xref: /openbmc/linux/kernel/sys.c (revision 95e9fd10)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 
51 #include <linux/kmsg_dump.h>
52 /* Move somewhere else to avoid recompiling? */
53 #include <generated/utsrelease.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/unistd.h>
58 
59 #ifndef SET_UNALIGN_CTL
60 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_UNALIGN_CTL
63 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef SET_FPEMU_CTL
66 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_FPEMU_CTL
69 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef SET_FPEXC_CTL
72 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
73 #endif
74 #ifndef GET_FPEXC_CTL
75 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
76 #endif
77 #ifndef GET_ENDIAN
78 # define GET_ENDIAN(a,b)	(-EINVAL)
79 #endif
80 #ifndef SET_ENDIAN
81 # define SET_ENDIAN(a,b)	(-EINVAL)
82 #endif
83 #ifndef GET_TSC_CTL
84 # define GET_TSC_CTL(a)		(-EINVAL)
85 #endif
86 #ifndef SET_TSC_CTL
87 # define SET_TSC_CTL(a)		(-EINVAL)
88 #endif
89 
90 /*
91  * this is where the system-wide overflow UID and GID are defined, for
92  * architectures that now have 32-bit UID/GID but didn't in the past
93  */
94 
95 int overflowuid = DEFAULT_OVERFLOWUID;
96 int overflowgid = DEFAULT_OVERFLOWGID;
97 
98 EXPORT_SYMBOL(overflowuid);
99 EXPORT_SYMBOL(overflowgid);
100 
101 /*
102  * the same as above, but for filesystems which can only store a 16-bit
103  * UID and GID. as such, this is needed on all architectures
104  */
105 
106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108 
109 EXPORT_SYMBOL(fs_overflowuid);
110 EXPORT_SYMBOL(fs_overflowgid);
111 
112 /*
113  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114  */
115 
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119 
120 /*
121  * If set, this is used for preparing the system to power off.
122  */
123 
124 void (*pm_power_off_prepare)(void);
125 
126 /*
127  * Returns true if current's euid is same as p's uid or euid,
128  * or has CAP_SYS_NICE to p's user_ns.
129  *
130  * Called with rcu_read_lock, creds are safe
131  */
132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135 
136 	if (uid_eq(pcred->uid,  cred->euid) ||
137 	    uid_eq(pcred->euid, cred->euid))
138 		return true;
139 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
140 		return true;
141 	return false;
142 }
143 
144 /*
145  * set the priority of a task
146  * - the caller must hold the RCU read lock
147  */
148 static int set_one_prio(struct task_struct *p, int niceval, int error)
149 {
150 	int no_nice;
151 
152 	if (!set_one_prio_perm(p)) {
153 		error = -EPERM;
154 		goto out;
155 	}
156 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
157 		error = -EACCES;
158 		goto out;
159 	}
160 	no_nice = security_task_setnice(p, niceval);
161 	if (no_nice) {
162 		error = no_nice;
163 		goto out;
164 	}
165 	if (error == -ESRCH)
166 		error = 0;
167 	set_user_nice(p, niceval);
168 out:
169 	return error;
170 }
171 
172 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
173 {
174 	struct task_struct *g, *p;
175 	struct user_struct *user;
176 	const struct cred *cred = current_cred();
177 	int error = -EINVAL;
178 	struct pid *pgrp;
179 	kuid_t uid;
180 
181 	if (which > PRIO_USER || which < PRIO_PROCESS)
182 		goto out;
183 
184 	/* normalize: avoid signed division (rounding problems) */
185 	error = -ESRCH;
186 	if (niceval < -20)
187 		niceval = -20;
188 	if (niceval > 19)
189 		niceval = 19;
190 
191 	rcu_read_lock();
192 	read_lock(&tasklist_lock);
193 	switch (which) {
194 		case PRIO_PROCESS:
195 			if (who)
196 				p = find_task_by_vpid(who);
197 			else
198 				p = current;
199 			if (p)
200 				error = set_one_prio(p, niceval, error);
201 			break;
202 		case PRIO_PGRP:
203 			if (who)
204 				pgrp = find_vpid(who);
205 			else
206 				pgrp = task_pgrp(current);
207 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208 				error = set_one_prio(p, niceval, error);
209 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210 			break;
211 		case PRIO_USER:
212 			uid = make_kuid(cred->user_ns, who);
213 			user = cred->user;
214 			if (!who)
215 				uid = cred->uid;
216 			else if (!uid_eq(uid, cred->uid) &&
217 				 !(user = find_user(uid)))
218 				goto out_unlock;	/* No processes for this user */
219 
220 			do_each_thread(g, p) {
221 				if (uid_eq(task_uid(p), uid))
222 					error = set_one_prio(p, niceval, error);
223 			} while_each_thread(g, p);
224 			if (!uid_eq(uid, cred->uid))
225 				free_uid(user);		/* For find_user() */
226 			break;
227 	}
228 out_unlock:
229 	read_unlock(&tasklist_lock);
230 	rcu_read_unlock();
231 out:
232 	return error;
233 }
234 
235 /*
236  * Ugh. To avoid negative return values, "getpriority()" will
237  * not return the normal nice-value, but a negated value that
238  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
239  * to stay compatible.
240  */
241 SYSCALL_DEFINE2(getpriority, int, which, int, who)
242 {
243 	struct task_struct *g, *p;
244 	struct user_struct *user;
245 	const struct cred *cred = current_cred();
246 	long niceval, retval = -ESRCH;
247 	struct pid *pgrp;
248 	kuid_t uid;
249 
250 	if (which > PRIO_USER || which < PRIO_PROCESS)
251 		return -EINVAL;
252 
253 	rcu_read_lock();
254 	read_lock(&tasklist_lock);
255 	switch (which) {
256 		case PRIO_PROCESS:
257 			if (who)
258 				p = find_task_by_vpid(who);
259 			else
260 				p = current;
261 			if (p) {
262 				niceval = 20 - task_nice(p);
263 				if (niceval > retval)
264 					retval = niceval;
265 			}
266 			break;
267 		case PRIO_PGRP:
268 			if (who)
269 				pgrp = find_vpid(who);
270 			else
271 				pgrp = task_pgrp(current);
272 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
273 				niceval = 20 - task_nice(p);
274 				if (niceval > retval)
275 					retval = niceval;
276 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
277 			break;
278 		case PRIO_USER:
279 			uid = make_kuid(cred->user_ns, who);
280 			user = cred->user;
281 			if (!who)
282 				uid = cred->uid;
283 			else if (!uid_eq(uid, cred->uid) &&
284 				 !(user = find_user(uid)))
285 				goto out_unlock;	/* No processes for this user */
286 
287 			do_each_thread(g, p) {
288 				if (uid_eq(task_uid(p), uid)) {
289 					niceval = 20 - task_nice(p);
290 					if (niceval > retval)
291 						retval = niceval;
292 				}
293 			} while_each_thread(g, p);
294 			if (!uid_eq(uid, cred->uid))
295 				free_uid(user);		/* for find_user() */
296 			break;
297 	}
298 out_unlock:
299 	read_unlock(&tasklist_lock);
300 	rcu_read_unlock();
301 
302 	return retval;
303 }
304 
305 /**
306  *	emergency_restart - reboot the system
307  *
308  *	Without shutting down any hardware or taking any locks
309  *	reboot the system.  This is called when we know we are in
310  *	trouble so this is our best effort to reboot.  This is
311  *	safe to call in interrupt context.
312  */
313 void emergency_restart(void)
314 {
315 	kmsg_dump(KMSG_DUMP_EMERG);
316 	machine_emergency_restart();
317 }
318 EXPORT_SYMBOL_GPL(emergency_restart);
319 
320 void kernel_restart_prepare(char *cmd)
321 {
322 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
323 	system_state = SYSTEM_RESTART;
324 	usermodehelper_disable();
325 	device_shutdown();
326 	syscore_shutdown();
327 }
328 
329 /**
330  *	register_reboot_notifier - Register function to be called at reboot time
331  *	@nb: Info about notifier function to be called
332  *
333  *	Registers a function with the list of functions
334  *	to be called at reboot time.
335  *
336  *	Currently always returns zero, as blocking_notifier_chain_register()
337  *	always returns zero.
338  */
339 int register_reboot_notifier(struct notifier_block *nb)
340 {
341 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
342 }
343 EXPORT_SYMBOL(register_reboot_notifier);
344 
345 /**
346  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
347  *	@nb: Hook to be unregistered
348  *
349  *	Unregisters a previously registered reboot
350  *	notifier function.
351  *
352  *	Returns zero on success, or %-ENOENT on failure.
353  */
354 int unregister_reboot_notifier(struct notifier_block *nb)
355 {
356 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
357 }
358 EXPORT_SYMBOL(unregister_reboot_notifier);
359 
360 /**
361  *	kernel_restart - reboot the system
362  *	@cmd: pointer to buffer containing command to execute for restart
363  *		or %NULL
364  *
365  *	Shutdown everything and perform a clean reboot.
366  *	This is not safe to call in interrupt context.
367  */
368 void kernel_restart(char *cmd)
369 {
370 	kernel_restart_prepare(cmd);
371 	if (!cmd)
372 		printk(KERN_EMERG "Restarting system.\n");
373 	else
374 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
375 	kmsg_dump(KMSG_DUMP_RESTART);
376 	machine_restart(cmd);
377 }
378 EXPORT_SYMBOL_GPL(kernel_restart);
379 
380 static void kernel_shutdown_prepare(enum system_states state)
381 {
382 	blocking_notifier_call_chain(&reboot_notifier_list,
383 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
384 	system_state = state;
385 	usermodehelper_disable();
386 	device_shutdown();
387 }
388 /**
389  *	kernel_halt - halt the system
390  *
391  *	Shutdown everything and perform a clean system halt.
392  */
393 void kernel_halt(void)
394 {
395 	kernel_shutdown_prepare(SYSTEM_HALT);
396 	syscore_shutdown();
397 	printk(KERN_EMERG "System halted.\n");
398 	kmsg_dump(KMSG_DUMP_HALT);
399 	machine_halt();
400 }
401 
402 EXPORT_SYMBOL_GPL(kernel_halt);
403 
404 /**
405  *	kernel_power_off - power_off the system
406  *
407  *	Shutdown everything and perform a clean system power_off.
408  */
409 void kernel_power_off(void)
410 {
411 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
412 	if (pm_power_off_prepare)
413 		pm_power_off_prepare();
414 	disable_nonboot_cpus();
415 	syscore_shutdown();
416 	printk(KERN_EMERG "Power down.\n");
417 	kmsg_dump(KMSG_DUMP_POWEROFF);
418 	machine_power_off();
419 }
420 EXPORT_SYMBOL_GPL(kernel_power_off);
421 
422 static DEFINE_MUTEX(reboot_mutex);
423 
424 /*
425  * Reboot system call: for obvious reasons only root may call it,
426  * and even root needs to set up some magic numbers in the registers
427  * so that some mistake won't make this reboot the whole machine.
428  * You can also set the meaning of the ctrl-alt-del-key here.
429  *
430  * reboot doesn't sync: do that yourself before calling this.
431  */
432 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
433 		void __user *, arg)
434 {
435 	char buffer[256];
436 	int ret = 0;
437 
438 	/* We only trust the superuser with rebooting the system. */
439 	if (!capable(CAP_SYS_BOOT))
440 		return -EPERM;
441 
442 	/* For safety, we require "magic" arguments. */
443 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
444 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
445 	                magic2 != LINUX_REBOOT_MAGIC2A &&
446 			magic2 != LINUX_REBOOT_MAGIC2B &&
447 	                magic2 != LINUX_REBOOT_MAGIC2C))
448 		return -EINVAL;
449 
450 	/*
451 	 * If pid namespaces are enabled and the current task is in a child
452 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
453 	 * call do_exit().
454 	 */
455 	ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
456 	if (ret)
457 		return ret;
458 
459 	/* Instead of trying to make the power_off code look like
460 	 * halt when pm_power_off is not set do it the easy way.
461 	 */
462 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
463 		cmd = LINUX_REBOOT_CMD_HALT;
464 
465 	mutex_lock(&reboot_mutex);
466 	switch (cmd) {
467 	case LINUX_REBOOT_CMD_RESTART:
468 		kernel_restart(NULL);
469 		break;
470 
471 	case LINUX_REBOOT_CMD_CAD_ON:
472 		C_A_D = 1;
473 		break;
474 
475 	case LINUX_REBOOT_CMD_CAD_OFF:
476 		C_A_D = 0;
477 		break;
478 
479 	case LINUX_REBOOT_CMD_HALT:
480 		kernel_halt();
481 		do_exit(0);
482 		panic("cannot halt");
483 
484 	case LINUX_REBOOT_CMD_POWER_OFF:
485 		kernel_power_off();
486 		do_exit(0);
487 		break;
488 
489 	case LINUX_REBOOT_CMD_RESTART2:
490 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
491 			ret = -EFAULT;
492 			break;
493 		}
494 		buffer[sizeof(buffer) - 1] = '\0';
495 
496 		kernel_restart(buffer);
497 		break;
498 
499 #ifdef CONFIG_KEXEC
500 	case LINUX_REBOOT_CMD_KEXEC:
501 		ret = kernel_kexec();
502 		break;
503 #endif
504 
505 #ifdef CONFIG_HIBERNATION
506 	case LINUX_REBOOT_CMD_SW_SUSPEND:
507 		ret = hibernate();
508 		break;
509 #endif
510 
511 	default:
512 		ret = -EINVAL;
513 		break;
514 	}
515 	mutex_unlock(&reboot_mutex);
516 	return ret;
517 }
518 
519 static void deferred_cad(struct work_struct *dummy)
520 {
521 	kernel_restart(NULL);
522 }
523 
524 /*
525  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
526  * As it's called within an interrupt, it may NOT sync: the only choice
527  * is whether to reboot at once, or just ignore the ctrl-alt-del.
528  */
529 void ctrl_alt_del(void)
530 {
531 	static DECLARE_WORK(cad_work, deferred_cad);
532 
533 	if (C_A_D)
534 		schedule_work(&cad_work);
535 	else
536 		kill_cad_pid(SIGINT, 1);
537 }
538 
539 /*
540  * Unprivileged users may change the real gid to the effective gid
541  * or vice versa.  (BSD-style)
542  *
543  * If you set the real gid at all, or set the effective gid to a value not
544  * equal to the real gid, then the saved gid is set to the new effective gid.
545  *
546  * This makes it possible for a setgid program to completely drop its
547  * privileges, which is often a useful assertion to make when you are doing
548  * a security audit over a program.
549  *
550  * The general idea is that a program which uses just setregid() will be
551  * 100% compatible with BSD.  A program which uses just setgid() will be
552  * 100% compatible with POSIX with saved IDs.
553  *
554  * SMP: There are not races, the GIDs are checked only by filesystem
555  *      operations (as far as semantic preservation is concerned).
556  */
557 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
558 {
559 	struct user_namespace *ns = current_user_ns();
560 	const struct cred *old;
561 	struct cred *new;
562 	int retval;
563 	kgid_t krgid, kegid;
564 
565 	krgid = make_kgid(ns, rgid);
566 	kegid = make_kgid(ns, egid);
567 
568 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
569 		return -EINVAL;
570 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
571 		return -EINVAL;
572 
573 	new = prepare_creds();
574 	if (!new)
575 		return -ENOMEM;
576 	old = current_cred();
577 
578 	retval = -EPERM;
579 	if (rgid != (gid_t) -1) {
580 		if (gid_eq(old->gid, krgid) ||
581 		    gid_eq(old->egid, krgid) ||
582 		    nsown_capable(CAP_SETGID))
583 			new->gid = krgid;
584 		else
585 			goto error;
586 	}
587 	if (egid != (gid_t) -1) {
588 		if (gid_eq(old->gid, kegid) ||
589 		    gid_eq(old->egid, kegid) ||
590 		    gid_eq(old->sgid, kegid) ||
591 		    nsown_capable(CAP_SETGID))
592 			new->egid = kegid;
593 		else
594 			goto error;
595 	}
596 
597 	if (rgid != (gid_t) -1 ||
598 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
599 		new->sgid = new->egid;
600 	new->fsgid = new->egid;
601 
602 	return commit_creds(new);
603 
604 error:
605 	abort_creds(new);
606 	return retval;
607 }
608 
609 /*
610  * setgid() is implemented like SysV w/ SAVED_IDS
611  *
612  * SMP: Same implicit races as above.
613  */
614 SYSCALL_DEFINE1(setgid, gid_t, gid)
615 {
616 	struct user_namespace *ns = current_user_ns();
617 	const struct cred *old;
618 	struct cred *new;
619 	int retval;
620 	kgid_t kgid;
621 
622 	kgid = make_kgid(ns, gid);
623 	if (!gid_valid(kgid))
624 		return -EINVAL;
625 
626 	new = prepare_creds();
627 	if (!new)
628 		return -ENOMEM;
629 	old = current_cred();
630 
631 	retval = -EPERM;
632 	if (nsown_capable(CAP_SETGID))
633 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
634 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
635 		new->egid = new->fsgid = kgid;
636 	else
637 		goto error;
638 
639 	return commit_creds(new);
640 
641 error:
642 	abort_creds(new);
643 	return retval;
644 }
645 
646 /*
647  * change the user struct in a credentials set to match the new UID
648  */
649 static int set_user(struct cred *new)
650 {
651 	struct user_struct *new_user;
652 
653 	new_user = alloc_uid(new->uid);
654 	if (!new_user)
655 		return -EAGAIN;
656 
657 	/*
658 	 * We don't fail in case of NPROC limit excess here because too many
659 	 * poorly written programs don't check set*uid() return code, assuming
660 	 * it never fails if called by root.  We may still enforce NPROC limit
661 	 * for programs doing set*uid()+execve() by harmlessly deferring the
662 	 * failure to the execve() stage.
663 	 */
664 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
665 			new_user != INIT_USER)
666 		current->flags |= PF_NPROC_EXCEEDED;
667 	else
668 		current->flags &= ~PF_NPROC_EXCEEDED;
669 
670 	free_uid(new->user);
671 	new->user = new_user;
672 	return 0;
673 }
674 
675 /*
676  * Unprivileged users may change the real uid to the effective uid
677  * or vice versa.  (BSD-style)
678  *
679  * If you set the real uid at all, or set the effective uid to a value not
680  * equal to the real uid, then the saved uid is set to the new effective uid.
681  *
682  * This makes it possible for a setuid program to completely drop its
683  * privileges, which is often a useful assertion to make when you are doing
684  * a security audit over a program.
685  *
686  * The general idea is that a program which uses just setreuid() will be
687  * 100% compatible with BSD.  A program which uses just setuid() will be
688  * 100% compatible with POSIX with saved IDs.
689  */
690 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
691 {
692 	struct user_namespace *ns = current_user_ns();
693 	const struct cred *old;
694 	struct cred *new;
695 	int retval;
696 	kuid_t kruid, keuid;
697 
698 	kruid = make_kuid(ns, ruid);
699 	keuid = make_kuid(ns, euid);
700 
701 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
702 		return -EINVAL;
703 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
704 		return -EINVAL;
705 
706 	new = prepare_creds();
707 	if (!new)
708 		return -ENOMEM;
709 	old = current_cred();
710 
711 	retval = -EPERM;
712 	if (ruid != (uid_t) -1) {
713 		new->uid = kruid;
714 		if (!uid_eq(old->uid, kruid) &&
715 		    !uid_eq(old->euid, kruid) &&
716 		    !nsown_capable(CAP_SETUID))
717 			goto error;
718 	}
719 
720 	if (euid != (uid_t) -1) {
721 		new->euid = keuid;
722 		if (!uid_eq(old->uid, keuid) &&
723 		    !uid_eq(old->euid, keuid) &&
724 		    !uid_eq(old->suid, keuid) &&
725 		    !nsown_capable(CAP_SETUID))
726 			goto error;
727 	}
728 
729 	if (!uid_eq(new->uid, old->uid)) {
730 		retval = set_user(new);
731 		if (retval < 0)
732 			goto error;
733 	}
734 	if (ruid != (uid_t) -1 ||
735 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
736 		new->suid = new->euid;
737 	new->fsuid = new->euid;
738 
739 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
740 	if (retval < 0)
741 		goto error;
742 
743 	return commit_creds(new);
744 
745 error:
746 	abort_creds(new);
747 	return retval;
748 }
749 
750 /*
751  * setuid() is implemented like SysV with SAVED_IDS
752  *
753  * Note that SAVED_ID's is deficient in that a setuid root program
754  * like sendmail, for example, cannot set its uid to be a normal
755  * user and then switch back, because if you're root, setuid() sets
756  * the saved uid too.  If you don't like this, blame the bright people
757  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
758  * will allow a root program to temporarily drop privileges and be able to
759  * regain them by swapping the real and effective uid.
760  */
761 SYSCALL_DEFINE1(setuid, uid_t, uid)
762 {
763 	struct user_namespace *ns = current_user_ns();
764 	const struct cred *old;
765 	struct cred *new;
766 	int retval;
767 	kuid_t kuid;
768 
769 	kuid = make_kuid(ns, uid);
770 	if (!uid_valid(kuid))
771 		return -EINVAL;
772 
773 	new = prepare_creds();
774 	if (!new)
775 		return -ENOMEM;
776 	old = current_cred();
777 
778 	retval = -EPERM;
779 	if (nsown_capable(CAP_SETUID)) {
780 		new->suid = new->uid = kuid;
781 		if (!uid_eq(kuid, old->uid)) {
782 			retval = set_user(new);
783 			if (retval < 0)
784 				goto error;
785 		}
786 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
787 		goto error;
788 	}
789 
790 	new->fsuid = new->euid = kuid;
791 
792 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
793 	if (retval < 0)
794 		goto error;
795 
796 	return commit_creds(new);
797 
798 error:
799 	abort_creds(new);
800 	return retval;
801 }
802 
803 
804 /*
805  * This function implements a generic ability to update ruid, euid,
806  * and suid.  This allows you to implement the 4.4 compatible seteuid().
807  */
808 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
809 {
810 	struct user_namespace *ns = current_user_ns();
811 	const struct cred *old;
812 	struct cred *new;
813 	int retval;
814 	kuid_t kruid, keuid, ksuid;
815 
816 	kruid = make_kuid(ns, ruid);
817 	keuid = make_kuid(ns, euid);
818 	ksuid = make_kuid(ns, suid);
819 
820 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
821 		return -EINVAL;
822 
823 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
824 		return -EINVAL;
825 
826 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
827 		return -EINVAL;
828 
829 	new = prepare_creds();
830 	if (!new)
831 		return -ENOMEM;
832 
833 	old = current_cred();
834 
835 	retval = -EPERM;
836 	if (!nsown_capable(CAP_SETUID)) {
837 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
838 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
839 			goto error;
840 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
841 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
842 			goto error;
843 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
844 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
845 			goto error;
846 	}
847 
848 	if (ruid != (uid_t) -1) {
849 		new->uid = kruid;
850 		if (!uid_eq(kruid, old->uid)) {
851 			retval = set_user(new);
852 			if (retval < 0)
853 				goto error;
854 		}
855 	}
856 	if (euid != (uid_t) -1)
857 		new->euid = keuid;
858 	if (suid != (uid_t) -1)
859 		new->suid = ksuid;
860 	new->fsuid = new->euid;
861 
862 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
863 	if (retval < 0)
864 		goto error;
865 
866 	return commit_creds(new);
867 
868 error:
869 	abort_creds(new);
870 	return retval;
871 }
872 
873 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
874 {
875 	const struct cred *cred = current_cred();
876 	int retval;
877 	uid_t ruid, euid, suid;
878 
879 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
880 	euid = from_kuid_munged(cred->user_ns, cred->euid);
881 	suid = from_kuid_munged(cred->user_ns, cred->suid);
882 
883 	if (!(retval   = put_user(ruid, ruidp)) &&
884 	    !(retval   = put_user(euid, euidp)))
885 		retval = put_user(suid, suidp);
886 
887 	return retval;
888 }
889 
890 /*
891  * Same as above, but for rgid, egid, sgid.
892  */
893 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
894 {
895 	struct user_namespace *ns = current_user_ns();
896 	const struct cred *old;
897 	struct cred *new;
898 	int retval;
899 	kgid_t krgid, kegid, ksgid;
900 
901 	krgid = make_kgid(ns, rgid);
902 	kegid = make_kgid(ns, egid);
903 	ksgid = make_kgid(ns, sgid);
904 
905 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
906 		return -EINVAL;
907 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
908 		return -EINVAL;
909 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
910 		return -EINVAL;
911 
912 	new = prepare_creds();
913 	if (!new)
914 		return -ENOMEM;
915 	old = current_cred();
916 
917 	retval = -EPERM;
918 	if (!nsown_capable(CAP_SETGID)) {
919 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
920 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
921 			goto error;
922 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
923 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
924 			goto error;
925 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
926 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
927 			goto error;
928 	}
929 
930 	if (rgid != (gid_t) -1)
931 		new->gid = krgid;
932 	if (egid != (gid_t) -1)
933 		new->egid = kegid;
934 	if (sgid != (gid_t) -1)
935 		new->sgid = ksgid;
936 	new->fsgid = new->egid;
937 
938 	return commit_creds(new);
939 
940 error:
941 	abort_creds(new);
942 	return retval;
943 }
944 
945 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
946 {
947 	const struct cred *cred = current_cred();
948 	int retval;
949 	gid_t rgid, egid, sgid;
950 
951 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
952 	egid = from_kgid_munged(cred->user_ns, cred->egid);
953 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
954 
955 	if (!(retval   = put_user(rgid, rgidp)) &&
956 	    !(retval   = put_user(egid, egidp)))
957 		retval = put_user(sgid, sgidp);
958 
959 	return retval;
960 }
961 
962 
963 /*
964  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
965  * is used for "access()" and for the NFS daemon (letting nfsd stay at
966  * whatever uid it wants to). It normally shadows "euid", except when
967  * explicitly set by setfsuid() or for access..
968  */
969 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
970 {
971 	const struct cred *old;
972 	struct cred *new;
973 	uid_t old_fsuid;
974 	kuid_t kuid;
975 
976 	old = current_cred();
977 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
978 
979 	kuid = make_kuid(old->user_ns, uid);
980 	if (!uid_valid(kuid))
981 		return old_fsuid;
982 
983 	new = prepare_creds();
984 	if (!new)
985 		return old_fsuid;
986 
987 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
988 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
989 	    nsown_capable(CAP_SETUID)) {
990 		if (!uid_eq(kuid, old->fsuid)) {
991 			new->fsuid = kuid;
992 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
993 				goto change_okay;
994 		}
995 	}
996 
997 	abort_creds(new);
998 	return old_fsuid;
999 
1000 change_okay:
1001 	commit_creds(new);
1002 	return old_fsuid;
1003 }
1004 
1005 /*
1006  * Samma på svenska..
1007  */
1008 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1009 {
1010 	const struct cred *old;
1011 	struct cred *new;
1012 	gid_t old_fsgid;
1013 	kgid_t kgid;
1014 
1015 	old = current_cred();
1016 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1017 
1018 	kgid = make_kgid(old->user_ns, gid);
1019 	if (!gid_valid(kgid))
1020 		return old_fsgid;
1021 
1022 	new = prepare_creds();
1023 	if (!new)
1024 		return old_fsgid;
1025 
1026 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1027 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1028 	    nsown_capable(CAP_SETGID)) {
1029 		if (!gid_eq(kgid, old->fsgid)) {
1030 			new->fsgid = kgid;
1031 			goto change_okay;
1032 		}
1033 	}
1034 
1035 	abort_creds(new);
1036 	return old_fsgid;
1037 
1038 change_okay:
1039 	commit_creds(new);
1040 	return old_fsgid;
1041 }
1042 
1043 void do_sys_times(struct tms *tms)
1044 {
1045 	cputime_t tgutime, tgstime, cutime, cstime;
1046 
1047 	spin_lock_irq(&current->sighand->siglock);
1048 	thread_group_times(current, &tgutime, &tgstime);
1049 	cutime = current->signal->cutime;
1050 	cstime = current->signal->cstime;
1051 	spin_unlock_irq(&current->sighand->siglock);
1052 	tms->tms_utime = cputime_to_clock_t(tgutime);
1053 	tms->tms_stime = cputime_to_clock_t(tgstime);
1054 	tms->tms_cutime = cputime_to_clock_t(cutime);
1055 	tms->tms_cstime = cputime_to_clock_t(cstime);
1056 }
1057 
1058 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1059 {
1060 	if (tbuf) {
1061 		struct tms tmp;
1062 
1063 		do_sys_times(&tmp);
1064 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1065 			return -EFAULT;
1066 	}
1067 	force_successful_syscall_return();
1068 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1069 }
1070 
1071 /*
1072  * This needs some heavy checking ...
1073  * I just haven't the stomach for it. I also don't fully
1074  * understand sessions/pgrp etc. Let somebody who does explain it.
1075  *
1076  * OK, I think I have the protection semantics right.... this is really
1077  * only important on a multi-user system anyway, to make sure one user
1078  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1079  *
1080  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1081  * LBT 04.03.94
1082  */
1083 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1084 {
1085 	struct task_struct *p;
1086 	struct task_struct *group_leader = current->group_leader;
1087 	struct pid *pgrp;
1088 	int err;
1089 
1090 	if (!pid)
1091 		pid = task_pid_vnr(group_leader);
1092 	if (!pgid)
1093 		pgid = pid;
1094 	if (pgid < 0)
1095 		return -EINVAL;
1096 	rcu_read_lock();
1097 
1098 	/* From this point forward we keep holding onto the tasklist lock
1099 	 * so that our parent does not change from under us. -DaveM
1100 	 */
1101 	write_lock_irq(&tasklist_lock);
1102 
1103 	err = -ESRCH;
1104 	p = find_task_by_vpid(pid);
1105 	if (!p)
1106 		goto out;
1107 
1108 	err = -EINVAL;
1109 	if (!thread_group_leader(p))
1110 		goto out;
1111 
1112 	if (same_thread_group(p->real_parent, group_leader)) {
1113 		err = -EPERM;
1114 		if (task_session(p) != task_session(group_leader))
1115 			goto out;
1116 		err = -EACCES;
1117 		if (p->did_exec)
1118 			goto out;
1119 	} else {
1120 		err = -ESRCH;
1121 		if (p != group_leader)
1122 			goto out;
1123 	}
1124 
1125 	err = -EPERM;
1126 	if (p->signal->leader)
1127 		goto out;
1128 
1129 	pgrp = task_pid(p);
1130 	if (pgid != pid) {
1131 		struct task_struct *g;
1132 
1133 		pgrp = find_vpid(pgid);
1134 		g = pid_task(pgrp, PIDTYPE_PGID);
1135 		if (!g || task_session(g) != task_session(group_leader))
1136 			goto out;
1137 	}
1138 
1139 	err = security_task_setpgid(p, pgid);
1140 	if (err)
1141 		goto out;
1142 
1143 	if (task_pgrp(p) != pgrp)
1144 		change_pid(p, PIDTYPE_PGID, pgrp);
1145 
1146 	err = 0;
1147 out:
1148 	/* All paths lead to here, thus we are safe. -DaveM */
1149 	write_unlock_irq(&tasklist_lock);
1150 	rcu_read_unlock();
1151 	return err;
1152 }
1153 
1154 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155 {
1156 	struct task_struct *p;
1157 	struct pid *grp;
1158 	int retval;
1159 
1160 	rcu_read_lock();
1161 	if (!pid)
1162 		grp = task_pgrp(current);
1163 	else {
1164 		retval = -ESRCH;
1165 		p = find_task_by_vpid(pid);
1166 		if (!p)
1167 			goto out;
1168 		grp = task_pgrp(p);
1169 		if (!grp)
1170 			goto out;
1171 
1172 		retval = security_task_getpgid(p);
1173 		if (retval)
1174 			goto out;
1175 	}
1176 	retval = pid_vnr(grp);
1177 out:
1178 	rcu_read_unlock();
1179 	return retval;
1180 }
1181 
1182 #ifdef __ARCH_WANT_SYS_GETPGRP
1183 
1184 SYSCALL_DEFINE0(getpgrp)
1185 {
1186 	return sys_getpgid(0);
1187 }
1188 
1189 #endif
1190 
1191 SYSCALL_DEFINE1(getsid, pid_t, pid)
1192 {
1193 	struct task_struct *p;
1194 	struct pid *sid;
1195 	int retval;
1196 
1197 	rcu_read_lock();
1198 	if (!pid)
1199 		sid = task_session(current);
1200 	else {
1201 		retval = -ESRCH;
1202 		p = find_task_by_vpid(pid);
1203 		if (!p)
1204 			goto out;
1205 		sid = task_session(p);
1206 		if (!sid)
1207 			goto out;
1208 
1209 		retval = security_task_getsid(p);
1210 		if (retval)
1211 			goto out;
1212 	}
1213 	retval = pid_vnr(sid);
1214 out:
1215 	rcu_read_unlock();
1216 	return retval;
1217 }
1218 
1219 SYSCALL_DEFINE0(setsid)
1220 {
1221 	struct task_struct *group_leader = current->group_leader;
1222 	struct pid *sid = task_pid(group_leader);
1223 	pid_t session = pid_vnr(sid);
1224 	int err = -EPERM;
1225 
1226 	write_lock_irq(&tasklist_lock);
1227 	/* Fail if I am already a session leader */
1228 	if (group_leader->signal->leader)
1229 		goto out;
1230 
1231 	/* Fail if a process group id already exists that equals the
1232 	 * proposed session id.
1233 	 */
1234 	if (pid_task(sid, PIDTYPE_PGID))
1235 		goto out;
1236 
1237 	group_leader->signal->leader = 1;
1238 	__set_special_pids(sid);
1239 
1240 	proc_clear_tty(group_leader);
1241 
1242 	err = session;
1243 out:
1244 	write_unlock_irq(&tasklist_lock);
1245 	if (err > 0) {
1246 		proc_sid_connector(group_leader);
1247 		sched_autogroup_create_attach(group_leader);
1248 	}
1249 	return err;
1250 }
1251 
1252 DECLARE_RWSEM(uts_sem);
1253 
1254 #ifdef COMPAT_UTS_MACHINE
1255 #define override_architecture(name) \
1256 	(personality(current->personality) == PER_LINUX32 && \
1257 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1258 		      sizeof(COMPAT_UTS_MACHINE)))
1259 #else
1260 #define override_architecture(name)	0
1261 #endif
1262 
1263 /*
1264  * Work around broken programs that cannot handle "Linux 3.0".
1265  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1266  */
1267 static int override_release(char __user *release, int len)
1268 {
1269 	int ret = 0;
1270 	char buf[65];
1271 
1272 	if (current->personality & UNAME26) {
1273 		char *rest = UTS_RELEASE;
1274 		int ndots = 0;
1275 		unsigned v;
1276 
1277 		while (*rest) {
1278 			if (*rest == '.' && ++ndots >= 3)
1279 				break;
1280 			if (!isdigit(*rest) && *rest != '.')
1281 				break;
1282 			rest++;
1283 		}
1284 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1285 		snprintf(buf, len, "2.6.%u%s", v, rest);
1286 		ret = copy_to_user(release, buf, len);
1287 	}
1288 	return ret;
1289 }
1290 
1291 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1292 {
1293 	int errno = 0;
1294 
1295 	down_read(&uts_sem);
1296 	if (copy_to_user(name, utsname(), sizeof *name))
1297 		errno = -EFAULT;
1298 	up_read(&uts_sem);
1299 
1300 	if (!errno && override_release(name->release, sizeof(name->release)))
1301 		errno = -EFAULT;
1302 	if (!errno && override_architecture(name))
1303 		errno = -EFAULT;
1304 	return errno;
1305 }
1306 
1307 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1308 /*
1309  * Old cruft
1310  */
1311 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1312 {
1313 	int error = 0;
1314 
1315 	if (!name)
1316 		return -EFAULT;
1317 
1318 	down_read(&uts_sem);
1319 	if (copy_to_user(name, utsname(), sizeof(*name)))
1320 		error = -EFAULT;
1321 	up_read(&uts_sem);
1322 
1323 	if (!error && override_release(name->release, sizeof(name->release)))
1324 		error = -EFAULT;
1325 	if (!error && override_architecture(name))
1326 		error = -EFAULT;
1327 	return error;
1328 }
1329 
1330 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1331 {
1332 	int error;
1333 
1334 	if (!name)
1335 		return -EFAULT;
1336 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1337 		return -EFAULT;
1338 
1339 	down_read(&uts_sem);
1340 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1341 			       __OLD_UTS_LEN);
1342 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1343 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1344 				__OLD_UTS_LEN);
1345 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1346 	error |= __copy_to_user(&name->release, &utsname()->release,
1347 				__OLD_UTS_LEN);
1348 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1349 	error |= __copy_to_user(&name->version, &utsname()->version,
1350 				__OLD_UTS_LEN);
1351 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1352 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1353 				__OLD_UTS_LEN);
1354 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1355 	up_read(&uts_sem);
1356 
1357 	if (!error && override_architecture(name))
1358 		error = -EFAULT;
1359 	if (!error && override_release(name->release, sizeof(name->release)))
1360 		error = -EFAULT;
1361 	return error ? -EFAULT : 0;
1362 }
1363 #endif
1364 
1365 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1366 {
1367 	int errno;
1368 	char tmp[__NEW_UTS_LEN];
1369 
1370 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1371 		return -EPERM;
1372 
1373 	if (len < 0 || len > __NEW_UTS_LEN)
1374 		return -EINVAL;
1375 	down_write(&uts_sem);
1376 	errno = -EFAULT;
1377 	if (!copy_from_user(tmp, name, len)) {
1378 		struct new_utsname *u = utsname();
1379 
1380 		memcpy(u->nodename, tmp, len);
1381 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1382 		errno = 0;
1383 		uts_proc_notify(UTS_PROC_HOSTNAME);
1384 	}
1385 	up_write(&uts_sem);
1386 	return errno;
1387 }
1388 
1389 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1390 
1391 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1392 {
1393 	int i, errno;
1394 	struct new_utsname *u;
1395 
1396 	if (len < 0)
1397 		return -EINVAL;
1398 	down_read(&uts_sem);
1399 	u = utsname();
1400 	i = 1 + strlen(u->nodename);
1401 	if (i > len)
1402 		i = len;
1403 	errno = 0;
1404 	if (copy_to_user(name, u->nodename, i))
1405 		errno = -EFAULT;
1406 	up_read(&uts_sem);
1407 	return errno;
1408 }
1409 
1410 #endif
1411 
1412 /*
1413  * Only setdomainname; getdomainname can be implemented by calling
1414  * uname()
1415  */
1416 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1417 {
1418 	int errno;
1419 	char tmp[__NEW_UTS_LEN];
1420 
1421 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1422 		return -EPERM;
1423 	if (len < 0 || len > __NEW_UTS_LEN)
1424 		return -EINVAL;
1425 
1426 	down_write(&uts_sem);
1427 	errno = -EFAULT;
1428 	if (!copy_from_user(tmp, name, len)) {
1429 		struct new_utsname *u = utsname();
1430 
1431 		memcpy(u->domainname, tmp, len);
1432 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1433 		errno = 0;
1434 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1435 	}
1436 	up_write(&uts_sem);
1437 	return errno;
1438 }
1439 
1440 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1441 {
1442 	struct rlimit value;
1443 	int ret;
1444 
1445 	ret = do_prlimit(current, resource, NULL, &value);
1446 	if (!ret)
1447 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1448 
1449 	return ret;
1450 }
1451 
1452 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1453 
1454 /*
1455  *	Back compatibility for getrlimit. Needed for some apps.
1456  */
1457 
1458 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1459 		struct rlimit __user *, rlim)
1460 {
1461 	struct rlimit x;
1462 	if (resource >= RLIM_NLIMITS)
1463 		return -EINVAL;
1464 
1465 	task_lock(current->group_leader);
1466 	x = current->signal->rlim[resource];
1467 	task_unlock(current->group_leader);
1468 	if (x.rlim_cur > 0x7FFFFFFF)
1469 		x.rlim_cur = 0x7FFFFFFF;
1470 	if (x.rlim_max > 0x7FFFFFFF)
1471 		x.rlim_max = 0x7FFFFFFF;
1472 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1473 }
1474 
1475 #endif
1476 
1477 static inline bool rlim64_is_infinity(__u64 rlim64)
1478 {
1479 #if BITS_PER_LONG < 64
1480 	return rlim64 >= ULONG_MAX;
1481 #else
1482 	return rlim64 == RLIM64_INFINITY;
1483 #endif
1484 }
1485 
1486 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1487 {
1488 	if (rlim->rlim_cur == RLIM_INFINITY)
1489 		rlim64->rlim_cur = RLIM64_INFINITY;
1490 	else
1491 		rlim64->rlim_cur = rlim->rlim_cur;
1492 	if (rlim->rlim_max == RLIM_INFINITY)
1493 		rlim64->rlim_max = RLIM64_INFINITY;
1494 	else
1495 		rlim64->rlim_max = rlim->rlim_max;
1496 }
1497 
1498 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1499 {
1500 	if (rlim64_is_infinity(rlim64->rlim_cur))
1501 		rlim->rlim_cur = RLIM_INFINITY;
1502 	else
1503 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1504 	if (rlim64_is_infinity(rlim64->rlim_max))
1505 		rlim->rlim_max = RLIM_INFINITY;
1506 	else
1507 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1508 }
1509 
1510 /* make sure you are allowed to change @tsk limits before calling this */
1511 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1512 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1513 {
1514 	struct rlimit *rlim;
1515 	int retval = 0;
1516 
1517 	if (resource >= RLIM_NLIMITS)
1518 		return -EINVAL;
1519 	if (new_rlim) {
1520 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1521 			return -EINVAL;
1522 		if (resource == RLIMIT_NOFILE &&
1523 				new_rlim->rlim_max > sysctl_nr_open)
1524 			return -EPERM;
1525 	}
1526 
1527 	/* protect tsk->signal and tsk->sighand from disappearing */
1528 	read_lock(&tasklist_lock);
1529 	if (!tsk->sighand) {
1530 		retval = -ESRCH;
1531 		goto out;
1532 	}
1533 
1534 	rlim = tsk->signal->rlim + resource;
1535 	task_lock(tsk->group_leader);
1536 	if (new_rlim) {
1537 		/* Keep the capable check against init_user_ns until
1538 		   cgroups can contain all limits */
1539 		if (new_rlim->rlim_max > rlim->rlim_max &&
1540 				!capable(CAP_SYS_RESOURCE))
1541 			retval = -EPERM;
1542 		if (!retval)
1543 			retval = security_task_setrlimit(tsk->group_leader,
1544 					resource, new_rlim);
1545 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1546 			/*
1547 			 * The caller is asking for an immediate RLIMIT_CPU
1548 			 * expiry.  But we use the zero value to mean "it was
1549 			 * never set".  So let's cheat and make it one second
1550 			 * instead
1551 			 */
1552 			new_rlim->rlim_cur = 1;
1553 		}
1554 	}
1555 	if (!retval) {
1556 		if (old_rlim)
1557 			*old_rlim = *rlim;
1558 		if (new_rlim)
1559 			*rlim = *new_rlim;
1560 	}
1561 	task_unlock(tsk->group_leader);
1562 
1563 	/*
1564 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1565 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1566 	 * very long-standing error, and fixing it now risks breakage of
1567 	 * applications, so we live with it
1568 	 */
1569 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1570 			 new_rlim->rlim_cur != RLIM_INFINITY)
1571 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1572 out:
1573 	read_unlock(&tasklist_lock);
1574 	return retval;
1575 }
1576 
1577 /* rcu lock must be held */
1578 static int check_prlimit_permission(struct task_struct *task)
1579 {
1580 	const struct cred *cred = current_cred(), *tcred;
1581 
1582 	if (current == task)
1583 		return 0;
1584 
1585 	tcred = __task_cred(task);
1586 	if (uid_eq(cred->uid, tcred->euid) &&
1587 	    uid_eq(cred->uid, tcred->suid) &&
1588 	    uid_eq(cred->uid, tcred->uid)  &&
1589 	    gid_eq(cred->gid, tcred->egid) &&
1590 	    gid_eq(cred->gid, tcred->sgid) &&
1591 	    gid_eq(cred->gid, tcred->gid))
1592 		return 0;
1593 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1594 		return 0;
1595 
1596 	return -EPERM;
1597 }
1598 
1599 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1600 		const struct rlimit64 __user *, new_rlim,
1601 		struct rlimit64 __user *, old_rlim)
1602 {
1603 	struct rlimit64 old64, new64;
1604 	struct rlimit old, new;
1605 	struct task_struct *tsk;
1606 	int ret;
1607 
1608 	if (new_rlim) {
1609 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1610 			return -EFAULT;
1611 		rlim64_to_rlim(&new64, &new);
1612 	}
1613 
1614 	rcu_read_lock();
1615 	tsk = pid ? find_task_by_vpid(pid) : current;
1616 	if (!tsk) {
1617 		rcu_read_unlock();
1618 		return -ESRCH;
1619 	}
1620 	ret = check_prlimit_permission(tsk);
1621 	if (ret) {
1622 		rcu_read_unlock();
1623 		return ret;
1624 	}
1625 	get_task_struct(tsk);
1626 	rcu_read_unlock();
1627 
1628 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1629 			old_rlim ? &old : NULL);
1630 
1631 	if (!ret && old_rlim) {
1632 		rlim_to_rlim64(&old, &old64);
1633 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1634 			ret = -EFAULT;
1635 	}
1636 
1637 	put_task_struct(tsk);
1638 	return ret;
1639 }
1640 
1641 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1642 {
1643 	struct rlimit new_rlim;
1644 
1645 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1646 		return -EFAULT;
1647 	return do_prlimit(current, resource, &new_rlim, NULL);
1648 }
1649 
1650 /*
1651  * It would make sense to put struct rusage in the task_struct,
1652  * except that would make the task_struct be *really big*.  After
1653  * task_struct gets moved into malloc'ed memory, it would
1654  * make sense to do this.  It will make moving the rest of the information
1655  * a lot simpler!  (Which we're not doing right now because we're not
1656  * measuring them yet).
1657  *
1658  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1659  * races with threads incrementing their own counters.  But since word
1660  * reads are atomic, we either get new values or old values and we don't
1661  * care which for the sums.  We always take the siglock to protect reading
1662  * the c* fields from p->signal from races with exit.c updating those
1663  * fields when reaping, so a sample either gets all the additions of a
1664  * given child after it's reaped, or none so this sample is before reaping.
1665  *
1666  * Locking:
1667  * We need to take the siglock for CHILDEREN, SELF and BOTH
1668  * for  the cases current multithreaded, non-current single threaded
1669  * non-current multithreaded.  Thread traversal is now safe with
1670  * the siglock held.
1671  * Strictly speaking, we donot need to take the siglock if we are current and
1672  * single threaded,  as no one else can take our signal_struct away, no one
1673  * else can  reap the  children to update signal->c* counters, and no one else
1674  * can race with the signal-> fields. If we do not take any lock, the
1675  * signal-> fields could be read out of order while another thread was just
1676  * exiting. So we should  place a read memory barrier when we avoid the lock.
1677  * On the writer side,  write memory barrier is implied in  __exit_signal
1678  * as __exit_signal releases  the siglock spinlock after updating the signal->
1679  * fields. But we don't do this yet to keep things simple.
1680  *
1681  */
1682 
1683 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1684 {
1685 	r->ru_nvcsw += t->nvcsw;
1686 	r->ru_nivcsw += t->nivcsw;
1687 	r->ru_minflt += t->min_flt;
1688 	r->ru_majflt += t->maj_flt;
1689 	r->ru_inblock += task_io_get_inblock(t);
1690 	r->ru_oublock += task_io_get_oublock(t);
1691 }
1692 
1693 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1694 {
1695 	struct task_struct *t;
1696 	unsigned long flags;
1697 	cputime_t tgutime, tgstime, utime, stime;
1698 	unsigned long maxrss = 0;
1699 
1700 	memset((char *) r, 0, sizeof *r);
1701 	utime = stime = 0;
1702 
1703 	if (who == RUSAGE_THREAD) {
1704 		task_times(current, &utime, &stime);
1705 		accumulate_thread_rusage(p, r);
1706 		maxrss = p->signal->maxrss;
1707 		goto out;
1708 	}
1709 
1710 	if (!lock_task_sighand(p, &flags))
1711 		return;
1712 
1713 	switch (who) {
1714 		case RUSAGE_BOTH:
1715 		case RUSAGE_CHILDREN:
1716 			utime = p->signal->cutime;
1717 			stime = p->signal->cstime;
1718 			r->ru_nvcsw = p->signal->cnvcsw;
1719 			r->ru_nivcsw = p->signal->cnivcsw;
1720 			r->ru_minflt = p->signal->cmin_flt;
1721 			r->ru_majflt = p->signal->cmaj_flt;
1722 			r->ru_inblock = p->signal->cinblock;
1723 			r->ru_oublock = p->signal->coublock;
1724 			maxrss = p->signal->cmaxrss;
1725 
1726 			if (who == RUSAGE_CHILDREN)
1727 				break;
1728 
1729 		case RUSAGE_SELF:
1730 			thread_group_times(p, &tgutime, &tgstime);
1731 			utime += tgutime;
1732 			stime += tgstime;
1733 			r->ru_nvcsw += p->signal->nvcsw;
1734 			r->ru_nivcsw += p->signal->nivcsw;
1735 			r->ru_minflt += p->signal->min_flt;
1736 			r->ru_majflt += p->signal->maj_flt;
1737 			r->ru_inblock += p->signal->inblock;
1738 			r->ru_oublock += p->signal->oublock;
1739 			if (maxrss < p->signal->maxrss)
1740 				maxrss = p->signal->maxrss;
1741 			t = p;
1742 			do {
1743 				accumulate_thread_rusage(t, r);
1744 				t = next_thread(t);
1745 			} while (t != p);
1746 			break;
1747 
1748 		default:
1749 			BUG();
1750 	}
1751 	unlock_task_sighand(p, &flags);
1752 
1753 out:
1754 	cputime_to_timeval(utime, &r->ru_utime);
1755 	cputime_to_timeval(stime, &r->ru_stime);
1756 
1757 	if (who != RUSAGE_CHILDREN) {
1758 		struct mm_struct *mm = get_task_mm(p);
1759 		if (mm) {
1760 			setmax_mm_hiwater_rss(&maxrss, mm);
1761 			mmput(mm);
1762 		}
1763 	}
1764 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1765 }
1766 
1767 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1768 {
1769 	struct rusage r;
1770 	k_getrusage(p, who, &r);
1771 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1772 }
1773 
1774 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1775 {
1776 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1777 	    who != RUSAGE_THREAD)
1778 		return -EINVAL;
1779 	return getrusage(current, who, ru);
1780 }
1781 
1782 SYSCALL_DEFINE1(umask, int, mask)
1783 {
1784 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1785 	return mask;
1786 }
1787 
1788 #ifdef CONFIG_CHECKPOINT_RESTORE
1789 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1790 {
1791 	struct file *exe_file;
1792 	struct dentry *dentry;
1793 	int err;
1794 
1795 	exe_file = fget(fd);
1796 	if (!exe_file)
1797 		return -EBADF;
1798 
1799 	dentry = exe_file->f_path.dentry;
1800 
1801 	/*
1802 	 * Because the original mm->exe_file points to executable file, make
1803 	 * sure that this one is executable as well, to avoid breaking an
1804 	 * overall picture.
1805 	 */
1806 	err = -EACCES;
1807 	if (!S_ISREG(dentry->d_inode->i_mode)	||
1808 	    exe_file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1809 		goto exit;
1810 
1811 	err = inode_permission(dentry->d_inode, MAY_EXEC);
1812 	if (err)
1813 		goto exit;
1814 
1815 	down_write(&mm->mmap_sem);
1816 
1817 	/*
1818 	 * Forbid mm->exe_file change if old file still mapped.
1819 	 */
1820 	err = -EBUSY;
1821 	if (mm->exe_file) {
1822 		struct vm_area_struct *vma;
1823 
1824 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1825 			if (vma->vm_file &&
1826 			    path_equal(&vma->vm_file->f_path,
1827 				       &mm->exe_file->f_path))
1828 				goto exit_unlock;
1829 	}
1830 
1831 	/*
1832 	 * The symlink can be changed only once, just to disallow arbitrary
1833 	 * transitions malicious software might bring in. This means one
1834 	 * could make a snapshot over all processes running and monitor
1835 	 * /proc/pid/exe changes to notice unusual activity if needed.
1836 	 */
1837 	err = -EPERM;
1838 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1839 		goto exit_unlock;
1840 
1841 	err = 0;
1842 	set_mm_exe_file(mm, exe_file);
1843 exit_unlock:
1844 	up_write(&mm->mmap_sem);
1845 
1846 exit:
1847 	fput(exe_file);
1848 	return err;
1849 }
1850 
1851 static int prctl_set_mm(int opt, unsigned long addr,
1852 			unsigned long arg4, unsigned long arg5)
1853 {
1854 	unsigned long rlim = rlimit(RLIMIT_DATA);
1855 	struct mm_struct *mm = current->mm;
1856 	struct vm_area_struct *vma;
1857 	int error;
1858 
1859 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1860 		return -EINVAL;
1861 
1862 	if (!capable(CAP_SYS_RESOURCE))
1863 		return -EPERM;
1864 
1865 	if (opt == PR_SET_MM_EXE_FILE)
1866 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1867 
1868 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1869 		return -EINVAL;
1870 
1871 	error = -EINVAL;
1872 
1873 	down_read(&mm->mmap_sem);
1874 	vma = find_vma(mm, addr);
1875 
1876 	switch (opt) {
1877 	case PR_SET_MM_START_CODE:
1878 		mm->start_code = addr;
1879 		break;
1880 	case PR_SET_MM_END_CODE:
1881 		mm->end_code = addr;
1882 		break;
1883 	case PR_SET_MM_START_DATA:
1884 		mm->start_data = addr;
1885 		break;
1886 	case PR_SET_MM_END_DATA:
1887 		mm->end_data = addr;
1888 		break;
1889 
1890 	case PR_SET_MM_START_BRK:
1891 		if (addr <= mm->end_data)
1892 			goto out;
1893 
1894 		if (rlim < RLIM_INFINITY &&
1895 		    (mm->brk - addr) +
1896 		    (mm->end_data - mm->start_data) > rlim)
1897 			goto out;
1898 
1899 		mm->start_brk = addr;
1900 		break;
1901 
1902 	case PR_SET_MM_BRK:
1903 		if (addr <= mm->end_data)
1904 			goto out;
1905 
1906 		if (rlim < RLIM_INFINITY &&
1907 		    (addr - mm->start_brk) +
1908 		    (mm->end_data - mm->start_data) > rlim)
1909 			goto out;
1910 
1911 		mm->brk = addr;
1912 		break;
1913 
1914 	/*
1915 	 * If command line arguments and environment
1916 	 * are placed somewhere else on stack, we can
1917 	 * set them up here, ARG_START/END to setup
1918 	 * command line argumets and ENV_START/END
1919 	 * for environment.
1920 	 */
1921 	case PR_SET_MM_START_STACK:
1922 	case PR_SET_MM_ARG_START:
1923 	case PR_SET_MM_ARG_END:
1924 	case PR_SET_MM_ENV_START:
1925 	case PR_SET_MM_ENV_END:
1926 		if (!vma) {
1927 			error = -EFAULT;
1928 			goto out;
1929 		}
1930 		if (opt == PR_SET_MM_START_STACK)
1931 			mm->start_stack = addr;
1932 		else if (opt == PR_SET_MM_ARG_START)
1933 			mm->arg_start = addr;
1934 		else if (opt == PR_SET_MM_ARG_END)
1935 			mm->arg_end = addr;
1936 		else if (opt == PR_SET_MM_ENV_START)
1937 			mm->env_start = addr;
1938 		else if (opt == PR_SET_MM_ENV_END)
1939 			mm->env_end = addr;
1940 		break;
1941 
1942 	/*
1943 	 * This doesn't move auxiliary vector itself
1944 	 * since it's pinned to mm_struct, but allow
1945 	 * to fill vector with new values. It's up
1946 	 * to a caller to provide sane values here
1947 	 * otherwise user space tools which use this
1948 	 * vector might be unhappy.
1949 	 */
1950 	case PR_SET_MM_AUXV: {
1951 		unsigned long user_auxv[AT_VECTOR_SIZE];
1952 
1953 		if (arg4 > sizeof(user_auxv))
1954 			goto out;
1955 		up_read(&mm->mmap_sem);
1956 
1957 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1958 			return -EFAULT;
1959 
1960 		/* Make sure the last entry is always AT_NULL */
1961 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1962 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1963 
1964 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1965 
1966 		task_lock(current);
1967 		memcpy(mm->saved_auxv, user_auxv, arg4);
1968 		task_unlock(current);
1969 
1970 		return 0;
1971 	}
1972 	default:
1973 		goto out;
1974 	}
1975 
1976 	error = 0;
1977 out:
1978 	up_read(&mm->mmap_sem);
1979 	return error;
1980 }
1981 
1982 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1983 {
1984 	return put_user(me->clear_child_tid, tid_addr);
1985 }
1986 
1987 #else /* CONFIG_CHECKPOINT_RESTORE */
1988 static int prctl_set_mm(int opt, unsigned long addr,
1989 			unsigned long arg4, unsigned long arg5)
1990 {
1991 	return -EINVAL;
1992 }
1993 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1994 {
1995 	return -EINVAL;
1996 }
1997 #endif
1998 
1999 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2000 		unsigned long, arg4, unsigned long, arg5)
2001 {
2002 	struct task_struct *me = current;
2003 	unsigned char comm[sizeof(me->comm)];
2004 	long error;
2005 
2006 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2007 	if (error != -ENOSYS)
2008 		return error;
2009 
2010 	error = 0;
2011 	switch (option) {
2012 		case PR_SET_PDEATHSIG:
2013 			if (!valid_signal(arg2)) {
2014 				error = -EINVAL;
2015 				break;
2016 			}
2017 			me->pdeath_signal = arg2;
2018 			break;
2019 		case PR_GET_PDEATHSIG:
2020 			error = put_user(me->pdeath_signal, (int __user *)arg2);
2021 			break;
2022 		case PR_GET_DUMPABLE:
2023 			error = get_dumpable(me->mm);
2024 			break;
2025 		case PR_SET_DUMPABLE:
2026 			if (arg2 < 0 || arg2 > 1) {
2027 				error = -EINVAL;
2028 				break;
2029 			}
2030 			set_dumpable(me->mm, arg2);
2031 			break;
2032 
2033 		case PR_SET_UNALIGN:
2034 			error = SET_UNALIGN_CTL(me, arg2);
2035 			break;
2036 		case PR_GET_UNALIGN:
2037 			error = GET_UNALIGN_CTL(me, arg2);
2038 			break;
2039 		case PR_SET_FPEMU:
2040 			error = SET_FPEMU_CTL(me, arg2);
2041 			break;
2042 		case PR_GET_FPEMU:
2043 			error = GET_FPEMU_CTL(me, arg2);
2044 			break;
2045 		case PR_SET_FPEXC:
2046 			error = SET_FPEXC_CTL(me, arg2);
2047 			break;
2048 		case PR_GET_FPEXC:
2049 			error = GET_FPEXC_CTL(me, arg2);
2050 			break;
2051 		case PR_GET_TIMING:
2052 			error = PR_TIMING_STATISTICAL;
2053 			break;
2054 		case PR_SET_TIMING:
2055 			if (arg2 != PR_TIMING_STATISTICAL)
2056 				error = -EINVAL;
2057 			break;
2058 		case PR_SET_NAME:
2059 			comm[sizeof(me->comm)-1] = 0;
2060 			if (strncpy_from_user(comm, (char __user *)arg2,
2061 					      sizeof(me->comm) - 1) < 0)
2062 				return -EFAULT;
2063 			set_task_comm(me, comm);
2064 			proc_comm_connector(me);
2065 			break;
2066 		case PR_GET_NAME:
2067 			get_task_comm(comm, me);
2068 			if (copy_to_user((char __user *)arg2, comm,
2069 					 sizeof(comm)))
2070 				return -EFAULT;
2071 			break;
2072 		case PR_GET_ENDIAN:
2073 			error = GET_ENDIAN(me, arg2);
2074 			break;
2075 		case PR_SET_ENDIAN:
2076 			error = SET_ENDIAN(me, arg2);
2077 			break;
2078 		case PR_GET_SECCOMP:
2079 			error = prctl_get_seccomp();
2080 			break;
2081 		case PR_SET_SECCOMP:
2082 			error = prctl_set_seccomp(arg2, (char __user *)arg3);
2083 			break;
2084 		case PR_GET_TSC:
2085 			error = GET_TSC_CTL(arg2);
2086 			break;
2087 		case PR_SET_TSC:
2088 			error = SET_TSC_CTL(arg2);
2089 			break;
2090 		case PR_TASK_PERF_EVENTS_DISABLE:
2091 			error = perf_event_task_disable();
2092 			break;
2093 		case PR_TASK_PERF_EVENTS_ENABLE:
2094 			error = perf_event_task_enable();
2095 			break;
2096 		case PR_GET_TIMERSLACK:
2097 			error = current->timer_slack_ns;
2098 			break;
2099 		case PR_SET_TIMERSLACK:
2100 			if (arg2 <= 0)
2101 				current->timer_slack_ns =
2102 					current->default_timer_slack_ns;
2103 			else
2104 				current->timer_slack_ns = arg2;
2105 			break;
2106 		case PR_MCE_KILL:
2107 			if (arg4 | arg5)
2108 				return -EINVAL;
2109 			switch (arg2) {
2110 			case PR_MCE_KILL_CLEAR:
2111 				if (arg3 != 0)
2112 					return -EINVAL;
2113 				current->flags &= ~PF_MCE_PROCESS;
2114 				break;
2115 			case PR_MCE_KILL_SET:
2116 				current->flags |= PF_MCE_PROCESS;
2117 				if (arg3 == PR_MCE_KILL_EARLY)
2118 					current->flags |= PF_MCE_EARLY;
2119 				else if (arg3 == PR_MCE_KILL_LATE)
2120 					current->flags &= ~PF_MCE_EARLY;
2121 				else if (arg3 == PR_MCE_KILL_DEFAULT)
2122 					current->flags &=
2123 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2124 				else
2125 					return -EINVAL;
2126 				break;
2127 			default:
2128 				return -EINVAL;
2129 			}
2130 			break;
2131 		case PR_MCE_KILL_GET:
2132 			if (arg2 | arg3 | arg4 | arg5)
2133 				return -EINVAL;
2134 			if (current->flags & PF_MCE_PROCESS)
2135 				error = (current->flags & PF_MCE_EARLY) ?
2136 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2137 			else
2138 				error = PR_MCE_KILL_DEFAULT;
2139 			break;
2140 		case PR_SET_MM:
2141 			error = prctl_set_mm(arg2, arg3, arg4, arg5);
2142 			break;
2143 		case PR_GET_TID_ADDRESS:
2144 			error = prctl_get_tid_address(me, (int __user **)arg2);
2145 			break;
2146 		case PR_SET_CHILD_SUBREAPER:
2147 			me->signal->is_child_subreaper = !!arg2;
2148 			break;
2149 		case PR_GET_CHILD_SUBREAPER:
2150 			error = put_user(me->signal->is_child_subreaper,
2151 					 (int __user *) arg2);
2152 			break;
2153 		case PR_SET_NO_NEW_PRIVS:
2154 			if (arg2 != 1 || arg3 || arg4 || arg5)
2155 				return -EINVAL;
2156 
2157 			current->no_new_privs = 1;
2158 			break;
2159 		case PR_GET_NO_NEW_PRIVS:
2160 			if (arg2 || arg3 || arg4 || arg5)
2161 				return -EINVAL;
2162 			return current->no_new_privs ? 1 : 0;
2163 		default:
2164 			error = -EINVAL;
2165 			break;
2166 	}
2167 	return error;
2168 }
2169 
2170 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2171 		struct getcpu_cache __user *, unused)
2172 {
2173 	int err = 0;
2174 	int cpu = raw_smp_processor_id();
2175 	if (cpup)
2176 		err |= put_user(cpu, cpup);
2177 	if (nodep)
2178 		err |= put_user(cpu_to_node(cpu), nodep);
2179 	return err ? -EFAULT : 0;
2180 }
2181 
2182 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2183 
2184 static void argv_cleanup(struct subprocess_info *info)
2185 {
2186 	argv_free(info->argv);
2187 }
2188 
2189 static int __orderly_poweroff(void)
2190 {
2191 	int argc;
2192 	char **argv;
2193 	static char *envp[] = {
2194 		"HOME=/",
2195 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2196 		NULL
2197 	};
2198 	int ret;
2199 
2200 	argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2201 	if (argv == NULL) {
2202 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2203 		       __func__, poweroff_cmd);
2204 		return -ENOMEM;
2205 	}
2206 
2207 	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_NO_WAIT,
2208 				      NULL, argv_cleanup, NULL);
2209 	if (ret == -ENOMEM)
2210 		argv_free(argv);
2211 
2212 	return ret;
2213 }
2214 
2215 /**
2216  * orderly_poweroff - Trigger an orderly system poweroff
2217  * @force: force poweroff if command execution fails
2218  *
2219  * This may be called from any context to trigger a system shutdown.
2220  * If the orderly shutdown fails, it will force an immediate shutdown.
2221  */
2222 int orderly_poweroff(bool force)
2223 {
2224 	int ret = __orderly_poweroff();
2225 
2226 	if (ret && force) {
2227 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2228 		       "forcing the issue\n");
2229 
2230 		/*
2231 		 * I guess this should try to kick off some daemon to sync and
2232 		 * poweroff asap.  Or not even bother syncing if we're doing an
2233 		 * emergency shutdown?
2234 		 */
2235 		emergency_sync();
2236 		kernel_power_off();
2237 	}
2238 
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(orderly_poweroff);
2242