1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/smp_lock.h> 13 #include <linux/notifier.h> 14 #include <linux/reboot.h> 15 #include <linux/prctl.h> 16 #include <linux/init.h> 17 #include <linux/highuid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kexec.h> 21 #include <linux/workqueue.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 33 #include <linux/compat.h> 34 #include <linux/syscalls.h> 35 #include <linux/kprobes.h> 36 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/unistd.h> 40 41 #ifndef SET_UNALIGN_CTL 42 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 43 #endif 44 #ifndef GET_UNALIGN_CTL 45 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 46 #endif 47 #ifndef SET_FPEMU_CTL 48 # define SET_FPEMU_CTL(a,b) (-EINVAL) 49 #endif 50 #ifndef GET_FPEMU_CTL 51 # define GET_FPEMU_CTL(a,b) (-EINVAL) 52 #endif 53 #ifndef SET_FPEXC_CTL 54 # define SET_FPEXC_CTL(a,b) (-EINVAL) 55 #endif 56 #ifndef GET_FPEXC_CTL 57 # define GET_FPEXC_CTL(a,b) (-EINVAL) 58 #endif 59 60 /* 61 * this is where the system-wide overflow UID and GID are defined, for 62 * architectures that now have 32-bit UID/GID but didn't in the past 63 */ 64 65 int overflowuid = DEFAULT_OVERFLOWUID; 66 int overflowgid = DEFAULT_OVERFLOWGID; 67 68 #ifdef CONFIG_UID16 69 EXPORT_SYMBOL(overflowuid); 70 EXPORT_SYMBOL(overflowgid); 71 #endif 72 73 /* 74 * the same as above, but for filesystems which can only store a 16-bit 75 * UID and GID. as such, this is needed on all architectures 76 */ 77 78 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 79 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 80 81 EXPORT_SYMBOL(fs_overflowuid); 82 EXPORT_SYMBOL(fs_overflowgid); 83 84 /* 85 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 86 */ 87 88 int C_A_D = 1; 89 int cad_pid = 1; 90 91 /* 92 * Notifier list for kernel code which wants to be called 93 * at shutdown. This is used to stop any idling DMA operations 94 * and the like. 95 */ 96 97 static struct notifier_block *reboot_notifier_list; 98 static DEFINE_RWLOCK(notifier_lock); 99 100 /** 101 * notifier_chain_register - Add notifier to a notifier chain 102 * @list: Pointer to root list pointer 103 * @n: New entry in notifier chain 104 * 105 * Adds a notifier to a notifier chain. 106 * 107 * Currently always returns zero. 108 */ 109 110 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) 111 { 112 write_lock(¬ifier_lock); 113 while(*list) 114 { 115 if(n->priority > (*list)->priority) 116 break; 117 list= &((*list)->next); 118 } 119 n->next = *list; 120 *list=n; 121 write_unlock(¬ifier_lock); 122 return 0; 123 } 124 125 EXPORT_SYMBOL(notifier_chain_register); 126 127 /** 128 * notifier_chain_unregister - Remove notifier from a notifier chain 129 * @nl: Pointer to root list pointer 130 * @n: New entry in notifier chain 131 * 132 * Removes a notifier from a notifier chain. 133 * 134 * Returns zero on success, or %-ENOENT on failure. 135 */ 136 137 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) 138 { 139 write_lock(¬ifier_lock); 140 while((*nl)!=NULL) 141 { 142 if((*nl)==n) 143 { 144 *nl=n->next; 145 write_unlock(¬ifier_lock); 146 return 0; 147 } 148 nl=&((*nl)->next); 149 } 150 write_unlock(¬ifier_lock); 151 return -ENOENT; 152 } 153 154 EXPORT_SYMBOL(notifier_chain_unregister); 155 156 /** 157 * notifier_call_chain - Call functions in a notifier chain 158 * @n: Pointer to root pointer of notifier chain 159 * @val: Value passed unmodified to notifier function 160 * @v: Pointer passed unmodified to notifier function 161 * 162 * Calls each function in a notifier chain in turn. 163 * 164 * If the return value of the notifier can be and'd 165 * with %NOTIFY_STOP_MASK, then notifier_call_chain 166 * will return immediately, with the return value of 167 * the notifier function which halted execution. 168 * Otherwise, the return value is the return value 169 * of the last notifier function called. 170 */ 171 172 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) 173 { 174 int ret=NOTIFY_DONE; 175 struct notifier_block *nb = *n; 176 177 while(nb) 178 { 179 ret=nb->notifier_call(nb,val,v); 180 if(ret&NOTIFY_STOP_MASK) 181 { 182 return ret; 183 } 184 nb=nb->next; 185 } 186 return ret; 187 } 188 189 EXPORT_SYMBOL(notifier_call_chain); 190 191 /** 192 * register_reboot_notifier - Register function to be called at reboot time 193 * @nb: Info about notifier function to be called 194 * 195 * Registers a function with the list of functions 196 * to be called at reboot time. 197 * 198 * Currently always returns zero, as notifier_chain_register 199 * always returns zero. 200 */ 201 202 int register_reboot_notifier(struct notifier_block * nb) 203 { 204 return notifier_chain_register(&reboot_notifier_list, nb); 205 } 206 207 EXPORT_SYMBOL(register_reboot_notifier); 208 209 /** 210 * unregister_reboot_notifier - Unregister previously registered reboot notifier 211 * @nb: Hook to be unregistered 212 * 213 * Unregisters a previously registered reboot 214 * notifier function. 215 * 216 * Returns zero on success, or %-ENOENT on failure. 217 */ 218 219 int unregister_reboot_notifier(struct notifier_block * nb) 220 { 221 return notifier_chain_unregister(&reboot_notifier_list, nb); 222 } 223 224 EXPORT_SYMBOL(unregister_reboot_notifier); 225 226 static int set_one_prio(struct task_struct *p, int niceval, int error) 227 { 228 int no_nice; 229 230 if (p->uid != current->euid && 231 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 232 error = -EPERM; 233 goto out; 234 } 235 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 236 error = -EACCES; 237 goto out; 238 } 239 no_nice = security_task_setnice(p, niceval); 240 if (no_nice) { 241 error = no_nice; 242 goto out; 243 } 244 if (error == -ESRCH) 245 error = 0; 246 set_user_nice(p, niceval); 247 out: 248 return error; 249 } 250 251 asmlinkage long sys_setpriority(int which, int who, int niceval) 252 { 253 struct task_struct *g, *p; 254 struct user_struct *user; 255 int error = -EINVAL; 256 257 if (which > 2 || which < 0) 258 goto out; 259 260 /* normalize: avoid signed division (rounding problems) */ 261 error = -ESRCH; 262 if (niceval < -20) 263 niceval = -20; 264 if (niceval > 19) 265 niceval = 19; 266 267 read_lock(&tasklist_lock); 268 switch (which) { 269 case PRIO_PROCESS: 270 if (!who) 271 who = current->pid; 272 p = find_task_by_pid(who); 273 if (p) 274 error = set_one_prio(p, niceval, error); 275 break; 276 case PRIO_PGRP: 277 if (!who) 278 who = process_group(current); 279 do_each_task_pid(who, PIDTYPE_PGID, p) { 280 error = set_one_prio(p, niceval, error); 281 } while_each_task_pid(who, PIDTYPE_PGID, p); 282 break; 283 case PRIO_USER: 284 user = current->user; 285 if (!who) 286 who = current->uid; 287 else 288 if ((who != current->uid) && !(user = find_user(who))) 289 goto out_unlock; /* No processes for this user */ 290 291 do_each_thread(g, p) 292 if (p->uid == who) 293 error = set_one_prio(p, niceval, error); 294 while_each_thread(g, p); 295 if (who != current->uid) 296 free_uid(user); /* For find_user() */ 297 break; 298 } 299 out_unlock: 300 read_unlock(&tasklist_lock); 301 out: 302 return error; 303 } 304 305 /* 306 * Ugh. To avoid negative return values, "getpriority()" will 307 * not return the normal nice-value, but a negated value that 308 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 309 * to stay compatible. 310 */ 311 asmlinkage long sys_getpriority(int which, int who) 312 { 313 struct task_struct *g, *p; 314 struct user_struct *user; 315 long niceval, retval = -ESRCH; 316 317 if (which > 2 || which < 0) 318 return -EINVAL; 319 320 read_lock(&tasklist_lock); 321 switch (which) { 322 case PRIO_PROCESS: 323 if (!who) 324 who = current->pid; 325 p = find_task_by_pid(who); 326 if (p) { 327 niceval = 20 - task_nice(p); 328 if (niceval > retval) 329 retval = niceval; 330 } 331 break; 332 case PRIO_PGRP: 333 if (!who) 334 who = process_group(current); 335 do_each_task_pid(who, PIDTYPE_PGID, p) { 336 niceval = 20 - task_nice(p); 337 if (niceval > retval) 338 retval = niceval; 339 } while_each_task_pid(who, PIDTYPE_PGID, p); 340 break; 341 case PRIO_USER: 342 user = current->user; 343 if (!who) 344 who = current->uid; 345 else 346 if ((who != current->uid) && !(user = find_user(who))) 347 goto out_unlock; /* No processes for this user */ 348 349 do_each_thread(g, p) 350 if (p->uid == who) { 351 niceval = 20 - task_nice(p); 352 if (niceval > retval) 353 retval = niceval; 354 } 355 while_each_thread(g, p); 356 if (who != current->uid) 357 free_uid(user); /* for find_user() */ 358 break; 359 } 360 out_unlock: 361 read_unlock(&tasklist_lock); 362 363 return retval; 364 } 365 366 /** 367 * emergency_restart - reboot the system 368 * 369 * Without shutting down any hardware or taking any locks 370 * reboot the system. This is called when we know we are in 371 * trouble so this is our best effort to reboot. This is 372 * safe to call in interrupt context. 373 */ 374 void emergency_restart(void) 375 { 376 machine_emergency_restart(); 377 } 378 EXPORT_SYMBOL_GPL(emergency_restart); 379 380 void kernel_restart_prepare(char *cmd) 381 { 382 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 383 system_state = SYSTEM_RESTART; 384 device_shutdown(); 385 } 386 387 /** 388 * kernel_restart - reboot the system 389 * @cmd: pointer to buffer containing command to execute for restart 390 * or %NULL 391 * 392 * Shutdown everything and perform a clean reboot. 393 * This is not safe to call in interrupt context. 394 */ 395 void kernel_restart(char *cmd) 396 { 397 kernel_restart_prepare(cmd); 398 if (!cmd) { 399 printk(KERN_EMERG "Restarting system.\n"); 400 } else { 401 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 402 } 403 printk(".\n"); 404 machine_restart(cmd); 405 } 406 EXPORT_SYMBOL_GPL(kernel_restart); 407 408 /** 409 * kernel_kexec - reboot the system 410 * 411 * Move into place and start executing a preloaded standalone 412 * executable. If nothing was preloaded return an error. 413 */ 414 void kernel_kexec(void) 415 { 416 #ifdef CONFIG_KEXEC 417 struct kimage *image; 418 image = xchg(&kexec_image, 0); 419 if (!image) { 420 return; 421 } 422 kernel_restart_prepare(NULL); 423 printk(KERN_EMERG "Starting new kernel\n"); 424 machine_shutdown(); 425 machine_kexec(image); 426 #endif 427 } 428 EXPORT_SYMBOL_GPL(kernel_kexec); 429 430 /** 431 * kernel_halt - halt the system 432 * 433 * Shutdown everything and perform a clean system halt. 434 */ 435 void kernel_halt_prepare(void) 436 { 437 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); 438 system_state = SYSTEM_HALT; 439 device_shutdown(); 440 } 441 void kernel_halt(void) 442 { 443 kernel_halt_prepare(); 444 printk(KERN_EMERG "System halted.\n"); 445 machine_halt(); 446 } 447 EXPORT_SYMBOL_GPL(kernel_halt); 448 449 /** 450 * kernel_power_off - power_off the system 451 * 452 * Shutdown everything and perform a clean system power_off. 453 */ 454 void kernel_power_off_prepare(void) 455 { 456 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); 457 system_state = SYSTEM_POWER_OFF; 458 device_shutdown(); 459 } 460 void kernel_power_off(void) 461 { 462 kernel_power_off_prepare(); 463 printk(KERN_EMERG "Power down.\n"); 464 machine_power_off(); 465 } 466 EXPORT_SYMBOL_GPL(kernel_power_off); 467 468 /* 469 * Reboot system call: for obvious reasons only root may call it, 470 * and even root needs to set up some magic numbers in the registers 471 * so that some mistake won't make this reboot the whole machine. 472 * You can also set the meaning of the ctrl-alt-del-key here. 473 * 474 * reboot doesn't sync: do that yourself before calling this. 475 */ 476 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 477 { 478 char buffer[256]; 479 480 /* We only trust the superuser with rebooting the system. */ 481 if (!capable(CAP_SYS_BOOT)) 482 return -EPERM; 483 484 /* For safety, we require "magic" arguments. */ 485 if (magic1 != LINUX_REBOOT_MAGIC1 || 486 (magic2 != LINUX_REBOOT_MAGIC2 && 487 magic2 != LINUX_REBOOT_MAGIC2A && 488 magic2 != LINUX_REBOOT_MAGIC2B && 489 magic2 != LINUX_REBOOT_MAGIC2C)) 490 return -EINVAL; 491 492 /* Instead of trying to make the power_off code look like 493 * halt when pm_power_off is not set do it the easy way. 494 */ 495 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 496 cmd = LINUX_REBOOT_CMD_HALT; 497 498 lock_kernel(); 499 switch (cmd) { 500 case LINUX_REBOOT_CMD_RESTART: 501 kernel_restart(NULL); 502 break; 503 504 case LINUX_REBOOT_CMD_CAD_ON: 505 C_A_D = 1; 506 break; 507 508 case LINUX_REBOOT_CMD_CAD_OFF: 509 C_A_D = 0; 510 break; 511 512 case LINUX_REBOOT_CMD_HALT: 513 kernel_halt(); 514 unlock_kernel(); 515 do_exit(0); 516 break; 517 518 case LINUX_REBOOT_CMD_POWER_OFF: 519 kernel_power_off(); 520 unlock_kernel(); 521 do_exit(0); 522 break; 523 524 case LINUX_REBOOT_CMD_RESTART2: 525 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 526 unlock_kernel(); 527 return -EFAULT; 528 } 529 buffer[sizeof(buffer) - 1] = '\0'; 530 531 kernel_restart(buffer); 532 break; 533 534 case LINUX_REBOOT_CMD_KEXEC: 535 kernel_kexec(); 536 unlock_kernel(); 537 return -EINVAL; 538 539 #ifdef CONFIG_SOFTWARE_SUSPEND 540 case LINUX_REBOOT_CMD_SW_SUSPEND: 541 { 542 int ret = software_suspend(); 543 unlock_kernel(); 544 return ret; 545 } 546 #endif 547 548 default: 549 unlock_kernel(); 550 return -EINVAL; 551 } 552 unlock_kernel(); 553 return 0; 554 } 555 556 static void deferred_cad(void *dummy) 557 { 558 kernel_restart(NULL); 559 } 560 561 /* 562 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 563 * As it's called within an interrupt, it may NOT sync: the only choice 564 * is whether to reboot at once, or just ignore the ctrl-alt-del. 565 */ 566 void ctrl_alt_del(void) 567 { 568 static DECLARE_WORK(cad_work, deferred_cad, NULL); 569 570 if (C_A_D) 571 schedule_work(&cad_work); 572 else 573 kill_proc(cad_pid, SIGINT, 1); 574 } 575 576 577 /* 578 * Unprivileged users may change the real gid to the effective gid 579 * or vice versa. (BSD-style) 580 * 581 * If you set the real gid at all, or set the effective gid to a value not 582 * equal to the real gid, then the saved gid is set to the new effective gid. 583 * 584 * This makes it possible for a setgid program to completely drop its 585 * privileges, which is often a useful assertion to make when you are doing 586 * a security audit over a program. 587 * 588 * The general idea is that a program which uses just setregid() will be 589 * 100% compatible with BSD. A program which uses just setgid() will be 590 * 100% compatible with POSIX with saved IDs. 591 * 592 * SMP: There are not races, the GIDs are checked only by filesystem 593 * operations (as far as semantic preservation is concerned). 594 */ 595 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 596 { 597 int old_rgid = current->gid; 598 int old_egid = current->egid; 599 int new_rgid = old_rgid; 600 int new_egid = old_egid; 601 int retval; 602 603 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 604 if (retval) 605 return retval; 606 607 if (rgid != (gid_t) -1) { 608 if ((old_rgid == rgid) || 609 (current->egid==rgid) || 610 capable(CAP_SETGID)) 611 new_rgid = rgid; 612 else 613 return -EPERM; 614 } 615 if (egid != (gid_t) -1) { 616 if ((old_rgid == egid) || 617 (current->egid == egid) || 618 (current->sgid == egid) || 619 capable(CAP_SETGID)) 620 new_egid = egid; 621 else { 622 return -EPERM; 623 } 624 } 625 if (new_egid != old_egid) 626 { 627 current->mm->dumpable = suid_dumpable; 628 smp_wmb(); 629 } 630 if (rgid != (gid_t) -1 || 631 (egid != (gid_t) -1 && egid != old_rgid)) 632 current->sgid = new_egid; 633 current->fsgid = new_egid; 634 current->egid = new_egid; 635 current->gid = new_rgid; 636 key_fsgid_changed(current); 637 proc_id_connector(current, PROC_EVENT_GID); 638 return 0; 639 } 640 641 /* 642 * setgid() is implemented like SysV w/ SAVED_IDS 643 * 644 * SMP: Same implicit races as above. 645 */ 646 asmlinkage long sys_setgid(gid_t gid) 647 { 648 int old_egid = current->egid; 649 int retval; 650 651 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 652 if (retval) 653 return retval; 654 655 if (capable(CAP_SETGID)) 656 { 657 if(old_egid != gid) 658 { 659 current->mm->dumpable = suid_dumpable; 660 smp_wmb(); 661 } 662 current->gid = current->egid = current->sgid = current->fsgid = gid; 663 } 664 else if ((gid == current->gid) || (gid == current->sgid)) 665 { 666 if(old_egid != gid) 667 { 668 current->mm->dumpable = suid_dumpable; 669 smp_wmb(); 670 } 671 current->egid = current->fsgid = gid; 672 } 673 else 674 return -EPERM; 675 676 key_fsgid_changed(current); 677 proc_id_connector(current, PROC_EVENT_GID); 678 return 0; 679 } 680 681 static int set_user(uid_t new_ruid, int dumpclear) 682 { 683 struct user_struct *new_user; 684 685 new_user = alloc_uid(new_ruid); 686 if (!new_user) 687 return -EAGAIN; 688 689 if (atomic_read(&new_user->processes) >= 690 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 691 new_user != &root_user) { 692 free_uid(new_user); 693 return -EAGAIN; 694 } 695 696 switch_uid(new_user); 697 698 if(dumpclear) 699 { 700 current->mm->dumpable = suid_dumpable; 701 smp_wmb(); 702 } 703 current->uid = new_ruid; 704 return 0; 705 } 706 707 /* 708 * Unprivileged users may change the real uid to the effective uid 709 * or vice versa. (BSD-style) 710 * 711 * If you set the real uid at all, or set the effective uid to a value not 712 * equal to the real uid, then the saved uid is set to the new effective uid. 713 * 714 * This makes it possible for a setuid program to completely drop its 715 * privileges, which is often a useful assertion to make when you are doing 716 * a security audit over a program. 717 * 718 * The general idea is that a program which uses just setreuid() will be 719 * 100% compatible with BSD. A program which uses just setuid() will be 720 * 100% compatible with POSIX with saved IDs. 721 */ 722 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 723 { 724 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 725 int retval; 726 727 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 728 if (retval) 729 return retval; 730 731 new_ruid = old_ruid = current->uid; 732 new_euid = old_euid = current->euid; 733 old_suid = current->suid; 734 735 if (ruid != (uid_t) -1) { 736 new_ruid = ruid; 737 if ((old_ruid != ruid) && 738 (current->euid != ruid) && 739 !capable(CAP_SETUID)) 740 return -EPERM; 741 } 742 743 if (euid != (uid_t) -1) { 744 new_euid = euid; 745 if ((old_ruid != euid) && 746 (current->euid != euid) && 747 (current->suid != euid) && 748 !capable(CAP_SETUID)) 749 return -EPERM; 750 } 751 752 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 753 return -EAGAIN; 754 755 if (new_euid != old_euid) 756 { 757 current->mm->dumpable = suid_dumpable; 758 smp_wmb(); 759 } 760 current->fsuid = current->euid = new_euid; 761 if (ruid != (uid_t) -1 || 762 (euid != (uid_t) -1 && euid != old_ruid)) 763 current->suid = current->euid; 764 current->fsuid = current->euid; 765 766 key_fsuid_changed(current); 767 proc_id_connector(current, PROC_EVENT_UID); 768 769 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 770 } 771 772 773 774 /* 775 * setuid() is implemented like SysV with SAVED_IDS 776 * 777 * Note that SAVED_ID's is deficient in that a setuid root program 778 * like sendmail, for example, cannot set its uid to be a normal 779 * user and then switch back, because if you're root, setuid() sets 780 * the saved uid too. If you don't like this, blame the bright people 781 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 782 * will allow a root program to temporarily drop privileges and be able to 783 * regain them by swapping the real and effective uid. 784 */ 785 asmlinkage long sys_setuid(uid_t uid) 786 { 787 int old_euid = current->euid; 788 int old_ruid, old_suid, new_ruid, new_suid; 789 int retval; 790 791 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 792 if (retval) 793 return retval; 794 795 old_ruid = new_ruid = current->uid; 796 old_suid = current->suid; 797 new_suid = old_suid; 798 799 if (capable(CAP_SETUID)) { 800 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 801 return -EAGAIN; 802 new_suid = uid; 803 } else if ((uid != current->uid) && (uid != new_suid)) 804 return -EPERM; 805 806 if (old_euid != uid) 807 { 808 current->mm->dumpable = suid_dumpable; 809 smp_wmb(); 810 } 811 current->fsuid = current->euid = uid; 812 current->suid = new_suid; 813 814 key_fsuid_changed(current); 815 proc_id_connector(current, PROC_EVENT_UID); 816 817 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 818 } 819 820 821 /* 822 * This function implements a generic ability to update ruid, euid, 823 * and suid. This allows you to implement the 4.4 compatible seteuid(). 824 */ 825 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 826 { 827 int old_ruid = current->uid; 828 int old_euid = current->euid; 829 int old_suid = current->suid; 830 int retval; 831 832 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 833 if (retval) 834 return retval; 835 836 if (!capable(CAP_SETUID)) { 837 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 838 (ruid != current->euid) && (ruid != current->suid)) 839 return -EPERM; 840 if ((euid != (uid_t) -1) && (euid != current->uid) && 841 (euid != current->euid) && (euid != current->suid)) 842 return -EPERM; 843 if ((suid != (uid_t) -1) && (suid != current->uid) && 844 (suid != current->euid) && (suid != current->suid)) 845 return -EPERM; 846 } 847 if (ruid != (uid_t) -1) { 848 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 849 return -EAGAIN; 850 } 851 if (euid != (uid_t) -1) { 852 if (euid != current->euid) 853 { 854 current->mm->dumpable = suid_dumpable; 855 smp_wmb(); 856 } 857 current->euid = euid; 858 } 859 current->fsuid = current->euid; 860 if (suid != (uid_t) -1) 861 current->suid = suid; 862 863 key_fsuid_changed(current); 864 proc_id_connector(current, PROC_EVENT_UID); 865 866 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 867 } 868 869 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 870 { 871 int retval; 872 873 if (!(retval = put_user(current->uid, ruid)) && 874 !(retval = put_user(current->euid, euid))) 875 retval = put_user(current->suid, suid); 876 877 return retval; 878 } 879 880 /* 881 * Same as above, but for rgid, egid, sgid. 882 */ 883 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 884 { 885 int retval; 886 887 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 888 if (retval) 889 return retval; 890 891 if (!capable(CAP_SETGID)) { 892 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 893 (rgid != current->egid) && (rgid != current->sgid)) 894 return -EPERM; 895 if ((egid != (gid_t) -1) && (egid != current->gid) && 896 (egid != current->egid) && (egid != current->sgid)) 897 return -EPERM; 898 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 899 (sgid != current->egid) && (sgid != current->sgid)) 900 return -EPERM; 901 } 902 if (egid != (gid_t) -1) { 903 if (egid != current->egid) 904 { 905 current->mm->dumpable = suid_dumpable; 906 smp_wmb(); 907 } 908 current->egid = egid; 909 } 910 current->fsgid = current->egid; 911 if (rgid != (gid_t) -1) 912 current->gid = rgid; 913 if (sgid != (gid_t) -1) 914 current->sgid = sgid; 915 916 key_fsgid_changed(current); 917 proc_id_connector(current, PROC_EVENT_GID); 918 return 0; 919 } 920 921 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 922 { 923 int retval; 924 925 if (!(retval = put_user(current->gid, rgid)) && 926 !(retval = put_user(current->egid, egid))) 927 retval = put_user(current->sgid, sgid); 928 929 return retval; 930 } 931 932 933 /* 934 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 935 * is used for "access()" and for the NFS daemon (letting nfsd stay at 936 * whatever uid it wants to). It normally shadows "euid", except when 937 * explicitly set by setfsuid() or for access.. 938 */ 939 asmlinkage long sys_setfsuid(uid_t uid) 940 { 941 int old_fsuid; 942 943 old_fsuid = current->fsuid; 944 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 945 return old_fsuid; 946 947 if (uid == current->uid || uid == current->euid || 948 uid == current->suid || uid == current->fsuid || 949 capable(CAP_SETUID)) 950 { 951 if (uid != old_fsuid) 952 { 953 current->mm->dumpable = suid_dumpable; 954 smp_wmb(); 955 } 956 current->fsuid = uid; 957 } 958 959 key_fsuid_changed(current); 960 proc_id_connector(current, PROC_EVENT_UID); 961 962 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 963 964 return old_fsuid; 965 } 966 967 /* 968 * Samma p� svenska.. 969 */ 970 asmlinkage long sys_setfsgid(gid_t gid) 971 { 972 int old_fsgid; 973 974 old_fsgid = current->fsgid; 975 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 976 return old_fsgid; 977 978 if (gid == current->gid || gid == current->egid || 979 gid == current->sgid || gid == current->fsgid || 980 capable(CAP_SETGID)) 981 { 982 if (gid != old_fsgid) 983 { 984 current->mm->dumpable = suid_dumpable; 985 smp_wmb(); 986 } 987 current->fsgid = gid; 988 key_fsgid_changed(current); 989 proc_id_connector(current, PROC_EVENT_GID); 990 } 991 return old_fsgid; 992 } 993 994 asmlinkage long sys_times(struct tms __user * tbuf) 995 { 996 /* 997 * In the SMP world we might just be unlucky and have one of 998 * the times increment as we use it. Since the value is an 999 * atomically safe type this is just fine. Conceptually its 1000 * as if the syscall took an instant longer to occur. 1001 */ 1002 if (tbuf) { 1003 struct tms tmp; 1004 cputime_t utime, stime, cutime, cstime; 1005 1006 #ifdef CONFIG_SMP 1007 if (thread_group_empty(current)) { 1008 /* 1009 * Single thread case without the use of any locks. 1010 * 1011 * We may race with release_task if two threads are 1012 * executing. However, release task first adds up the 1013 * counters (__exit_signal) before removing the task 1014 * from the process tasklist (__unhash_process). 1015 * __exit_signal also acquires and releases the 1016 * siglock which results in the proper memory ordering 1017 * so that the list modifications are always visible 1018 * after the counters have been updated. 1019 * 1020 * If the counters have been updated by the second thread 1021 * but the thread has not yet been removed from the list 1022 * then the other branch will be executing which will 1023 * block on tasklist_lock until the exit handling of the 1024 * other task is finished. 1025 * 1026 * This also implies that the sighand->siglock cannot 1027 * be held by another processor. So we can also 1028 * skip acquiring that lock. 1029 */ 1030 utime = cputime_add(current->signal->utime, current->utime); 1031 stime = cputime_add(current->signal->utime, current->stime); 1032 cutime = current->signal->cutime; 1033 cstime = current->signal->cstime; 1034 } else 1035 #endif 1036 { 1037 1038 /* Process with multiple threads */ 1039 struct task_struct *tsk = current; 1040 struct task_struct *t; 1041 1042 read_lock(&tasklist_lock); 1043 utime = tsk->signal->utime; 1044 stime = tsk->signal->stime; 1045 t = tsk; 1046 do { 1047 utime = cputime_add(utime, t->utime); 1048 stime = cputime_add(stime, t->stime); 1049 t = next_thread(t); 1050 } while (t != tsk); 1051 1052 /* 1053 * While we have tasklist_lock read-locked, no dying thread 1054 * can be updating current->signal->[us]time. Instead, 1055 * we got their counts included in the live thread loop. 1056 * However, another thread can come in right now and 1057 * do a wait call that updates current->signal->c[us]time. 1058 * To make sure we always see that pair updated atomically, 1059 * we take the siglock around fetching them. 1060 */ 1061 spin_lock_irq(&tsk->sighand->siglock); 1062 cutime = tsk->signal->cutime; 1063 cstime = tsk->signal->cstime; 1064 spin_unlock_irq(&tsk->sighand->siglock); 1065 read_unlock(&tasklist_lock); 1066 } 1067 tmp.tms_utime = cputime_to_clock_t(utime); 1068 tmp.tms_stime = cputime_to_clock_t(stime); 1069 tmp.tms_cutime = cputime_to_clock_t(cutime); 1070 tmp.tms_cstime = cputime_to_clock_t(cstime); 1071 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1072 return -EFAULT; 1073 } 1074 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1075 } 1076 1077 /* 1078 * This needs some heavy checking ... 1079 * I just haven't the stomach for it. I also don't fully 1080 * understand sessions/pgrp etc. Let somebody who does explain it. 1081 * 1082 * OK, I think I have the protection semantics right.... this is really 1083 * only important on a multi-user system anyway, to make sure one user 1084 * can't send a signal to a process owned by another. -TYT, 12/12/91 1085 * 1086 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1087 * LBT 04.03.94 1088 */ 1089 1090 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1091 { 1092 struct task_struct *p; 1093 struct task_struct *group_leader = current->group_leader; 1094 int err = -EINVAL; 1095 1096 if (!pid) 1097 pid = group_leader->pid; 1098 if (!pgid) 1099 pgid = pid; 1100 if (pgid < 0) 1101 return -EINVAL; 1102 1103 /* From this point forward we keep holding onto the tasklist lock 1104 * so that our parent does not change from under us. -DaveM 1105 */ 1106 write_lock_irq(&tasklist_lock); 1107 1108 err = -ESRCH; 1109 p = find_task_by_pid(pid); 1110 if (!p) 1111 goto out; 1112 1113 err = -EINVAL; 1114 if (!thread_group_leader(p)) 1115 goto out; 1116 1117 if (p->real_parent == group_leader) { 1118 err = -EPERM; 1119 if (p->signal->session != group_leader->signal->session) 1120 goto out; 1121 err = -EACCES; 1122 if (p->did_exec) 1123 goto out; 1124 } else { 1125 err = -ESRCH; 1126 if (p != group_leader) 1127 goto out; 1128 } 1129 1130 err = -EPERM; 1131 if (p->signal->leader) 1132 goto out; 1133 1134 if (pgid != pid) { 1135 struct task_struct *p; 1136 1137 do_each_task_pid(pgid, PIDTYPE_PGID, p) { 1138 if (p->signal->session == group_leader->signal->session) 1139 goto ok_pgid; 1140 } while_each_task_pid(pgid, PIDTYPE_PGID, p); 1141 goto out; 1142 } 1143 1144 ok_pgid: 1145 err = security_task_setpgid(p, pgid); 1146 if (err) 1147 goto out; 1148 1149 if (process_group(p) != pgid) { 1150 detach_pid(p, PIDTYPE_PGID); 1151 p->signal->pgrp = pgid; 1152 attach_pid(p, PIDTYPE_PGID, pgid); 1153 } 1154 1155 err = 0; 1156 out: 1157 /* All paths lead to here, thus we are safe. -DaveM */ 1158 write_unlock_irq(&tasklist_lock); 1159 return err; 1160 } 1161 1162 asmlinkage long sys_getpgid(pid_t pid) 1163 { 1164 if (!pid) { 1165 return process_group(current); 1166 } else { 1167 int retval; 1168 struct task_struct *p; 1169 1170 read_lock(&tasklist_lock); 1171 p = find_task_by_pid(pid); 1172 1173 retval = -ESRCH; 1174 if (p) { 1175 retval = security_task_getpgid(p); 1176 if (!retval) 1177 retval = process_group(p); 1178 } 1179 read_unlock(&tasklist_lock); 1180 return retval; 1181 } 1182 } 1183 1184 #ifdef __ARCH_WANT_SYS_GETPGRP 1185 1186 asmlinkage long sys_getpgrp(void) 1187 { 1188 /* SMP - assuming writes are word atomic this is fine */ 1189 return process_group(current); 1190 } 1191 1192 #endif 1193 1194 asmlinkage long sys_getsid(pid_t pid) 1195 { 1196 if (!pid) { 1197 return current->signal->session; 1198 } else { 1199 int retval; 1200 struct task_struct *p; 1201 1202 read_lock(&tasklist_lock); 1203 p = find_task_by_pid(pid); 1204 1205 retval = -ESRCH; 1206 if(p) { 1207 retval = security_task_getsid(p); 1208 if (!retval) 1209 retval = p->signal->session; 1210 } 1211 read_unlock(&tasklist_lock); 1212 return retval; 1213 } 1214 } 1215 1216 asmlinkage long sys_setsid(void) 1217 { 1218 struct task_struct *group_leader = current->group_leader; 1219 struct pid *pid; 1220 int err = -EPERM; 1221 1222 down(&tty_sem); 1223 write_lock_irq(&tasklist_lock); 1224 1225 pid = find_pid(PIDTYPE_PGID, group_leader->pid); 1226 if (pid) 1227 goto out; 1228 1229 group_leader->signal->leader = 1; 1230 __set_special_pids(group_leader->pid, group_leader->pid); 1231 group_leader->signal->tty = NULL; 1232 group_leader->signal->tty_old_pgrp = 0; 1233 err = process_group(group_leader); 1234 out: 1235 write_unlock_irq(&tasklist_lock); 1236 up(&tty_sem); 1237 return err; 1238 } 1239 1240 /* 1241 * Supplementary group IDs 1242 */ 1243 1244 /* init to 2 - one for init_task, one to ensure it is never freed */ 1245 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1246 1247 struct group_info *groups_alloc(int gidsetsize) 1248 { 1249 struct group_info *group_info; 1250 int nblocks; 1251 int i; 1252 1253 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1254 /* Make sure we always allocate at least one indirect block pointer */ 1255 nblocks = nblocks ? : 1; 1256 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1257 if (!group_info) 1258 return NULL; 1259 group_info->ngroups = gidsetsize; 1260 group_info->nblocks = nblocks; 1261 atomic_set(&group_info->usage, 1); 1262 1263 if (gidsetsize <= NGROUPS_SMALL) { 1264 group_info->blocks[0] = group_info->small_block; 1265 } else { 1266 for (i = 0; i < nblocks; i++) { 1267 gid_t *b; 1268 b = (void *)__get_free_page(GFP_USER); 1269 if (!b) 1270 goto out_undo_partial_alloc; 1271 group_info->blocks[i] = b; 1272 } 1273 } 1274 return group_info; 1275 1276 out_undo_partial_alloc: 1277 while (--i >= 0) { 1278 free_page((unsigned long)group_info->blocks[i]); 1279 } 1280 kfree(group_info); 1281 return NULL; 1282 } 1283 1284 EXPORT_SYMBOL(groups_alloc); 1285 1286 void groups_free(struct group_info *group_info) 1287 { 1288 if (group_info->blocks[0] != group_info->small_block) { 1289 int i; 1290 for (i = 0; i < group_info->nblocks; i++) 1291 free_page((unsigned long)group_info->blocks[i]); 1292 } 1293 kfree(group_info); 1294 } 1295 1296 EXPORT_SYMBOL(groups_free); 1297 1298 /* export the group_info to a user-space array */ 1299 static int groups_to_user(gid_t __user *grouplist, 1300 struct group_info *group_info) 1301 { 1302 int i; 1303 int count = group_info->ngroups; 1304 1305 for (i = 0; i < group_info->nblocks; i++) { 1306 int cp_count = min(NGROUPS_PER_BLOCK, count); 1307 int off = i * NGROUPS_PER_BLOCK; 1308 int len = cp_count * sizeof(*grouplist); 1309 1310 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1311 return -EFAULT; 1312 1313 count -= cp_count; 1314 } 1315 return 0; 1316 } 1317 1318 /* fill a group_info from a user-space array - it must be allocated already */ 1319 static int groups_from_user(struct group_info *group_info, 1320 gid_t __user *grouplist) 1321 { 1322 int i; 1323 int count = group_info->ngroups; 1324 1325 for (i = 0; i < group_info->nblocks; i++) { 1326 int cp_count = min(NGROUPS_PER_BLOCK, count); 1327 int off = i * NGROUPS_PER_BLOCK; 1328 int len = cp_count * sizeof(*grouplist); 1329 1330 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1331 return -EFAULT; 1332 1333 count -= cp_count; 1334 } 1335 return 0; 1336 } 1337 1338 /* a simple Shell sort */ 1339 static void groups_sort(struct group_info *group_info) 1340 { 1341 int base, max, stride; 1342 int gidsetsize = group_info->ngroups; 1343 1344 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1345 ; /* nothing */ 1346 stride /= 3; 1347 1348 while (stride) { 1349 max = gidsetsize - stride; 1350 for (base = 0; base < max; base++) { 1351 int left = base; 1352 int right = left + stride; 1353 gid_t tmp = GROUP_AT(group_info, right); 1354 1355 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1356 GROUP_AT(group_info, right) = 1357 GROUP_AT(group_info, left); 1358 right = left; 1359 left -= stride; 1360 } 1361 GROUP_AT(group_info, right) = tmp; 1362 } 1363 stride /= 3; 1364 } 1365 } 1366 1367 /* a simple bsearch */ 1368 int groups_search(struct group_info *group_info, gid_t grp) 1369 { 1370 int left, right; 1371 1372 if (!group_info) 1373 return 0; 1374 1375 left = 0; 1376 right = group_info->ngroups; 1377 while (left < right) { 1378 int mid = (left+right)/2; 1379 int cmp = grp - GROUP_AT(group_info, mid); 1380 if (cmp > 0) 1381 left = mid + 1; 1382 else if (cmp < 0) 1383 right = mid; 1384 else 1385 return 1; 1386 } 1387 return 0; 1388 } 1389 1390 /* validate and set current->group_info */ 1391 int set_current_groups(struct group_info *group_info) 1392 { 1393 int retval; 1394 struct group_info *old_info; 1395 1396 retval = security_task_setgroups(group_info); 1397 if (retval) 1398 return retval; 1399 1400 groups_sort(group_info); 1401 get_group_info(group_info); 1402 1403 task_lock(current); 1404 old_info = current->group_info; 1405 current->group_info = group_info; 1406 task_unlock(current); 1407 1408 put_group_info(old_info); 1409 1410 return 0; 1411 } 1412 1413 EXPORT_SYMBOL(set_current_groups); 1414 1415 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1416 { 1417 int i = 0; 1418 1419 /* 1420 * SMP: Nobody else can change our grouplist. Thus we are 1421 * safe. 1422 */ 1423 1424 if (gidsetsize < 0) 1425 return -EINVAL; 1426 1427 /* no need to grab task_lock here; it cannot change */ 1428 get_group_info(current->group_info); 1429 i = current->group_info->ngroups; 1430 if (gidsetsize) { 1431 if (i > gidsetsize) { 1432 i = -EINVAL; 1433 goto out; 1434 } 1435 if (groups_to_user(grouplist, current->group_info)) { 1436 i = -EFAULT; 1437 goto out; 1438 } 1439 } 1440 out: 1441 put_group_info(current->group_info); 1442 return i; 1443 } 1444 1445 /* 1446 * SMP: Our groups are copy-on-write. We can set them safely 1447 * without another task interfering. 1448 */ 1449 1450 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1451 { 1452 struct group_info *group_info; 1453 int retval; 1454 1455 if (!capable(CAP_SETGID)) 1456 return -EPERM; 1457 if ((unsigned)gidsetsize > NGROUPS_MAX) 1458 return -EINVAL; 1459 1460 group_info = groups_alloc(gidsetsize); 1461 if (!group_info) 1462 return -ENOMEM; 1463 retval = groups_from_user(group_info, grouplist); 1464 if (retval) { 1465 put_group_info(group_info); 1466 return retval; 1467 } 1468 1469 retval = set_current_groups(group_info); 1470 put_group_info(group_info); 1471 1472 return retval; 1473 } 1474 1475 /* 1476 * Check whether we're fsgid/egid or in the supplemental group.. 1477 */ 1478 int in_group_p(gid_t grp) 1479 { 1480 int retval = 1; 1481 if (grp != current->fsgid) { 1482 get_group_info(current->group_info); 1483 retval = groups_search(current->group_info, grp); 1484 put_group_info(current->group_info); 1485 } 1486 return retval; 1487 } 1488 1489 EXPORT_SYMBOL(in_group_p); 1490 1491 int in_egroup_p(gid_t grp) 1492 { 1493 int retval = 1; 1494 if (grp != current->egid) { 1495 get_group_info(current->group_info); 1496 retval = groups_search(current->group_info, grp); 1497 put_group_info(current->group_info); 1498 } 1499 return retval; 1500 } 1501 1502 EXPORT_SYMBOL(in_egroup_p); 1503 1504 DECLARE_RWSEM(uts_sem); 1505 1506 EXPORT_SYMBOL(uts_sem); 1507 1508 asmlinkage long sys_newuname(struct new_utsname __user * name) 1509 { 1510 int errno = 0; 1511 1512 down_read(&uts_sem); 1513 if (copy_to_user(name,&system_utsname,sizeof *name)) 1514 errno = -EFAULT; 1515 up_read(&uts_sem); 1516 return errno; 1517 } 1518 1519 asmlinkage long sys_sethostname(char __user *name, int len) 1520 { 1521 int errno; 1522 char tmp[__NEW_UTS_LEN]; 1523 1524 if (!capable(CAP_SYS_ADMIN)) 1525 return -EPERM; 1526 if (len < 0 || len > __NEW_UTS_LEN) 1527 return -EINVAL; 1528 down_write(&uts_sem); 1529 errno = -EFAULT; 1530 if (!copy_from_user(tmp, name, len)) { 1531 memcpy(system_utsname.nodename, tmp, len); 1532 system_utsname.nodename[len] = 0; 1533 errno = 0; 1534 } 1535 up_write(&uts_sem); 1536 return errno; 1537 } 1538 1539 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1540 1541 asmlinkage long sys_gethostname(char __user *name, int len) 1542 { 1543 int i, errno; 1544 1545 if (len < 0) 1546 return -EINVAL; 1547 down_read(&uts_sem); 1548 i = 1 + strlen(system_utsname.nodename); 1549 if (i > len) 1550 i = len; 1551 errno = 0; 1552 if (copy_to_user(name, system_utsname.nodename, i)) 1553 errno = -EFAULT; 1554 up_read(&uts_sem); 1555 return errno; 1556 } 1557 1558 #endif 1559 1560 /* 1561 * Only setdomainname; getdomainname can be implemented by calling 1562 * uname() 1563 */ 1564 asmlinkage long sys_setdomainname(char __user *name, int len) 1565 { 1566 int errno; 1567 char tmp[__NEW_UTS_LEN]; 1568 1569 if (!capable(CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 if (len < 0 || len > __NEW_UTS_LEN) 1572 return -EINVAL; 1573 1574 down_write(&uts_sem); 1575 errno = -EFAULT; 1576 if (!copy_from_user(tmp, name, len)) { 1577 memcpy(system_utsname.domainname, tmp, len); 1578 system_utsname.domainname[len] = 0; 1579 errno = 0; 1580 } 1581 up_write(&uts_sem); 1582 return errno; 1583 } 1584 1585 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1586 { 1587 if (resource >= RLIM_NLIMITS) 1588 return -EINVAL; 1589 else { 1590 struct rlimit value; 1591 task_lock(current->group_leader); 1592 value = current->signal->rlim[resource]; 1593 task_unlock(current->group_leader); 1594 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1595 } 1596 } 1597 1598 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1599 1600 /* 1601 * Back compatibility for getrlimit. Needed for some apps. 1602 */ 1603 1604 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1605 { 1606 struct rlimit x; 1607 if (resource >= RLIM_NLIMITS) 1608 return -EINVAL; 1609 1610 task_lock(current->group_leader); 1611 x = current->signal->rlim[resource]; 1612 task_unlock(current->group_leader); 1613 if(x.rlim_cur > 0x7FFFFFFF) 1614 x.rlim_cur = 0x7FFFFFFF; 1615 if(x.rlim_max > 0x7FFFFFFF) 1616 x.rlim_max = 0x7FFFFFFF; 1617 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1618 } 1619 1620 #endif 1621 1622 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1623 { 1624 struct rlimit new_rlim, *old_rlim; 1625 int retval; 1626 1627 if (resource >= RLIM_NLIMITS) 1628 return -EINVAL; 1629 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1630 return -EFAULT; 1631 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1632 return -EINVAL; 1633 old_rlim = current->signal->rlim + resource; 1634 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1635 !capable(CAP_SYS_RESOURCE)) 1636 return -EPERM; 1637 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1638 return -EPERM; 1639 1640 retval = security_task_setrlimit(resource, &new_rlim); 1641 if (retval) 1642 return retval; 1643 1644 task_lock(current->group_leader); 1645 *old_rlim = new_rlim; 1646 task_unlock(current->group_leader); 1647 1648 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY && 1649 (cputime_eq(current->signal->it_prof_expires, cputime_zero) || 1650 new_rlim.rlim_cur <= cputime_to_secs( 1651 current->signal->it_prof_expires))) { 1652 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur); 1653 read_lock(&tasklist_lock); 1654 spin_lock_irq(¤t->sighand->siglock); 1655 set_process_cpu_timer(current, CPUCLOCK_PROF, 1656 &cputime, NULL); 1657 spin_unlock_irq(¤t->sighand->siglock); 1658 read_unlock(&tasklist_lock); 1659 } 1660 1661 return 0; 1662 } 1663 1664 /* 1665 * It would make sense to put struct rusage in the task_struct, 1666 * except that would make the task_struct be *really big*. After 1667 * task_struct gets moved into malloc'ed memory, it would 1668 * make sense to do this. It will make moving the rest of the information 1669 * a lot simpler! (Which we're not doing right now because we're not 1670 * measuring them yet). 1671 * 1672 * This expects to be called with tasklist_lock read-locked or better, 1673 * and the siglock not locked. It may momentarily take the siglock. 1674 * 1675 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1676 * races with threads incrementing their own counters. But since word 1677 * reads are atomic, we either get new values or old values and we don't 1678 * care which for the sums. We always take the siglock to protect reading 1679 * the c* fields from p->signal from races with exit.c updating those 1680 * fields when reaping, so a sample either gets all the additions of a 1681 * given child after it's reaped, or none so this sample is before reaping. 1682 */ 1683 1684 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1685 { 1686 struct task_struct *t; 1687 unsigned long flags; 1688 cputime_t utime, stime; 1689 1690 memset((char *) r, 0, sizeof *r); 1691 1692 if (unlikely(!p->signal)) 1693 return; 1694 1695 utime = stime = cputime_zero; 1696 1697 switch (who) { 1698 case RUSAGE_BOTH: 1699 case RUSAGE_CHILDREN: 1700 spin_lock_irqsave(&p->sighand->siglock, flags); 1701 utime = p->signal->cutime; 1702 stime = p->signal->cstime; 1703 r->ru_nvcsw = p->signal->cnvcsw; 1704 r->ru_nivcsw = p->signal->cnivcsw; 1705 r->ru_minflt = p->signal->cmin_flt; 1706 r->ru_majflt = p->signal->cmaj_flt; 1707 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1708 1709 if (who == RUSAGE_CHILDREN) 1710 break; 1711 1712 case RUSAGE_SELF: 1713 utime = cputime_add(utime, p->signal->utime); 1714 stime = cputime_add(stime, p->signal->stime); 1715 r->ru_nvcsw += p->signal->nvcsw; 1716 r->ru_nivcsw += p->signal->nivcsw; 1717 r->ru_minflt += p->signal->min_flt; 1718 r->ru_majflt += p->signal->maj_flt; 1719 t = p; 1720 do { 1721 utime = cputime_add(utime, t->utime); 1722 stime = cputime_add(stime, t->stime); 1723 r->ru_nvcsw += t->nvcsw; 1724 r->ru_nivcsw += t->nivcsw; 1725 r->ru_minflt += t->min_flt; 1726 r->ru_majflt += t->maj_flt; 1727 t = next_thread(t); 1728 } while (t != p); 1729 break; 1730 1731 default: 1732 BUG(); 1733 } 1734 1735 cputime_to_timeval(utime, &r->ru_utime); 1736 cputime_to_timeval(stime, &r->ru_stime); 1737 } 1738 1739 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1740 { 1741 struct rusage r; 1742 read_lock(&tasklist_lock); 1743 k_getrusage(p, who, &r); 1744 read_unlock(&tasklist_lock); 1745 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1746 } 1747 1748 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1749 { 1750 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1751 return -EINVAL; 1752 return getrusage(current, who, ru); 1753 } 1754 1755 asmlinkage long sys_umask(int mask) 1756 { 1757 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1758 return mask; 1759 } 1760 1761 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1762 unsigned long arg4, unsigned long arg5) 1763 { 1764 long error; 1765 1766 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1767 if (error) 1768 return error; 1769 1770 switch (option) { 1771 case PR_SET_PDEATHSIG: 1772 if (!valid_signal(arg2)) { 1773 error = -EINVAL; 1774 break; 1775 } 1776 current->pdeath_signal = arg2; 1777 break; 1778 case PR_GET_PDEATHSIG: 1779 error = put_user(current->pdeath_signal, (int __user *)arg2); 1780 break; 1781 case PR_GET_DUMPABLE: 1782 error = current->mm->dumpable; 1783 break; 1784 case PR_SET_DUMPABLE: 1785 if (arg2 < 0 || arg2 > 2) { 1786 error = -EINVAL; 1787 break; 1788 } 1789 current->mm->dumpable = arg2; 1790 break; 1791 1792 case PR_SET_UNALIGN: 1793 error = SET_UNALIGN_CTL(current, arg2); 1794 break; 1795 case PR_GET_UNALIGN: 1796 error = GET_UNALIGN_CTL(current, arg2); 1797 break; 1798 case PR_SET_FPEMU: 1799 error = SET_FPEMU_CTL(current, arg2); 1800 break; 1801 case PR_GET_FPEMU: 1802 error = GET_FPEMU_CTL(current, arg2); 1803 break; 1804 case PR_SET_FPEXC: 1805 error = SET_FPEXC_CTL(current, arg2); 1806 break; 1807 case PR_GET_FPEXC: 1808 error = GET_FPEXC_CTL(current, arg2); 1809 break; 1810 case PR_GET_TIMING: 1811 error = PR_TIMING_STATISTICAL; 1812 break; 1813 case PR_SET_TIMING: 1814 if (arg2 == PR_TIMING_STATISTICAL) 1815 error = 0; 1816 else 1817 error = -EINVAL; 1818 break; 1819 1820 case PR_GET_KEEPCAPS: 1821 if (current->keep_capabilities) 1822 error = 1; 1823 break; 1824 case PR_SET_KEEPCAPS: 1825 if (arg2 != 0 && arg2 != 1) { 1826 error = -EINVAL; 1827 break; 1828 } 1829 current->keep_capabilities = arg2; 1830 break; 1831 case PR_SET_NAME: { 1832 struct task_struct *me = current; 1833 unsigned char ncomm[sizeof(me->comm)]; 1834 1835 ncomm[sizeof(me->comm)-1] = 0; 1836 if (strncpy_from_user(ncomm, (char __user *)arg2, 1837 sizeof(me->comm)-1) < 0) 1838 return -EFAULT; 1839 set_task_comm(me, ncomm); 1840 return 0; 1841 } 1842 case PR_GET_NAME: { 1843 struct task_struct *me = current; 1844 unsigned char tcomm[sizeof(me->comm)]; 1845 1846 get_task_comm(tcomm, me); 1847 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1848 return -EFAULT; 1849 return 0; 1850 } 1851 default: 1852 error = -EINVAL; 1853 break; 1854 } 1855 return error; 1856 } 1857