out:
1902 	if (ret && force) {
1903 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1904 		       "forcing the issue\n");
1905 
1906 		/* I guess this should try to kick off some daemon to
1907 		   sync and poweroff asap.  Or not even bother syncing
1908 		   if we're doing an emergency shutdown? */
1909 		emergency_sync();
1910 		kernel_power_off();
1911 	}
1912 
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(orderly_poweroff);
1916