xref: /openbmc/linux/kernel/sys.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 #include <linux/syscall_user_dispatch.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
52 
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
64 
65 #include <linux/nospec.h>
66 
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/unistd.h>
74 
75 #include "uid16.h"
76 
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
79 #endif
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef SET_FPEMU_CTL
84 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef GET_FPEMU_CTL
87 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef SET_FPEXC_CTL
90 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_FPEXC_CTL
93 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_ENDIAN
96 # define GET_ENDIAN(a, b)	(-EINVAL)
97 #endif
98 #ifndef SET_ENDIAN
99 # define SET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef GET_TSC_CTL
102 # define GET_TSC_CTL(a)		(-EINVAL)
103 #endif
104 #ifndef SET_TSC_CTL
105 # define SET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a)		(-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b)	(-EINVAL)
112 #endif
113 #ifndef SVE_SET_VL
114 # define SVE_SET_VL(a)		(-EINVAL)
115 #endif
116 #ifndef SVE_GET_VL
117 # define SVE_GET_VL()		(-EINVAL)
118 #endif
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
121 #endif
122 #ifndef PAC_SET_ENABLED_KEYS
123 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
124 #endif
125 #ifndef PAC_GET_ENABLED_KEYS
126 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
127 #endif
128 #ifndef SET_TAGGED_ADDR_CTRL
129 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
130 #endif
131 #ifndef GET_TAGGED_ADDR_CTRL
132 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
133 #endif
134 
135 /*
136  * this is where the system-wide overflow UID and GID are defined, for
137  * architectures that now have 32-bit UID/GID but didn't in the past
138  */
139 
140 int overflowuid = DEFAULT_OVERFLOWUID;
141 int overflowgid = DEFAULT_OVERFLOWGID;
142 
143 EXPORT_SYMBOL(overflowuid);
144 EXPORT_SYMBOL(overflowgid);
145 
146 /*
147  * the same as above, but for filesystems which can only store a 16-bit
148  * UID and GID. as such, this is needed on all architectures
149  */
150 
151 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
152 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
153 
154 EXPORT_SYMBOL(fs_overflowuid);
155 EXPORT_SYMBOL(fs_overflowgid);
156 
157 /*
158  * Returns true if current's euid is same as p's uid or euid,
159  * or has CAP_SYS_NICE to p's user_ns.
160  *
161  * Called with rcu_read_lock, creds are safe
162  */
163 static bool set_one_prio_perm(struct task_struct *p)
164 {
165 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
166 
167 	if (uid_eq(pcred->uid,  cred->euid) ||
168 	    uid_eq(pcred->euid, cred->euid))
169 		return true;
170 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
171 		return true;
172 	return false;
173 }
174 
175 /*
176  * set the priority of a task
177  * - the caller must hold the RCU read lock
178  */
179 static int set_one_prio(struct task_struct *p, int niceval, int error)
180 {
181 	int no_nice;
182 
183 	if (!set_one_prio_perm(p)) {
184 		error = -EPERM;
185 		goto out;
186 	}
187 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
188 		error = -EACCES;
189 		goto out;
190 	}
191 	no_nice = security_task_setnice(p, niceval);
192 	if (no_nice) {
193 		error = no_nice;
194 		goto out;
195 	}
196 	if (error == -ESRCH)
197 		error = 0;
198 	set_user_nice(p, niceval);
199 out:
200 	return error;
201 }
202 
203 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
204 {
205 	struct task_struct *g, *p;
206 	struct user_struct *user;
207 	const struct cred *cred = current_cred();
208 	int error = -EINVAL;
209 	struct pid *pgrp;
210 	kuid_t uid;
211 
212 	if (which > PRIO_USER || which < PRIO_PROCESS)
213 		goto out;
214 
215 	/* normalize: avoid signed division (rounding problems) */
216 	error = -ESRCH;
217 	if (niceval < MIN_NICE)
218 		niceval = MIN_NICE;
219 	if (niceval > MAX_NICE)
220 		niceval = MAX_NICE;
221 
222 	rcu_read_lock();
223 	read_lock(&tasklist_lock);
224 	switch (which) {
225 	case PRIO_PROCESS:
226 		if (who)
227 			p = find_task_by_vpid(who);
228 		else
229 			p = current;
230 		if (p)
231 			error = set_one_prio(p, niceval, error);
232 		break;
233 	case PRIO_PGRP:
234 		if (who)
235 			pgrp = find_vpid(who);
236 		else
237 			pgrp = task_pgrp(current);
238 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
239 			error = set_one_prio(p, niceval, error);
240 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
241 		break;
242 	case PRIO_USER:
243 		uid = make_kuid(cred->user_ns, who);
244 		user = cred->user;
245 		if (!who)
246 			uid = cred->uid;
247 		else if (!uid_eq(uid, cred->uid)) {
248 			user = find_user(uid);
249 			if (!user)
250 				goto out_unlock;	/* No processes for this user */
251 		}
252 		do_each_thread(g, p) {
253 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
254 				error = set_one_prio(p, niceval, error);
255 		} while_each_thread(g, p);
256 		if (!uid_eq(uid, cred->uid))
257 			free_uid(user);		/* For find_user() */
258 		break;
259 	}
260 out_unlock:
261 	read_unlock(&tasklist_lock);
262 	rcu_read_unlock();
263 out:
264 	return error;
265 }
266 
267 /*
268  * Ugh. To avoid negative return values, "getpriority()" will
269  * not return the normal nice-value, but a negated value that
270  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
271  * to stay compatible.
272  */
273 SYSCALL_DEFINE2(getpriority, int, which, int, who)
274 {
275 	struct task_struct *g, *p;
276 	struct user_struct *user;
277 	const struct cred *cred = current_cred();
278 	long niceval, retval = -ESRCH;
279 	struct pid *pgrp;
280 	kuid_t uid;
281 
282 	if (which > PRIO_USER || which < PRIO_PROCESS)
283 		return -EINVAL;
284 
285 	rcu_read_lock();
286 	read_lock(&tasklist_lock);
287 	switch (which) {
288 	case PRIO_PROCESS:
289 		if (who)
290 			p = find_task_by_vpid(who);
291 		else
292 			p = current;
293 		if (p) {
294 			niceval = nice_to_rlimit(task_nice(p));
295 			if (niceval > retval)
296 				retval = niceval;
297 		}
298 		break;
299 	case PRIO_PGRP:
300 		if (who)
301 			pgrp = find_vpid(who);
302 		else
303 			pgrp = task_pgrp(current);
304 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
305 			niceval = nice_to_rlimit(task_nice(p));
306 			if (niceval > retval)
307 				retval = niceval;
308 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
309 		break;
310 	case PRIO_USER:
311 		uid = make_kuid(cred->user_ns, who);
312 		user = cred->user;
313 		if (!who)
314 			uid = cred->uid;
315 		else if (!uid_eq(uid, cred->uid)) {
316 			user = find_user(uid);
317 			if (!user)
318 				goto out_unlock;	/* No processes for this user */
319 		}
320 		do_each_thread(g, p) {
321 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
322 				niceval = nice_to_rlimit(task_nice(p));
323 				if (niceval > retval)
324 					retval = niceval;
325 			}
326 		} while_each_thread(g, p);
327 		if (!uid_eq(uid, cred->uid))
328 			free_uid(user);		/* for find_user() */
329 		break;
330 	}
331 out_unlock:
332 	read_unlock(&tasklist_lock);
333 	rcu_read_unlock();
334 
335 	return retval;
336 }
337 
338 /*
339  * Unprivileged users may change the real gid to the effective gid
340  * or vice versa.  (BSD-style)
341  *
342  * If you set the real gid at all, or set the effective gid to a value not
343  * equal to the real gid, then the saved gid is set to the new effective gid.
344  *
345  * This makes it possible for a setgid program to completely drop its
346  * privileges, which is often a useful assertion to make when you are doing
347  * a security audit over a program.
348  *
349  * The general idea is that a program which uses just setregid() will be
350  * 100% compatible with BSD.  A program which uses just setgid() will be
351  * 100% compatible with POSIX with saved IDs.
352  *
353  * SMP: There are not races, the GIDs are checked only by filesystem
354  *      operations (as far as semantic preservation is concerned).
355  */
356 #ifdef CONFIG_MULTIUSER
357 long __sys_setregid(gid_t rgid, gid_t egid)
358 {
359 	struct user_namespace *ns = current_user_ns();
360 	const struct cred *old;
361 	struct cred *new;
362 	int retval;
363 	kgid_t krgid, kegid;
364 
365 	krgid = make_kgid(ns, rgid);
366 	kegid = make_kgid(ns, egid);
367 
368 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
369 		return -EINVAL;
370 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
371 		return -EINVAL;
372 
373 	new = prepare_creds();
374 	if (!new)
375 		return -ENOMEM;
376 	old = current_cred();
377 
378 	retval = -EPERM;
379 	if (rgid != (gid_t) -1) {
380 		if (gid_eq(old->gid, krgid) ||
381 		    gid_eq(old->egid, krgid) ||
382 		    ns_capable_setid(old->user_ns, CAP_SETGID))
383 			new->gid = krgid;
384 		else
385 			goto error;
386 	}
387 	if (egid != (gid_t) -1) {
388 		if (gid_eq(old->gid, kegid) ||
389 		    gid_eq(old->egid, kegid) ||
390 		    gid_eq(old->sgid, kegid) ||
391 		    ns_capable_setid(old->user_ns, CAP_SETGID))
392 			new->egid = kegid;
393 		else
394 			goto error;
395 	}
396 
397 	if (rgid != (gid_t) -1 ||
398 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
399 		new->sgid = new->egid;
400 	new->fsgid = new->egid;
401 
402 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
403 	if (retval < 0)
404 		goto error;
405 
406 	return commit_creds(new);
407 
408 error:
409 	abort_creds(new);
410 	return retval;
411 }
412 
413 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
414 {
415 	return __sys_setregid(rgid, egid);
416 }
417 
418 /*
419  * setgid() is implemented like SysV w/ SAVED_IDS
420  *
421  * SMP: Same implicit races as above.
422  */
423 long __sys_setgid(gid_t gid)
424 {
425 	struct user_namespace *ns = current_user_ns();
426 	const struct cred *old;
427 	struct cred *new;
428 	int retval;
429 	kgid_t kgid;
430 
431 	kgid = make_kgid(ns, gid);
432 	if (!gid_valid(kgid))
433 		return -EINVAL;
434 
435 	new = prepare_creds();
436 	if (!new)
437 		return -ENOMEM;
438 	old = current_cred();
439 
440 	retval = -EPERM;
441 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
442 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
443 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
444 		new->egid = new->fsgid = kgid;
445 	else
446 		goto error;
447 
448 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
449 	if (retval < 0)
450 		goto error;
451 
452 	return commit_creds(new);
453 
454 error:
455 	abort_creds(new);
456 	return retval;
457 }
458 
459 SYSCALL_DEFINE1(setgid, gid_t, gid)
460 {
461 	return __sys_setgid(gid);
462 }
463 
464 /*
465  * change the user struct in a credentials set to match the new UID
466  */
467 static int set_user(struct cred *new)
468 {
469 	struct user_struct *new_user;
470 
471 	new_user = alloc_uid(new->uid);
472 	if (!new_user)
473 		return -EAGAIN;
474 
475 	/*
476 	 * We don't fail in case of NPROC limit excess here because too many
477 	 * poorly written programs don't check set*uid() return code, assuming
478 	 * it never fails if called by root.  We may still enforce NPROC limit
479 	 * for programs doing set*uid()+execve() by harmlessly deferring the
480 	 * failure to the execve() stage.
481 	 */
482 	if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
483 			new_user != INIT_USER)
484 		current->flags |= PF_NPROC_EXCEEDED;
485 	else
486 		current->flags &= ~PF_NPROC_EXCEEDED;
487 
488 	free_uid(new->user);
489 	new->user = new_user;
490 	return 0;
491 }
492 
493 /*
494  * Unprivileged users may change the real uid to the effective uid
495  * or vice versa.  (BSD-style)
496  *
497  * If you set the real uid at all, or set the effective uid to a value not
498  * equal to the real uid, then the saved uid is set to the new effective uid.
499  *
500  * This makes it possible for a setuid program to completely drop its
501  * privileges, which is often a useful assertion to make when you are doing
502  * a security audit over a program.
503  *
504  * The general idea is that a program which uses just setreuid() will be
505  * 100% compatible with BSD.  A program which uses just setuid() will be
506  * 100% compatible with POSIX with saved IDs.
507  */
508 long __sys_setreuid(uid_t ruid, uid_t euid)
509 {
510 	struct user_namespace *ns = current_user_ns();
511 	const struct cred *old;
512 	struct cred *new;
513 	int retval;
514 	kuid_t kruid, keuid;
515 
516 	kruid = make_kuid(ns, ruid);
517 	keuid = make_kuid(ns, euid);
518 
519 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
520 		return -EINVAL;
521 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
522 		return -EINVAL;
523 
524 	new = prepare_creds();
525 	if (!new)
526 		return -ENOMEM;
527 	old = current_cred();
528 
529 	retval = -EPERM;
530 	if (ruid != (uid_t) -1) {
531 		new->uid = kruid;
532 		if (!uid_eq(old->uid, kruid) &&
533 		    !uid_eq(old->euid, kruid) &&
534 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
535 			goto error;
536 	}
537 
538 	if (euid != (uid_t) -1) {
539 		new->euid = keuid;
540 		if (!uid_eq(old->uid, keuid) &&
541 		    !uid_eq(old->euid, keuid) &&
542 		    !uid_eq(old->suid, keuid) &&
543 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
544 			goto error;
545 	}
546 
547 	if (!uid_eq(new->uid, old->uid)) {
548 		retval = set_user(new);
549 		if (retval < 0)
550 			goto error;
551 	}
552 	if (ruid != (uid_t) -1 ||
553 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
554 		new->suid = new->euid;
555 	new->fsuid = new->euid;
556 
557 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
558 	if (retval < 0)
559 		goto error;
560 
561 	retval = set_cred_ucounts(new);
562 	if (retval < 0)
563 		goto error;
564 
565 	return commit_creds(new);
566 
567 error:
568 	abort_creds(new);
569 	return retval;
570 }
571 
572 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
573 {
574 	return __sys_setreuid(ruid, euid);
575 }
576 
577 /*
578  * setuid() is implemented like SysV with SAVED_IDS
579  *
580  * Note that SAVED_ID's is deficient in that a setuid root program
581  * like sendmail, for example, cannot set its uid to be a normal
582  * user and then switch back, because if you're root, setuid() sets
583  * the saved uid too.  If you don't like this, blame the bright people
584  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
585  * will allow a root program to temporarily drop privileges and be able to
586  * regain them by swapping the real and effective uid.
587  */
588 long __sys_setuid(uid_t uid)
589 {
590 	struct user_namespace *ns = current_user_ns();
591 	const struct cred *old;
592 	struct cred *new;
593 	int retval;
594 	kuid_t kuid;
595 
596 	kuid = make_kuid(ns, uid);
597 	if (!uid_valid(kuid))
598 		return -EINVAL;
599 
600 	new = prepare_creds();
601 	if (!new)
602 		return -ENOMEM;
603 	old = current_cred();
604 
605 	retval = -EPERM;
606 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
607 		new->suid = new->uid = kuid;
608 		if (!uid_eq(kuid, old->uid)) {
609 			retval = set_user(new);
610 			if (retval < 0)
611 				goto error;
612 		}
613 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
614 		goto error;
615 	}
616 
617 	new->fsuid = new->euid = kuid;
618 
619 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
620 	if (retval < 0)
621 		goto error;
622 
623 	retval = set_cred_ucounts(new);
624 	if (retval < 0)
625 		goto error;
626 
627 	return commit_creds(new);
628 
629 error:
630 	abort_creds(new);
631 	return retval;
632 }
633 
634 SYSCALL_DEFINE1(setuid, uid_t, uid)
635 {
636 	return __sys_setuid(uid);
637 }
638 
639 
640 /*
641  * This function implements a generic ability to update ruid, euid,
642  * and suid.  This allows you to implement the 4.4 compatible seteuid().
643  */
644 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
645 {
646 	struct user_namespace *ns = current_user_ns();
647 	const struct cred *old;
648 	struct cred *new;
649 	int retval;
650 	kuid_t kruid, keuid, ksuid;
651 
652 	kruid = make_kuid(ns, ruid);
653 	keuid = make_kuid(ns, euid);
654 	ksuid = make_kuid(ns, suid);
655 
656 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
657 		return -EINVAL;
658 
659 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
660 		return -EINVAL;
661 
662 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
663 		return -EINVAL;
664 
665 	new = prepare_creds();
666 	if (!new)
667 		return -ENOMEM;
668 
669 	old = current_cred();
670 
671 	retval = -EPERM;
672 	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
673 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
674 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
675 			goto error;
676 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
677 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
678 			goto error;
679 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
680 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
681 			goto error;
682 	}
683 
684 	if (ruid != (uid_t) -1) {
685 		new->uid = kruid;
686 		if (!uid_eq(kruid, old->uid)) {
687 			retval = set_user(new);
688 			if (retval < 0)
689 				goto error;
690 		}
691 	}
692 	if (euid != (uid_t) -1)
693 		new->euid = keuid;
694 	if (suid != (uid_t) -1)
695 		new->suid = ksuid;
696 	new->fsuid = new->euid;
697 
698 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
699 	if (retval < 0)
700 		goto error;
701 
702 	retval = set_cred_ucounts(new);
703 	if (retval < 0)
704 		goto error;
705 
706 	return commit_creds(new);
707 
708 error:
709 	abort_creds(new);
710 	return retval;
711 }
712 
713 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
714 {
715 	return __sys_setresuid(ruid, euid, suid);
716 }
717 
718 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
719 {
720 	const struct cred *cred = current_cred();
721 	int retval;
722 	uid_t ruid, euid, suid;
723 
724 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
725 	euid = from_kuid_munged(cred->user_ns, cred->euid);
726 	suid = from_kuid_munged(cred->user_ns, cred->suid);
727 
728 	retval = put_user(ruid, ruidp);
729 	if (!retval) {
730 		retval = put_user(euid, euidp);
731 		if (!retval)
732 			return put_user(suid, suidp);
733 	}
734 	return retval;
735 }
736 
737 /*
738  * Same as above, but for rgid, egid, sgid.
739  */
740 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
741 {
742 	struct user_namespace *ns = current_user_ns();
743 	const struct cred *old;
744 	struct cred *new;
745 	int retval;
746 	kgid_t krgid, kegid, ksgid;
747 
748 	krgid = make_kgid(ns, rgid);
749 	kegid = make_kgid(ns, egid);
750 	ksgid = make_kgid(ns, sgid);
751 
752 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
753 		return -EINVAL;
754 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
755 		return -EINVAL;
756 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
757 		return -EINVAL;
758 
759 	new = prepare_creds();
760 	if (!new)
761 		return -ENOMEM;
762 	old = current_cred();
763 
764 	retval = -EPERM;
765 	if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
766 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
767 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
768 			goto error;
769 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
770 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
771 			goto error;
772 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
773 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
774 			goto error;
775 	}
776 
777 	if (rgid != (gid_t) -1)
778 		new->gid = krgid;
779 	if (egid != (gid_t) -1)
780 		new->egid = kegid;
781 	if (sgid != (gid_t) -1)
782 		new->sgid = ksgid;
783 	new->fsgid = new->egid;
784 
785 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
786 	if (retval < 0)
787 		goto error;
788 
789 	return commit_creds(new);
790 
791 error:
792 	abort_creds(new);
793 	return retval;
794 }
795 
796 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
797 {
798 	return __sys_setresgid(rgid, egid, sgid);
799 }
800 
801 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
802 {
803 	const struct cred *cred = current_cred();
804 	int retval;
805 	gid_t rgid, egid, sgid;
806 
807 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
808 	egid = from_kgid_munged(cred->user_ns, cred->egid);
809 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
810 
811 	retval = put_user(rgid, rgidp);
812 	if (!retval) {
813 		retval = put_user(egid, egidp);
814 		if (!retval)
815 			retval = put_user(sgid, sgidp);
816 	}
817 
818 	return retval;
819 }
820 
821 
822 /*
823  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
824  * is used for "access()" and for the NFS daemon (letting nfsd stay at
825  * whatever uid it wants to). It normally shadows "euid", except when
826  * explicitly set by setfsuid() or for access..
827  */
828 long __sys_setfsuid(uid_t uid)
829 {
830 	const struct cred *old;
831 	struct cred *new;
832 	uid_t old_fsuid;
833 	kuid_t kuid;
834 
835 	old = current_cred();
836 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
837 
838 	kuid = make_kuid(old->user_ns, uid);
839 	if (!uid_valid(kuid))
840 		return old_fsuid;
841 
842 	new = prepare_creds();
843 	if (!new)
844 		return old_fsuid;
845 
846 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
847 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
848 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
849 		if (!uid_eq(kuid, old->fsuid)) {
850 			new->fsuid = kuid;
851 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
852 				goto change_okay;
853 		}
854 	}
855 
856 	abort_creds(new);
857 	return old_fsuid;
858 
859 change_okay:
860 	commit_creds(new);
861 	return old_fsuid;
862 }
863 
864 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
865 {
866 	return __sys_setfsuid(uid);
867 }
868 
869 /*
870  * Samma på svenska..
871  */
872 long __sys_setfsgid(gid_t gid)
873 {
874 	const struct cred *old;
875 	struct cred *new;
876 	gid_t old_fsgid;
877 	kgid_t kgid;
878 
879 	old = current_cred();
880 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
881 
882 	kgid = make_kgid(old->user_ns, gid);
883 	if (!gid_valid(kgid))
884 		return old_fsgid;
885 
886 	new = prepare_creds();
887 	if (!new)
888 		return old_fsgid;
889 
890 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
891 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
892 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
893 		if (!gid_eq(kgid, old->fsgid)) {
894 			new->fsgid = kgid;
895 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
896 				goto change_okay;
897 		}
898 	}
899 
900 	abort_creds(new);
901 	return old_fsgid;
902 
903 change_okay:
904 	commit_creds(new);
905 	return old_fsgid;
906 }
907 
908 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
909 {
910 	return __sys_setfsgid(gid);
911 }
912 #endif /* CONFIG_MULTIUSER */
913 
914 /**
915  * sys_getpid - return the thread group id of the current process
916  *
917  * Note, despite the name, this returns the tgid not the pid.  The tgid and
918  * the pid are identical unless CLONE_THREAD was specified on clone() in
919  * which case the tgid is the same in all threads of the same group.
920  *
921  * This is SMP safe as current->tgid does not change.
922  */
923 SYSCALL_DEFINE0(getpid)
924 {
925 	return task_tgid_vnr(current);
926 }
927 
928 /* Thread ID - the internal kernel "pid" */
929 SYSCALL_DEFINE0(gettid)
930 {
931 	return task_pid_vnr(current);
932 }
933 
934 /*
935  * Accessing ->real_parent is not SMP-safe, it could
936  * change from under us. However, we can use a stale
937  * value of ->real_parent under rcu_read_lock(), see
938  * release_task()->call_rcu(delayed_put_task_struct).
939  */
940 SYSCALL_DEFINE0(getppid)
941 {
942 	int pid;
943 
944 	rcu_read_lock();
945 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
946 	rcu_read_unlock();
947 
948 	return pid;
949 }
950 
951 SYSCALL_DEFINE0(getuid)
952 {
953 	/* Only we change this so SMP safe */
954 	return from_kuid_munged(current_user_ns(), current_uid());
955 }
956 
957 SYSCALL_DEFINE0(geteuid)
958 {
959 	/* Only we change this so SMP safe */
960 	return from_kuid_munged(current_user_ns(), current_euid());
961 }
962 
963 SYSCALL_DEFINE0(getgid)
964 {
965 	/* Only we change this so SMP safe */
966 	return from_kgid_munged(current_user_ns(), current_gid());
967 }
968 
969 SYSCALL_DEFINE0(getegid)
970 {
971 	/* Only we change this so SMP safe */
972 	return from_kgid_munged(current_user_ns(), current_egid());
973 }
974 
975 static void do_sys_times(struct tms *tms)
976 {
977 	u64 tgutime, tgstime, cutime, cstime;
978 
979 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
980 	cutime = current->signal->cutime;
981 	cstime = current->signal->cstime;
982 	tms->tms_utime = nsec_to_clock_t(tgutime);
983 	tms->tms_stime = nsec_to_clock_t(tgstime);
984 	tms->tms_cutime = nsec_to_clock_t(cutime);
985 	tms->tms_cstime = nsec_to_clock_t(cstime);
986 }
987 
988 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
989 {
990 	if (tbuf) {
991 		struct tms tmp;
992 
993 		do_sys_times(&tmp);
994 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
995 			return -EFAULT;
996 	}
997 	force_successful_syscall_return();
998 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
999 }
1000 
1001 #ifdef CONFIG_COMPAT
1002 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1003 {
1004 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1005 }
1006 
1007 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1008 {
1009 	if (tbuf) {
1010 		struct tms tms;
1011 		struct compat_tms tmp;
1012 
1013 		do_sys_times(&tms);
1014 		/* Convert our struct tms to the compat version. */
1015 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1016 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1017 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1018 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1019 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1020 			return -EFAULT;
1021 	}
1022 	force_successful_syscall_return();
1023 	return compat_jiffies_to_clock_t(jiffies);
1024 }
1025 #endif
1026 
1027 /*
1028  * This needs some heavy checking ...
1029  * I just haven't the stomach for it. I also don't fully
1030  * understand sessions/pgrp etc. Let somebody who does explain it.
1031  *
1032  * OK, I think I have the protection semantics right.... this is really
1033  * only important on a multi-user system anyway, to make sure one user
1034  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1035  *
1036  * !PF_FORKNOEXEC check to conform completely to POSIX.
1037  */
1038 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1039 {
1040 	struct task_struct *p;
1041 	struct task_struct *group_leader = current->group_leader;
1042 	struct pid *pgrp;
1043 	int err;
1044 
1045 	if (!pid)
1046 		pid = task_pid_vnr(group_leader);
1047 	if (!pgid)
1048 		pgid = pid;
1049 	if (pgid < 0)
1050 		return -EINVAL;
1051 	rcu_read_lock();
1052 
1053 	/* From this point forward we keep holding onto the tasklist lock
1054 	 * so that our parent does not change from under us. -DaveM
1055 	 */
1056 	write_lock_irq(&tasklist_lock);
1057 
1058 	err = -ESRCH;
1059 	p = find_task_by_vpid(pid);
1060 	if (!p)
1061 		goto out;
1062 
1063 	err = -EINVAL;
1064 	if (!thread_group_leader(p))
1065 		goto out;
1066 
1067 	if (same_thread_group(p->real_parent, group_leader)) {
1068 		err = -EPERM;
1069 		if (task_session(p) != task_session(group_leader))
1070 			goto out;
1071 		err = -EACCES;
1072 		if (!(p->flags & PF_FORKNOEXEC))
1073 			goto out;
1074 	} else {
1075 		err = -ESRCH;
1076 		if (p != group_leader)
1077 			goto out;
1078 	}
1079 
1080 	err = -EPERM;
1081 	if (p->signal->leader)
1082 		goto out;
1083 
1084 	pgrp = task_pid(p);
1085 	if (pgid != pid) {
1086 		struct task_struct *g;
1087 
1088 		pgrp = find_vpid(pgid);
1089 		g = pid_task(pgrp, PIDTYPE_PGID);
1090 		if (!g || task_session(g) != task_session(group_leader))
1091 			goto out;
1092 	}
1093 
1094 	err = security_task_setpgid(p, pgid);
1095 	if (err)
1096 		goto out;
1097 
1098 	if (task_pgrp(p) != pgrp)
1099 		change_pid(p, PIDTYPE_PGID, pgrp);
1100 
1101 	err = 0;
1102 out:
1103 	/* All paths lead to here, thus we are safe. -DaveM */
1104 	write_unlock_irq(&tasklist_lock);
1105 	rcu_read_unlock();
1106 	return err;
1107 }
1108 
1109 static int do_getpgid(pid_t pid)
1110 {
1111 	struct task_struct *p;
1112 	struct pid *grp;
1113 	int retval;
1114 
1115 	rcu_read_lock();
1116 	if (!pid)
1117 		grp = task_pgrp(current);
1118 	else {
1119 		retval = -ESRCH;
1120 		p = find_task_by_vpid(pid);
1121 		if (!p)
1122 			goto out;
1123 		grp = task_pgrp(p);
1124 		if (!grp)
1125 			goto out;
1126 
1127 		retval = security_task_getpgid(p);
1128 		if (retval)
1129 			goto out;
1130 	}
1131 	retval = pid_vnr(grp);
1132 out:
1133 	rcu_read_unlock();
1134 	return retval;
1135 }
1136 
1137 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1138 {
1139 	return do_getpgid(pid);
1140 }
1141 
1142 #ifdef __ARCH_WANT_SYS_GETPGRP
1143 
1144 SYSCALL_DEFINE0(getpgrp)
1145 {
1146 	return do_getpgid(0);
1147 }
1148 
1149 #endif
1150 
1151 SYSCALL_DEFINE1(getsid, pid_t, pid)
1152 {
1153 	struct task_struct *p;
1154 	struct pid *sid;
1155 	int retval;
1156 
1157 	rcu_read_lock();
1158 	if (!pid)
1159 		sid = task_session(current);
1160 	else {
1161 		retval = -ESRCH;
1162 		p = find_task_by_vpid(pid);
1163 		if (!p)
1164 			goto out;
1165 		sid = task_session(p);
1166 		if (!sid)
1167 			goto out;
1168 
1169 		retval = security_task_getsid(p);
1170 		if (retval)
1171 			goto out;
1172 	}
1173 	retval = pid_vnr(sid);
1174 out:
1175 	rcu_read_unlock();
1176 	return retval;
1177 }
1178 
1179 static void set_special_pids(struct pid *pid)
1180 {
1181 	struct task_struct *curr = current->group_leader;
1182 
1183 	if (task_session(curr) != pid)
1184 		change_pid(curr, PIDTYPE_SID, pid);
1185 
1186 	if (task_pgrp(curr) != pid)
1187 		change_pid(curr, PIDTYPE_PGID, pid);
1188 }
1189 
1190 int ksys_setsid(void)
1191 {
1192 	struct task_struct *group_leader = current->group_leader;
1193 	struct pid *sid = task_pid(group_leader);
1194 	pid_t session = pid_vnr(sid);
1195 	int err = -EPERM;
1196 
1197 	write_lock_irq(&tasklist_lock);
1198 	/* Fail if I am already a session leader */
1199 	if (group_leader->signal->leader)
1200 		goto out;
1201 
1202 	/* Fail if a process group id already exists that equals the
1203 	 * proposed session id.
1204 	 */
1205 	if (pid_task(sid, PIDTYPE_PGID))
1206 		goto out;
1207 
1208 	group_leader->signal->leader = 1;
1209 	set_special_pids(sid);
1210 
1211 	proc_clear_tty(group_leader);
1212 
1213 	err = session;
1214 out:
1215 	write_unlock_irq(&tasklist_lock);
1216 	if (err > 0) {
1217 		proc_sid_connector(group_leader);
1218 		sched_autogroup_create_attach(group_leader);
1219 	}
1220 	return err;
1221 }
1222 
1223 SYSCALL_DEFINE0(setsid)
1224 {
1225 	return ksys_setsid();
1226 }
1227 
1228 DECLARE_RWSEM(uts_sem);
1229 
1230 #ifdef COMPAT_UTS_MACHINE
1231 #define override_architecture(name) \
1232 	(personality(current->personality) == PER_LINUX32 && \
1233 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1234 		      sizeof(COMPAT_UTS_MACHINE)))
1235 #else
1236 #define override_architecture(name)	0
1237 #endif
1238 
1239 /*
1240  * Work around broken programs that cannot handle "Linux 3.0".
1241  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1242  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1243  * 2.6.60.
1244  */
1245 static int override_release(char __user *release, size_t len)
1246 {
1247 	int ret = 0;
1248 
1249 	if (current->personality & UNAME26) {
1250 		const char *rest = UTS_RELEASE;
1251 		char buf[65] = { 0 };
1252 		int ndots = 0;
1253 		unsigned v;
1254 		size_t copy;
1255 
1256 		while (*rest) {
1257 			if (*rest == '.' && ++ndots >= 3)
1258 				break;
1259 			if (!isdigit(*rest) && *rest != '.')
1260 				break;
1261 			rest++;
1262 		}
1263 		v = LINUX_VERSION_PATCHLEVEL + 60;
1264 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1265 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1266 		ret = copy_to_user(release, buf, copy + 1);
1267 	}
1268 	return ret;
1269 }
1270 
1271 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1272 {
1273 	struct new_utsname tmp;
1274 
1275 	down_read(&uts_sem);
1276 	memcpy(&tmp, utsname(), sizeof(tmp));
1277 	up_read(&uts_sem);
1278 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1279 		return -EFAULT;
1280 
1281 	if (override_release(name->release, sizeof(name->release)))
1282 		return -EFAULT;
1283 	if (override_architecture(name))
1284 		return -EFAULT;
1285 	return 0;
1286 }
1287 
1288 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1289 /*
1290  * Old cruft
1291  */
1292 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1293 {
1294 	struct old_utsname tmp;
1295 
1296 	if (!name)
1297 		return -EFAULT;
1298 
1299 	down_read(&uts_sem);
1300 	memcpy(&tmp, utsname(), sizeof(tmp));
1301 	up_read(&uts_sem);
1302 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1303 		return -EFAULT;
1304 
1305 	if (override_release(name->release, sizeof(name->release)))
1306 		return -EFAULT;
1307 	if (override_architecture(name))
1308 		return -EFAULT;
1309 	return 0;
1310 }
1311 
1312 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1313 {
1314 	struct oldold_utsname tmp;
1315 
1316 	if (!name)
1317 		return -EFAULT;
1318 
1319 	memset(&tmp, 0, sizeof(tmp));
1320 
1321 	down_read(&uts_sem);
1322 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1323 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1324 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1325 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1326 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1327 	up_read(&uts_sem);
1328 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1329 		return -EFAULT;
1330 
1331 	if (override_architecture(name))
1332 		return -EFAULT;
1333 	if (override_release(name->release, sizeof(name->release)))
1334 		return -EFAULT;
1335 	return 0;
1336 }
1337 #endif
1338 
1339 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1340 {
1341 	int errno;
1342 	char tmp[__NEW_UTS_LEN];
1343 
1344 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1345 		return -EPERM;
1346 
1347 	if (len < 0 || len > __NEW_UTS_LEN)
1348 		return -EINVAL;
1349 	errno = -EFAULT;
1350 	if (!copy_from_user(tmp, name, len)) {
1351 		struct new_utsname *u;
1352 
1353 		down_write(&uts_sem);
1354 		u = utsname();
1355 		memcpy(u->nodename, tmp, len);
1356 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1357 		errno = 0;
1358 		uts_proc_notify(UTS_PROC_HOSTNAME);
1359 		up_write(&uts_sem);
1360 	}
1361 	return errno;
1362 }
1363 
1364 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1365 
1366 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1367 {
1368 	int i;
1369 	struct new_utsname *u;
1370 	char tmp[__NEW_UTS_LEN + 1];
1371 
1372 	if (len < 0)
1373 		return -EINVAL;
1374 	down_read(&uts_sem);
1375 	u = utsname();
1376 	i = 1 + strlen(u->nodename);
1377 	if (i > len)
1378 		i = len;
1379 	memcpy(tmp, u->nodename, i);
1380 	up_read(&uts_sem);
1381 	if (copy_to_user(name, tmp, i))
1382 		return -EFAULT;
1383 	return 0;
1384 }
1385 
1386 #endif
1387 
1388 /*
1389  * Only setdomainname; getdomainname can be implemented by calling
1390  * uname()
1391  */
1392 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1393 {
1394 	int errno;
1395 	char tmp[__NEW_UTS_LEN];
1396 
1397 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1398 		return -EPERM;
1399 	if (len < 0 || len > __NEW_UTS_LEN)
1400 		return -EINVAL;
1401 
1402 	errno = -EFAULT;
1403 	if (!copy_from_user(tmp, name, len)) {
1404 		struct new_utsname *u;
1405 
1406 		down_write(&uts_sem);
1407 		u = utsname();
1408 		memcpy(u->domainname, tmp, len);
1409 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1410 		errno = 0;
1411 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1412 		up_write(&uts_sem);
1413 	}
1414 	return errno;
1415 }
1416 
1417 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1418 {
1419 	struct rlimit value;
1420 	int ret;
1421 
1422 	ret = do_prlimit(current, resource, NULL, &value);
1423 	if (!ret)
1424 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1425 
1426 	return ret;
1427 }
1428 
1429 #ifdef CONFIG_COMPAT
1430 
1431 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1432 		       struct compat_rlimit __user *, rlim)
1433 {
1434 	struct rlimit r;
1435 	struct compat_rlimit r32;
1436 
1437 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1438 		return -EFAULT;
1439 
1440 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1441 		r.rlim_cur = RLIM_INFINITY;
1442 	else
1443 		r.rlim_cur = r32.rlim_cur;
1444 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1445 		r.rlim_max = RLIM_INFINITY;
1446 	else
1447 		r.rlim_max = r32.rlim_max;
1448 	return do_prlimit(current, resource, &r, NULL);
1449 }
1450 
1451 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1452 		       struct compat_rlimit __user *, rlim)
1453 {
1454 	struct rlimit r;
1455 	int ret;
1456 
1457 	ret = do_prlimit(current, resource, NULL, &r);
1458 	if (!ret) {
1459 		struct compat_rlimit r32;
1460 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1461 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1462 		else
1463 			r32.rlim_cur = r.rlim_cur;
1464 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1465 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1466 		else
1467 			r32.rlim_max = r.rlim_max;
1468 
1469 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1470 			return -EFAULT;
1471 	}
1472 	return ret;
1473 }
1474 
1475 #endif
1476 
1477 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1478 
1479 /*
1480  *	Back compatibility for getrlimit. Needed for some apps.
1481  */
1482 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1483 		struct rlimit __user *, rlim)
1484 {
1485 	struct rlimit x;
1486 	if (resource >= RLIM_NLIMITS)
1487 		return -EINVAL;
1488 
1489 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1490 	task_lock(current->group_leader);
1491 	x = current->signal->rlim[resource];
1492 	task_unlock(current->group_leader);
1493 	if (x.rlim_cur > 0x7FFFFFFF)
1494 		x.rlim_cur = 0x7FFFFFFF;
1495 	if (x.rlim_max > 0x7FFFFFFF)
1496 		x.rlim_max = 0x7FFFFFFF;
1497 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1498 }
1499 
1500 #ifdef CONFIG_COMPAT
1501 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1502 		       struct compat_rlimit __user *, rlim)
1503 {
1504 	struct rlimit r;
1505 
1506 	if (resource >= RLIM_NLIMITS)
1507 		return -EINVAL;
1508 
1509 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1510 	task_lock(current->group_leader);
1511 	r = current->signal->rlim[resource];
1512 	task_unlock(current->group_leader);
1513 	if (r.rlim_cur > 0x7FFFFFFF)
1514 		r.rlim_cur = 0x7FFFFFFF;
1515 	if (r.rlim_max > 0x7FFFFFFF)
1516 		r.rlim_max = 0x7FFFFFFF;
1517 
1518 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1519 	    put_user(r.rlim_max, &rlim->rlim_max))
1520 		return -EFAULT;
1521 	return 0;
1522 }
1523 #endif
1524 
1525 #endif
1526 
1527 static inline bool rlim64_is_infinity(__u64 rlim64)
1528 {
1529 #if BITS_PER_LONG < 64
1530 	return rlim64 >= ULONG_MAX;
1531 #else
1532 	return rlim64 == RLIM64_INFINITY;
1533 #endif
1534 }
1535 
1536 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1537 {
1538 	if (rlim->rlim_cur == RLIM_INFINITY)
1539 		rlim64->rlim_cur = RLIM64_INFINITY;
1540 	else
1541 		rlim64->rlim_cur = rlim->rlim_cur;
1542 	if (rlim->rlim_max == RLIM_INFINITY)
1543 		rlim64->rlim_max = RLIM64_INFINITY;
1544 	else
1545 		rlim64->rlim_max = rlim->rlim_max;
1546 }
1547 
1548 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1549 {
1550 	if (rlim64_is_infinity(rlim64->rlim_cur))
1551 		rlim->rlim_cur = RLIM_INFINITY;
1552 	else
1553 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1554 	if (rlim64_is_infinity(rlim64->rlim_max))
1555 		rlim->rlim_max = RLIM_INFINITY;
1556 	else
1557 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1558 }
1559 
1560 /* make sure you are allowed to change @tsk limits before calling this */
1561 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1562 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1563 {
1564 	struct rlimit *rlim;
1565 	int retval = 0;
1566 
1567 	if (resource >= RLIM_NLIMITS)
1568 		return -EINVAL;
1569 	if (new_rlim) {
1570 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1571 			return -EINVAL;
1572 		if (resource == RLIMIT_NOFILE &&
1573 				new_rlim->rlim_max > sysctl_nr_open)
1574 			return -EPERM;
1575 	}
1576 
1577 	/* protect tsk->signal and tsk->sighand from disappearing */
1578 	read_lock(&tasklist_lock);
1579 	if (!tsk->sighand) {
1580 		retval = -ESRCH;
1581 		goto out;
1582 	}
1583 
1584 	rlim = tsk->signal->rlim + resource;
1585 	task_lock(tsk->group_leader);
1586 	if (new_rlim) {
1587 		/* Keep the capable check against init_user_ns until
1588 		   cgroups can contain all limits */
1589 		if (new_rlim->rlim_max > rlim->rlim_max &&
1590 				!capable(CAP_SYS_RESOURCE))
1591 			retval = -EPERM;
1592 		if (!retval)
1593 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1594 	}
1595 	if (!retval) {
1596 		if (old_rlim)
1597 			*old_rlim = *rlim;
1598 		if (new_rlim)
1599 			*rlim = *new_rlim;
1600 	}
1601 	task_unlock(tsk->group_leader);
1602 
1603 	/*
1604 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1605 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1606 	 * ignores the rlimit.
1607 	 */
1608 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1609 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1610 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1611 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1612 out:
1613 	read_unlock(&tasklist_lock);
1614 	return retval;
1615 }
1616 
1617 /* rcu lock must be held */
1618 static int check_prlimit_permission(struct task_struct *task,
1619 				    unsigned int flags)
1620 {
1621 	const struct cred *cred = current_cred(), *tcred;
1622 	bool id_match;
1623 
1624 	if (current == task)
1625 		return 0;
1626 
1627 	tcred = __task_cred(task);
1628 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1629 		    uid_eq(cred->uid, tcred->suid) &&
1630 		    uid_eq(cred->uid, tcred->uid)  &&
1631 		    gid_eq(cred->gid, tcred->egid) &&
1632 		    gid_eq(cred->gid, tcred->sgid) &&
1633 		    gid_eq(cred->gid, tcred->gid));
1634 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1635 		return -EPERM;
1636 
1637 	return security_task_prlimit(cred, tcred, flags);
1638 }
1639 
1640 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1641 		const struct rlimit64 __user *, new_rlim,
1642 		struct rlimit64 __user *, old_rlim)
1643 {
1644 	struct rlimit64 old64, new64;
1645 	struct rlimit old, new;
1646 	struct task_struct *tsk;
1647 	unsigned int checkflags = 0;
1648 	int ret;
1649 
1650 	if (old_rlim)
1651 		checkflags |= LSM_PRLIMIT_READ;
1652 
1653 	if (new_rlim) {
1654 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1655 			return -EFAULT;
1656 		rlim64_to_rlim(&new64, &new);
1657 		checkflags |= LSM_PRLIMIT_WRITE;
1658 	}
1659 
1660 	rcu_read_lock();
1661 	tsk = pid ? find_task_by_vpid(pid) : current;
1662 	if (!tsk) {
1663 		rcu_read_unlock();
1664 		return -ESRCH;
1665 	}
1666 	ret = check_prlimit_permission(tsk, checkflags);
1667 	if (ret) {
1668 		rcu_read_unlock();
1669 		return ret;
1670 	}
1671 	get_task_struct(tsk);
1672 	rcu_read_unlock();
1673 
1674 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1675 			old_rlim ? &old : NULL);
1676 
1677 	if (!ret && old_rlim) {
1678 		rlim_to_rlim64(&old, &old64);
1679 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1680 			ret = -EFAULT;
1681 	}
1682 
1683 	put_task_struct(tsk);
1684 	return ret;
1685 }
1686 
1687 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1688 {
1689 	struct rlimit new_rlim;
1690 
1691 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1692 		return -EFAULT;
1693 	return do_prlimit(current, resource, &new_rlim, NULL);
1694 }
1695 
1696 /*
1697  * It would make sense to put struct rusage in the task_struct,
1698  * except that would make the task_struct be *really big*.  After
1699  * task_struct gets moved into malloc'ed memory, it would
1700  * make sense to do this.  It will make moving the rest of the information
1701  * a lot simpler!  (Which we're not doing right now because we're not
1702  * measuring them yet).
1703  *
1704  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1705  * races with threads incrementing their own counters.  But since word
1706  * reads are atomic, we either get new values or old values and we don't
1707  * care which for the sums.  We always take the siglock to protect reading
1708  * the c* fields from p->signal from races with exit.c updating those
1709  * fields when reaping, so a sample either gets all the additions of a
1710  * given child after it's reaped, or none so this sample is before reaping.
1711  *
1712  * Locking:
1713  * We need to take the siglock for CHILDEREN, SELF and BOTH
1714  * for  the cases current multithreaded, non-current single threaded
1715  * non-current multithreaded.  Thread traversal is now safe with
1716  * the siglock held.
1717  * Strictly speaking, we donot need to take the siglock if we are current and
1718  * single threaded,  as no one else can take our signal_struct away, no one
1719  * else can  reap the  children to update signal->c* counters, and no one else
1720  * can race with the signal-> fields. If we do not take any lock, the
1721  * signal-> fields could be read out of order while another thread was just
1722  * exiting. So we should  place a read memory barrier when we avoid the lock.
1723  * On the writer side,  write memory barrier is implied in  __exit_signal
1724  * as __exit_signal releases  the siglock spinlock after updating the signal->
1725  * fields. But we don't do this yet to keep things simple.
1726  *
1727  */
1728 
1729 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1730 {
1731 	r->ru_nvcsw += t->nvcsw;
1732 	r->ru_nivcsw += t->nivcsw;
1733 	r->ru_minflt += t->min_flt;
1734 	r->ru_majflt += t->maj_flt;
1735 	r->ru_inblock += task_io_get_inblock(t);
1736 	r->ru_oublock += task_io_get_oublock(t);
1737 }
1738 
1739 void getrusage(struct task_struct *p, int who, struct rusage *r)
1740 {
1741 	struct task_struct *t;
1742 	unsigned long flags;
1743 	u64 tgutime, tgstime, utime, stime;
1744 	unsigned long maxrss = 0;
1745 
1746 	memset((char *)r, 0, sizeof (*r));
1747 	utime = stime = 0;
1748 
1749 	if (who == RUSAGE_THREAD) {
1750 		task_cputime_adjusted(current, &utime, &stime);
1751 		accumulate_thread_rusage(p, r);
1752 		maxrss = p->signal->maxrss;
1753 		goto out;
1754 	}
1755 
1756 	if (!lock_task_sighand(p, &flags))
1757 		return;
1758 
1759 	switch (who) {
1760 	case RUSAGE_BOTH:
1761 	case RUSAGE_CHILDREN:
1762 		utime = p->signal->cutime;
1763 		stime = p->signal->cstime;
1764 		r->ru_nvcsw = p->signal->cnvcsw;
1765 		r->ru_nivcsw = p->signal->cnivcsw;
1766 		r->ru_minflt = p->signal->cmin_flt;
1767 		r->ru_majflt = p->signal->cmaj_flt;
1768 		r->ru_inblock = p->signal->cinblock;
1769 		r->ru_oublock = p->signal->coublock;
1770 		maxrss = p->signal->cmaxrss;
1771 
1772 		if (who == RUSAGE_CHILDREN)
1773 			break;
1774 		fallthrough;
1775 
1776 	case RUSAGE_SELF:
1777 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1778 		utime += tgutime;
1779 		stime += tgstime;
1780 		r->ru_nvcsw += p->signal->nvcsw;
1781 		r->ru_nivcsw += p->signal->nivcsw;
1782 		r->ru_minflt += p->signal->min_flt;
1783 		r->ru_majflt += p->signal->maj_flt;
1784 		r->ru_inblock += p->signal->inblock;
1785 		r->ru_oublock += p->signal->oublock;
1786 		if (maxrss < p->signal->maxrss)
1787 			maxrss = p->signal->maxrss;
1788 		t = p;
1789 		do {
1790 			accumulate_thread_rusage(t, r);
1791 		} while_each_thread(p, t);
1792 		break;
1793 
1794 	default:
1795 		BUG();
1796 	}
1797 	unlock_task_sighand(p, &flags);
1798 
1799 out:
1800 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1801 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1802 
1803 	if (who != RUSAGE_CHILDREN) {
1804 		struct mm_struct *mm = get_task_mm(p);
1805 
1806 		if (mm) {
1807 			setmax_mm_hiwater_rss(&maxrss, mm);
1808 			mmput(mm);
1809 		}
1810 	}
1811 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1812 }
1813 
1814 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1815 {
1816 	struct rusage r;
1817 
1818 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1819 	    who != RUSAGE_THREAD)
1820 		return -EINVAL;
1821 
1822 	getrusage(current, who, &r);
1823 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1824 }
1825 
1826 #ifdef CONFIG_COMPAT
1827 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1828 {
1829 	struct rusage r;
1830 
1831 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1832 	    who != RUSAGE_THREAD)
1833 		return -EINVAL;
1834 
1835 	getrusage(current, who, &r);
1836 	return put_compat_rusage(&r, ru);
1837 }
1838 #endif
1839 
1840 SYSCALL_DEFINE1(umask, int, mask)
1841 {
1842 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1843 	return mask;
1844 }
1845 
1846 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1847 {
1848 	struct fd exe;
1849 	struct file *old_exe, *exe_file;
1850 	struct inode *inode;
1851 	int err;
1852 
1853 	exe = fdget(fd);
1854 	if (!exe.file)
1855 		return -EBADF;
1856 
1857 	inode = file_inode(exe.file);
1858 
1859 	/*
1860 	 * Because the original mm->exe_file points to executable file, make
1861 	 * sure that this one is executable as well, to avoid breaking an
1862 	 * overall picture.
1863 	 */
1864 	err = -EACCES;
1865 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1866 		goto exit;
1867 
1868 	err = file_permission(exe.file, MAY_EXEC);
1869 	if (err)
1870 		goto exit;
1871 
1872 	/*
1873 	 * Forbid mm->exe_file change if old file still mapped.
1874 	 */
1875 	exe_file = get_mm_exe_file(mm);
1876 	err = -EBUSY;
1877 	if (exe_file) {
1878 		struct vm_area_struct *vma;
1879 
1880 		mmap_read_lock(mm);
1881 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1882 			if (!vma->vm_file)
1883 				continue;
1884 			if (path_equal(&vma->vm_file->f_path,
1885 				       &exe_file->f_path))
1886 				goto exit_err;
1887 		}
1888 
1889 		mmap_read_unlock(mm);
1890 		fput(exe_file);
1891 	}
1892 
1893 	err = 0;
1894 	/* set the new file, lockless */
1895 	get_file(exe.file);
1896 	old_exe = xchg(&mm->exe_file, exe.file);
1897 	if (old_exe)
1898 		fput(old_exe);
1899 exit:
1900 	fdput(exe);
1901 	return err;
1902 exit_err:
1903 	mmap_read_unlock(mm);
1904 	fput(exe_file);
1905 	goto exit;
1906 }
1907 
1908 /*
1909  * Check arithmetic relations of passed addresses.
1910  *
1911  * WARNING: we don't require any capability here so be very careful
1912  * in what is allowed for modification from userspace.
1913  */
1914 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1915 {
1916 	unsigned long mmap_max_addr = TASK_SIZE;
1917 	int error = -EINVAL, i;
1918 
1919 	static const unsigned char offsets[] = {
1920 		offsetof(struct prctl_mm_map, start_code),
1921 		offsetof(struct prctl_mm_map, end_code),
1922 		offsetof(struct prctl_mm_map, start_data),
1923 		offsetof(struct prctl_mm_map, end_data),
1924 		offsetof(struct prctl_mm_map, start_brk),
1925 		offsetof(struct prctl_mm_map, brk),
1926 		offsetof(struct prctl_mm_map, start_stack),
1927 		offsetof(struct prctl_mm_map, arg_start),
1928 		offsetof(struct prctl_mm_map, arg_end),
1929 		offsetof(struct prctl_mm_map, env_start),
1930 		offsetof(struct prctl_mm_map, env_end),
1931 	};
1932 
1933 	/*
1934 	 * Make sure the members are not somewhere outside
1935 	 * of allowed address space.
1936 	 */
1937 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1938 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1939 
1940 		if ((unsigned long)val >= mmap_max_addr ||
1941 		    (unsigned long)val < mmap_min_addr)
1942 			goto out;
1943 	}
1944 
1945 	/*
1946 	 * Make sure the pairs are ordered.
1947 	 */
1948 #define __prctl_check_order(__m1, __op, __m2)				\
1949 	((unsigned long)prctl_map->__m1 __op				\
1950 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1951 	error  = __prctl_check_order(start_code, <, end_code);
1952 	error |= __prctl_check_order(start_data,<=, end_data);
1953 	error |= __prctl_check_order(start_brk, <=, brk);
1954 	error |= __prctl_check_order(arg_start, <=, arg_end);
1955 	error |= __prctl_check_order(env_start, <=, env_end);
1956 	if (error)
1957 		goto out;
1958 #undef __prctl_check_order
1959 
1960 	error = -EINVAL;
1961 
1962 	/*
1963 	 * @brk should be after @end_data in traditional maps.
1964 	 */
1965 	if (prctl_map->start_brk <= prctl_map->end_data ||
1966 	    prctl_map->brk <= prctl_map->end_data)
1967 		goto out;
1968 
1969 	/*
1970 	 * Neither we should allow to override limits if they set.
1971 	 */
1972 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1973 			      prctl_map->start_brk, prctl_map->end_data,
1974 			      prctl_map->start_data))
1975 			goto out;
1976 
1977 	error = 0;
1978 out:
1979 	return error;
1980 }
1981 
1982 #ifdef CONFIG_CHECKPOINT_RESTORE
1983 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1984 {
1985 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1986 	unsigned long user_auxv[AT_VECTOR_SIZE];
1987 	struct mm_struct *mm = current->mm;
1988 	int error;
1989 
1990 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1991 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1992 
1993 	if (opt == PR_SET_MM_MAP_SIZE)
1994 		return put_user((unsigned int)sizeof(prctl_map),
1995 				(unsigned int __user *)addr);
1996 
1997 	if (data_size != sizeof(prctl_map))
1998 		return -EINVAL;
1999 
2000 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2001 		return -EFAULT;
2002 
2003 	error = validate_prctl_map_addr(&prctl_map);
2004 	if (error)
2005 		return error;
2006 
2007 	if (prctl_map.auxv_size) {
2008 		/*
2009 		 * Someone is trying to cheat the auxv vector.
2010 		 */
2011 		if (!prctl_map.auxv ||
2012 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2013 			return -EINVAL;
2014 
2015 		memset(user_auxv, 0, sizeof(user_auxv));
2016 		if (copy_from_user(user_auxv,
2017 				   (const void __user *)prctl_map.auxv,
2018 				   prctl_map.auxv_size))
2019 			return -EFAULT;
2020 
2021 		/* Last entry must be AT_NULL as specification requires */
2022 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2023 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2024 	}
2025 
2026 	if (prctl_map.exe_fd != (u32)-1) {
2027 		/*
2028 		 * Check if the current user is checkpoint/restore capable.
2029 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2030 		 * or CAP_CHECKPOINT_RESTORE.
2031 		 * Note that a user with access to ptrace can masquerade an
2032 		 * arbitrary program as any executable, even setuid ones.
2033 		 * This may have implications in the tomoyo subsystem.
2034 		 */
2035 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2036 			return -EPERM;
2037 
2038 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2039 		if (error)
2040 			return error;
2041 	}
2042 
2043 	/*
2044 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2045 	 * read to exclude races with sys_brk.
2046 	 */
2047 	mmap_read_lock(mm);
2048 
2049 	/*
2050 	 * We don't validate if these members are pointing to
2051 	 * real present VMAs because application may have correspond
2052 	 * VMAs already unmapped and kernel uses these members for statistics
2053 	 * output in procfs mostly, except
2054 	 *
2055 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2056 	 *    for VMAs when updating these members so anything wrong written
2057 	 *    here cause kernel to swear at userspace program but won't lead
2058 	 *    to any problem in kernel itself
2059 	 */
2060 
2061 	spin_lock(&mm->arg_lock);
2062 	mm->start_code	= prctl_map.start_code;
2063 	mm->end_code	= prctl_map.end_code;
2064 	mm->start_data	= prctl_map.start_data;
2065 	mm->end_data	= prctl_map.end_data;
2066 	mm->start_brk	= prctl_map.start_brk;
2067 	mm->brk		= prctl_map.brk;
2068 	mm->start_stack	= prctl_map.start_stack;
2069 	mm->arg_start	= prctl_map.arg_start;
2070 	mm->arg_end	= prctl_map.arg_end;
2071 	mm->env_start	= prctl_map.env_start;
2072 	mm->env_end	= prctl_map.env_end;
2073 	spin_unlock(&mm->arg_lock);
2074 
2075 	/*
2076 	 * Note this update of @saved_auxv is lockless thus
2077 	 * if someone reads this member in procfs while we're
2078 	 * updating -- it may get partly updated results. It's
2079 	 * known and acceptable trade off: we leave it as is to
2080 	 * not introduce additional locks here making the kernel
2081 	 * more complex.
2082 	 */
2083 	if (prctl_map.auxv_size)
2084 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2085 
2086 	mmap_read_unlock(mm);
2087 	return 0;
2088 }
2089 #endif /* CONFIG_CHECKPOINT_RESTORE */
2090 
2091 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2092 			  unsigned long len)
2093 {
2094 	/*
2095 	 * This doesn't move the auxiliary vector itself since it's pinned to
2096 	 * mm_struct, but it permits filling the vector with new values.  It's
2097 	 * up to the caller to provide sane values here, otherwise userspace
2098 	 * tools which use this vector might be unhappy.
2099 	 */
2100 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2101 
2102 	if (len > sizeof(user_auxv))
2103 		return -EINVAL;
2104 
2105 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2106 		return -EFAULT;
2107 
2108 	/* Make sure the last entry is always AT_NULL */
2109 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2110 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2111 
2112 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2113 
2114 	task_lock(current);
2115 	memcpy(mm->saved_auxv, user_auxv, len);
2116 	task_unlock(current);
2117 
2118 	return 0;
2119 }
2120 
2121 static int prctl_set_mm(int opt, unsigned long addr,
2122 			unsigned long arg4, unsigned long arg5)
2123 {
2124 	struct mm_struct *mm = current->mm;
2125 	struct prctl_mm_map prctl_map = {
2126 		.auxv = NULL,
2127 		.auxv_size = 0,
2128 		.exe_fd = -1,
2129 	};
2130 	struct vm_area_struct *vma;
2131 	int error;
2132 
2133 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2134 			      opt != PR_SET_MM_MAP &&
2135 			      opt != PR_SET_MM_MAP_SIZE)))
2136 		return -EINVAL;
2137 
2138 #ifdef CONFIG_CHECKPOINT_RESTORE
2139 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2140 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2141 #endif
2142 
2143 	if (!capable(CAP_SYS_RESOURCE))
2144 		return -EPERM;
2145 
2146 	if (opt == PR_SET_MM_EXE_FILE)
2147 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2148 
2149 	if (opt == PR_SET_MM_AUXV)
2150 		return prctl_set_auxv(mm, addr, arg4);
2151 
2152 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2153 		return -EINVAL;
2154 
2155 	error = -EINVAL;
2156 
2157 	/*
2158 	 * arg_lock protects concurrent updates of arg boundaries, we need
2159 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2160 	 * validation.
2161 	 */
2162 	mmap_read_lock(mm);
2163 	vma = find_vma(mm, addr);
2164 
2165 	spin_lock(&mm->arg_lock);
2166 	prctl_map.start_code	= mm->start_code;
2167 	prctl_map.end_code	= mm->end_code;
2168 	prctl_map.start_data	= mm->start_data;
2169 	prctl_map.end_data	= mm->end_data;
2170 	prctl_map.start_brk	= mm->start_brk;
2171 	prctl_map.brk		= mm->brk;
2172 	prctl_map.start_stack	= mm->start_stack;
2173 	prctl_map.arg_start	= mm->arg_start;
2174 	prctl_map.arg_end	= mm->arg_end;
2175 	prctl_map.env_start	= mm->env_start;
2176 	prctl_map.env_end	= mm->env_end;
2177 
2178 	switch (opt) {
2179 	case PR_SET_MM_START_CODE:
2180 		prctl_map.start_code = addr;
2181 		break;
2182 	case PR_SET_MM_END_CODE:
2183 		prctl_map.end_code = addr;
2184 		break;
2185 	case PR_SET_MM_START_DATA:
2186 		prctl_map.start_data = addr;
2187 		break;
2188 	case PR_SET_MM_END_DATA:
2189 		prctl_map.end_data = addr;
2190 		break;
2191 	case PR_SET_MM_START_STACK:
2192 		prctl_map.start_stack = addr;
2193 		break;
2194 	case PR_SET_MM_START_BRK:
2195 		prctl_map.start_brk = addr;
2196 		break;
2197 	case PR_SET_MM_BRK:
2198 		prctl_map.brk = addr;
2199 		break;
2200 	case PR_SET_MM_ARG_START:
2201 		prctl_map.arg_start = addr;
2202 		break;
2203 	case PR_SET_MM_ARG_END:
2204 		prctl_map.arg_end = addr;
2205 		break;
2206 	case PR_SET_MM_ENV_START:
2207 		prctl_map.env_start = addr;
2208 		break;
2209 	case PR_SET_MM_ENV_END:
2210 		prctl_map.env_end = addr;
2211 		break;
2212 	default:
2213 		goto out;
2214 	}
2215 
2216 	error = validate_prctl_map_addr(&prctl_map);
2217 	if (error)
2218 		goto out;
2219 
2220 	switch (opt) {
2221 	/*
2222 	 * If command line arguments and environment
2223 	 * are placed somewhere else on stack, we can
2224 	 * set them up here, ARG_START/END to setup
2225 	 * command line arguments and ENV_START/END
2226 	 * for environment.
2227 	 */
2228 	case PR_SET_MM_START_STACK:
2229 	case PR_SET_MM_ARG_START:
2230 	case PR_SET_MM_ARG_END:
2231 	case PR_SET_MM_ENV_START:
2232 	case PR_SET_MM_ENV_END:
2233 		if (!vma) {
2234 			error = -EFAULT;
2235 			goto out;
2236 		}
2237 	}
2238 
2239 	mm->start_code	= prctl_map.start_code;
2240 	mm->end_code	= prctl_map.end_code;
2241 	mm->start_data	= prctl_map.start_data;
2242 	mm->end_data	= prctl_map.end_data;
2243 	mm->start_brk	= prctl_map.start_brk;
2244 	mm->brk		= prctl_map.brk;
2245 	mm->start_stack	= prctl_map.start_stack;
2246 	mm->arg_start	= prctl_map.arg_start;
2247 	mm->arg_end	= prctl_map.arg_end;
2248 	mm->env_start	= prctl_map.env_start;
2249 	mm->env_end	= prctl_map.env_end;
2250 
2251 	error = 0;
2252 out:
2253 	spin_unlock(&mm->arg_lock);
2254 	mmap_read_unlock(mm);
2255 	return error;
2256 }
2257 
2258 #ifdef CONFIG_CHECKPOINT_RESTORE
2259 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2260 {
2261 	return put_user(me->clear_child_tid, tid_addr);
2262 }
2263 #else
2264 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2265 {
2266 	return -EINVAL;
2267 }
2268 #endif
2269 
2270 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2271 {
2272 	/*
2273 	 * If task has has_child_subreaper - all its descendants
2274 	 * already have these flag too and new descendants will
2275 	 * inherit it on fork, skip them.
2276 	 *
2277 	 * If we've found child_reaper - skip descendants in
2278 	 * it's subtree as they will never get out pidns.
2279 	 */
2280 	if (p->signal->has_child_subreaper ||
2281 	    is_child_reaper(task_pid(p)))
2282 		return 0;
2283 
2284 	p->signal->has_child_subreaper = 1;
2285 	return 1;
2286 }
2287 
2288 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2289 {
2290 	return -EINVAL;
2291 }
2292 
2293 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2294 				    unsigned long ctrl)
2295 {
2296 	return -EINVAL;
2297 }
2298 
2299 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2300 
2301 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2302 		unsigned long, arg4, unsigned long, arg5)
2303 {
2304 	struct task_struct *me = current;
2305 	unsigned char comm[sizeof(me->comm)];
2306 	long error;
2307 
2308 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2309 	if (error != -ENOSYS)
2310 		return error;
2311 
2312 	error = 0;
2313 	switch (option) {
2314 	case PR_SET_PDEATHSIG:
2315 		if (!valid_signal(arg2)) {
2316 			error = -EINVAL;
2317 			break;
2318 		}
2319 		me->pdeath_signal = arg2;
2320 		break;
2321 	case PR_GET_PDEATHSIG:
2322 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2323 		break;
2324 	case PR_GET_DUMPABLE:
2325 		error = get_dumpable(me->mm);
2326 		break;
2327 	case PR_SET_DUMPABLE:
2328 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2329 			error = -EINVAL;
2330 			break;
2331 		}
2332 		set_dumpable(me->mm, arg2);
2333 		break;
2334 
2335 	case PR_SET_UNALIGN:
2336 		error = SET_UNALIGN_CTL(me, arg2);
2337 		break;
2338 	case PR_GET_UNALIGN:
2339 		error = GET_UNALIGN_CTL(me, arg2);
2340 		break;
2341 	case PR_SET_FPEMU:
2342 		error = SET_FPEMU_CTL(me, arg2);
2343 		break;
2344 	case PR_GET_FPEMU:
2345 		error = GET_FPEMU_CTL(me, arg2);
2346 		break;
2347 	case PR_SET_FPEXC:
2348 		error = SET_FPEXC_CTL(me, arg2);
2349 		break;
2350 	case PR_GET_FPEXC:
2351 		error = GET_FPEXC_CTL(me, arg2);
2352 		break;
2353 	case PR_GET_TIMING:
2354 		error = PR_TIMING_STATISTICAL;
2355 		break;
2356 	case PR_SET_TIMING:
2357 		if (arg2 != PR_TIMING_STATISTICAL)
2358 			error = -EINVAL;
2359 		break;
2360 	case PR_SET_NAME:
2361 		comm[sizeof(me->comm) - 1] = 0;
2362 		if (strncpy_from_user(comm, (char __user *)arg2,
2363 				      sizeof(me->comm) - 1) < 0)
2364 			return -EFAULT;
2365 		set_task_comm(me, comm);
2366 		proc_comm_connector(me);
2367 		break;
2368 	case PR_GET_NAME:
2369 		get_task_comm(comm, me);
2370 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2371 			return -EFAULT;
2372 		break;
2373 	case PR_GET_ENDIAN:
2374 		error = GET_ENDIAN(me, arg2);
2375 		break;
2376 	case PR_SET_ENDIAN:
2377 		error = SET_ENDIAN(me, arg2);
2378 		break;
2379 	case PR_GET_SECCOMP:
2380 		error = prctl_get_seccomp();
2381 		break;
2382 	case PR_SET_SECCOMP:
2383 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2384 		break;
2385 	case PR_GET_TSC:
2386 		error = GET_TSC_CTL(arg2);
2387 		break;
2388 	case PR_SET_TSC:
2389 		error = SET_TSC_CTL(arg2);
2390 		break;
2391 	case PR_TASK_PERF_EVENTS_DISABLE:
2392 		error = perf_event_task_disable();
2393 		break;
2394 	case PR_TASK_PERF_EVENTS_ENABLE:
2395 		error = perf_event_task_enable();
2396 		break;
2397 	case PR_GET_TIMERSLACK:
2398 		if (current->timer_slack_ns > ULONG_MAX)
2399 			error = ULONG_MAX;
2400 		else
2401 			error = current->timer_slack_ns;
2402 		break;
2403 	case PR_SET_TIMERSLACK:
2404 		if (arg2 <= 0)
2405 			current->timer_slack_ns =
2406 					current->default_timer_slack_ns;
2407 		else
2408 			current->timer_slack_ns = arg2;
2409 		break;
2410 	case PR_MCE_KILL:
2411 		if (arg4 | arg5)
2412 			return -EINVAL;
2413 		switch (arg2) {
2414 		case PR_MCE_KILL_CLEAR:
2415 			if (arg3 != 0)
2416 				return -EINVAL;
2417 			current->flags &= ~PF_MCE_PROCESS;
2418 			break;
2419 		case PR_MCE_KILL_SET:
2420 			current->flags |= PF_MCE_PROCESS;
2421 			if (arg3 == PR_MCE_KILL_EARLY)
2422 				current->flags |= PF_MCE_EARLY;
2423 			else if (arg3 == PR_MCE_KILL_LATE)
2424 				current->flags &= ~PF_MCE_EARLY;
2425 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2426 				current->flags &=
2427 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2428 			else
2429 				return -EINVAL;
2430 			break;
2431 		default:
2432 			return -EINVAL;
2433 		}
2434 		break;
2435 	case PR_MCE_KILL_GET:
2436 		if (arg2 | arg3 | arg4 | arg5)
2437 			return -EINVAL;
2438 		if (current->flags & PF_MCE_PROCESS)
2439 			error = (current->flags & PF_MCE_EARLY) ?
2440 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2441 		else
2442 			error = PR_MCE_KILL_DEFAULT;
2443 		break;
2444 	case PR_SET_MM:
2445 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2446 		break;
2447 	case PR_GET_TID_ADDRESS:
2448 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2449 		break;
2450 	case PR_SET_CHILD_SUBREAPER:
2451 		me->signal->is_child_subreaper = !!arg2;
2452 		if (!arg2)
2453 			break;
2454 
2455 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2456 		break;
2457 	case PR_GET_CHILD_SUBREAPER:
2458 		error = put_user(me->signal->is_child_subreaper,
2459 				 (int __user *)arg2);
2460 		break;
2461 	case PR_SET_NO_NEW_PRIVS:
2462 		if (arg2 != 1 || arg3 || arg4 || arg5)
2463 			return -EINVAL;
2464 
2465 		task_set_no_new_privs(current);
2466 		break;
2467 	case PR_GET_NO_NEW_PRIVS:
2468 		if (arg2 || arg3 || arg4 || arg5)
2469 			return -EINVAL;
2470 		return task_no_new_privs(current) ? 1 : 0;
2471 	case PR_GET_THP_DISABLE:
2472 		if (arg2 || arg3 || arg4 || arg5)
2473 			return -EINVAL;
2474 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2475 		break;
2476 	case PR_SET_THP_DISABLE:
2477 		if (arg3 || arg4 || arg5)
2478 			return -EINVAL;
2479 		if (mmap_write_lock_killable(me->mm))
2480 			return -EINTR;
2481 		if (arg2)
2482 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2483 		else
2484 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2485 		mmap_write_unlock(me->mm);
2486 		break;
2487 	case PR_MPX_ENABLE_MANAGEMENT:
2488 	case PR_MPX_DISABLE_MANAGEMENT:
2489 		/* No longer implemented: */
2490 		return -EINVAL;
2491 	case PR_SET_FP_MODE:
2492 		error = SET_FP_MODE(me, arg2);
2493 		break;
2494 	case PR_GET_FP_MODE:
2495 		error = GET_FP_MODE(me);
2496 		break;
2497 	case PR_SVE_SET_VL:
2498 		error = SVE_SET_VL(arg2);
2499 		break;
2500 	case PR_SVE_GET_VL:
2501 		error = SVE_GET_VL();
2502 		break;
2503 	case PR_GET_SPECULATION_CTRL:
2504 		if (arg3 || arg4 || arg5)
2505 			return -EINVAL;
2506 		error = arch_prctl_spec_ctrl_get(me, arg2);
2507 		break;
2508 	case PR_SET_SPECULATION_CTRL:
2509 		if (arg4 || arg5)
2510 			return -EINVAL;
2511 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2512 		break;
2513 	case PR_PAC_RESET_KEYS:
2514 		if (arg3 || arg4 || arg5)
2515 			return -EINVAL;
2516 		error = PAC_RESET_KEYS(me, arg2);
2517 		break;
2518 	case PR_PAC_SET_ENABLED_KEYS:
2519 		if (arg4 || arg5)
2520 			return -EINVAL;
2521 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2522 		break;
2523 	case PR_PAC_GET_ENABLED_KEYS:
2524 		if (arg2 || arg3 || arg4 || arg5)
2525 			return -EINVAL;
2526 		error = PAC_GET_ENABLED_KEYS(me);
2527 		break;
2528 	case PR_SET_TAGGED_ADDR_CTRL:
2529 		if (arg3 || arg4 || arg5)
2530 			return -EINVAL;
2531 		error = SET_TAGGED_ADDR_CTRL(arg2);
2532 		break;
2533 	case PR_GET_TAGGED_ADDR_CTRL:
2534 		if (arg2 || arg3 || arg4 || arg5)
2535 			return -EINVAL;
2536 		error = GET_TAGGED_ADDR_CTRL();
2537 		break;
2538 	case PR_SET_IO_FLUSHER:
2539 		if (!capable(CAP_SYS_RESOURCE))
2540 			return -EPERM;
2541 
2542 		if (arg3 || arg4 || arg5)
2543 			return -EINVAL;
2544 
2545 		if (arg2 == 1)
2546 			current->flags |= PR_IO_FLUSHER;
2547 		else if (!arg2)
2548 			current->flags &= ~PR_IO_FLUSHER;
2549 		else
2550 			return -EINVAL;
2551 		break;
2552 	case PR_GET_IO_FLUSHER:
2553 		if (!capable(CAP_SYS_RESOURCE))
2554 			return -EPERM;
2555 
2556 		if (arg2 || arg3 || arg4 || arg5)
2557 			return -EINVAL;
2558 
2559 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2560 		break;
2561 	case PR_SET_SYSCALL_USER_DISPATCH:
2562 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2563 						  (char __user *) arg5);
2564 		break;
2565 #ifdef CONFIG_SCHED_CORE
2566 	case PR_SCHED_CORE:
2567 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2568 		break;
2569 #endif
2570 	default:
2571 		error = -EINVAL;
2572 		break;
2573 	}
2574 	return error;
2575 }
2576 
2577 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2578 		struct getcpu_cache __user *, unused)
2579 {
2580 	int err = 0;
2581 	int cpu = raw_smp_processor_id();
2582 
2583 	if (cpup)
2584 		err |= put_user(cpu, cpup);
2585 	if (nodep)
2586 		err |= put_user(cpu_to_node(cpu), nodep);
2587 	return err ? -EFAULT : 0;
2588 }
2589 
2590 /**
2591  * do_sysinfo - fill in sysinfo struct
2592  * @info: pointer to buffer to fill
2593  */
2594 static int do_sysinfo(struct sysinfo *info)
2595 {
2596 	unsigned long mem_total, sav_total;
2597 	unsigned int mem_unit, bitcount;
2598 	struct timespec64 tp;
2599 
2600 	memset(info, 0, sizeof(struct sysinfo));
2601 
2602 	ktime_get_boottime_ts64(&tp);
2603 	timens_add_boottime(&tp);
2604 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2605 
2606 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2607 
2608 	info->procs = nr_threads;
2609 
2610 	si_meminfo(info);
2611 	si_swapinfo(info);
2612 
2613 	/*
2614 	 * If the sum of all the available memory (i.e. ram + swap)
2615 	 * is less than can be stored in a 32 bit unsigned long then
2616 	 * we can be binary compatible with 2.2.x kernels.  If not,
2617 	 * well, in that case 2.2.x was broken anyways...
2618 	 *
2619 	 *  -Erik Andersen <andersee@debian.org>
2620 	 */
2621 
2622 	mem_total = info->totalram + info->totalswap;
2623 	if (mem_total < info->totalram || mem_total < info->totalswap)
2624 		goto out;
2625 	bitcount = 0;
2626 	mem_unit = info->mem_unit;
2627 	while (mem_unit > 1) {
2628 		bitcount++;
2629 		mem_unit >>= 1;
2630 		sav_total = mem_total;
2631 		mem_total <<= 1;
2632 		if (mem_total < sav_total)
2633 			goto out;
2634 	}
2635 
2636 	/*
2637 	 * If mem_total did not overflow, multiply all memory values by
2638 	 * info->mem_unit and set it to 1.  This leaves things compatible
2639 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2640 	 * kernels...
2641 	 */
2642 
2643 	info->mem_unit = 1;
2644 	info->totalram <<= bitcount;
2645 	info->freeram <<= bitcount;
2646 	info->sharedram <<= bitcount;
2647 	info->bufferram <<= bitcount;
2648 	info->totalswap <<= bitcount;
2649 	info->freeswap <<= bitcount;
2650 	info->totalhigh <<= bitcount;
2651 	info->freehigh <<= bitcount;
2652 
2653 out:
2654 	return 0;
2655 }
2656 
2657 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2658 {
2659 	struct sysinfo val;
2660 
2661 	do_sysinfo(&val);
2662 
2663 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2664 		return -EFAULT;
2665 
2666 	return 0;
2667 }
2668 
2669 #ifdef CONFIG_COMPAT
2670 struct compat_sysinfo {
2671 	s32 uptime;
2672 	u32 loads[3];
2673 	u32 totalram;
2674 	u32 freeram;
2675 	u32 sharedram;
2676 	u32 bufferram;
2677 	u32 totalswap;
2678 	u32 freeswap;
2679 	u16 procs;
2680 	u16 pad;
2681 	u32 totalhigh;
2682 	u32 freehigh;
2683 	u32 mem_unit;
2684 	char _f[20-2*sizeof(u32)-sizeof(int)];
2685 };
2686 
2687 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2688 {
2689 	struct sysinfo s;
2690 	struct compat_sysinfo s_32;
2691 
2692 	do_sysinfo(&s);
2693 
2694 	/* Check to see if any memory value is too large for 32-bit and scale
2695 	 *  down if needed
2696 	 */
2697 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2698 		int bitcount = 0;
2699 
2700 		while (s.mem_unit < PAGE_SIZE) {
2701 			s.mem_unit <<= 1;
2702 			bitcount++;
2703 		}
2704 
2705 		s.totalram >>= bitcount;
2706 		s.freeram >>= bitcount;
2707 		s.sharedram >>= bitcount;
2708 		s.bufferram >>= bitcount;
2709 		s.totalswap >>= bitcount;
2710 		s.freeswap >>= bitcount;
2711 		s.totalhigh >>= bitcount;
2712 		s.freehigh >>= bitcount;
2713 	}
2714 
2715 	memset(&s_32, 0, sizeof(s_32));
2716 	s_32.uptime = s.uptime;
2717 	s_32.loads[0] = s.loads[0];
2718 	s_32.loads[1] = s.loads[1];
2719 	s_32.loads[2] = s.loads[2];
2720 	s_32.totalram = s.totalram;
2721 	s_32.freeram = s.freeram;
2722 	s_32.sharedram = s.sharedram;
2723 	s_32.bufferram = s.bufferram;
2724 	s_32.totalswap = s.totalswap;
2725 	s_32.freeswap = s.freeswap;
2726 	s_32.procs = s.procs;
2727 	s_32.totalhigh = s.totalhigh;
2728 	s_32.freehigh = s.freehigh;
2729 	s_32.mem_unit = s.mem_unit;
2730 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2731 		return -EFAULT;
2732 	return 0;
2733 }
2734 #endif /* CONFIG_COMPAT */
2735