xref: /openbmc/linux/kernel/sys.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/kmsg_dump.h>
53 /* Move somewhere else to avoid recompiling? */
54 #include <generated/utsrelease.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/unistd.h>
59 
60 #ifndef SET_UNALIGN_CTL
61 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_UNALIGN_CTL
64 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef SET_FPEMU_CTL
67 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
68 #endif
69 #ifndef GET_FPEMU_CTL
70 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
71 #endif
72 #ifndef SET_FPEXC_CTL
73 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
74 #endif
75 #ifndef GET_FPEXC_CTL
76 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
77 #endif
78 #ifndef GET_ENDIAN
79 # define GET_ENDIAN(a,b)	(-EINVAL)
80 #endif
81 #ifndef SET_ENDIAN
82 # define SET_ENDIAN(a,b)	(-EINVAL)
83 #endif
84 #ifndef GET_TSC_CTL
85 # define GET_TSC_CTL(a)		(-EINVAL)
86 #endif
87 #ifndef SET_TSC_CTL
88 # define SET_TSC_CTL(a)		(-EINVAL)
89 #endif
90 
91 /*
92  * this is where the system-wide overflow UID and GID are defined, for
93  * architectures that now have 32-bit UID/GID but didn't in the past
94  */
95 
96 int overflowuid = DEFAULT_OVERFLOWUID;
97 int overflowgid = DEFAULT_OVERFLOWGID;
98 
99 EXPORT_SYMBOL(overflowuid);
100 EXPORT_SYMBOL(overflowgid);
101 
102 /*
103  * the same as above, but for filesystems which can only store a 16-bit
104  * UID and GID. as such, this is needed on all architectures
105  */
106 
107 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
108 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
109 
110 EXPORT_SYMBOL(fs_overflowuid);
111 EXPORT_SYMBOL(fs_overflowgid);
112 
113 /*
114  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
115  */
116 
117 int C_A_D = 1;
118 struct pid *cad_pid;
119 EXPORT_SYMBOL(cad_pid);
120 
121 /*
122  * If set, this is used for preparing the system to power off.
123  */
124 
125 void (*pm_power_off_prepare)(void);
126 
127 /*
128  * Returns true if current's euid is same as p's uid or euid,
129  * or has CAP_SYS_NICE to p's user_ns.
130  *
131  * Called with rcu_read_lock, creds are safe
132  */
133 static bool set_one_prio_perm(struct task_struct *p)
134 {
135 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
136 
137 	if (uid_eq(pcred->uid,  cred->euid) ||
138 	    uid_eq(pcred->euid, cred->euid))
139 		return true;
140 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
141 		return true;
142 	return false;
143 }
144 
145 /*
146  * set the priority of a task
147  * - the caller must hold the RCU read lock
148  */
149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151 	int no_nice;
152 
153 	if (!set_one_prio_perm(p)) {
154 		error = -EPERM;
155 		goto out;
156 	}
157 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158 		error = -EACCES;
159 		goto out;
160 	}
161 	no_nice = security_task_setnice(p, niceval);
162 	if (no_nice) {
163 		error = no_nice;
164 		goto out;
165 	}
166 	if (error == -ESRCH)
167 		error = 0;
168 	set_user_nice(p, niceval);
169 out:
170 	return error;
171 }
172 
173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175 	struct task_struct *g, *p;
176 	struct user_struct *user;
177 	const struct cred *cred = current_cred();
178 	int error = -EINVAL;
179 	struct pid *pgrp;
180 	kuid_t uid;
181 
182 	if (which > PRIO_USER || which < PRIO_PROCESS)
183 		goto out;
184 
185 	/* normalize: avoid signed division (rounding problems) */
186 	error = -ESRCH;
187 	if (niceval < -20)
188 		niceval = -20;
189 	if (niceval > 19)
190 		niceval = 19;
191 
192 	rcu_read_lock();
193 	read_lock(&tasklist_lock);
194 	switch (which) {
195 		case PRIO_PROCESS:
196 			if (who)
197 				p = find_task_by_vpid(who);
198 			else
199 				p = current;
200 			if (p)
201 				error = set_one_prio(p, niceval, error);
202 			break;
203 		case PRIO_PGRP:
204 			if (who)
205 				pgrp = find_vpid(who);
206 			else
207 				pgrp = task_pgrp(current);
208 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
209 				error = set_one_prio(p, niceval, error);
210 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
211 			break;
212 		case PRIO_USER:
213 			uid = make_kuid(cred->user_ns, who);
214 			user = cred->user;
215 			if (!who)
216 				uid = cred->uid;
217 			else if (!uid_eq(uid, cred->uid) &&
218 				 !(user = find_user(uid)))
219 				goto out_unlock;	/* No processes for this user */
220 
221 			do_each_thread(g, p) {
222 				if (uid_eq(task_uid(p), uid))
223 					error = set_one_prio(p, niceval, error);
224 			} while_each_thread(g, p);
225 			if (!uid_eq(uid, cred->uid))
226 				free_uid(user);		/* For find_user() */
227 			break;
228 	}
229 out_unlock:
230 	read_unlock(&tasklist_lock);
231 	rcu_read_unlock();
232 out:
233 	return error;
234 }
235 
236 /*
237  * Ugh. To avoid negative return values, "getpriority()" will
238  * not return the normal nice-value, but a negated value that
239  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
240  * to stay compatible.
241  */
242 SYSCALL_DEFINE2(getpriority, int, which, int, who)
243 {
244 	struct task_struct *g, *p;
245 	struct user_struct *user;
246 	const struct cred *cred = current_cred();
247 	long niceval, retval = -ESRCH;
248 	struct pid *pgrp;
249 	kuid_t uid;
250 
251 	if (which > PRIO_USER || which < PRIO_PROCESS)
252 		return -EINVAL;
253 
254 	rcu_read_lock();
255 	read_lock(&tasklist_lock);
256 	switch (which) {
257 		case PRIO_PROCESS:
258 			if (who)
259 				p = find_task_by_vpid(who);
260 			else
261 				p = current;
262 			if (p) {
263 				niceval = 20 - task_nice(p);
264 				if (niceval > retval)
265 					retval = niceval;
266 			}
267 			break;
268 		case PRIO_PGRP:
269 			if (who)
270 				pgrp = find_vpid(who);
271 			else
272 				pgrp = task_pgrp(current);
273 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
274 				niceval = 20 - task_nice(p);
275 				if (niceval > retval)
276 					retval = niceval;
277 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
278 			break;
279 		case PRIO_USER:
280 			uid = make_kuid(cred->user_ns, who);
281 			user = cred->user;
282 			if (!who)
283 				uid = cred->uid;
284 			else if (!uid_eq(uid, cred->uid) &&
285 				 !(user = find_user(uid)))
286 				goto out_unlock;	/* No processes for this user */
287 
288 			do_each_thread(g, p) {
289 				if (uid_eq(task_uid(p), uid)) {
290 					niceval = 20 - task_nice(p);
291 					if (niceval > retval)
292 						retval = niceval;
293 				}
294 			} while_each_thread(g, p);
295 			if (!uid_eq(uid, cred->uid))
296 				free_uid(user);		/* for find_user() */
297 			break;
298 	}
299 out_unlock:
300 	read_unlock(&tasklist_lock);
301 	rcu_read_unlock();
302 
303 	return retval;
304 }
305 
306 /**
307  *	emergency_restart - reboot the system
308  *
309  *	Without shutting down any hardware or taking any locks
310  *	reboot the system.  This is called when we know we are in
311  *	trouble so this is our best effort to reboot.  This is
312  *	safe to call in interrupt context.
313  */
314 void emergency_restart(void)
315 {
316 	kmsg_dump(KMSG_DUMP_EMERG);
317 	machine_emergency_restart();
318 }
319 EXPORT_SYMBOL_GPL(emergency_restart);
320 
321 void kernel_restart_prepare(char *cmd)
322 {
323 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
324 	system_state = SYSTEM_RESTART;
325 	usermodehelper_disable();
326 	device_shutdown();
327 	syscore_shutdown();
328 }
329 
330 /**
331  *	register_reboot_notifier - Register function to be called at reboot time
332  *	@nb: Info about notifier function to be called
333  *
334  *	Registers a function with the list of functions
335  *	to be called at reboot time.
336  *
337  *	Currently always returns zero, as blocking_notifier_chain_register()
338  *	always returns zero.
339  */
340 int register_reboot_notifier(struct notifier_block *nb)
341 {
342 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
343 }
344 EXPORT_SYMBOL(register_reboot_notifier);
345 
346 /**
347  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
348  *	@nb: Hook to be unregistered
349  *
350  *	Unregisters a previously registered reboot
351  *	notifier function.
352  *
353  *	Returns zero on success, or %-ENOENT on failure.
354  */
355 int unregister_reboot_notifier(struct notifier_block *nb)
356 {
357 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
358 }
359 EXPORT_SYMBOL(unregister_reboot_notifier);
360 
361 /**
362  *	kernel_restart - reboot the system
363  *	@cmd: pointer to buffer containing command to execute for restart
364  *		or %NULL
365  *
366  *	Shutdown everything and perform a clean reboot.
367  *	This is not safe to call in interrupt context.
368  */
369 void kernel_restart(char *cmd)
370 {
371 	kernel_restart_prepare(cmd);
372 	disable_nonboot_cpus();
373 	if (!cmd)
374 		printk(KERN_EMERG "Restarting system.\n");
375 	else
376 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
377 	kmsg_dump(KMSG_DUMP_RESTART);
378 	machine_restart(cmd);
379 }
380 EXPORT_SYMBOL_GPL(kernel_restart);
381 
382 static void kernel_shutdown_prepare(enum system_states state)
383 {
384 	blocking_notifier_call_chain(&reboot_notifier_list,
385 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
386 	system_state = state;
387 	usermodehelper_disable();
388 	device_shutdown();
389 }
390 /**
391  *	kernel_halt - halt the system
392  *
393  *	Shutdown everything and perform a clean system halt.
394  */
395 void kernel_halt(void)
396 {
397 	kernel_shutdown_prepare(SYSTEM_HALT);
398 	syscore_shutdown();
399 	printk(KERN_EMERG "System halted.\n");
400 	kmsg_dump(KMSG_DUMP_HALT);
401 	machine_halt();
402 }
403 
404 EXPORT_SYMBOL_GPL(kernel_halt);
405 
406 /**
407  *	kernel_power_off - power_off the system
408  *
409  *	Shutdown everything and perform a clean system power_off.
410  */
411 void kernel_power_off(void)
412 {
413 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
414 	if (pm_power_off_prepare)
415 		pm_power_off_prepare();
416 	disable_nonboot_cpus();
417 	syscore_shutdown();
418 	printk(KERN_EMERG "Power down.\n");
419 	kmsg_dump(KMSG_DUMP_POWEROFF);
420 	machine_power_off();
421 }
422 EXPORT_SYMBOL_GPL(kernel_power_off);
423 
424 static DEFINE_MUTEX(reboot_mutex);
425 
426 /*
427  * Reboot system call: for obvious reasons only root may call it,
428  * and even root needs to set up some magic numbers in the registers
429  * so that some mistake won't make this reboot the whole machine.
430  * You can also set the meaning of the ctrl-alt-del-key here.
431  *
432  * reboot doesn't sync: do that yourself before calling this.
433  */
434 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
435 		void __user *, arg)
436 {
437 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
438 	char buffer[256];
439 	int ret = 0;
440 
441 	/* We only trust the superuser with rebooting the system. */
442 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
443 		return -EPERM;
444 
445 	/* For safety, we require "magic" arguments. */
446 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
447 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
448 	                magic2 != LINUX_REBOOT_MAGIC2A &&
449 			magic2 != LINUX_REBOOT_MAGIC2B &&
450 	                magic2 != LINUX_REBOOT_MAGIC2C))
451 		return -EINVAL;
452 
453 	/*
454 	 * If pid namespaces are enabled and the current task is in a child
455 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
456 	 * call do_exit().
457 	 */
458 	ret = reboot_pid_ns(pid_ns, cmd);
459 	if (ret)
460 		return ret;
461 
462 	/* Instead of trying to make the power_off code look like
463 	 * halt when pm_power_off is not set do it the easy way.
464 	 */
465 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
466 		cmd = LINUX_REBOOT_CMD_HALT;
467 
468 	mutex_lock(&reboot_mutex);
469 	switch (cmd) {
470 	case LINUX_REBOOT_CMD_RESTART:
471 		kernel_restart(NULL);
472 		break;
473 
474 	case LINUX_REBOOT_CMD_CAD_ON:
475 		C_A_D = 1;
476 		break;
477 
478 	case LINUX_REBOOT_CMD_CAD_OFF:
479 		C_A_D = 0;
480 		break;
481 
482 	case LINUX_REBOOT_CMD_HALT:
483 		kernel_halt();
484 		do_exit(0);
485 		panic("cannot halt");
486 
487 	case LINUX_REBOOT_CMD_POWER_OFF:
488 		kernel_power_off();
489 		do_exit(0);
490 		break;
491 
492 	case LINUX_REBOOT_CMD_RESTART2:
493 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
494 			ret = -EFAULT;
495 			break;
496 		}
497 		buffer[sizeof(buffer) - 1] = '\0';
498 
499 		kernel_restart(buffer);
500 		break;
501 
502 #ifdef CONFIG_KEXEC
503 	case LINUX_REBOOT_CMD_KEXEC:
504 		ret = kernel_kexec();
505 		break;
506 #endif
507 
508 #ifdef CONFIG_HIBERNATION
509 	case LINUX_REBOOT_CMD_SW_SUSPEND:
510 		ret = hibernate();
511 		break;
512 #endif
513 
514 	default:
515 		ret = -EINVAL;
516 		break;
517 	}
518 	mutex_unlock(&reboot_mutex);
519 	return ret;
520 }
521 
522 static void deferred_cad(struct work_struct *dummy)
523 {
524 	kernel_restart(NULL);
525 }
526 
527 /*
528  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
529  * As it's called within an interrupt, it may NOT sync: the only choice
530  * is whether to reboot at once, or just ignore the ctrl-alt-del.
531  */
532 void ctrl_alt_del(void)
533 {
534 	static DECLARE_WORK(cad_work, deferred_cad);
535 
536 	if (C_A_D)
537 		schedule_work(&cad_work);
538 	else
539 		kill_cad_pid(SIGINT, 1);
540 }
541 
542 /*
543  * Unprivileged users may change the real gid to the effective gid
544  * or vice versa.  (BSD-style)
545  *
546  * If you set the real gid at all, or set the effective gid to a value not
547  * equal to the real gid, then the saved gid is set to the new effective gid.
548  *
549  * This makes it possible for a setgid program to completely drop its
550  * privileges, which is often a useful assertion to make when you are doing
551  * a security audit over a program.
552  *
553  * The general idea is that a program which uses just setregid() will be
554  * 100% compatible with BSD.  A program which uses just setgid() will be
555  * 100% compatible with POSIX with saved IDs.
556  *
557  * SMP: There are not races, the GIDs are checked only by filesystem
558  *      operations (as far as semantic preservation is concerned).
559  */
560 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
561 {
562 	struct user_namespace *ns = current_user_ns();
563 	const struct cred *old;
564 	struct cred *new;
565 	int retval;
566 	kgid_t krgid, kegid;
567 
568 	krgid = make_kgid(ns, rgid);
569 	kegid = make_kgid(ns, egid);
570 
571 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
572 		return -EINVAL;
573 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
574 		return -EINVAL;
575 
576 	new = prepare_creds();
577 	if (!new)
578 		return -ENOMEM;
579 	old = current_cred();
580 
581 	retval = -EPERM;
582 	if (rgid != (gid_t) -1) {
583 		if (gid_eq(old->gid, krgid) ||
584 		    gid_eq(old->egid, krgid) ||
585 		    nsown_capable(CAP_SETGID))
586 			new->gid = krgid;
587 		else
588 			goto error;
589 	}
590 	if (egid != (gid_t) -1) {
591 		if (gid_eq(old->gid, kegid) ||
592 		    gid_eq(old->egid, kegid) ||
593 		    gid_eq(old->sgid, kegid) ||
594 		    nsown_capable(CAP_SETGID))
595 			new->egid = kegid;
596 		else
597 			goto error;
598 	}
599 
600 	if (rgid != (gid_t) -1 ||
601 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
602 		new->sgid = new->egid;
603 	new->fsgid = new->egid;
604 
605 	return commit_creds(new);
606 
607 error:
608 	abort_creds(new);
609 	return retval;
610 }
611 
612 /*
613  * setgid() is implemented like SysV w/ SAVED_IDS
614  *
615  * SMP: Same implicit races as above.
616  */
617 SYSCALL_DEFINE1(setgid, gid_t, gid)
618 {
619 	struct user_namespace *ns = current_user_ns();
620 	const struct cred *old;
621 	struct cred *new;
622 	int retval;
623 	kgid_t kgid;
624 
625 	kgid = make_kgid(ns, gid);
626 	if (!gid_valid(kgid))
627 		return -EINVAL;
628 
629 	new = prepare_creds();
630 	if (!new)
631 		return -ENOMEM;
632 	old = current_cred();
633 
634 	retval = -EPERM;
635 	if (nsown_capable(CAP_SETGID))
636 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
637 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
638 		new->egid = new->fsgid = kgid;
639 	else
640 		goto error;
641 
642 	return commit_creds(new);
643 
644 error:
645 	abort_creds(new);
646 	return retval;
647 }
648 
649 /*
650  * change the user struct in a credentials set to match the new UID
651  */
652 static int set_user(struct cred *new)
653 {
654 	struct user_struct *new_user;
655 
656 	new_user = alloc_uid(new->uid);
657 	if (!new_user)
658 		return -EAGAIN;
659 
660 	/*
661 	 * We don't fail in case of NPROC limit excess here because too many
662 	 * poorly written programs don't check set*uid() return code, assuming
663 	 * it never fails if called by root.  We may still enforce NPROC limit
664 	 * for programs doing set*uid()+execve() by harmlessly deferring the
665 	 * failure to the execve() stage.
666 	 */
667 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
668 			new_user != INIT_USER)
669 		current->flags |= PF_NPROC_EXCEEDED;
670 	else
671 		current->flags &= ~PF_NPROC_EXCEEDED;
672 
673 	free_uid(new->user);
674 	new->user = new_user;
675 	return 0;
676 }
677 
678 /*
679  * Unprivileged users may change the real uid to the effective uid
680  * or vice versa.  (BSD-style)
681  *
682  * If you set the real uid at all, or set the effective uid to a value not
683  * equal to the real uid, then the saved uid is set to the new effective uid.
684  *
685  * This makes it possible for a setuid program to completely drop its
686  * privileges, which is often a useful assertion to make when you are doing
687  * a security audit over a program.
688  *
689  * The general idea is that a program which uses just setreuid() will be
690  * 100% compatible with BSD.  A program which uses just setuid() will be
691  * 100% compatible with POSIX with saved IDs.
692  */
693 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
694 {
695 	struct user_namespace *ns = current_user_ns();
696 	const struct cred *old;
697 	struct cred *new;
698 	int retval;
699 	kuid_t kruid, keuid;
700 
701 	kruid = make_kuid(ns, ruid);
702 	keuid = make_kuid(ns, euid);
703 
704 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
705 		return -EINVAL;
706 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
707 		return -EINVAL;
708 
709 	new = prepare_creds();
710 	if (!new)
711 		return -ENOMEM;
712 	old = current_cred();
713 
714 	retval = -EPERM;
715 	if (ruid != (uid_t) -1) {
716 		new->uid = kruid;
717 		if (!uid_eq(old->uid, kruid) &&
718 		    !uid_eq(old->euid, kruid) &&
719 		    !nsown_capable(CAP_SETUID))
720 			goto error;
721 	}
722 
723 	if (euid != (uid_t) -1) {
724 		new->euid = keuid;
725 		if (!uid_eq(old->uid, keuid) &&
726 		    !uid_eq(old->euid, keuid) &&
727 		    !uid_eq(old->suid, keuid) &&
728 		    !nsown_capable(CAP_SETUID))
729 			goto error;
730 	}
731 
732 	if (!uid_eq(new->uid, old->uid)) {
733 		retval = set_user(new);
734 		if (retval < 0)
735 			goto error;
736 	}
737 	if (ruid != (uid_t) -1 ||
738 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
739 		new->suid = new->euid;
740 	new->fsuid = new->euid;
741 
742 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
743 	if (retval < 0)
744 		goto error;
745 
746 	return commit_creds(new);
747 
748 error:
749 	abort_creds(new);
750 	return retval;
751 }
752 
753 /*
754  * setuid() is implemented like SysV with SAVED_IDS
755  *
756  * Note that SAVED_ID's is deficient in that a setuid root program
757  * like sendmail, for example, cannot set its uid to be a normal
758  * user and then switch back, because if you're root, setuid() sets
759  * the saved uid too.  If you don't like this, blame the bright people
760  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
761  * will allow a root program to temporarily drop privileges and be able to
762  * regain them by swapping the real and effective uid.
763  */
764 SYSCALL_DEFINE1(setuid, uid_t, uid)
765 {
766 	struct user_namespace *ns = current_user_ns();
767 	const struct cred *old;
768 	struct cred *new;
769 	int retval;
770 	kuid_t kuid;
771 
772 	kuid = make_kuid(ns, uid);
773 	if (!uid_valid(kuid))
774 		return -EINVAL;
775 
776 	new = prepare_creds();
777 	if (!new)
778 		return -ENOMEM;
779 	old = current_cred();
780 
781 	retval = -EPERM;
782 	if (nsown_capable(CAP_SETUID)) {
783 		new->suid = new->uid = kuid;
784 		if (!uid_eq(kuid, old->uid)) {
785 			retval = set_user(new);
786 			if (retval < 0)
787 				goto error;
788 		}
789 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
790 		goto error;
791 	}
792 
793 	new->fsuid = new->euid = kuid;
794 
795 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
796 	if (retval < 0)
797 		goto error;
798 
799 	return commit_creds(new);
800 
801 error:
802 	abort_creds(new);
803 	return retval;
804 }
805 
806 
807 /*
808  * This function implements a generic ability to update ruid, euid,
809  * and suid.  This allows you to implement the 4.4 compatible seteuid().
810  */
811 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
812 {
813 	struct user_namespace *ns = current_user_ns();
814 	const struct cred *old;
815 	struct cred *new;
816 	int retval;
817 	kuid_t kruid, keuid, ksuid;
818 
819 	kruid = make_kuid(ns, ruid);
820 	keuid = make_kuid(ns, euid);
821 	ksuid = make_kuid(ns, suid);
822 
823 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
824 		return -EINVAL;
825 
826 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
827 		return -EINVAL;
828 
829 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
830 		return -EINVAL;
831 
832 	new = prepare_creds();
833 	if (!new)
834 		return -ENOMEM;
835 
836 	old = current_cred();
837 
838 	retval = -EPERM;
839 	if (!nsown_capable(CAP_SETUID)) {
840 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
841 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
842 			goto error;
843 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
844 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
845 			goto error;
846 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
847 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
848 			goto error;
849 	}
850 
851 	if (ruid != (uid_t) -1) {
852 		new->uid = kruid;
853 		if (!uid_eq(kruid, old->uid)) {
854 			retval = set_user(new);
855 			if (retval < 0)
856 				goto error;
857 		}
858 	}
859 	if (euid != (uid_t) -1)
860 		new->euid = keuid;
861 	if (suid != (uid_t) -1)
862 		new->suid = ksuid;
863 	new->fsuid = new->euid;
864 
865 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
866 	if (retval < 0)
867 		goto error;
868 
869 	return commit_creds(new);
870 
871 error:
872 	abort_creds(new);
873 	return retval;
874 }
875 
876 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
877 {
878 	const struct cred *cred = current_cred();
879 	int retval;
880 	uid_t ruid, euid, suid;
881 
882 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
883 	euid = from_kuid_munged(cred->user_ns, cred->euid);
884 	suid = from_kuid_munged(cred->user_ns, cred->suid);
885 
886 	if (!(retval   = put_user(ruid, ruidp)) &&
887 	    !(retval   = put_user(euid, euidp)))
888 		retval = put_user(suid, suidp);
889 
890 	return retval;
891 }
892 
893 /*
894  * Same as above, but for rgid, egid, sgid.
895  */
896 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
897 {
898 	struct user_namespace *ns = current_user_ns();
899 	const struct cred *old;
900 	struct cred *new;
901 	int retval;
902 	kgid_t krgid, kegid, ksgid;
903 
904 	krgid = make_kgid(ns, rgid);
905 	kegid = make_kgid(ns, egid);
906 	ksgid = make_kgid(ns, sgid);
907 
908 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
909 		return -EINVAL;
910 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
911 		return -EINVAL;
912 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
913 		return -EINVAL;
914 
915 	new = prepare_creds();
916 	if (!new)
917 		return -ENOMEM;
918 	old = current_cred();
919 
920 	retval = -EPERM;
921 	if (!nsown_capable(CAP_SETGID)) {
922 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
923 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
924 			goto error;
925 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
926 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
927 			goto error;
928 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
929 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
930 			goto error;
931 	}
932 
933 	if (rgid != (gid_t) -1)
934 		new->gid = krgid;
935 	if (egid != (gid_t) -1)
936 		new->egid = kegid;
937 	if (sgid != (gid_t) -1)
938 		new->sgid = ksgid;
939 	new->fsgid = new->egid;
940 
941 	return commit_creds(new);
942 
943 error:
944 	abort_creds(new);
945 	return retval;
946 }
947 
948 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
949 {
950 	const struct cred *cred = current_cred();
951 	int retval;
952 	gid_t rgid, egid, sgid;
953 
954 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
955 	egid = from_kgid_munged(cred->user_ns, cred->egid);
956 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
957 
958 	if (!(retval   = put_user(rgid, rgidp)) &&
959 	    !(retval   = put_user(egid, egidp)))
960 		retval = put_user(sgid, sgidp);
961 
962 	return retval;
963 }
964 
965 
966 /*
967  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
968  * is used for "access()" and for the NFS daemon (letting nfsd stay at
969  * whatever uid it wants to). It normally shadows "euid", except when
970  * explicitly set by setfsuid() or for access..
971  */
972 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
973 {
974 	const struct cred *old;
975 	struct cred *new;
976 	uid_t old_fsuid;
977 	kuid_t kuid;
978 
979 	old = current_cred();
980 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
981 
982 	kuid = make_kuid(old->user_ns, uid);
983 	if (!uid_valid(kuid))
984 		return old_fsuid;
985 
986 	new = prepare_creds();
987 	if (!new)
988 		return old_fsuid;
989 
990 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
991 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
992 	    nsown_capable(CAP_SETUID)) {
993 		if (!uid_eq(kuid, old->fsuid)) {
994 			new->fsuid = kuid;
995 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
996 				goto change_okay;
997 		}
998 	}
999 
1000 	abort_creds(new);
1001 	return old_fsuid;
1002 
1003 change_okay:
1004 	commit_creds(new);
1005 	return old_fsuid;
1006 }
1007 
1008 /*
1009  * Samma på svenska..
1010  */
1011 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1012 {
1013 	const struct cred *old;
1014 	struct cred *new;
1015 	gid_t old_fsgid;
1016 	kgid_t kgid;
1017 
1018 	old = current_cred();
1019 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1020 
1021 	kgid = make_kgid(old->user_ns, gid);
1022 	if (!gid_valid(kgid))
1023 		return old_fsgid;
1024 
1025 	new = prepare_creds();
1026 	if (!new)
1027 		return old_fsgid;
1028 
1029 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1030 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1031 	    nsown_capable(CAP_SETGID)) {
1032 		if (!gid_eq(kgid, old->fsgid)) {
1033 			new->fsgid = kgid;
1034 			goto change_okay;
1035 		}
1036 	}
1037 
1038 	abort_creds(new);
1039 	return old_fsgid;
1040 
1041 change_okay:
1042 	commit_creds(new);
1043 	return old_fsgid;
1044 }
1045 
1046 void do_sys_times(struct tms *tms)
1047 {
1048 	cputime_t tgutime, tgstime, cutime, cstime;
1049 
1050 	spin_lock_irq(&current->sighand->siglock);
1051 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1052 	cutime = current->signal->cutime;
1053 	cstime = current->signal->cstime;
1054 	spin_unlock_irq(&current->sighand->siglock);
1055 	tms->tms_utime = cputime_to_clock_t(tgutime);
1056 	tms->tms_stime = cputime_to_clock_t(tgstime);
1057 	tms->tms_cutime = cputime_to_clock_t(cutime);
1058 	tms->tms_cstime = cputime_to_clock_t(cstime);
1059 }
1060 
1061 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1062 {
1063 	if (tbuf) {
1064 		struct tms tmp;
1065 
1066 		do_sys_times(&tmp);
1067 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1068 			return -EFAULT;
1069 	}
1070 	force_successful_syscall_return();
1071 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1072 }
1073 
1074 /*
1075  * This needs some heavy checking ...
1076  * I just haven't the stomach for it. I also don't fully
1077  * understand sessions/pgrp etc. Let somebody who does explain it.
1078  *
1079  * OK, I think I have the protection semantics right.... this is really
1080  * only important on a multi-user system anyway, to make sure one user
1081  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1082  *
1083  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1084  * LBT 04.03.94
1085  */
1086 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1087 {
1088 	struct task_struct *p;
1089 	struct task_struct *group_leader = current->group_leader;
1090 	struct pid *pgrp;
1091 	int err;
1092 
1093 	if (!pid)
1094 		pid = task_pid_vnr(group_leader);
1095 	if (!pgid)
1096 		pgid = pid;
1097 	if (pgid < 0)
1098 		return -EINVAL;
1099 	rcu_read_lock();
1100 
1101 	/* From this point forward we keep holding onto the tasklist lock
1102 	 * so that our parent does not change from under us. -DaveM
1103 	 */
1104 	write_lock_irq(&tasklist_lock);
1105 
1106 	err = -ESRCH;
1107 	p = find_task_by_vpid(pid);
1108 	if (!p)
1109 		goto out;
1110 
1111 	err = -EINVAL;
1112 	if (!thread_group_leader(p))
1113 		goto out;
1114 
1115 	if (same_thread_group(p->real_parent, group_leader)) {
1116 		err = -EPERM;
1117 		if (task_session(p) != task_session(group_leader))
1118 			goto out;
1119 		err = -EACCES;
1120 		if (p->did_exec)
1121 			goto out;
1122 	} else {
1123 		err = -ESRCH;
1124 		if (p != group_leader)
1125 			goto out;
1126 	}
1127 
1128 	err = -EPERM;
1129 	if (p->signal->leader)
1130 		goto out;
1131 
1132 	pgrp = task_pid(p);
1133 	if (pgid != pid) {
1134 		struct task_struct *g;
1135 
1136 		pgrp = find_vpid(pgid);
1137 		g = pid_task(pgrp, PIDTYPE_PGID);
1138 		if (!g || task_session(g) != task_session(group_leader))
1139 			goto out;
1140 	}
1141 
1142 	err = security_task_setpgid(p, pgid);
1143 	if (err)
1144 		goto out;
1145 
1146 	if (task_pgrp(p) != pgrp)
1147 		change_pid(p, PIDTYPE_PGID, pgrp);
1148 
1149 	err = 0;
1150 out:
1151 	/* All paths lead to here, thus we are safe. -DaveM */
1152 	write_unlock_irq(&tasklist_lock);
1153 	rcu_read_unlock();
1154 	return err;
1155 }
1156 
1157 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1158 {
1159 	struct task_struct *p;
1160 	struct pid *grp;
1161 	int retval;
1162 
1163 	rcu_read_lock();
1164 	if (!pid)
1165 		grp = task_pgrp(current);
1166 	else {
1167 		retval = -ESRCH;
1168 		p = find_task_by_vpid(pid);
1169 		if (!p)
1170 			goto out;
1171 		grp = task_pgrp(p);
1172 		if (!grp)
1173 			goto out;
1174 
1175 		retval = security_task_getpgid(p);
1176 		if (retval)
1177 			goto out;
1178 	}
1179 	retval = pid_vnr(grp);
1180 out:
1181 	rcu_read_unlock();
1182 	return retval;
1183 }
1184 
1185 #ifdef __ARCH_WANT_SYS_GETPGRP
1186 
1187 SYSCALL_DEFINE0(getpgrp)
1188 {
1189 	return sys_getpgid(0);
1190 }
1191 
1192 #endif
1193 
1194 SYSCALL_DEFINE1(getsid, pid_t, pid)
1195 {
1196 	struct task_struct *p;
1197 	struct pid *sid;
1198 	int retval;
1199 
1200 	rcu_read_lock();
1201 	if (!pid)
1202 		sid = task_session(current);
1203 	else {
1204 		retval = -ESRCH;
1205 		p = find_task_by_vpid(pid);
1206 		if (!p)
1207 			goto out;
1208 		sid = task_session(p);
1209 		if (!sid)
1210 			goto out;
1211 
1212 		retval = security_task_getsid(p);
1213 		if (retval)
1214 			goto out;
1215 	}
1216 	retval = pid_vnr(sid);
1217 out:
1218 	rcu_read_unlock();
1219 	return retval;
1220 }
1221 
1222 SYSCALL_DEFINE0(setsid)
1223 {
1224 	struct task_struct *group_leader = current->group_leader;
1225 	struct pid *sid = task_pid(group_leader);
1226 	pid_t session = pid_vnr(sid);
1227 	int err = -EPERM;
1228 
1229 	write_lock_irq(&tasklist_lock);
1230 	/* Fail if I am already a session leader */
1231 	if (group_leader->signal->leader)
1232 		goto out;
1233 
1234 	/* Fail if a process group id already exists that equals the
1235 	 * proposed session id.
1236 	 */
1237 	if (pid_task(sid, PIDTYPE_PGID))
1238 		goto out;
1239 
1240 	group_leader->signal->leader = 1;
1241 	__set_special_pids(sid);
1242 
1243 	proc_clear_tty(group_leader);
1244 
1245 	err = session;
1246 out:
1247 	write_unlock_irq(&tasklist_lock);
1248 	if (err > 0) {
1249 		proc_sid_connector(group_leader);
1250 		sched_autogroup_create_attach(group_leader);
1251 	}
1252 	return err;
1253 }
1254 
1255 DECLARE_RWSEM(uts_sem);
1256 
1257 #ifdef COMPAT_UTS_MACHINE
1258 #define override_architecture(name) \
1259 	(personality(current->personality) == PER_LINUX32 && \
1260 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1261 		      sizeof(COMPAT_UTS_MACHINE)))
1262 #else
1263 #define override_architecture(name)	0
1264 #endif
1265 
1266 /*
1267  * Work around broken programs that cannot handle "Linux 3.0".
1268  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1269  */
1270 static int override_release(char __user *release, size_t len)
1271 {
1272 	int ret = 0;
1273 
1274 	if (current->personality & UNAME26) {
1275 		const char *rest = UTS_RELEASE;
1276 		char buf[65] = { 0 };
1277 		int ndots = 0;
1278 		unsigned v;
1279 		size_t copy;
1280 
1281 		while (*rest) {
1282 			if (*rest == '.' && ++ndots >= 3)
1283 				break;
1284 			if (!isdigit(*rest) && *rest != '.')
1285 				break;
1286 			rest++;
1287 		}
1288 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1289 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1290 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1291 		ret = copy_to_user(release, buf, copy + 1);
1292 	}
1293 	return ret;
1294 }
1295 
1296 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1297 {
1298 	int errno = 0;
1299 
1300 	down_read(&uts_sem);
1301 	if (copy_to_user(name, utsname(), sizeof *name))
1302 		errno = -EFAULT;
1303 	up_read(&uts_sem);
1304 
1305 	if (!errno && override_release(name->release, sizeof(name->release)))
1306 		errno = -EFAULT;
1307 	if (!errno && override_architecture(name))
1308 		errno = -EFAULT;
1309 	return errno;
1310 }
1311 
1312 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1313 /*
1314  * Old cruft
1315  */
1316 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1317 {
1318 	int error = 0;
1319 
1320 	if (!name)
1321 		return -EFAULT;
1322 
1323 	down_read(&uts_sem);
1324 	if (copy_to_user(name, utsname(), sizeof(*name)))
1325 		error = -EFAULT;
1326 	up_read(&uts_sem);
1327 
1328 	if (!error && override_release(name->release, sizeof(name->release)))
1329 		error = -EFAULT;
1330 	if (!error && override_architecture(name))
1331 		error = -EFAULT;
1332 	return error;
1333 }
1334 
1335 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1336 {
1337 	int error;
1338 
1339 	if (!name)
1340 		return -EFAULT;
1341 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1342 		return -EFAULT;
1343 
1344 	down_read(&uts_sem);
1345 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1346 			       __OLD_UTS_LEN);
1347 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1348 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1349 				__OLD_UTS_LEN);
1350 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1351 	error |= __copy_to_user(&name->release, &utsname()->release,
1352 				__OLD_UTS_LEN);
1353 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1354 	error |= __copy_to_user(&name->version, &utsname()->version,
1355 				__OLD_UTS_LEN);
1356 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1357 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1358 				__OLD_UTS_LEN);
1359 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1360 	up_read(&uts_sem);
1361 
1362 	if (!error && override_architecture(name))
1363 		error = -EFAULT;
1364 	if (!error && override_release(name->release, sizeof(name->release)))
1365 		error = -EFAULT;
1366 	return error ? -EFAULT : 0;
1367 }
1368 #endif
1369 
1370 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1371 {
1372 	int errno;
1373 	char tmp[__NEW_UTS_LEN];
1374 
1375 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1376 		return -EPERM;
1377 
1378 	if (len < 0 || len > __NEW_UTS_LEN)
1379 		return -EINVAL;
1380 	down_write(&uts_sem);
1381 	errno = -EFAULT;
1382 	if (!copy_from_user(tmp, name, len)) {
1383 		struct new_utsname *u = utsname();
1384 
1385 		memcpy(u->nodename, tmp, len);
1386 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1387 		errno = 0;
1388 		uts_proc_notify(UTS_PROC_HOSTNAME);
1389 	}
1390 	up_write(&uts_sem);
1391 	return errno;
1392 }
1393 
1394 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1395 
1396 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1397 {
1398 	int i, errno;
1399 	struct new_utsname *u;
1400 
1401 	if (len < 0)
1402 		return -EINVAL;
1403 	down_read(&uts_sem);
1404 	u = utsname();
1405 	i = 1 + strlen(u->nodename);
1406 	if (i > len)
1407 		i = len;
1408 	errno = 0;
1409 	if (copy_to_user(name, u->nodename, i))
1410 		errno = -EFAULT;
1411 	up_read(&uts_sem);
1412 	return errno;
1413 }
1414 
1415 #endif
1416 
1417 /*
1418  * Only setdomainname; getdomainname can be implemented by calling
1419  * uname()
1420  */
1421 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1422 {
1423 	int errno;
1424 	char tmp[__NEW_UTS_LEN];
1425 
1426 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1427 		return -EPERM;
1428 	if (len < 0 || len > __NEW_UTS_LEN)
1429 		return -EINVAL;
1430 
1431 	down_write(&uts_sem);
1432 	errno = -EFAULT;
1433 	if (!copy_from_user(tmp, name, len)) {
1434 		struct new_utsname *u = utsname();
1435 
1436 		memcpy(u->domainname, tmp, len);
1437 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1438 		errno = 0;
1439 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1440 	}
1441 	up_write(&uts_sem);
1442 	return errno;
1443 }
1444 
1445 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1446 {
1447 	struct rlimit value;
1448 	int ret;
1449 
1450 	ret = do_prlimit(current, resource, NULL, &value);
1451 	if (!ret)
1452 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1453 
1454 	return ret;
1455 }
1456 
1457 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1458 
1459 /*
1460  *	Back compatibility for getrlimit. Needed for some apps.
1461  */
1462 
1463 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1464 		struct rlimit __user *, rlim)
1465 {
1466 	struct rlimit x;
1467 	if (resource >= RLIM_NLIMITS)
1468 		return -EINVAL;
1469 
1470 	task_lock(current->group_leader);
1471 	x = current->signal->rlim[resource];
1472 	task_unlock(current->group_leader);
1473 	if (x.rlim_cur > 0x7FFFFFFF)
1474 		x.rlim_cur = 0x7FFFFFFF;
1475 	if (x.rlim_max > 0x7FFFFFFF)
1476 		x.rlim_max = 0x7FFFFFFF;
1477 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1478 }
1479 
1480 #endif
1481 
1482 static inline bool rlim64_is_infinity(__u64 rlim64)
1483 {
1484 #if BITS_PER_LONG < 64
1485 	return rlim64 >= ULONG_MAX;
1486 #else
1487 	return rlim64 == RLIM64_INFINITY;
1488 #endif
1489 }
1490 
1491 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1492 {
1493 	if (rlim->rlim_cur == RLIM_INFINITY)
1494 		rlim64->rlim_cur = RLIM64_INFINITY;
1495 	else
1496 		rlim64->rlim_cur = rlim->rlim_cur;
1497 	if (rlim->rlim_max == RLIM_INFINITY)
1498 		rlim64->rlim_max = RLIM64_INFINITY;
1499 	else
1500 		rlim64->rlim_max = rlim->rlim_max;
1501 }
1502 
1503 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1504 {
1505 	if (rlim64_is_infinity(rlim64->rlim_cur))
1506 		rlim->rlim_cur = RLIM_INFINITY;
1507 	else
1508 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1509 	if (rlim64_is_infinity(rlim64->rlim_max))
1510 		rlim->rlim_max = RLIM_INFINITY;
1511 	else
1512 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1513 }
1514 
1515 /* make sure you are allowed to change @tsk limits before calling this */
1516 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1517 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1518 {
1519 	struct rlimit *rlim;
1520 	int retval = 0;
1521 
1522 	if (resource >= RLIM_NLIMITS)
1523 		return -EINVAL;
1524 	if (new_rlim) {
1525 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1526 			return -EINVAL;
1527 		if (resource == RLIMIT_NOFILE &&
1528 				new_rlim->rlim_max > sysctl_nr_open)
1529 			return -EPERM;
1530 	}
1531 
1532 	/* protect tsk->signal and tsk->sighand from disappearing */
1533 	read_lock(&tasklist_lock);
1534 	if (!tsk->sighand) {
1535 		retval = -ESRCH;
1536 		goto out;
1537 	}
1538 
1539 	rlim = tsk->signal->rlim + resource;
1540 	task_lock(tsk->group_leader);
1541 	if (new_rlim) {
1542 		/* Keep the capable check against init_user_ns until
1543 		   cgroups can contain all limits */
1544 		if (new_rlim->rlim_max > rlim->rlim_max &&
1545 				!capable(CAP_SYS_RESOURCE))
1546 			retval = -EPERM;
1547 		if (!retval)
1548 			retval = security_task_setrlimit(tsk->group_leader,
1549 					resource, new_rlim);
1550 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1551 			/*
1552 			 * The caller is asking for an immediate RLIMIT_CPU
1553 			 * expiry.  But we use the zero value to mean "it was
1554 			 * never set".  So let's cheat and make it one second
1555 			 * instead
1556 			 */
1557 			new_rlim->rlim_cur = 1;
1558 		}
1559 	}
1560 	if (!retval) {
1561 		if (old_rlim)
1562 			*old_rlim = *rlim;
1563 		if (new_rlim)
1564 			*rlim = *new_rlim;
1565 	}
1566 	task_unlock(tsk->group_leader);
1567 
1568 	/*
1569 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1570 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1571 	 * very long-standing error, and fixing it now risks breakage of
1572 	 * applications, so we live with it
1573 	 */
1574 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1575 			 new_rlim->rlim_cur != RLIM_INFINITY)
1576 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1577 out:
1578 	read_unlock(&tasklist_lock);
1579 	return retval;
1580 }
1581 
1582 /* rcu lock must be held */
1583 static int check_prlimit_permission(struct task_struct *task)
1584 {
1585 	const struct cred *cred = current_cred(), *tcred;
1586 
1587 	if (current == task)
1588 		return 0;
1589 
1590 	tcred = __task_cred(task);
1591 	if (uid_eq(cred->uid, tcred->euid) &&
1592 	    uid_eq(cred->uid, tcred->suid) &&
1593 	    uid_eq(cred->uid, tcred->uid)  &&
1594 	    gid_eq(cred->gid, tcred->egid) &&
1595 	    gid_eq(cred->gid, tcred->sgid) &&
1596 	    gid_eq(cred->gid, tcred->gid))
1597 		return 0;
1598 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1599 		return 0;
1600 
1601 	return -EPERM;
1602 }
1603 
1604 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1605 		const struct rlimit64 __user *, new_rlim,
1606 		struct rlimit64 __user *, old_rlim)
1607 {
1608 	struct rlimit64 old64, new64;
1609 	struct rlimit old, new;
1610 	struct task_struct *tsk;
1611 	int ret;
1612 
1613 	if (new_rlim) {
1614 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1615 			return -EFAULT;
1616 		rlim64_to_rlim(&new64, &new);
1617 	}
1618 
1619 	rcu_read_lock();
1620 	tsk = pid ? find_task_by_vpid(pid) : current;
1621 	if (!tsk) {
1622 		rcu_read_unlock();
1623 		return -ESRCH;
1624 	}
1625 	ret = check_prlimit_permission(tsk);
1626 	if (ret) {
1627 		rcu_read_unlock();
1628 		return ret;
1629 	}
1630 	get_task_struct(tsk);
1631 	rcu_read_unlock();
1632 
1633 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1634 			old_rlim ? &old : NULL);
1635 
1636 	if (!ret && old_rlim) {
1637 		rlim_to_rlim64(&old, &old64);
1638 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1639 			ret = -EFAULT;
1640 	}
1641 
1642 	put_task_struct(tsk);
1643 	return ret;
1644 }
1645 
1646 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1647 {
1648 	struct rlimit new_rlim;
1649 
1650 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1651 		return -EFAULT;
1652 	return do_prlimit(current, resource, &new_rlim, NULL);
1653 }
1654 
1655 /*
1656  * It would make sense to put struct rusage in the task_struct,
1657  * except that would make the task_struct be *really big*.  After
1658  * task_struct gets moved into malloc'ed memory, it would
1659  * make sense to do this.  It will make moving the rest of the information
1660  * a lot simpler!  (Which we're not doing right now because we're not
1661  * measuring them yet).
1662  *
1663  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1664  * races with threads incrementing their own counters.  But since word
1665  * reads are atomic, we either get new values or old values and we don't
1666  * care which for the sums.  We always take the siglock to protect reading
1667  * the c* fields from p->signal from races with exit.c updating those
1668  * fields when reaping, so a sample either gets all the additions of a
1669  * given child after it's reaped, or none so this sample is before reaping.
1670  *
1671  * Locking:
1672  * We need to take the siglock for CHILDEREN, SELF and BOTH
1673  * for  the cases current multithreaded, non-current single threaded
1674  * non-current multithreaded.  Thread traversal is now safe with
1675  * the siglock held.
1676  * Strictly speaking, we donot need to take the siglock if we are current and
1677  * single threaded,  as no one else can take our signal_struct away, no one
1678  * else can  reap the  children to update signal->c* counters, and no one else
1679  * can race with the signal-> fields. If we do not take any lock, the
1680  * signal-> fields could be read out of order while another thread was just
1681  * exiting. So we should  place a read memory barrier when we avoid the lock.
1682  * On the writer side,  write memory barrier is implied in  __exit_signal
1683  * as __exit_signal releases  the siglock spinlock after updating the signal->
1684  * fields. But we don't do this yet to keep things simple.
1685  *
1686  */
1687 
1688 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1689 {
1690 	r->ru_nvcsw += t->nvcsw;
1691 	r->ru_nivcsw += t->nivcsw;
1692 	r->ru_minflt += t->min_flt;
1693 	r->ru_majflt += t->maj_flt;
1694 	r->ru_inblock += task_io_get_inblock(t);
1695 	r->ru_oublock += task_io_get_oublock(t);
1696 }
1697 
1698 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1699 {
1700 	struct task_struct *t;
1701 	unsigned long flags;
1702 	cputime_t tgutime, tgstime, utime, stime;
1703 	unsigned long maxrss = 0;
1704 
1705 	memset((char *) r, 0, sizeof *r);
1706 	utime = stime = 0;
1707 
1708 	if (who == RUSAGE_THREAD) {
1709 		task_cputime_adjusted(current, &utime, &stime);
1710 		accumulate_thread_rusage(p, r);
1711 		maxrss = p->signal->maxrss;
1712 		goto out;
1713 	}
1714 
1715 	if (!lock_task_sighand(p, &flags))
1716 		return;
1717 
1718 	switch (who) {
1719 		case RUSAGE_BOTH:
1720 		case RUSAGE_CHILDREN:
1721 			utime = p->signal->cutime;
1722 			stime = p->signal->cstime;
1723 			r->ru_nvcsw = p->signal->cnvcsw;
1724 			r->ru_nivcsw = p->signal->cnivcsw;
1725 			r->ru_minflt = p->signal->cmin_flt;
1726 			r->ru_majflt = p->signal->cmaj_flt;
1727 			r->ru_inblock = p->signal->cinblock;
1728 			r->ru_oublock = p->signal->coublock;
1729 			maxrss = p->signal->cmaxrss;
1730 
1731 			if (who == RUSAGE_CHILDREN)
1732 				break;
1733 
1734 		case RUSAGE_SELF:
1735 			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1736 			utime += tgutime;
1737 			stime += tgstime;
1738 			r->ru_nvcsw += p->signal->nvcsw;
1739 			r->ru_nivcsw += p->signal->nivcsw;
1740 			r->ru_minflt += p->signal->min_flt;
1741 			r->ru_majflt += p->signal->maj_flt;
1742 			r->ru_inblock += p->signal->inblock;
1743 			r->ru_oublock += p->signal->oublock;
1744 			if (maxrss < p->signal->maxrss)
1745 				maxrss = p->signal->maxrss;
1746 			t = p;
1747 			do {
1748 				accumulate_thread_rusage(t, r);
1749 				t = next_thread(t);
1750 			} while (t != p);
1751 			break;
1752 
1753 		default:
1754 			BUG();
1755 	}
1756 	unlock_task_sighand(p, &flags);
1757 
1758 out:
1759 	cputime_to_timeval(utime, &r->ru_utime);
1760 	cputime_to_timeval(stime, &r->ru_stime);
1761 
1762 	if (who != RUSAGE_CHILDREN) {
1763 		struct mm_struct *mm = get_task_mm(p);
1764 		if (mm) {
1765 			setmax_mm_hiwater_rss(&maxrss, mm);
1766 			mmput(mm);
1767 		}
1768 	}
1769 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1770 }
1771 
1772 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1773 {
1774 	struct rusage r;
1775 	k_getrusage(p, who, &r);
1776 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1777 }
1778 
1779 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1780 {
1781 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1782 	    who != RUSAGE_THREAD)
1783 		return -EINVAL;
1784 	return getrusage(current, who, ru);
1785 }
1786 
1787 SYSCALL_DEFINE1(umask, int, mask)
1788 {
1789 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1790 	return mask;
1791 }
1792 
1793 #ifdef CONFIG_CHECKPOINT_RESTORE
1794 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1795 {
1796 	struct fd exe;
1797 	struct inode *inode;
1798 	int err;
1799 
1800 	exe = fdget(fd);
1801 	if (!exe.file)
1802 		return -EBADF;
1803 
1804 	inode = file_inode(exe.file);
1805 
1806 	/*
1807 	 * Because the original mm->exe_file points to executable file, make
1808 	 * sure that this one is executable as well, to avoid breaking an
1809 	 * overall picture.
1810 	 */
1811 	err = -EACCES;
1812 	if (!S_ISREG(inode->i_mode)	||
1813 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1814 		goto exit;
1815 
1816 	err = inode_permission(inode, MAY_EXEC);
1817 	if (err)
1818 		goto exit;
1819 
1820 	down_write(&mm->mmap_sem);
1821 
1822 	/*
1823 	 * Forbid mm->exe_file change if old file still mapped.
1824 	 */
1825 	err = -EBUSY;
1826 	if (mm->exe_file) {
1827 		struct vm_area_struct *vma;
1828 
1829 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1830 			if (vma->vm_file &&
1831 			    path_equal(&vma->vm_file->f_path,
1832 				       &mm->exe_file->f_path))
1833 				goto exit_unlock;
1834 	}
1835 
1836 	/*
1837 	 * The symlink can be changed only once, just to disallow arbitrary
1838 	 * transitions malicious software might bring in. This means one
1839 	 * could make a snapshot over all processes running and monitor
1840 	 * /proc/pid/exe changes to notice unusual activity if needed.
1841 	 */
1842 	err = -EPERM;
1843 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1844 		goto exit_unlock;
1845 
1846 	err = 0;
1847 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1848 exit_unlock:
1849 	up_write(&mm->mmap_sem);
1850 
1851 exit:
1852 	fdput(exe);
1853 	return err;
1854 }
1855 
1856 static int prctl_set_mm(int opt, unsigned long addr,
1857 			unsigned long arg4, unsigned long arg5)
1858 {
1859 	unsigned long rlim = rlimit(RLIMIT_DATA);
1860 	struct mm_struct *mm = current->mm;
1861 	struct vm_area_struct *vma;
1862 	int error;
1863 
1864 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1865 		return -EINVAL;
1866 
1867 	if (!capable(CAP_SYS_RESOURCE))
1868 		return -EPERM;
1869 
1870 	if (opt == PR_SET_MM_EXE_FILE)
1871 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1872 
1873 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1874 		return -EINVAL;
1875 
1876 	error = -EINVAL;
1877 
1878 	down_read(&mm->mmap_sem);
1879 	vma = find_vma(mm, addr);
1880 
1881 	switch (opt) {
1882 	case PR_SET_MM_START_CODE:
1883 		mm->start_code = addr;
1884 		break;
1885 	case PR_SET_MM_END_CODE:
1886 		mm->end_code = addr;
1887 		break;
1888 	case PR_SET_MM_START_DATA:
1889 		mm->start_data = addr;
1890 		break;
1891 	case PR_SET_MM_END_DATA:
1892 		mm->end_data = addr;
1893 		break;
1894 
1895 	case PR_SET_MM_START_BRK:
1896 		if (addr <= mm->end_data)
1897 			goto out;
1898 
1899 		if (rlim < RLIM_INFINITY &&
1900 		    (mm->brk - addr) +
1901 		    (mm->end_data - mm->start_data) > rlim)
1902 			goto out;
1903 
1904 		mm->start_brk = addr;
1905 		break;
1906 
1907 	case PR_SET_MM_BRK:
1908 		if (addr <= mm->end_data)
1909 			goto out;
1910 
1911 		if (rlim < RLIM_INFINITY &&
1912 		    (addr - mm->start_brk) +
1913 		    (mm->end_data - mm->start_data) > rlim)
1914 			goto out;
1915 
1916 		mm->brk = addr;
1917 		break;
1918 
1919 	/*
1920 	 * If command line arguments and environment
1921 	 * are placed somewhere else on stack, we can
1922 	 * set them up here, ARG_START/END to setup
1923 	 * command line argumets and ENV_START/END
1924 	 * for environment.
1925 	 */
1926 	case PR_SET_MM_START_STACK:
1927 	case PR_SET_MM_ARG_START:
1928 	case PR_SET_MM_ARG_END:
1929 	case PR_SET_MM_ENV_START:
1930 	case PR_SET_MM_ENV_END:
1931 		if (!vma) {
1932 			error = -EFAULT;
1933 			goto out;
1934 		}
1935 		if (opt == PR_SET_MM_START_STACK)
1936 			mm->start_stack = addr;
1937 		else if (opt == PR_SET_MM_ARG_START)
1938 			mm->arg_start = addr;
1939 		else if (opt == PR_SET_MM_ARG_END)
1940 			mm->arg_end = addr;
1941 		else if (opt == PR_SET_MM_ENV_START)
1942 			mm->env_start = addr;
1943 		else if (opt == PR_SET_MM_ENV_END)
1944 			mm->env_end = addr;
1945 		break;
1946 
1947 	/*
1948 	 * This doesn't move auxiliary vector itself
1949 	 * since it's pinned to mm_struct, but allow
1950 	 * to fill vector with new values. It's up
1951 	 * to a caller to provide sane values here
1952 	 * otherwise user space tools which use this
1953 	 * vector might be unhappy.
1954 	 */
1955 	case PR_SET_MM_AUXV: {
1956 		unsigned long user_auxv[AT_VECTOR_SIZE];
1957 
1958 		if (arg4 > sizeof(user_auxv))
1959 			goto out;
1960 		up_read(&mm->mmap_sem);
1961 
1962 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1963 			return -EFAULT;
1964 
1965 		/* Make sure the last entry is always AT_NULL */
1966 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1967 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1968 
1969 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1970 
1971 		task_lock(current);
1972 		memcpy(mm->saved_auxv, user_auxv, arg4);
1973 		task_unlock(current);
1974 
1975 		return 0;
1976 	}
1977 	default:
1978 		goto out;
1979 	}
1980 
1981 	error = 0;
1982 out:
1983 	up_read(&mm->mmap_sem);
1984 	return error;
1985 }
1986 
1987 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1988 {
1989 	return put_user(me->clear_child_tid, tid_addr);
1990 }
1991 
1992 #else /* CONFIG_CHECKPOINT_RESTORE */
1993 static int prctl_set_mm(int opt, unsigned long addr,
1994 			unsigned long arg4, unsigned long arg5)
1995 {
1996 	return -EINVAL;
1997 }
1998 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1999 {
2000 	return -EINVAL;
2001 }
2002 #endif
2003 
2004 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2005 		unsigned long, arg4, unsigned long, arg5)
2006 {
2007 	struct task_struct *me = current;
2008 	unsigned char comm[sizeof(me->comm)];
2009 	long error;
2010 
2011 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2012 	if (error != -ENOSYS)
2013 		return error;
2014 
2015 	error = 0;
2016 	switch (option) {
2017 	case PR_SET_PDEATHSIG:
2018 		if (!valid_signal(arg2)) {
2019 			error = -EINVAL;
2020 			break;
2021 		}
2022 		me->pdeath_signal = arg2;
2023 		break;
2024 	case PR_GET_PDEATHSIG:
2025 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2026 		break;
2027 	case PR_GET_DUMPABLE:
2028 		error = get_dumpable(me->mm);
2029 		break;
2030 	case PR_SET_DUMPABLE:
2031 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2032 			error = -EINVAL;
2033 			break;
2034 		}
2035 		set_dumpable(me->mm, arg2);
2036 		break;
2037 
2038 	case PR_SET_UNALIGN:
2039 		error = SET_UNALIGN_CTL(me, arg2);
2040 		break;
2041 	case PR_GET_UNALIGN:
2042 		error = GET_UNALIGN_CTL(me, arg2);
2043 		break;
2044 	case PR_SET_FPEMU:
2045 		error = SET_FPEMU_CTL(me, arg2);
2046 		break;
2047 	case PR_GET_FPEMU:
2048 		error = GET_FPEMU_CTL(me, arg2);
2049 		break;
2050 	case PR_SET_FPEXC:
2051 		error = SET_FPEXC_CTL(me, arg2);
2052 		break;
2053 	case PR_GET_FPEXC:
2054 		error = GET_FPEXC_CTL(me, arg2);
2055 		break;
2056 	case PR_GET_TIMING:
2057 		error = PR_TIMING_STATISTICAL;
2058 		break;
2059 	case PR_SET_TIMING:
2060 		if (arg2 != PR_TIMING_STATISTICAL)
2061 			error = -EINVAL;
2062 		break;
2063 	case PR_SET_NAME:
2064 		comm[sizeof(me->comm) - 1] = 0;
2065 		if (strncpy_from_user(comm, (char __user *)arg2,
2066 				      sizeof(me->comm) - 1) < 0)
2067 			return -EFAULT;
2068 		set_task_comm(me, comm);
2069 		proc_comm_connector(me);
2070 		break;
2071 	case PR_GET_NAME:
2072 		get_task_comm(comm, me);
2073 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2074 			return -EFAULT;
2075 		break;
2076 	case PR_GET_ENDIAN:
2077 		error = GET_ENDIAN(me, arg2);
2078 		break;
2079 	case PR_SET_ENDIAN:
2080 		error = SET_ENDIAN(me, arg2);
2081 		break;
2082 	case PR_GET_SECCOMP:
2083 		error = prctl_get_seccomp();
2084 		break;
2085 	case PR_SET_SECCOMP:
2086 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2087 		break;
2088 	case PR_GET_TSC:
2089 		error = GET_TSC_CTL(arg2);
2090 		break;
2091 	case PR_SET_TSC:
2092 		error = SET_TSC_CTL(arg2);
2093 		break;
2094 	case PR_TASK_PERF_EVENTS_DISABLE:
2095 		error = perf_event_task_disable();
2096 		break;
2097 	case PR_TASK_PERF_EVENTS_ENABLE:
2098 		error = perf_event_task_enable();
2099 		break;
2100 	case PR_GET_TIMERSLACK:
2101 		error = current->timer_slack_ns;
2102 		break;
2103 	case PR_SET_TIMERSLACK:
2104 		if (arg2 <= 0)
2105 			current->timer_slack_ns =
2106 					current->default_timer_slack_ns;
2107 		else
2108 			current->timer_slack_ns = arg2;
2109 		break;
2110 	case PR_MCE_KILL:
2111 		if (arg4 | arg5)
2112 			return -EINVAL;
2113 		switch (arg2) {
2114 		case PR_MCE_KILL_CLEAR:
2115 			if (arg3 != 0)
2116 				return -EINVAL;
2117 			current->flags &= ~PF_MCE_PROCESS;
2118 			break;
2119 		case PR_MCE_KILL_SET:
2120 			current->flags |= PF_MCE_PROCESS;
2121 			if (arg3 == PR_MCE_KILL_EARLY)
2122 				current->flags |= PF_MCE_EARLY;
2123 			else if (arg3 == PR_MCE_KILL_LATE)
2124 				current->flags &= ~PF_MCE_EARLY;
2125 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2126 				current->flags &=
2127 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2128 			else
2129 				return -EINVAL;
2130 			break;
2131 		default:
2132 			return -EINVAL;
2133 		}
2134 		break;
2135 	case PR_MCE_KILL_GET:
2136 		if (arg2 | arg3 | arg4 | arg5)
2137 			return -EINVAL;
2138 		if (current->flags & PF_MCE_PROCESS)
2139 			error = (current->flags & PF_MCE_EARLY) ?
2140 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2141 		else
2142 			error = PR_MCE_KILL_DEFAULT;
2143 		break;
2144 	case PR_SET_MM:
2145 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2146 		break;
2147 	case PR_GET_TID_ADDRESS:
2148 		error = prctl_get_tid_address(me, (int __user **)arg2);
2149 		break;
2150 	case PR_SET_CHILD_SUBREAPER:
2151 		me->signal->is_child_subreaper = !!arg2;
2152 		break;
2153 	case PR_GET_CHILD_SUBREAPER:
2154 		error = put_user(me->signal->is_child_subreaper,
2155 				 (int __user *)arg2);
2156 		break;
2157 	case PR_SET_NO_NEW_PRIVS:
2158 		if (arg2 != 1 || arg3 || arg4 || arg5)
2159 			return -EINVAL;
2160 
2161 		current->no_new_privs = 1;
2162 		break;
2163 	case PR_GET_NO_NEW_PRIVS:
2164 		if (arg2 || arg3 || arg4 || arg5)
2165 			return -EINVAL;
2166 		return current->no_new_privs ? 1 : 0;
2167 	default:
2168 		error = -EINVAL;
2169 		break;
2170 	}
2171 	return error;
2172 }
2173 
2174 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2175 		struct getcpu_cache __user *, unused)
2176 {
2177 	int err = 0;
2178 	int cpu = raw_smp_processor_id();
2179 	if (cpup)
2180 		err |= put_user(cpu, cpup);
2181 	if (nodep)
2182 		err |= put_user(cpu_to_node(cpu), nodep);
2183 	return err ? -EFAULT : 0;
2184 }
2185 
2186 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2187 
2188 static int __orderly_poweroff(void)
2189 {
2190 	int argc;
2191 	char **argv;
2192 	static char *envp[] = {
2193 		"HOME=/",
2194 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2195 		NULL
2196 	};
2197 	int ret;
2198 
2199 	argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2200 	if (argv == NULL) {
2201 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2202 		       __func__, poweroff_cmd);
2203 		return -ENOMEM;
2204 	}
2205 
2206 	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
2207 				      NULL, NULL, NULL);
2208 	argv_free(argv);
2209 
2210 	return ret;
2211 }
2212 
2213 /**
2214  * orderly_poweroff - Trigger an orderly system poweroff
2215  * @force: force poweroff if command execution fails
2216  *
2217  * This may be called from any context to trigger a system shutdown.
2218  * If the orderly shutdown fails, it will force an immediate shutdown.
2219  */
2220 int orderly_poweroff(bool force)
2221 {
2222 	int ret = __orderly_poweroff();
2223 
2224 	if (ret && force) {
2225 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2226 		       "forcing the issue\n");
2227 
2228 		/*
2229 		 * I guess this should try to kick off some daemon to sync and
2230 		 * poweroff asap.  Or not even bother syncing if we're doing an
2231 		 * emergency shutdown?
2232 		 */
2233 		emergency_sync();
2234 		kernel_power_off();
2235 	}
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(orderly_poweroff);
2240