xref: /openbmc/linux/kernel/sys.c (revision 87c2ce3b)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
40 
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
58 #endif
59 
60 /*
61  * this is where the system-wide overflow UID and GID are defined, for
62  * architectures that now have 32-bit UID/GID but didn't in the past
63  */
64 
65 int overflowuid = DEFAULT_OVERFLOWUID;
66 int overflowgid = DEFAULT_OVERFLOWGID;
67 
68 #ifdef CONFIG_UID16
69 EXPORT_SYMBOL(overflowuid);
70 EXPORT_SYMBOL(overflowgid);
71 #endif
72 
73 /*
74  * the same as above, but for filesystems which can only store a 16-bit
75  * UID and GID. as such, this is needed on all architectures
76  */
77 
78 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
79 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
80 
81 EXPORT_SYMBOL(fs_overflowuid);
82 EXPORT_SYMBOL(fs_overflowgid);
83 
84 /*
85  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
86  */
87 
88 int C_A_D = 1;
89 int cad_pid = 1;
90 
91 /*
92  *	Notifier list for kernel code which wants to be called
93  *	at shutdown. This is used to stop any idling DMA operations
94  *	and the like.
95  */
96 
97 static struct notifier_block *reboot_notifier_list;
98 static DEFINE_RWLOCK(notifier_lock);
99 
100 /**
101  *	notifier_chain_register	- Add notifier to a notifier chain
102  *	@list: Pointer to root list pointer
103  *	@n: New entry in notifier chain
104  *
105  *	Adds a notifier to a notifier chain.
106  *
107  *	Currently always returns zero.
108  */
109 
110 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
111 {
112 	write_lock(&notifier_lock);
113 	while(*list)
114 	{
115 		if(n->priority > (*list)->priority)
116 			break;
117 		list= &((*list)->next);
118 	}
119 	n->next = *list;
120 	*list=n;
121 	write_unlock(&notifier_lock);
122 	return 0;
123 }
124 
125 EXPORT_SYMBOL(notifier_chain_register);
126 
127 /**
128  *	notifier_chain_unregister - Remove notifier from a notifier chain
129  *	@nl: Pointer to root list pointer
130  *	@n: New entry in notifier chain
131  *
132  *	Removes a notifier from a notifier chain.
133  *
134  *	Returns zero on success, or %-ENOENT on failure.
135  */
136 
137 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
138 {
139 	write_lock(&notifier_lock);
140 	while((*nl)!=NULL)
141 	{
142 		if((*nl)==n)
143 		{
144 			*nl=n->next;
145 			write_unlock(&notifier_lock);
146 			return 0;
147 		}
148 		nl=&((*nl)->next);
149 	}
150 	write_unlock(&notifier_lock);
151 	return -ENOENT;
152 }
153 
154 EXPORT_SYMBOL(notifier_chain_unregister);
155 
156 /**
157  *	notifier_call_chain - Call functions in a notifier chain
158  *	@n: Pointer to root pointer of notifier chain
159  *	@val: Value passed unmodified to notifier function
160  *	@v: Pointer passed unmodified to notifier function
161  *
162  *	Calls each function in a notifier chain in turn.
163  *
164  *	If the return value of the notifier can be and'd
165  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
166  *	will return immediately, with the return value of
167  *	the notifier function which halted execution.
168  *	Otherwise, the return value is the return value
169  *	of the last notifier function called.
170  */
171 
172 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
173 {
174 	int ret=NOTIFY_DONE;
175 	struct notifier_block *nb = *n;
176 
177 	while(nb)
178 	{
179 		ret=nb->notifier_call(nb,val,v);
180 		if(ret&NOTIFY_STOP_MASK)
181 		{
182 			return ret;
183 		}
184 		nb=nb->next;
185 	}
186 	return ret;
187 }
188 
189 EXPORT_SYMBOL(notifier_call_chain);
190 
191 /**
192  *	register_reboot_notifier - Register function to be called at reboot time
193  *	@nb: Info about notifier function to be called
194  *
195  *	Registers a function with the list of functions
196  *	to be called at reboot time.
197  *
198  *	Currently always returns zero, as notifier_chain_register
199  *	always returns zero.
200  */
201 
202 int register_reboot_notifier(struct notifier_block * nb)
203 {
204 	return notifier_chain_register(&reboot_notifier_list, nb);
205 }
206 
207 EXPORT_SYMBOL(register_reboot_notifier);
208 
209 /**
210  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
211  *	@nb: Hook to be unregistered
212  *
213  *	Unregisters a previously registered reboot
214  *	notifier function.
215  *
216  *	Returns zero on success, or %-ENOENT on failure.
217  */
218 
219 int unregister_reboot_notifier(struct notifier_block * nb)
220 {
221 	return notifier_chain_unregister(&reboot_notifier_list, nb);
222 }
223 
224 EXPORT_SYMBOL(unregister_reboot_notifier);
225 
226 static int set_one_prio(struct task_struct *p, int niceval, int error)
227 {
228 	int no_nice;
229 
230 	if (p->uid != current->euid &&
231 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
232 		error = -EPERM;
233 		goto out;
234 	}
235 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
236 		error = -EACCES;
237 		goto out;
238 	}
239 	no_nice = security_task_setnice(p, niceval);
240 	if (no_nice) {
241 		error = no_nice;
242 		goto out;
243 	}
244 	if (error == -ESRCH)
245 		error = 0;
246 	set_user_nice(p, niceval);
247 out:
248 	return error;
249 }
250 
251 asmlinkage long sys_setpriority(int which, int who, int niceval)
252 {
253 	struct task_struct *g, *p;
254 	struct user_struct *user;
255 	int error = -EINVAL;
256 
257 	if (which > 2 || which < 0)
258 		goto out;
259 
260 	/* normalize: avoid signed division (rounding problems) */
261 	error = -ESRCH;
262 	if (niceval < -20)
263 		niceval = -20;
264 	if (niceval > 19)
265 		niceval = 19;
266 
267 	read_lock(&tasklist_lock);
268 	switch (which) {
269 		case PRIO_PROCESS:
270 			if (!who)
271 				who = current->pid;
272 			p = find_task_by_pid(who);
273 			if (p)
274 				error = set_one_prio(p, niceval, error);
275 			break;
276 		case PRIO_PGRP:
277 			if (!who)
278 				who = process_group(current);
279 			do_each_task_pid(who, PIDTYPE_PGID, p) {
280 				error = set_one_prio(p, niceval, error);
281 			} while_each_task_pid(who, PIDTYPE_PGID, p);
282 			break;
283 		case PRIO_USER:
284 			user = current->user;
285 			if (!who)
286 				who = current->uid;
287 			else
288 				if ((who != current->uid) && !(user = find_user(who)))
289 					goto out_unlock;	/* No processes for this user */
290 
291 			do_each_thread(g, p)
292 				if (p->uid == who)
293 					error = set_one_prio(p, niceval, error);
294 			while_each_thread(g, p);
295 			if (who != current->uid)
296 				free_uid(user);		/* For find_user() */
297 			break;
298 	}
299 out_unlock:
300 	read_unlock(&tasklist_lock);
301 out:
302 	return error;
303 }
304 
305 /*
306  * Ugh. To avoid negative return values, "getpriority()" will
307  * not return the normal nice-value, but a negated value that
308  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
309  * to stay compatible.
310  */
311 asmlinkage long sys_getpriority(int which, int who)
312 {
313 	struct task_struct *g, *p;
314 	struct user_struct *user;
315 	long niceval, retval = -ESRCH;
316 
317 	if (which > 2 || which < 0)
318 		return -EINVAL;
319 
320 	read_lock(&tasklist_lock);
321 	switch (which) {
322 		case PRIO_PROCESS:
323 			if (!who)
324 				who = current->pid;
325 			p = find_task_by_pid(who);
326 			if (p) {
327 				niceval = 20 - task_nice(p);
328 				if (niceval > retval)
329 					retval = niceval;
330 			}
331 			break;
332 		case PRIO_PGRP:
333 			if (!who)
334 				who = process_group(current);
335 			do_each_task_pid(who, PIDTYPE_PGID, p) {
336 				niceval = 20 - task_nice(p);
337 				if (niceval > retval)
338 					retval = niceval;
339 			} while_each_task_pid(who, PIDTYPE_PGID, p);
340 			break;
341 		case PRIO_USER:
342 			user = current->user;
343 			if (!who)
344 				who = current->uid;
345 			else
346 				if ((who != current->uid) && !(user = find_user(who)))
347 					goto out_unlock;	/* No processes for this user */
348 
349 			do_each_thread(g, p)
350 				if (p->uid == who) {
351 					niceval = 20 - task_nice(p);
352 					if (niceval > retval)
353 						retval = niceval;
354 				}
355 			while_each_thread(g, p);
356 			if (who != current->uid)
357 				free_uid(user);		/* for find_user() */
358 			break;
359 	}
360 out_unlock:
361 	read_unlock(&tasklist_lock);
362 
363 	return retval;
364 }
365 
366 /**
367  *	emergency_restart - reboot the system
368  *
369  *	Without shutting down any hardware or taking any locks
370  *	reboot the system.  This is called when we know we are in
371  *	trouble so this is our best effort to reboot.  This is
372  *	safe to call in interrupt context.
373  */
374 void emergency_restart(void)
375 {
376 	machine_emergency_restart();
377 }
378 EXPORT_SYMBOL_GPL(emergency_restart);
379 
380 void kernel_restart_prepare(char *cmd)
381 {
382 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
383 	system_state = SYSTEM_RESTART;
384 	device_shutdown();
385 }
386 
387 /**
388  *	kernel_restart - reboot the system
389  *	@cmd: pointer to buffer containing command to execute for restart
390  *		or %NULL
391  *
392  *	Shutdown everything and perform a clean reboot.
393  *	This is not safe to call in interrupt context.
394  */
395 void kernel_restart(char *cmd)
396 {
397 	kernel_restart_prepare(cmd);
398 	if (!cmd) {
399 		printk(KERN_EMERG "Restarting system.\n");
400 	} else {
401 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
402 	}
403 	printk(".\n");
404 	machine_restart(cmd);
405 }
406 EXPORT_SYMBOL_GPL(kernel_restart);
407 
408 /**
409  *	kernel_kexec - reboot the system
410  *
411  *	Move into place and start executing a preloaded standalone
412  *	executable.  If nothing was preloaded return an error.
413  */
414 void kernel_kexec(void)
415 {
416 #ifdef CONFIG_KEXEC
417 	struct kimage *image;
418 	image = xchg(&kexec_image, 0);
419 	if (!image) {
420 		return;
421 	}
422 	kernel_restart_prepare(NULL);
423 	printk(KERN_EMERG "Starting new kernel\n");
424 	machine_shutdown();
425 	machine_kexec(image);
426 #endif
427 }
428 EXPORT_SYMBOL_GPL(kernel_kexec);
429 
430 /**
431  *	kernel_halt - halt the system
432  *
433  *	Shutdown everything and perform a clean system halt.
434  */
435 void kernel_halt_prepare(void)
436 {
437 	notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
438 	system_state = SYSTEM_HALT;
439 	device_shutdown();
440 }
441 void kernel_halt(void)
442 {
443 	kernel_halt_prepare();
444 	printk(KERN_EMERG "System halted.\n");
445 	machine_halt();
446 }
447 EXPORT_SYMBOL_GPL(kernel_halt);
448 
449 /**
450  *	kernel_power_off - power_off the system
451  *
452  *	Shutdown everything and perform a clean system power_off.
453  */
454 void kernel_power_off_prepare(void)
455 {
456 	notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
457 	system_state = SYSTEM_POWER_OFF;
458 	device_shutdown();
459 }
460 void kernel_power_off(void)
461 {
462 	kernel_power_off_prepare();
463 	printk(KERN_EMERG "Power down.\n");
464 	machine_power_off();
465 }
466 EXPORT_SYMBOL_GPL(kernel_power_off);
467 
468 /*
469  * Reboot system call: for obvious reasons only root may call it,
470  * and even root needs to set up some magic numbers in the registers
471  * so that some mistake won't make this reboot the whole machine.
472  * You can also set the meaning of the ctrl-alt-del-key here.
473  *
474  * reboot doesn't sync: do that yourself before calling this.
475  */
476 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
477 {
478 	char buffer[256];
479 
480 	/* We only trust the superuser with rebooting the system. */
481 	if (!capable(CAP_SYS_BOOT))
482 		return -EPERM;
483 
484 	/* For safety, we require "magic" arguments. */
485 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
486 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
487 	                magic2 != LINUX_REBOOT_MAGIC2A &&
488 			magic2 != LINUX_REBOOT_MAGIC2B &&
489 	                magic2 != LINUX_REBOOT_MAGIC2C))
490 		return -EINVAL;
491 
492 	/* Instead of trying to make the power_off code look like
493 	 * halt when pm_power_off is not set do it the easy way.
494 	 */
495 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
496 		cmd = LINUX_REBOOT_CMD_HALT;
497 
498 	lock_kernel();
499 	switch (cmd) {
500 	case LINUX_REBOOT_CMD_RESTART:
501 		kernel_restart(NULL);
502 		break;
503 
504 	case LINUX_REBOOT_CMD_CAD_ON:
505 		C_A_D = 1;
506 		break;
507 
508 	case LINUX_REBOOT_CMD_CAD_OFF:
509 		C_A_D = 0;
510 		break;
511 
512 	case LINUX_REBOOT_CMD_HALT:
513 		kernel_halt();
514 		unlock_kernel();
515 		do_exit(0);
516 		break;
517 
518 	case LINUX_REBOOT_CMD_POWER_OFF:
519 		kernel_power_off();
520 		unlock_kernel();
521 		do_exit(0);
522 		break;
523 
524 	case LINUX_REBOOT_CMD_RESTART2:
525 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
526 			unlock_kernel();
527 			return -EFAULT;
528 		}
529 		buffer[sizeof(buffer) - 1] = '\0';
530 
531 		kernel_restart(buffer);
532 		break;
533 
534 	case LINUX_REBOOT_CMD_KEXEC:
535 		kernel_kexec();
536 		unlock_kernel();
537 		return -EINVAL;
538 
539 #ifdef CONFIG_SOFTWARE_SUSPEND
540 	case LINUX_REBOOT_CMD_SW_SUSPEND:
541 		{
542 			int ret = software_suspend();
543 			unlock_kernel();
544 			return ret;
545 		}
546 #endif
547 
548 	default:
549 		unlock_kernel();
550 		return -EINVAL;
551 	}
552 	unlock_kernel();
553 	return 0;
554 }
555 
556 static void deferred_cad(void *dummy)
557 {
558 	kernel_restart(NULL);
559 }
560 
561 /*
562  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
563  * As it's called within an interrupt, it may NOT sync: the only choice
564  * is whether to reboot at once, or just ignore the ctrl-alt-del.
565  */
566 void ctrl_alt_del(void)
567 {
568 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
569 
570 	if (C_A_D)
571 		schedule_work(&cad_work);
572 	else
573 		kill_proc(cad_pid, SIGINT, 1);
574 }
575 
576 
577 /*
578  * Unprivileged users may change the real gid to the effective gid
579  * or vice versa.  (BSD-style)
580  *
581  * If you set the real gid at all, or set the effective gid to a value not
582  * equal to the real gid, then the saved gid is set to the new effective gid.
583  *
584  * This makes it possible for a setgid program to completely drop its
585  * privileges, which is often a useful assertion to make when you are doing
586  * a security audit over a program.
587  *
588  * The general idea is that a program which uses just setregid() will be
589  * 100% compatible with BSD.  A program which uses just setgid() will be
590  * 100% compatible with POSIX with saved IDs.
591  *
592  * SMP: There are not races, the GIDs are checked only by filesystem
593  *      operations (as far as semantic preservation is concerned).
594  */
595 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
596 {
597 	int old_rgid = current->gid;
598 	int old_egid = current->egid;
599 	int new_rgid = old_rgid;
600 	int new_egid = old_egid;
601 	int retval;
602 
603 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
604 	if (retval)
605 		return retval;
606 
607 	if (rgid != (gid_t) -1) {
608 		if ((old_rgid == rgid) ||
609 		    (current->egid==rgid) ||
610 		    capable(CAP_SETGID))
611 			new_rgid = rgid;
612 		else
613 			return -EPERM;
614 	}
615 	if (egid != (gid_t) -1) {
616 		if ((old_rgid == egid) ||
617 		    (current->egid == egid) ||
618 		    (current->sgid == egid) ||
619 		    capable(CAP_SETGID))
620 			new_egid = egid;
621 		else {
622 			return -EPERM;
623 		}
624 	}
625 	if (new_egid != old_egid)
626 	{
627 		current->mm->dumpable = suid_dumpable;
628 		smp_wmb();
629 	}
630 	if (rgid != (gid_t) -1 ||
631 	    (egid != (gid_t) -1 && egid != old_rgid))
632 		current->sgid = new_egid;
633 	current->fsgid = new_egid;
634 	current->egid = new_egid;
635 	current->gid = new_rgid;
636 	key_fsgid_changed(current);
637 	proc_id_connector(current, PROC_EVENT_GID);
638 	return 0;
639 }
640 
641 /*
642  * setgid() is implemented like SysV w/ SAVED_IDS
643  *
644  * SMP: Same implicit races as above.
645  */
646 asmlinkage long sys_setgid(gid_t gid)
647 {
648 	int old_egid = current->egid;
649 	int retval;
650 
651 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
652 	if (retval)
653 		return retval;
654 
655 	if (capable(CAP_SETGID))
656 	{
657 		if(old_egid != gid)
658 		{
659 			current->mm->dumpable = suid_dumpable;
660 			smp_wmb();
661 		}
662 		current->gid = current->egid = current->sgid = current->fsgid = gid;
663 	}
664 	else if ((gid == current->gid) || (gid == current->sgid))
665 	{
666 		if(old_egid != gid)
667 		{
668 			current->mm->dumpable = suid_dumpable;
669 			smp_wmb();
670 		}
671 		current->egid = current->fsgid = gid;
672 	}
673 	else
674 		return -EPERM;
675 
676 	key_fsgid_changed(current);
677 	proc_id_connector(current, PROC_EVENT_GID);
678 	return 0;
679 }
680 
681 static int set_user(uid_t new_ruid, int dumpclear)
682 {
683 	struct user_struct *new_user;
684 
685 	new_user = alloc_uid(new_ruid);
686 	if (!new_user)
687 		return -EAGAIN;
688 
689 	if (atomic_read(&new_user->processes) >=
690 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
691 			new_user != &root_user) {
692 		free_uid(new_user);
693 		return -EAGAIN;
694 	}
695 
696 	switch_uid(new_user);
697 
698 	if(dumpclear)
699 	{
700 		current->mm->dumpable = suid_dumpable;
701 		smp_wmb();
702 	}
703 	current->uid = new_ruid;
704 	return 0;
705 }
706 
707 /*
708  * Unprivileged users may change the real uid to the effective uid
709  * or vice versa.  (BSD-style)
710  *
711  * If you set the real uid at all, or set the effective uid to a value not
712  * equal to the real uid, then the saved uid is set to the new effective uid.
713  *
714  * This makes it possible for a setuid program to completely drop its
715  * privileges, which is often a useful assertion to make when you are doing
716  * a security audit over a program.
717  *
718  * The general idea is that a program which uses just setreuid() will be
719  * 100% compatible with BSD.  A program which uses just setuid() will be
720  * 100% compatible with POSIX with saved IDs.
721  */
722 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
723 {
724 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
725 	int retval;
726 
727 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
728 	if (retval)
729 		return retval;
730 
731 	new_ruid = old_ruid = current->uid;
732 	new_euid = old_euid = current->euid;
733 	old_suid = current->suid;
734 
735 	if (ruid != (uid_t) -1) {
736 		new_ruid = ruid;
737 		if ((old_ruid != ruid) &&
738 		    (current->euid != ruid) &&
739 		    !capable(CAP_SETUID))
740 			return -EPERM;
741 	}
742 
743 	if (euid != (uid_t) -1) {
744 		new_euid = euid;
745 		if ((old_ruid != euid) &&
746 		    (current->euid != euid) &&
747 		    (current->suid != euid) &&
748 		    !capable(CAP_SETUID))
749 			return -EPERM;
750 	}
751 
752 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
753 		return -EAGAIN;
754 
755 	if (new_euid != old_euid)
756 	{
757 		current->mm->dumpable = suid_dumpable;
758 		smp_wmb();
759 	}
760 	current->fsuid = current->euid = new_euid;
761 	if (ruid != (uid_t) -1 ||
762 	    (euid != (uid_t) -1 && euid != old_ruid))
763 		current->suid = current->euid;
764 	current->fsuid = current->euid;
765 
766 	key_fsuid_changed(current);
767 	proc_id_connector(current, PROC_EVENT_UID);
768 
769 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
770 }
771 
772 
773 
774 /*
775  * setuid() is implemented like SysV with SAVED_IDS
776  *
777  * Note that SAVED_ID's is deficient in that a setuid root program
778  * like sendmail, for example, cannot set its uid to be a normal
779  * user and then switch back, because if you're root, setuid() sets
780  * the saved uid too.  If you don't like this, blame the bright people
781  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
782  * will allow a root program to temporarily drop privileges and be able to
783  * regain them by swapping the real and effective uid.
784  */
785 asmlinkage long sys_setuid(uid_t uid)
786 {
787 	int old_euid = current->euid;
788 	int old_ruid, old_suid, new_ruid, new_suid;
789 	int retval;
790 
791 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
792 	if (retval)
793 		return retval;
794 
795 	old_ruid = new_ruid = current->uid;
796 	old_suid = current->suid;
797 	new_suid = old_suid;
798 
799 	if (capable(CAP_SETUID)) {
800 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
801 			return -EAGAIN;
802 		new_suid = uid;
803 	} else if ((uid != current->uid) && (uid != new_suid))
804 		return -EPERM;
805 
806 	if (old_euid != uid)
807 	{
808 		current->mm->dumpable = suid_dumpable;
809 		smp_wmb();
810 	}
811 	current->fsuid = current->euid = uid;
812 	current->suid = new_suid;
813 
814 	key_fsuid_changed(current);
815 	proc_id_connector(current, PROC_EVENT_UID);
816 
817 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
818 }
819 
820 
821 /*
822  * This function implements a generic ability to update ruid, euid,
823  * and suid.  This allows you to implement the 4.4 compatible seteuid().
824  */
825 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
826 {
827 	int old_ruid = current->uid;
828 	int old_euid = current->euid;
829 	int old_suid = current->suid;
830 	int retval;
831 
832 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
833 	if (retval)
834 		return retval;
835 
836 	if (!capable(CAP_SETUID)) {
837 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
838 		    (ruid != current->euid) && (ruid != current->suid))
839 			return -EPERM;
840 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
841 		    (euid != current->euid) && (euid != current->suid))
842 			return -EPERM;
843 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
844 		    (suid != current->euid) && (suid != current->suid))
845 			return -EPERM;
846 	}
847 	if (ruid != (uid_t) -1) {
848 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
849 			return -EAGAIN;
850 	}
851 	if (euid != (uid_t) -1) {
852 		if (euid != current->euid)
853 		{
854 			current->mm->dumpable = suid_dumpable;
855 			smp_wmb();
856 		}
857 		current->euid = euid;
858 	}
859 	current->fsuid = current->euid;
860 	if (suid != (uid_t) -1)
861 		current->suid = suid;
862 
863 	key_fsuid_changed(current);
864 	proc_id_connector(current, PROC_EVENT_UID);
865 
866 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
867 }
868 
869 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
870 {
871 	int retval;
872 
873 	if (!(retval = put_user(current->uid, ruid)) &&
874 	    !(retval = put_user(current->euid, euid)))
875 		retval = put_user(current->suid, suid);
876 
877 	return retval;
878 }
879 
880 /*
881  * Same as above, but for rgid, egid, sgid.
882  */
883 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
884 {
885 	int retval;
886 
887 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
888 	if (retval)
889 		return retval;
890 
891 	if (!capable(CAP_SETGID)) {
892 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
893 		    (rgid != current->egid) && (rgid != current->sgid))
894 			return -EPERM;
895 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
896 		    (egid != current->egid) && (egid != current->sgid))
897 			return -EPERM;
898 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
899 		    (sgid != current->egid) && (sgid != current->sgid))
900 			return -EPERM;
901 	}
902 	if (egid != (gid_t) -1) {
903 		if (egid != current->egid)
904 		{
905 			current->mm->dumpable = suid_dumpable;
906 			smp_wmb();
907 		}
908 		current->egid = egid;
909 	}
910 	current->fsgid = current->egid;
911 	if (rgid != (gid_t) -1)
912 		current->gid = rgid;
913 	if (sgid != (gid_t) -1)
914 		current->sgid = sgid;
915 
916 	key_fsgid_changed(current);
917 	proc_id_connector(current, PROC_EVENT_GID);
918 	return 0;
919 }
920 
921 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
922 {
923 	int retval;
924 
925 	if (!(retval = put_user(current->gid, rgid)) &&
926 	    !(retval = put_user(current->egid, egid)))
927 		retval = put_user(current->sgid, sgid);
928 
929 	return retval;
930 }
931 
932 
933 /*
934  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
935  * is used for "access()" and for the NFS daemon (letting nfsd stay at
936  * whatever uid it wants to). It normally shadows "euid", except when
937  * explicitly set by setfsuid() or for access..
938  */
939 asmlinkage long sys_setfsuid(uid_t uid)
940 {
941 	int old_fsuid;
942 
943 	old_fsuid = current->fsuid;
944 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
945 		return old_fsuid;
946 
947 	if (uid == current->uid || uid == current->euid ||
948 	    uid == current->suid || uid == current->fsuid ||
949 	    capable(CAP_SETUID))
950 	{
951 		if (uid != old_fsuid)
952 		{
953 			current->mm->dumpable = suid_dumpable;
954 			smp_wmb();
955 		}
956 		current->fsuid = uid;
957 	}
958 
959 	key_fsuid_changed(current);
960 	proc_id_connector(current, PROC_EVENT_UID);
961 
962 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
963 
964 	return old_fsuid;
965 }
966 
967 /*
968  * Samma p� svenska..
969  */
970 asmlinkage long sys_setfsgid(gid_t gid)
971 {
972 	int old_fsgid;
973 
974 	old_fsgid = current->fsgid;
975 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
976 		return old_fsgid;
977 
978 	if (gid == current->gid || gid == current->egid ||
979 	    gid == current->sgid || gid == current->fsgid ||
980 	    capable(CAP_SETGID))
981 	{
982 		if (gid != old_fsgid)
983 		{
984 			current->mm->dumpable = suid_dumpable;
985 			smp_wmb();
986 		}
987 		current->fsgid = gid;
988 		key_fsgid_changed(current);
989 		proc_id_connector(current, PROC_EVENT_GID);
990 	}
991 	return old_fsgid;
992 }
993 
994 asmlinkage long sys_times(struct tms __user * tbuf)
995 {
996 	/*
997 	 *	In the SMP world we might just be unlucky and have one of
998 	 *	the times increment as we use it. Since the value is an
999 	 *	atomically safe type this is just fine. Conceptually its
1000 	 *	as if the syscall took an instant longer to occur.
1001 	 */
1002 	if (tbuf) {
1003 		struct tms tmp;
1004 		cputime_t utime, stime, cutime, cstime;
1005 
1006 #ifdef CONFIG_SMP
1007 		if (thread_group_empty(current)) {
1008 			/*
1009 			 * Single thread case without the use of any locks.
1010 			 *
1011 			 * We may race with release_task if two threads are
1012 			 * executing. However, release task first adds up the
1013 			 * counters (__exit_signal) before  removing the task
1014 			 * from the process tasklist (__unhash_process).
1015 			 * __exit_signal also acquires and releases the
1016 			 * siglock which results in the proper memory ordering
1017 			 * so that the list modifications are always visible
1018 			 * after the counters have been updated.
1019 			 *
1020 			 * If the counters have been updated by the second thread
1021 			 * but the thread has not yet been removed from the list
1022 			 * then the other branch will be executing which will
1023 			 * block on tasklist_lock until the exit handling of the
1024 			 * other task is finished.
1025 			 *
1026 			 * This also implies that the sighand->siglock cannot
1027 			 * be held by another processor. So we can also
1028 			 * skip acquiring that lock.
1029 			 */
1030 			utime = cputime_add(current->signal->utime, current->utime);
1031 			stime = cputime_add(current->signal->utime, current->stime);
1032 			cutime = current->signal->cutime;
1033 			cstime = current->signal->cstime;
1034 		} else
1035 #endif
1036 		{
1037 
1038 			/* Process with multiple threads */
1039 			struct task_struct *tsk = current;
1040 			struct task_struct *t;
1041 
1042 			read_lock(&tasklist_lock);
1043 			utime = tsk->signal->utime;
1044 			stime = tsk->signal->stime;
1045 			t = tsk;
1046 			do {
1047 				utime = cputime_add(utime, t->utime);
1048 				stime = cputime_add(stime, t->stime);
1049 				t = next_thread(t);
1050 			} while (t != tsk);
1051 
1052 			/*
1053 			 * While we have tasklist_lock read-locked, no dying thread
1054 			 * can be updating current->signal->[us]time.  Instead,
1055 			 * we got their counts included in the live thread loop.
1056 			 * However, another thread can come in right now and
1057 			 * do a wait call that updates current->signal->c[us]time.
1058 			 * To make sure we always see that pair updated atomically,
1059 			 * we take the siglock around fetching them.
1060 			 */
1061 			spin_lock_irq(&tsk->sighand->siglock);
1062 			cutime = tsk->signal->cutime;
1063 			cstime = tsk->signal->cstime;
1064 			spin_unlock_irq(&tsk->sighand->siglock);
1065 			read_unlock(&tasklist_lock);
1066 		}
1067 		tmp.tms_utime = cputime_to_clock_t(utime);
1068 		tmp.tms_stime = cputime_to_clock_t(stime);
1069 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1070 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1071 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1072 			return -EFAULT;
1073 	}
1074 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1075 }
1076 
1077 /*
1078  * This needs some heavy checking ...
1079  * I just haven't the stomach for it. I also don't fully
1080  * understand sessions/pgrp etc. Let somebody who does explain it.
1081  *
1082  * OK, I think I have the protection semantics right.... this is really
1083  * only important on a multi-user system anyway, to make sure one user
1084  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1085  *
1086  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1087  * LBT 04.03.94
1088  */
1089 
1090 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1091 {
1092 	struct task_struct *p;
1093 	struct task_struct *group_leader = current->group_leader;
1094 	int err = -EINVAL;
1095 
1096 	if (!pid)
1097 		pid = group_leader->pid;
1098 	if (!pgid)
1099 		pgid = pid;
1100 	if (pgid < 0)
1101 		return -EINVAL;
1102 
1103 	/* From this point forward we keep holding onto the tasklist lock
1104 	 * so that our parent does not change from under us. -DaveM
1105 	 */
1106 	write_lock_irq(&tasklist_lock);
1107 
1108 	err = -ESRCH;
1109 	p = find_task_by_pid(pid);
1110 	if (!p)
1111 		goto out;
1112 
1113 	err = -EINVAL;
1114 	if (!thread_group_leader(p))
1115 		goto out;
1116 
1117 	if (p->real_parent == group_leader) {
1118 		err = -EPERM;
1119 		if (p->signal->session != group_leader->signal->session)
1120 			goto out;
1121 		err = -EACCES;
1122 		if (p->did_exec)
1123 			goto out;
1124 	} else {
1125 		err = -ESRCH;
1126 		if (p != group_leader)
1127 			goto out;
1128 	}
1129 
1130 	err = -EPERM;
1131 	if (p->signal->leader)
1132 		goto out;
1133 
1134 	if (pgid != pid) {
1135 		struct task_struct *p;
1136 
1137 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1138 			if (p->signal->session == group_leader->signal->session)
1139 				goto ok_pgid;
1140 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1141 		goto out;
1142 	}
1143 
1144 ok_pgid:
1145 	err = security_task_setpgid(p, pgid);
1146 	if (err)
1147 		goto out;
1148 
1149 	if (process_group(p) != pgid) {
1150 		detach_pid(p, PIDTYPE_PGID);
1151 		p->signal->pgrp = pgid;
1152 		attach_pid(p, PIDTYPE_PGID, pgid);
1153 	}
1154 
1155 	err = 0;
1156 out:
1157 	/* All paths lead to here, thus we are safe. -DaveM */
1158 	write_unlock_irq(&tasklist_lock);
1159 	return err;
1160 }
1161 
1162 asmlinkage long sys_getpgid(pid_t pid)
1163 {
1164 	if (!pid) {
1165 		return process_group(current);
1166 	} else {
1167 		int retval;
1168 		struct task_struct *p;
1169 
1170 		read_lock(&tasklist_lock);
1171 		p = find_task_by_pid(pid);
1172 
1173 		retval = -ESRCH;
1174 		if (p) {
1175 			retval = security_task_getpgid(p);
1176 			if (!retval)
1177 				retval = process_group(p);
1178 		}
1179 		read_unlock(&tasklist_lock);
1180 		return retval;
1181 	}
1182 }
1183 
1184 #ifdef __ARCH_WANT_SYS_GETPGRP
1185 
1186 asmlinkage long sys_getpgrp(void)
1187 {
1188 	/* SMP - assuming writes are word atomic this is fine */
1189 	return process_group(current);
1190 }
1191 
1192 #endif
1193 
1194 asmlinkage long sys_getsid(pid_t pid)
1195 {
1196 	if (!pid) {
1197 		return current->signal->session;
1198 	} else {
1199 		int retval;
1200 		struct task_struct *p;
1201 
1202 		read_lock(&tasklist_lock);
1203 		p = find_task_by_pid(pid);
1204 
1205 		retval = -ESRCH;
1206 		if(p) {
1207 			retval = security_task_getsid(p);
1208 			if (!retval)
1209 				retval = p->signal->session;
1210 		}
1211 		read_unlock(&tasklist_lock);
1212 		return retval;
1213 	}
1214 }
1215 
1216 asmlinkage long sys_setsid(void)
1217 {
1218 	struct task_struct *group_leader = current->group_leader;
1219 	struct pid *pid;
1220 	int err = -EPERM;
1221 
1222 	down(&tty_sem);
1223 	write_lock_irq(&tasklist_lock);
1224 
1225 	pid = find_pid(PIDTYPE_PGID, group_leader->pid);
1226 	if (pid)
1227 		goto out;
1228 
1229 	group_leader->signal->leader = 1;
1230 	__set_special_pids(group_leader->pid, group_leader->pid);
1231 	group_leader->signal->tty = NULL;
1232 	group_leader->signal->tty_old_pgrp = 0;
1233 	err = process_group(group_leader);
1234 out:
1235 	write_unlock_irq(&tasklist_lock);
1236 	up(&tty_sem);
1237 	return err;
1238 }
1239 
1240 /*
1241  * Supplementary group IDs
1242  */
1243 
1244 /* init to 2 - one for init_task, one to ensure it is never freed */
1245 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1246 
1247 struct group_info *groups_alloc(int gidsetsize)
1248 {
1249 	struct group_info *group_info;
1250 	int nblocks;
1251 	int i;
1252 
1253 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1254 	/* Make sure we always allocate at least one indirect block pointer */
1255 	nblocks = nblocks ? : 1;
1256 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1257 	if (!group_info)
1258 		return NULL;
1259 	group_info->ngroups = gidsetsize;
1260 	group_info->nblocks = nblocks;
1261 	atomic_set(&group_info->usage, 1);
1262 
1263 	if (gidsetsize <= NGROUPS_SMALL) {
1264 		group_info->blocks[0] = group_info->small_block;
1265 	} else {
1266 		for (i = 0; i < nblocks; i++) {
1267 			gid_t *b;
1268 			b = (void *)__get_free_page(GFP_USER);
1269 			if (!b)
1270 				goto out_undo_partial_alloc;
1271 			group_info->blocks[i] = b;
1272 		}
1273 	}
1274 	return group_info;
1275 
1276 out_undo_partial_alloc:
1277 	while (--i >= 0) {
1278 		free_page((unsigned long)group_info->blocks[i]);
1279 	}
1280 	kfree(group_info);
1281 	return NULL;
1282 }
1283 
1284 EXPORT_SYMBOL(groups_alloc);
1285 
1286 void groups_free(struct group_info *group_info)
1287 {
1288 	if (group_info->blocks[0] != group_info->small_block) {
1289 		int i;
1290 		for (i = 0; i < group_info->nblocks; i++)
1291 			free_page((unsigned long)group_info->blocks[i]);
1292 	}
1293 	kfree(group_info);
1294 }
1295 
1296 EXPORT_SYMBOL(groups_free);
1297 
1298 /* export the group_info to a user-space array */
1299 static int groups_to_user(gid_t __user *grouplist,
1300     struct group_info *group_info)
1301 {
1302 	int i;
1303 	int count = group_info->ngroups;
1304 
1305 	for (i = 0; i < group_info->nblocks; i++) {
1306 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1307 		int off = i * NGROUPS_PER_BLOCK;
1308 		int len = cp_count * sizeof(*grouplist);
1309 
1310 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1311 			return -EFAULT;
1312 
1313 		count -= cp_count;
1314 	}
1315 	return 0;
1316 }
1317 
1318 /* fill a group_info from a user-space array - it must be allocated already */
1319 static int groups_from_user(struct group_info *group_info,
1320     gid_t __user *grouplist)
1321  {
1322 	int i;
1323 	int count = group_info->ngroups;
1324 
1325 	for (i = 0; i < group_info->nblocks; i++) {
1326 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1327 		int off = i * NGROUPS_PER_BLOCK;
1328 		int len = cp_count * sizeof(*grouplist);
1329 
1330 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1331 			return -EFAULT;
1332 
1333 		count -= cp_count;
1334 	}
1335 	return 0;
1336 }
1337 
1338 /* a simple Shell sort */
1339 static void groups_sort(struct group_info *group_info)
1340 {
1341 	int base, max, stride;
1342 	int gidsetsize = group_info->ngroups;
1343 
1344 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1345 		; /* nothing */
1346 	stride /= 3;
1347 
1348 	while (stride) {
1349 		max = gidsetsize - stride;
1350 		for (base = 0; base < max; base++) {
1351 			int left = base;
1352 			int right = left + stride;
1353 			gid_t tmp = GROUP_AT(group_info, right);
1354 
1355 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1356 				GROUP_AT(group_info, right) =
1357 				    GROUP_AT(group_info, left);
1358 				right = left;
1359 				left -= stride;
1360 			}
1361 			GROUP_AT(group_info, right) = tmp;
1362 		}
1363 		stride /= 3;
1364 	}
1365 }
1366 
1367 /* a simple bsearch */
1368 int groups_search(struct group_info *group_info, gid_t grp)
1369 {
1370 	int left, right;
1371 
1372 	if (!group_info)
1373 		return 0;
1374 
1375 	left = 0;
1376 	right = group_info->ngroups;
1377 	while (left < right) {
1378 		int mid = (left+right)/2;
1379 		int cmp = grp - GROUP_AT(group_info, mid);
1380 		if (cmp > 0)
1381 			left = mid + 1;
1382 		else if (cmp < 0)
1383 			right = mid;
1384 		else
1385 			return 1;
1386 	}
1387 	return 0;
1388 }
1389 
1390 /* validate and set current->group_info */
1391 int set_current_groups(struct group_info *group_info)
1392 {
1393 	int retval;
1394 	struct group_info *old_info;
1395 
1396 	retval = security_task_setgroups(group_info);
1397 	if (retval)
1398 		return retval;
1399 
1400 	groups_sort(group_info);
1401 	get_group_info(group_info);
1402 
1403 	task_lock(current);
1404 	old_info = current->group_info;
1405 	current->group_info = group_info;
1406 	task_unlock(current);
1407 
1408 	put_group_info(old_info);
1409 
1410 	return 0;
1411 }
1412 
1413 EXPORT_SYMBOL(set_current_groups);
1414 
1415 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1416 {
1417 	int i = 0;
1418 
1419 	/*
1420 	 *	SMP: Nobody else can change our grouplist. Thus we are
1421 	 *	safe.
1422 	 */
1423 
1424 	if (gidsetsize < 0)
1425 		return -EINVAL;
1426 
1427 	/* no need to grab task_lock here; it cannot change */
1428 	get_group_info(current->group_info);
1429 	i = current->group_info->ngroups;
1430 	if (gidsetsize) {
1431 		if (i > gidsetsize) {
1432 			i = -EINVAL;
1433 			goto out;
1434 		}
1435 		if (groups_to_user(grouplist, current->group_info)) {
1436 			i = -EFAULT;
1437 			goto out;
1438 		}
1439 	}
1440 out:
1441 	put_group_info(current->group_info);
1442 	return i;
1443 }
1444 
1445 /*
1446  *	SMP: Our groups are copy-on-write. We can set them safely
1447  *	without another task interfering.
1448  */
1449 
1450 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1451 {
1452 	struct group_info *group_info;
1453 	int retval;
1454 
1455 	if (!capable(CAP_SETGID))
1456 		return -EPERM;
1457 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1458 		return -EINVAL;
1459 
1460 	group_info = groups_alloc(gidsetsize);
1461 	if (!group_info)
1462 		return -ENOMEM;
1463 	retval = groups_from_user(group_info, grouplist);
1464 	if (retval) {
1465 		put_group_info(group_info);
1466 		return retval;
1467 	}
1468 
1469 	retval = set_current_groups(group_info);
1470 	put_group_info(group_info);
1471 
1472 	return retval;
1473 }
1474 
1475 /*
1476  * Check whether we're fsgid/egid or in the supplemental group..
1477  */
1478 int in_group_p(gid_t grp)
1479 {
1480 	int retval = 1;
1481 	if (grp != current->fsgid) {
1482 		get_group_info(current->group_info);
1483 		retval = groups_search(current->group_info, grp);
1484 		put_group_info(current->group_info);
1485 	}
1486 	return retval;
1487 }
1488 
1489 EXPORT_SYMBOL(in_group_p);
1490 
1491 int in_egroup_p(gid_t grp)
1492 {
1493 	int retval = 1;
1494 	if (grp != current->egid) {
1495 		get_group_info(current->group_info);
1496 		retval = groups_search(current->group_info, grp);
1497 		put_group_info(current->group_info);
1498 	}
1499 	return retval;
1500 }
1501 
1502 EXPORT_SYMBOL(in_egroup_p);
1503 
1504 DECLARE_RWSEM(uts_sem);
1505 
1506 EXPORT_SYMBOL(uts_sem);
1507 
1508 asmlinkage long sys_newuname(struct new_utsname __user * name)
1509 {
1510 	int errno = 0;
1511 
1512 	down_read(&uts_sem);
1513 	if (copy_to_user(name,&system_utsname,sizeof *name))
1514 		errno = -EFAULT;
1515 	up_read(&uts_sem);
1516 	return errno;
1517 }
1518 
1519 asmlinkage long sys_sethostname(char __user *name, int len)
1520 {
1521 	int errno;
1522 	char tmp[__NEW_UTS_LEN];
1523 
1524 	if (!capable(CAP_SYS_ADMIN))
1525 		return -EPERM;
1526 	if (len < 0 || len > __NEW_UTS_LEN)
1527 		return -EINVAL;
1528 	down_write(&uts_sem);
1529 	errno = -EFAULT;
1530 	if (!copy_from_user(tmp, name, len)) {
1531 		memcpy(system_utsname.nodename, tmp, len);
1532 		system_utsname.nodename[len] = 0;
1533 		errno = 0;
1534 	}
1535 	up_write(&uts_sem);
1536 	return errno;
1537 }
1538 
1539 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1540 
1541 asmlinkage long sys_gethostname(char __user *name, int len)
1542 {
1543 	int i, errno;
1544 
1545 	if (len < 0)
1546 		return -EINVAL;
1547 	down_read(&uts_sem);
1548 	i = 1 + strlen(system_utsname.nodename);
1549 	if (i > len)
1550 		i = len;
1551 	errno = 0;
1552 	if (copy_to_user(name, system_utsname.nodename, i))
1553 		errno = -EFAULT;
1554 	up_read(&uts_sem);
1555 	return errno;
1556 }
1557 
1558 #endif
1559 
1560 /*
1561  * Only setdomainname; getdomainname can be implemented by calling
1562  * uname()
1563  */
1564 asmlinkage long sys_setdomainname(char __user *name, int len)
1565 {
1566 	int errno;
1567 	char tmp[__NEW_UTS_LEN];
1568 
1569 	if (!capable(CAP_SYS_ADMIN))
1570 		return -EPERM;
1571 	if (len < 0 || len > __NEW_UTS_LEN)
1572 		return -EINVAL;
1573 
1574 	down_write(&uts_sem);
1575 	errno = -EFAULT;
1576 	if (!copy_from_user(tmp, name, len)) {
1577 		memcpy(system_utsname.domainname, tmp, len);
1578 		system_utsname.domainname[len] = 0;
1579 		errno = 0;
1580 	}
1581 	up_write(&uts_sem);
1582 	return errno;
1583 }
1584 
1585 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1586 {
1587 	if (resource >= RLIM_NLIMITS)
1588 		return -EINVAL;
1589 	else {
1590 		struct rlimit value;
1591 		task_lock(current->group_leader);
1592 		value = current->signal->rlim[resource];
1593 		task_unlock(current->group_leader);
1594 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1595 	}
1596 }
1597 
1598 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1599 
1600 /*
1601  *	Back compatibility for getrlimit. Needed for some apps.
1602  */
1603 
1604 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1605 {
1606 	struct rlimit x;
1607 	if (resource >= RLIM_NLIMITS)
1608 		return -EINVAL;
1609 
1610 	task_lock(current->group_leader);
1611 	x = current->signal->rlim[resource];
1612 	task_unlock(current->group_leader);
1613 	if(x.rlim_cur > 0x7FFFFFFF)
1614 		x.rlim_cur = 0x7FFFFFFF;
1615 	if(x.rlim_max > 0x7FFFFFFF)
1616 		x.rlim_max = 0x7FFFFFFF;
1617 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1618 }
1619 
1620 #endif
1621 
1622 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1623 {
1624 	struct rlimit new_rlim, *old_rlim;
1625 	int retval;
1626 
1627 	if (resource >= RLIM_NLIMITS)
1628 		return -EINVAL;
1629 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1630 		return -EFAULT;
1631        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1632                return -EINVAL;
1633 	old_rlim = current->signal->rlim + resource;
1634 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1635 	    !capable(CAP_SYS_RESOURCE))
1636 		return -EPERM;
1637 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1638 			return -EPERM;
1639 
1640 	retval = security_task_setrlimit(resource, &new_rlim);
1641 	if (retval)
1642 		return retval;
1643 
1644 	task_lock(current->group_leader);
1645 	*old_rlim = new_rlim;
1646 	task_unlock(current->group_leader);
1647 
1648 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1649 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1650 	     new_rlim.rlim_cur <= cputime_to_secs(
1651 		     current->signal->it_prof_expires))) {
1652 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1653 		read_lock(&tasklist_lock);
1654 		spin_lock_irq(&current->sighand->siglock);
1655 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1656 				      &cputime, NULL);
1657 		spin_unlock_irq(&current->sighand->siglock);
1658 		read_unlock(&tasklist_lock);
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 /*
1665  * It would make sense to put struct rusage in the task_struct,
1666  * except that would make the task_struct be *really big*.  After
1667  * task_struct gets moved into malloc'ed memory, it would
1668  * make sense to do this.  It will make moving the rest of the information
1669  * a lot simpler!  (Which we're not doing right now because we're not
1670  * measuring them yet).
1671  *
1672  * This expects to be called with tasklist_lock read-locked or better,
1673  * and the siglock not locked.  It may momentarily take the siglock.
1674  *
1675  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1676  * races with threads incrementing their own counters.  But since word
1677  * reads are atomic, we either get new values or old values and we don't
1678  * care which for the sums.  We always take the siglock to protect reading
1679  * the c* fields from p->signal from races with exit.c updating those
1680  * fields when reaping, so a sample either gets all the additions of a
1681  * given child after it's reaped, or none so this sample is before reaping.
1682  */
1683 
1684 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1685 {
1686 	struct task_struct *t;
1687 	unsigned long flags;
1688 	cputime_t utime, stime;
1689 
1690 	memset((char *) r, 0, sizeof *r);
1691 
1692 	if (unlikely(!p->signal))
1693 		return;
1694 
1695 	utime = stime = cputime_zero;
1696 
1697 	switch (who) {
1698 		case RUSAGE_BOTH:
1699 		case RUSAGE_CHILDREN:
1700 			spin_lock_irqsave(&p->sighand->siglock, flags);
1701 			utime = p->signal->cutime;
1702 			stime = p->signal->cstime;
1703 			r->ru_nvcsw = p->signal->cnvcsw;
1704 			r->ru_nivcsw = p->signal->cnivcsw;
1705 			r->ru_minflt = p->signal->cmin_flt;
1706 			r->ru_majflt = p->signal->cmaj_flt;
1707 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1708 
1709 			if (who == RUSAGE_CHILDREN)
1710 				break;
1711 
1712 		case RUSAGE_SELF:
1713 			utime = cputime_add(utime, p->signal->utime);
1714 			stime = cputime_add(stime, p->signal->stime);
1715 			r->ru_nvcsw += p->signal->nvcsw;
1716 			r->ru_nivcsw += p->signal->nivcsw;
1717 			r->ru_minflt += p->signal->min_flt;
1718 			r->ru_majflt += p->signal->maj_flt;
1719 			t = p;
1720 			do {
1721 				utime = cputime_add(utime, t->utime);
1722 				stime = cputime_add(stime, t->stime);
1723 				r->ru_nvcsw += t->nvcsw;
1724 				r->ru_nivcsw += t->nivcsw;
1725 				r->ru_minflt += t->min_flt;
1726 				r->ru_majflt += t->maj_flt;
1727 				t = next_thread(t);
1728 			} while (t != p);
1729 			break;
1730 
1731 		default:
1732 			BUG();
1733 	}
1734 
1735 	cputime_to_timeval(utime, &r->ru_utime);
1736 	cputime_to_timeval(stime, &r->ru_stime);
1737 }
1738 
1739 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1740 {
1741 	struct rusage r;
1742 	read_lock(&tasklist_lock);
1743 	k_getrusage(p, who, &r);
1744 	read_unlock(&tasklist_lock);
1745 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1746 }
1747 
1748 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1749 {
1750 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1751 		return -EINVAL;
1752 	return getrusage(current, who, ru);
1753 }
1754 
1755 asmlinkage long sys_umask(int mask)
1756 {
1757 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1758 	return mask;
1759 }
1760 
1761 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1762 			  unsigned long arg4, unsigned long arg5)
1763 {
1764 	long error;
1765 
1766 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1767 	if (error)
1768 		return error;
1769 
1770 	switch (option) {
1771 		case PR_SET_PDEATHSIG:
1772 			if (!valid_signal(arg2)) {
1773 				error = -EINVAL;
1774 				break;
1775 			}
1776 			current->pdeath_signal = arg2;
1777 			break;
1778 		case PR_GET_PDEATHSIG:
1779 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1780 			break;
1781 		case PR_GET_DUMPABLE:
1782 			error = current->mm->dumpable;
1783 			break;
1784 		case PR_SET_DUMPABLE:
1785 			if (arg2 < 0 || arg2 > 2) {
1786 				error = -EINVAL;
1787 				break;
1788 			}
1789 			current->mm->dumpable = arg2;
1790 			break;
1791 
1792 		case PR_SET_UNALIGN:
1793 			error = SET_UNALIGN_CTL(current, arg2);
1794 			break;
1795 		case PR_GET_UNALIGN:
1796 			error = GET_UNALIGN_CTL(current, arg2);
1797 			break;
1798 		case PR_SET_FPEMU:
1799 			error = SET_FPEMU_CTL(current, arg2);
1800 			break;
1801 		case PR_GET_FPEMU:
1802 			error = GET_FPEMU_CTL(current, arg2);
1803 			break;
1804 		case PR_SET_FPEXC:
1805 			error = SET_FPEXC_CTL(current, arg2);
1806 			break;
1807 		case PR_GET_FPEXC:
1808 			error = GET_FPEXC_CTL(current, arg2);
1809 			break;
1810 		case PR_GET_TIMING:
1811 			error = PR_TIMING_STATISTICAL;
1812 			break;
1813 		case PR_SET_TIMING:
1814 			if (arg2 == PR_TIMING_STATISTICAL)
1815 				error = 0;
1816 			else
1817 				error = -EINVAL;
1818 			break;
1819 
1820 		case PR_GET_KEEPCAPS:
1821 			if (current->keep_capabilities)
1822 				error = 1;
1823 			break;
1824 		case PR_SET_KEEPCAPS:
1825 			if (arg2 != 0 && arg2 != 1) {
1826 				error = -EINVAL;
1827 				break;
1828 			}
1829 			current->keep_capabilities = arg2;
1830 			break;
1831 		case PR_SET_NAME: {
1832 			struct task_struct *me = current;
1833 			unsigned char ncomm[sizeof(me->comm)];
1834 
1835 			ncomm[sizeof(me->comm)-1] = 0;
1836 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1837 						sizeof(me->comm)-1) < 0)
1838 				return -EFAULT;
1839 			set_task_comm(me, ncomm);
1840 			return 0;
1841 		}
1842 		case PR_GET_NAME: {
1843 			struct task_struct *me = current;
1844 			unsigned char tcomm[sizeof(me->comm)];
1845 
1846 			get_task_comm(tcomm, me);
1847 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1848 				return -EFAULT;
1849 			return 0;
1850 		}
1851 		default:
1852 			error = -EINVAL;
1853 			break;
1854 	}
1855 	return error;
1856 }
1857