xref: /openbmc/linux/kernel/sys.c (revision 82ced6fd)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 #include <asm/unistd.h>
47 
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef SET_FPEMU_CTL
55 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
56 #endif
57 #ifndef GET_FPEMU_CTL
58 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef SET_FPEXC_CTL
61 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_FPEXC_CTL
64 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_ENDIAN
67 # define GET_ENDIAN(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_ENDIAN
70 # define SET_ENDIAN(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_TSC_CTL
73 # define GET_TSC_CTL(a)		(-EINVAL)
74 #endif
75 #ifndef SET_TSC_CTL
76 # define SET_TSC_CTL(a)		(-EINVAL)
77 #endif
78 
79 /*
80  * this is where the system-wide overflow UID and GID are defined, for
81  * architectures that now have 32-bit UID/GID but didn't in the past
82  */
83 
84 int overflowuid = DEFAULT_OVERFLOWUID;
85 int overflowgid = DEFAULT_OVERFLOWGID;
86 
87 #ifdef CONFIG_UID16
88 EXPORT_SYMBOL(overflowuid);
89 EXPORT_SYMBOL(overflowgid);
90 #endif
91 
92 /*
93  * the same as above, but for filesystems which can only store a 16-bit
94  * UID and GID. as such, this is needed on all architectures
95  */
96 
97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
99 
100 EXPORT_SYMBOL(fs_overflowuid);
101 EXPORT_SYMBOL(fs_overflowgid);
102 
103 /*
104  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105  */
106 
107 int C_A_D = 1;
108 struct pid *cad_pid;
109 EXPORT_SYMBOL(cad_pid);
110 
111 /*
112  * If set, this is used for preparing the system to power off.
113  */
114 
115 void (*pm_power_off_prepare)(void);
116 
117 /*
118  * set the priority of a task
119  * - the caller must hold the RCU read lock
120  */
121 static int set_one_prio(struct task_struct *p, int niceval, int error)
122 {
123 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
124 	int no_nice;
125 
126 	if (pcred->uid  != cred->euid &&
127 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
128 		error = -EPERM;
129 		goto out;
130 	}
131 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
132 		error = -EACCES;
133 		goto out;
134 	}
135 	no_nice = security_task_setnice(p, niceval);
136 	if (no_nice) {
137 		error = no_nice;
138 		goto out;
139 	}
140 	if (error == -ESRCH)
141 		error = 0;
142 	set_user_nice(p, niceval);
143 out:
144 	return error;
145 }
146 
147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
148 {
149 	struct task_struct *g, *p;
150 	struct user_struct *user;
151 	const struct cred *cred = current_cred();
152 	int error = -EINVAL;
153 	struct pid *pgrp;
154 
155 	if (which > PRIO_USER || which < PRIO_PROCESS)
156 		goto out;
157 
158 	/* normalize: avoid signed division (rounding problems) */
159 	error = -ESRCH;
160 	if (niceval < -20)
161 		niceval = -20;
162 	if (niceval > 19)
163 		niceval = 19;
164 
165 	read_lock(&tasklist_lock);
166 	switch (which) {
167 		case PRIO_PROCESS:
168 			if (who)
169 				p = find_task_by_vpid(who);
170 			else
171 				p = current;
172 			if (p)
173 				error = set_one_prio(p, niceval, error);
174 			break;
175 		case PRIO_PGRP:
176 			if (who)
177 				pgrp = find_vpid(who);
178 			else
179 				pgrp = task_pgrp(current);
180 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
181 				error = set_one_prio(p, niceval, error);
182 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
183 			break;
184 		case PRIO_USER:
185 			user = (struct user_struct *) cred->user;
186 			if (!who)
187 				who = cred->uid;
188 			else if ((who != cred->uid) &&
189 				 !(user = find_user(who)))
190 				goto out_unlock;	/* No processes for this user */
191 
192 			do_each_thread(g, p)
193 				if (__task_cred(p)->uid == who)
194 					error = set_one_prio(p, niceval, error);
195 			while_each_thread(g, p);
196 			if (who != cred->uid)
197 				free_uid(user);		/* For find_user() */
198 			break;
199 	}
200 out_unlock:
201 	read_unlock(&tasklist_lock);
202 out:
203 	return error;
204 }
205 
206 /*
207  * Ugh. To avoid negative return values, "getpriority()" will
208  * not return the normal nice-value, but a negated value that
209  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
210  * to stay compatible.
211  */
212 SYSCALL_DEFINE2(getpriority, int, which, int, who)
213 {
214 	struct task_struct *g, *p;
215 	struct user_struct *user;
216 	const struct cred *cred = current_cred();
217 	long niceval, retval = -ESRCH;
218 	struct pid *pgrp;
219 
220 	if (which > PRIO_USER || which < PRIO_PROCESS)
221 		return -EINVAL;
222 
223 	read_lock(&tasklist_lock);
224 	switch (which) {
225 		case PRIO_PROCESS:
226 			if (who)
227 				p = find_task_by_vpid(who);
228 			else
229 				p = current;
230 			if (p) {
231 				niceval = 20 - task_nice(p);
232 				if (niceval > retval)
233 					retval = niceval;
234 			}
235 			break;
236 		case PRIO_PGRP:
237 			if (who)
238 				pgrp = find_vpid(who);
239 			else
240 				pgrp = task_pgrp(current);
241 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
242 				niceval = 20 - task_nice(p);
243 				if (niceval > retval)
244 					retval = niceval;
245 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
246 			break;
247 		case PRIO_USER:
248 			user = (struct user_struct *) cred->user;
249 			if (!who)
250 				who = cred->uid;
251 			else if ((who != cred->uid) &&
252 				 !(user = find_user(who)))
253 				goto out_unlock;	/* No processes for this user */
254 
255 			do_each_thread(g, p)
256 				if (__task_cred(p)->uid == who) {
257 					niceval = 20 - task_nice(p);
258 					if (niceval > retval)
259 						retval = niceval;
260 				}
261 			while_each_thread(g, p);
262 			if (who != cred->uid)
263 				free_uid(user);		/* for find_user() */
264 			break;
265 	}
266 out_unlock:
267 	read_unlock(&tasklist_lock);
268 
269 	return retval;
270 }
271 
272 /**
273  *	emergency_restart - reboot the system
274  *
275  *	Without shutting down any hardware or taking any locks
276  *	reboot the system.  This is called when we know we are in
277  *	trouble so this is our best effort to reboot.  This is
278  *	safe to call in interrupt context.
279  */
280 void emergency_restart(void)
281 {
282 	machine_emergency_restart();
283 }
284 EXPORT_SYMBOL_GPL(emergency_restart);
285 
286 void kernel_restart_prepare(char *cmd)
287 {
288 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
289 	system_state = SYSTEM_RESTART;
290 	device_shutdown();
291 	sysdev_shutdown();
292 }
293 
294 /**
295  *	kernel_restart - reboot the system
296  *	@cmd: pointer to buffer containing command to execute for restart
297  *		or %NULL
298  *
299  *	Shutdown everything and perform a clean reboot.
300  *	This is not safe to call in interrupt context.
301  */
302 void kernel_restart(char *cmd)
303 {
304 	kernel_restart_prepare(cmd);
305 	if (!cmd)
306 		printk(KERN_EMERG "Restarting system.\n");
307 	else
308 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
309 	machine_restart(cmd);
310 }
311 EXPORT_SYMBOL_GPL(kernel_restart);
312 
313 static void kernel_shutdown_prepare(enum system_states state)
314 {
315 	blocking_notifier_call_chain(&reboot_notifier_list,
316 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
317 	system_state = state;
318 	device_shutdown();
319 }
320 /**
321  *	kernel_halt - halt the system
322  *
323  *	Shutdown everything and perform a clean system halt.
324  */
325 void kernel_halt(void)
326 {
327 	kernel_shutdown_prepare(SYSTEM_HALT);
328 	sysdev_shutdown();
329 	printk(KERN_EMERG "System halted.\n");
330 	machine_halt();
331 }
332 
333 EXPORT_SYMBOL_GPL(kernel_halt);
334 
335 /**
336  *	kernel_power_off - power_off the system
337  *
338  *	Shutdown everything and perform a clean system power_off.
339  */
340 void kernel_power_off(void)
341 {
342 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
343 	if (pm_power_off_prepare)
344 		pm_power_off_prepare();
345 	disable_nonboot_cpus();
346 	sysdev_shutdown();
347 	printk(KERN_EMERG "Power down.\n");
348 	machine_power_off();
349 }
350 EXPORT_SYMBOL_GPL(kernel_power_off);
351 /*
352  * Reboot system call: for obvious reasons only root may call it,
353  * and even root needs to set up some magic numbers in the registers
354  * so that some mistake won't make this reboot the whole machine.
355  * You can also set the meaning of the ctrl-alt-del-key here.
356  *
357  * reboot doesn't sync: do that yourself before calling this.
358  */
359 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
360 		void __user *, arg)
361 {
362 	char buffer[256];
363 	int ret = 0;
364 
365 	/* We only trust the superuser with rebooting the system. */
366 	if (!capable(CAP_SYS_BOOT))
367 		return -EPERM;
368 
369 	/* For safety, we require "magic" arguments. */
370 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
371 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
372 	                magic2 != LINUX_REBOOT_MAGIC2A &&
373 			magic2 != LINUX_REBOOT_MAGIC2B &&
374 	                magic2 != LINUX_REBOOT_MAGIC2C))
375 		return -EINVAL;
376 
377 	/* Instead of trying to make the power_off code look like
378 	 * halt when pm_power_off is not set do it the easy way.
379 	 */
380 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
381 		cmd = LINUX_REBOOT_CMD_HALT;
382 
383 	lock_kernel();
384 	switch (cmd) {
385 	case LINUX_REBOOT_CMD_RESTART:
386 		kernel_restart(NULL);
387 		break;
388 
389 	case LINUX_REBOOT_CMD_CAD_ON:
390 		C_A_D = 1;
391 		break;
392 
393 	case LINUX_REBOOT_CMD_CAD_OFF:
394 		C_A_D = 0;
395 		break;
396 
397 	case LINUX_REBOOT_CMD_HALT:
398 		kernel_halt();
399 		unlock_kernel();
400 		do_exit(0);
401 		panic("cannot halt");
402 
403 	case LINUX_REBOOT_CMD_POWER_OFF:
404 		kernel_power_off();
405 		unlock_kernel();
406 		do_exit(0);
407 		break;
408 
409 	case LINUX_REBOOT_CMD_RESTART2:
410 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
411 			unlock_kernel();
412 			return -EFAULT;
413 		}
414 		buffer[sizeof(buffer) - 1] = '\0';
415 
416 		kernel_restart(buffer);
417 		break;
418 
419 #ifdef CONFIG_KEXEC
420 	case LINUX_REBOOT_CMD_KEXEC:
421 		ret = kernel_kexec();
422 		break;
423 #endif
424 
425 #ifdef CONFIG_HIBERNATION
426 	case LINUX_REBOOT_CMD_SW_SUSPEND:
427 		ret = hibernate();
428 		break;
429 #endif
430 
431 	default:
432 		ret = -EINVAL;
433 		break;
434 	}
435 	unlock_kernel();
436 	return ret;
437 }
438 
439 static void deferred_cad(struct work_struct *dummy)
440 {
441 	kernel_restart(NULL);
442 }
443 
444 /*
445  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
446  * As it's called within an interrupt, it may NOT sync: the only choice
447  * is whether to reboot at once, or just ignore the ctrl-alt-del.
448  */
449 void ctrl_alt_del(void)
450 {
451 	static DECLARE_WORK(cad_work, deferred_cad);
452 
453 	if (C_A_D)
454 		schedule_work(&cad_work);
455 	else
456 		kill_cad_pid(SIGINT, 1);
457 }
458 
459 /*
460  * Unprivileged users may change the real gid to the effective gid
461  * or vice versa.  (BSD-style)
462  *
463  * If you set the real gid at all, or set the effective gid to a value not
464  * equal to the real gid, then the saved gid is set to the new effective gid.
465  *
466  * This makes it possible for a setgid program to completely drop its
467  * privileges, which is often a useful assertion to make when you are doing
468  * a security audit over a program.
469  *
470  * The general idea is that a program which uses just setregid() will be
471  * 100% compatible with BSD.  A program which uses just setgid() will be
472  * 100% compatible with POSIX with saved IDs.
473  *
474  * SMP: There are not races, the GIDs are checked only by filesystem
475  *      operations (as far as semantic preservation is concerned).
476  */
477 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
478 {
479 	const struct cred *old;
480 	struct cred *new;
481 	int retval;
482 
483 	new = prepare_creds();
484 	if (!new)
485 		return -ENOMEM;
486 	old = current_cred();
487 
488 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
489 	if (retval)
490 		goto error;
491 
492 	retval = -EPERM;
493 	if (rgid != (gid_t) -1) {
494 		if (old->gid == rgid ||
495 		    old->egid == rgid ||
496 		    capable(CAP_SETGID))
497 			new->gid = rgid;
498 		else
499 			goto error;
500 	}
501 	if (egid != (gid_t) -1) {
502 		if (old->gid == egid ||
503 		    old->egid == egid ||
504 		    old->sgid == egid ||
505 		    capable(CAP_SETGID))
506 			new->egid = egid;
507 		else
508 			goto error;
509 	}
510 
511 	if (rgid != (gid_t) -1 ||
512 	    (egid != (gid_t) -1 && egid != old->gid))
513 		new->sgid = new->egid;
514 	new->fsgid = new->egid;
515 
516 	return commit_creds(new);
517 
518 error:
519 	abort_creds(new);
520 	return retval;
521 }
522 
523 /*
524  * setgid() is implemented like SysV w/ SAVED_IDS
525  *
526  * SMP: Same implicit races as above.
527  */
528 SYSCALL_DEFINE1(setgid, gid_t, gid)
529 {
530 	const struct cred *old;
531 	struct cred *new;
532 	int retval;
533 
534 	new = prepare_creds();
535 	if (!new)
536 		return -ENOMEM;
537 	old = current_cred();
538 
539 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
540 	if (retval)
541 		goto error;
542 
543 	retval = -EPERM;
544 	if (capable(CAP_SETGID))
545 		new->gid = new->egid = new->sgid = new->fsgid = gid;
546 	else if (gid == old->gid || gid == old->sgid)
547 		new->egid = new->fsgid = gid;
548 	else
549 		goto error;
550 
551 	return commit_creds(new);
552 
553 error:
554 	abort_creds(new);
555 	return retval;
556 }
557 
558 /*
559  * change the user struct in a credentials set to match the new UID
560  */
561 static int set_user(struct cred *new)
562 {
563 	struct user_struct *new_user;
564 
565 	new_user = alloc_uid(current_user_ns(), new->uid);
566 	if (!new_user)
567 		return -EAGAIN;
568 
569 	if (!task_can_switch_user(new_user, current)) {
570 		free_uid(new_user);
571 		return -EINVAL;
572 	}
573 
574 	if (atomic_read(&new_user->processes) >=
575 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
576 			new_user != INIT_USER) {
577 		free_uid(new_user);
578 		return -EAGAIN;
579 	}
580 
581 	free_uid(new->user);
582 	new->user = new_user;
583 	return 0;
584 }
585 
586 /*
587  * Unprivileged users may change the real uid to the effective uid
588  * or vice versa.  (BSD-style)
589  *
590  * If you set the real uid at all, or set the effective uid to a value not
591  * equal to the real uid, then the saved uid is set to the new effective uid.
592  *
593  * This makes it possible for a setuid program to completely drop its
594  * privileges, which is often a useful assertion to make when you are doing
595  * a security audit over a program.
596  *
597  * The general idea is that a program which uses just setreuid() will be
598  * 100% compatible with BSD.  A program which uses just setuid() will be
599  * 100% compatible with POSIX with saved IDs.
600  */
601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
602 {
603 	const struct cred *old;
604 	struct cred *new;
605 	int retval;
606 
607 	new = prepare_creds();
608 	if (!new)
609 		return -ENOMEM;
610 	old = current_cred();
611 
612 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 	if (retval)
614 		goto error;
615 
616 	retval = -EPERM;
617 	if (ruid != (uid_t) -1) {
618 		new->uid = ruid;
619 		if (old->uid != ruid &&
620 		    old->euid != ruid &&
621 		    !capable(CAP_SETUID))
622 			goto error;
623 	}
624 
625 	if (euid != (uid_t) -1) {
626 		new->euid = euid;
627 		if (old->uid != euid &&
628 		    old->euid != euid &&
629 		    old->suid != euid &&
630 		    !capable(CAP_SETUID))
631 			goto error;
632 	}
633 
634 	if (new->uid != old->uid) {
635 		retval = set_user(new);
636 		if (retval < 0)
637 			goto error;
638 	}
639 	if (ruid != (uid_t) -1 ||
640 	    (euid != (uid_t) -1 && euid != old->uid))
641 		new->suid = new->euid;
642 	new->fsuid = new->euid;
643 
644 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
645 	if (retval < 0)
646 		goto error;
647 
648 	return commit_creds(new);
649 
650 error:
651 	abort_creds(new);
652 	return retval;
653 }
654 
655 /*
656  * setuid() is implemented like SysV with SAVED_IDS
657  *
658  * Note that SAVED_ID's is deficient in that a setuid root program
659  * like sendmail, for example, cannot set its uid to be a normal
660  * user and then switch back, because if you're root, setuid() sets
661  * the saved uid too.  If you don't like this, blame the bright people
662  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
663  * will allow a root program to temporarily drop privileges and be able to
664  * regain them by swapping the real and effective uid.
665  */
666 SYSCALL_DEFINE1(setuid, uid_t, uid)
667 {
668 	const struct cred *old;
669 	struct cred *new;
670 	int retval;
671 
672 	new = prepare_creds();
673 	if (!new)
674 		return -ENOMEM;
675 	old = current_cred();
676 
677 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
678 	if (retval)
679 		goto error;
680 
681 	retval = -EPERM;
682 	if (capable(CAP_SETUID)) {
683 		new->suid = new->uid = uid;
684 		if (uid != old->uid) {
685 			retval = set_user(new);
686 			if (retval < 0)
687 				goto error;
688 		}
689 	} else if (uid != old->uid && uid != new->suid) {
690 		goto error;
691 	}
692 
693 	new->fsuid = new->euid = uid;
694 
695 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
696 	if (retval < 0)
697 		goto error;
698 
699 	return commit_creds(new);
700 
701 error:
702 	abort_creds(new);
703 	return retval;
704 }
705 
706 
707 /*
708  * This function implements a generic ability to update ruid, euid,
709  * and suid.  This allows you to implement the 4.4 compatible seteuid().
710  */
711 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
712 {
713 	const struct cred *old;
714 	struct cred *new;
715 	int retval;
716 
717 	new = prepare_creds();
718 	if (!new)
719 		return -ENOMEM;
720 
721 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
722 	if (retval)
723 		goto error;
724 	old = current_cred();
725 
726 	retval = -EPERM;
727 	if (!capable(CAP_SETUID)) {
728 		if (ruid != (uid_t) -1 && ruid != old->uid &&
729 		    ruid != old->euid  && ruid != old->suid)
730 			goto error;
731 		if (euid != (uid_t) -1 && euid != old->uid &&
732 		    euid != old->euid  && euid != old->suid)
733 			goto error;
734 		if (suid != (uid_t) -1 && suid != old->uid &&
735 		    suid != old->euid  && suid != old->suid)
736 			goto error;
737 	}
738 
739 	if (ruid != (uid_t) -1) {
740 		new->uid = ruid;
741 		if (ruid != old->uid) {
742 			retval = set_user(new);
743 			if (retval < 0)
744 				goto error;
745 		}
746 	}
747 	if (euid != (uid_t) -1)
748 		new->euid = euid;
749 	if (suid != (uid_t) -1)
750 		new->suid = suid;
751 	new->fsuid = new->euid;
752 
753 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
754 	if (retval < 0)
755 		goto error;
756 
757 	return commit_creds(new);
758 
759 error:
760 	abort_creds(new);
761 	return retval;
762 }
763 
764 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
765 {
766 	const struct cred *cred = current_cred();
767 	int retval;
768 
769 	if (!(retval   = put_user(cred->uid,  ruid)) &&
770 	    !(retval   = put_user(cred->euid, euid)))
771 		retval = put_user(cred->suid, suid);
772 
773 	return retval;
774 }
775 
776 /*
777  * Same as above, but for rgid, egid, sgid.
778  */
779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
780 {
781 	const struct cred *old;
782 	struct cred *new;
783 	int retval;
784 
785 	new = prepare_creds();
786 	if (!new)
787 		return -ENOMEM;
788 	old = current_cred();
789 
790 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
791 	if (retval)
792 		goto error;
793 
794 	retval = -EPERM;
795 	if (!capable(CAP_SETGID)) {
796 		if (rgid != (gid_t) -1 && rgid != old->gid &&
797 		    rgid != old->egid  && rgid != old->sgid)
798 			goto error;
799 		if (egid != (gid_t) -1 && egid != old->gid &&
800 		    egid != old->egid  && egid != old->sgid)
801 			goto error;
802 		if (sgid != (gid_t) -1 && sgid != old->gid &&
803 		    sgid != old->egid  && sgid != old->sgid)
804 			goto error;
805 	}
806 
807 	if (rgid != (gid_t) -1)
808 		new->gid = rgid;
809 	if (egid != (gid_t) -1)
810 		new->egid = egid;
811 	if (sgid != (gid_t) -1)
812 		new->sgid = sgid;
813 	new->fsgid = new->egid;
814 
815 	return commit_creds(new);
816 
817 error:
818 	abort_creds(new);
819 	return retval;
820 }
821 
822 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
823 {
824 	const struct cred *cred = current_cred();
825 	int retval;
826 
827 	if (!(retval   = put_user(cred->gid,  rgid)) &&
828 	    !(retval   = put_user(cred->egid, egid)))
829 		retval = put_user(cred->sgid, sgid);
830 
831 	return retval;
832 }
833 
834 
835 /*
836  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
837  * is used for "access()" and for the NFS daemon (letting nfsd stay at
838  * whatever uid it wants to). It normally shadows "euid", except when
839  * explicitly set by setfsuid() or for access..
840  */
841 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
842 {
843 	const struct cred *old;
844 	struct cred *new;
845 	uid_t old_fsuid;
846 
847 	new = prepare_creds();
848 	if (!new)
849 		return current_fsuid();
850 	old = current_cred();
851 	old_fsuid = old->fsuid;
852 
853 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
854 		goto error;
855 
856 	if (uid == old->uid  || uid == old->euid  ||
857 	    uid == old->suid || uid == old->fsuid ||
858 	    capable(CAP_SETUID)) {
859 		if (uid != old_fsuid) {
860 			new->fsuid = uid;
861 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
862 				goto change_okay;
863 		}
864 	}
865 
866 error:
867 	abort_creds(new);
868 	return old_fsuid;
869 
870 change_okay:
871 	commit_creds(new);
872 	return old_fsuid;
873 }
874 
875 /*
876  * Samma på svenska..
877  */
878 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
879 {
880 	const struct cred *old;
881 	struct cred *new;
882 	gid_t old_fsgid;
883 
884 	new = prepare_creds();
885 	if (!new)
886 		return current_fsgid();
887 	old = current_cred();
888 	old_fsgid = old->fsgid;
889 
890 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
891 		goto error;
892 
893 	if (gid == old->gid  || gid == old->egid  ||
894 	    gid == old->sgid || gid == old->fsgid ||
895 	    capable(CAP_SETGID)) {
896 		if (gid != old_fsgid) {
897 			new->fsgid = gid;
898 			goto change_okay;
899 		}
900 	}
901 
902 error:
903 	abort_creds(new);
904 	return old_fsgid;
905 
906 change_okay:
907 	commit_creds(new);
908 	return old_fsgid;
909 }
910 
911 void do_sys_times(struct tms *tms)
912 {
913 	struct task_cputime cputime;
914 	cputime_t cutime, cstime;
915 
916 	thread_group_cputime(current, &cputime);
917 	spin_lock_irq(&current->sighand->siglock);
918 	cutime = current->signal->cutime;
919 	cstime = current->signal->cstime;
920 	spin_unlock_irq(&current->sighand->siglock);
921 	tms->tms_utime = cputime_to_clock_t(cputime.utime);
922 	tms->tms_stime = cputime_to_clock_t(cputime.stime);
923 	tms->tms_cutime = cputime_to_clock_t(cutime);
924 	tms->tms_cstime = cputime_to_clock_t(cstime);
925 }
926 
927 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
928 {
929 	if (tbuf) {
930 		struct tms tmp;
931 
932 		do_sys_times(&tmp);
933 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
934 			return -EFAULT;
935 	}
936 	force_successful_syscall_return();
937 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
938 }
939 
940 /*
941  * This needs some heavy checking ...
942  * I just haven't the stomach for it. I also don't fully
943  * understand sessions/pgrp etc. Let somebody who does explain it.
944  *
945  * OK, I think I have the protection semantics right.... this is really
946  * only important on a multi-user system anyway, to make sure one user
947  * can't send a signal to a process owned by another.  -TYT, 12/12/91
948  *
949  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
950  * LBT 04.03.94
951  */
952 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
953 {
954 	struct task_struct *p;
955 	struct task_struct *group_leader = current->group_leader;
956 	struct pid *pgrp;
957 	int err;
958 
959 	if (!pid)
960 		pid = task_pid_vnr(group_leader);
961 	if (!pgid)
962 		pgid = pid;
963 	if (pgid < 0)
964 		return -EINVAL;
965 
966 	/* From this point forward we keep holding onto the tasklist lock
967 	 * so that our parent does not change from under us. -DaveM
968 	 */
969 	write_lock_irq(&tasklist_lock);
970 
971 	err = -ESRCH;
972 	p = find_task_by_vpid(pid);
973 	if (!p)
974 		goto out;
975 
976 	err = -EINVAL;
977 	if (!thread_group_leader(p))
978 		goto out;
979 
980 	if (same_thread_group(p->real_parent, group_leader)) {
981 		err = -EPERM;
982 		if (task_session(p) != task_session(group_leader))
983 			goto out;
984 		err = -EACCES;
985 		if (p->did_exec)
986 			goto out;
987 	} else {
988 		err = -ESRCH;
989 		if (p != group_leader)
990 			goto out;
991 	}
992 
993 	err = -EPERM;
994 	if (p->signal->leader)
995 		goto out;
996 
997 	pgrp = task_pid(p);
998 	if (pgid != pid) {
999 		struct task_struct *g;
1000 
1001 		pgrp = find_vpid(pgid);
1002 		g = pid_task(pgrp, PIDTYPE_PGID);
1003 		if (!g || task_session(g) != task_session(group_leader))
1004 			goto out;
1005 	}
1006 
1007 	err = security_task_setpgid(p, pgid);
1008 	if (err)
1009 		goto out;
1010 
1011 	if (task_pgrp(p) != pgrp)
1012 		change_pid(p, PIDTYPE_PGID, pgrp);
1013 
1014 	err = 0;
1015 out:
1016 	/* All paths lead to here, thus we are safe. -DaveM */
1017 	write_unlock_irq(&tasklist_lock);
1018 	return err;
1019 }
1020 
1021 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1022 {
1023 	struct task_struct *p;
1024 	struct pid *grp;
1025 	int retval;
1026 
1027 	rcu_read_lock();
1028 	if (!pid)
1029 		grp = task_pgrp(current);
1030 	else {
1031 		retval = -ESRCH;
1032 		p = find_task_by_vpid(pid);
1033 		if (!p)
1034 			goto out;
1035 		grp = task_pgrp(p);
1036 		if (!grp)
1037 			goto out;
1038 
1039 		retval = security_task_getpgid(p);
1040 		if (retval)
1041 			goto out;
1042 	}
1043 	retval = pid_vnr(grp);
1044 out:
1045 	rcu_read_unlock();
1046 	return retval;
1047 }
1048 
1049 #ifdef __ARCH_WANT_SYS_GETPGRP
1050 
1051 SYSCALL_DEFINE0(getpgrp)
1052 {
1053 	return sys_getpgid(0);
1054 }
1055 
1056 #endif
1057 
1058 SYSCALL_DEFINE1(getsid, pid_t, pid)
1059 {
1060 	struct task_struct *p;
1061 	struct pid *sid;
1062 	int retval;
1063 
1064 	rcu_read_lock();
1065 	if (!pid)
1066 		sid = task_session(current);
1067 	else {
1068 		retval = -ESRCH;
1069 		p = find_task_by_vpid(pid);
1070 		if (!p)
1071 			goto out;
1072 		sid = task_session(p);
1073 		if (!sid)
1074 			goto out;
1075 
1076 		retval = security_task_getsid(p);
1077 		if (retval)
1078 			goto out;
1079 	}
1080 	retval = pid_vnr(sid);
1081 out:
1082 	rcu_read_unlock();
1083 	return retval;
1084 }
1085 
1086 SYSCALL_DEFINE0(setsid)
1087 {
1088 	struct task_struct *group_leader = current->group_leader;
1089 	struct pid *sid = task_pid(group_leader);
1090 	pid_t session = pid_vnr(sid);
1091 	int err = -EPERM;
1092 
1093 	write_lock_irq(&tasklist_lock);
1094 	/* Fail if I am already a session leader */
1095 	if (group_leader->signal->leader)
1096 		goto out;
1097 
1098 	/* Fail if a process group id already exists that equals the
1099 	 * proposed session id.
1100 	 */
1101 	if (pid_task(sid, PIDTYPE_PGID))
1102 		goto out;
1103 
1104 	group_leader->signal->leader = 1;
1105 	__set_special_pids(sid);
1106 
1107 	proc_clear_tty(group_leader);
1108 
1109 	err = session;
1110 out:
1111 	write_unlock_irq(&tasklist_lock);
1112 	return err;
1113 }
1114 
1115 /*
1116  * Supplementary group IDs
1117  */
1118 
1119 /* init to 2 - one for init_task, one to ensure it is never freed */
1120 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1121 
1122 struct group_info *groups_alloc(int gidsetsize)
1123 {
1124 	struct group_info *group_info;
1125 	int nblocks;
1126 	int i;
1127 
1128 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1129 	/* Make sure we always allocate at least one indirect block pointer */
1130 	nblocks = nblocks ? : 1;
1131 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1132 	if (!group_info)
1133 		return NULL;
1134 	group_info->ngroups = gidsetsize;
1135 	group_info->nblocks = nblocks;
1136 	atomic_set(&group_info->usage, 1);
1137 
1138 	if (gidsetsize <= NGROUPS_SMALL)
1139 		group_info->blocks[0] = group_info->small_block;
1140 	else {
1141 		for (i = 0; i < nblocks; i++) {
1142 			gid_t *b;
1143 			b = (void *)__get_free_page(GFP_USER);
1144 			if (!b)
1145 				goto out_undo_partial_alloc;
1146 			group_info->blocks[i] = b;
1147 		}
1148 	}
1149 	return group_info;
1150 
1151 out_undo_partial_alloc:
1152 	while (--i >= 0) {
1153 		free_page((unsigned long)group_info->blocks[i]);
1154 	}
1155 	kfree(group_info);
1156 	return NULL;
1157 }
1158 
1159 EXPORT_SYMBOL(groups_alloc);
1160 
1161 void groups_free(struct group_info *group_info)
1162 {
1163 	if (group_info->blocks[0] != group_info->small_block) {
1164 		int i;
1165 		for (i = 0; i < group_info->nblocks; i++)
1166 			free_page((unsigned long)group_info->blocks[i]);
1167 	}
1168 	kfree(group_info);
1169 }
1170 
1171 EXPORT_SYMBOL(groups_free);
1172 
1173 /* export the group_info to a user-space array */
1174 static int groups_to_user(gid_t __user *grouplist,
1175 			  const struct group_info *group_info)
1176 {
1177 	int i;
1178 	unsigned int count = group_info->ngroups;
1179 
1180 	for (i = 0; i < group_info->nblocks; i++) {
1181 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1182 		unsigned int len = cp_count * sizeof(*grouplist);
1183 
1184 		if (copy_to_user(grouplist, group_info->blocks[i], len))
1185 			return -EFAULT;
1186 
1187 		grouplist += NGROUPS_PER_BLOCK;
1188 		count -= cp_count;
1189 	}
1190 	return 0;
1191 }
1192 
1193 /* fill a group_info from a user-space array - it must be allocated already */
1194 static int groups_from_user(struct group_info *group_info,
1195     gid_t __user *grouplist)
1196 {
1197 	int i;
1198 	unsigned int count = group_info->ngroups;
1199 
1200 	for (i = 0; i < group_info->nblocks; i++) {
1201 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1202 		unsigned int len = cp_count * sizeof(*grouplist);
1203 
1204 		if (copy_from_user(group_info->blocks[i], grouplist, len))
1205 			return -EFAULT;
1206 
1207 		grouplist += NGROUPS_PER_BLOCK;
1208 		count -= cp_count;
1209 	}
1210 	return 0;
1211 }
1212 
1213 /* a simple Shell sort */
1214 static void groups_sort(struct group_info *group_info)
1215 {
1216 	int base, max, stride;
1217 	int gidsetsize = group_info->ngroups;
1218 
1219 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1220 		; /* nothing */
1221 	stride /= 3;
1222 
1223 	while (stride) {
1224 		max = gidsetsize - stride;
1225 		for (base = 0; base < max; base++) {
1226 			int left = base;
1227 			int right = left + stride;
1228 			gid_t tmp = GROUP_AT(group_info, right);
1229 
1230 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1231 				GROUP_AT(group_info, right) =
1232 				    GROUP_AT(group_info, left);
1233 				right = left;
1234 				left -= stride;
1235 			}
1236 			GROUP_AT(group_info, right) = tmp;
1237 		}
1238 		stride /= 3;
1239 	}
1240 }
1241 
1242 /* a simple bsearch */
1243 int groups_search(const struct group_info *group_info, gid_t grp)
1244 {
1245 	unsigned int left, right;
1246 
1247 	if (!group_info)
1248 		return 0;
1249 
1250 	left = 0;
1251 	right = group_info->ngroups;
1252 	while (left < right) {
1253 		unsigned int mid = (left+right)/2;
1254 		int cmp = grp - GROUP_AT(group_info, mid);
1255 		if (cmp > 0)
1256 			left = mid + 1;
1257 		else if (cmp < 0)
1258 			right = mid;
1259 		else
1260 			return 1;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /**
1266  * set_groups - Change a group subscription in a set of credentials
1267  * @new: The newly prepared set of credentials to alter
1268  * @group_info: The group list to install
1269  *
1270  * Validate a group subscription and, if valid, insert it into a set
1271  * of credentials.
1272  */
1273 int set_groups(struct cred *new, struct group_info *group_info)
1274 {
1275 	int retval;
1276 
1277 	retval = security_task_setgroups(group_info);
1278 	if (retval)
1279 		return retval;
1280 
1281 	put_group_info(new->group_info);
1282 	groups_sort(group_info);
1283 	get_group_info(group_info);
1284 	new->group_info = group_info;
1285 	return 0;
1286 }
1287 
1288 EXPORT_SYMBOL(set_groups);
1289 
1290 /**
1291  * set_current_groups - Change current's group subscription
1292  * @group_info: The group list to impose
1293  *
1294  * Validate a group subscription and, if valid, impose it upon current's task
1295  * security record.
1296  */
1297 int set_current_groups(struct group_info *group_info)
1298 {
1299 	struct cred *new;
1300 	int ret;
1301 
1302 	new = prepare_creds();
1303 	if (!new)
1304 		return -ENOMEM;
1305 
1306 	ret = set_groups(new, group_info);
1307 	if (ret < 0) {
1308 		abort_creds(new);
1309 		return ret;
1310 	}
1311 
1312 	return commit_creds(new);
1313 }
1314 
1315 EXPORT_SYMBOL(set_current_groups);
1316 
1317 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1318 {
1319 	const struct cred *cred = current_cred();
1320 	int i;
1321 
1322 	if (gidsetsize < 0)
1323 		return -EINVAL;
1324 
1325 	/* no need to grab task_lock here; it cannot change */
1326 	i = cred->group_info->ngroups;
1327 	if (gidsetsize) {
1328 		if (i > gidsetsize) {
1329 			i = -EINVAL;
1330 			goto out;
1331 		}
1332 		if (groups_to_user(grouplist, cred->group_info)) {
1333 			i = -EFAULT;
1334 			goto out;
1335 		}
1336 	}
1337 out:
1338 	return i;
1339 }
1340 
1341 /*
1342  *	SMP: Our groups are copy-on-write. We can set them safely
1343  *	without another task interfering.
1344  */
1345 
1346 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1347 {
1348 	struct group_info *group_info;
1349 	int retval;
1350 
1351 	if (!capable(CAP_SETGID))
1352 		return -EPERM;
1353 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1354 		return -EINVAL;
1355 
1356 	group_info = groups_alloc(gidsetsize);
1357 	if (!group_info)
1358 		return -ENOMEM;
1359 	retval = groups_from_user(group_info, grouplist);
1360 	if (retval) {
1361 		put_group_info(group_info);
1362 		return retval;
1363 	}
1364 
1365 	retval = set_current_groups(group_info);
1366 	put_group_info(group_info);
1367 
1368 	return retval;
1369 }
1370 
1371 /*
1372  * Check whether we're fsgid/egid or in the supplemental group..
1373  */
1374 int in_group_p(gid_t grp)
1375 {
1376 	const struct cred *cred = current_cred();
1377 	int retval = 1;
1378 
1379 	if (grp != cred->fsgid)
1380 		retval = groups_search(cred->group_info, grp);
1381 	return retval;
1382 }
1383 
1384 EXPORT_SYMBOL(in_group_p);
1385 
1386 int in_egroup_p(gid_t grp)
1387 {
1388 	const struct cred *cred = current_cred();
1389 	int retval = 1;
1390 
1391 	if (grp != cred->egid)
1392 		retval = groups_search(cred->group_info, grp);
1393 	return retval;
1394 }
1395 
1396 EXPORT_SYMBOL(in_egroup_p);
1397 
1398 DECLARE_RWSEM(uts_sem);
1399 
1400 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1401 {
1402 	int errno = 0;
1403 
1404 	down_read(&uts_sem);
1405 	if (copy_to_user(name, utsname(), sizeof *name))
1406 		errno = -EFAULT;
1407 	up_read(&uts_sem);
1408 	return errno;
1409 }
1410 
1411 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1412 {
1413 	int errno;
1414 	char tmp[__NEW_UTS_LEN];
1415 
1416 	if (!capable(CAP_SYS_ADMIN))
1417 		return -EPERM;
1418 	if (len < 0 || len > __NEW_UTS_LEN)
1419 		return -EINVAL;
1420 	down_write(&uts_sem);
1421 	errno = -EFAULT;
1422 	if (!copy_from_user(tmp, name, len)) {
1423 		struct new_utsname *u = utsname();
1424 
1425 		memcpy(u->nodename, tmp, len);
1426 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1427 		errno = 0;
1428 	}
1429 	up_write(&uts_sem);
1430 	return errno;
1431 }
1432 
1433 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1434 
1435 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1436 {
1437 	int i, errno;
1438 	struct new_utsname *u;
1439 
1440 	if (len < 0)
1441 		return -EINVAL;
1442 	down_read(&uts_sem);
1443 	u = utsname();
1444 	i = 1 + strlen(u->nodename);
1445 	if (i > len)
1446 		i = len;
1447 	errno = 0;
1448 	if (copy_to_user(name, u->nodename, i))
1449 		errno = -EFAULT;
1450 	up_read(&uts_sem);
1451 	return errno;
1452 }
1453 
1454 #endif
1455 
1456 /*
1457  * Only setdomainname; getdomainname can be implemented by calling
1458  * uname()
1459  */
1460 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1461 {
1462 	int errno;
1463 	char tmp[__NEW_UTS_LEN];
1464 
1465 	if (!capable(CAP_SYS_ADMIN))
1466 		return -EPERM;
1467 	if (len < 0 || len > __NEW_UTS_LEN)
1468 		return -EINVAL;
1469 
1470 	down_write(&uts_sem);
1471 	errno = -EFAULT;
1472 	if (!copy_from_user(tmp, name, len)) {
1473 		struct new_utsname *u = utsname();
1474 
1475 		memcpy(u->domainname, tmp, len);
1476 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1477 		errno = 0;
1478 	}
1479 	up_write(&uts_sem);
1480 	return errno;
1481 }
1482 
1483 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1484 {
1485 	if (resource >= RLIM_NLIMITS)
1486 		return -EINVAL;
1487 	else {
1488 		struct rlimit value;
1489 		task_lock(current->group_leader);
1490 		value = current->signal->rlim[resource];
1491 		task_unlock(current->group_leader);
1492 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1493 	}
1494 }
1495 
1496 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1497 
1498 /*
1499  *	Back compatibility for getrlimit. Needed for some apps.
1500  */
1501 
1502 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1503 		struct rlimit __user *, rlim)
1504 {
1505 	struct rlimit x;
1506 	if (resource >= RLIM_NLIMITS)
1507 		return -EINVAL;
1508 
1509 	task_lock(current->group_leader);
1510 	x = current->signal->rlim[resource];
1511 	task_unlock(current->group_leader);
1512 	if (x.rlim_cur > 0x7FFFFFFF)
1513 		x.rlim_cur = 0x7FFFFFFF;
1514 	if (x.rlim_max > 0x7FFFFFFF)
1515 		x.rlim_max = 0x7FFFFFFF;
1516 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1517 }
1518 
1519 #endif
1520 
1521 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1522 {
1523 	struct rlimit new_rlim, *old_rlim;
1524 	int retval;
1525 
1526 	if (resource >= RLIM_NLIMITS)
1527 		return -EINVAL;
1528 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1529 		return -EFAULT;
1530 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1531 		return -EINVAL;
1532 	old_rlim = current->signal->rlim + resource;
1533 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1534 	    !capable(CAP_SYS_RESOURCE))
1535 		return -EPERM;
1536 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1537 		return -EPERM;
1538 
1539 	retval = security_task_setrlimit(resource, &new_rlim);
1540 	if (retval)
1541 		return retval;
1542 
1543 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1544 		/*
1545 		 * The caller is asking for an immediate RLIMIT_CPU
1546 		 * expiry.  But we use the zero value to mean "it was
1547 		 * never set".  So let's cheat and make it one second
1548 		 * instead
1549 		 */
1550 		new_rlim.rlim_cur = 1;
1551 	}
1552 
1553 	task_lock(current->group_leader);
1554 	*old_rlim = new_rlim;
1555 	task_unlock(current->group_leader);
1556 
1557 	if (resource != RLIMIT_CPU)
1558 		goto out;
1559 
1560 	/*
1561 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1562 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1563 	 * very long-standing error, and fixing it now risks breakage of
1564 	 * applications, so we live with it
1565 	 */
1566 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1567 		goto out;
1568 
1569 	update_rlimit_cpu(new_rlim.rlim_cur);
1570 out:
1571 	return 0;
1572 }
1573 
1574 /*
1575  * It would make sense to put struct rusage in the task_struct,
1576  * except that would make the task_struct be *really big*.  After
1577  * task_struct gets moved into malloc'ed memory, it would
1578  * make sense to do this.  It will make moving the rest of the information
1579  * a lot simpler!  (Which we're not doing right now because we're not
1580  * measuring them yet).
1581  *
1582  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1583  * races with threads incrementing their own counters.  But since word
1584  * reads are atomic, we either get new values or old values and we don't
1585  * care which for the sums.  We always take the siglock to protect reading
1586  * the c* fields from p->signal from races with exit.c updating those
1587  * fields when reaping, so a sample either gets all the additions of a
1588  * given child after it's reaped, or none so this sample is before reaping.
1589  *
1590  * Locking:
1591  * We need to take the siglock for CHILDEREN, SELF and BOTH
1592  * for  the cases current multithreaded, non-current single threaded
1593  * non-current multithreaded.  Thread traversal is now safe with
1594  * the siglock held.
1595  * Strictly speaking, we donot need to take the siglock if we are current and
1596  * single threaded,  as no one else can take our signal_struct away, no one
1597  * else can  reap the  children to update signal->c* counters, and no one else
1598  * can race with the signal-> fields. If we do not take any lock, the
1599  * signal-> fields could be read out of order while another thread was just
1600  * exiting. So we should  place a read memory barrier when we avoid the lock.
1601  * On the writer side,  write memory barrier is implied in  __exit_signal
1602  * as __exit_signal releases  the siglock spinlock after updating the signal->
1603  * fields. But we don't do this yet to keep things simple.
1604  *
1605  */
1606 
1607 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1608 {
1609 	r->ru_nvcsw += t->nvcsw;
1610 	r->ru_nivcsw += t->nivcsw;
1611 	r->ru_minflt += t->min_flt;
1612 	r->ru_majflt += t->maj_flt;
1613 	r->ru_inblock += task_io_get_inblock(t);
1614 	r->ru_oublock += task_io_get_oublock(t);
1615 }
1616 
1617 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1618 {
1619 	struct task_struct *t;
1620 	unsigned long flags;
1621 	cputime_t utime, stime;
1622 	struct task_cputime cputime;
1623 
1624 	memset((char *) r, 0, sizeof *r);
1625 	utime = stime = cputime_zero;
1626 
1627 	if (who == RUSAGE_THREAD) {
1628 		utime = task_utime(current);
1629 		stime = task_stime(current);
1630 		accumulate_thread_rusage(p, r);
1631 		goto out;
1632 	}
1633 
1634 	if (!lock_task_sighand(p, &flags))
1635 		return;
1636 
1637 	switch (who) {
1638 		case RUSAGE_BOTH:
1639 		case RUSAGE_CHILDREN:
1640 			utime = p->signal->cutime;
1641 			stime = p->signal->cstime;
1642 			r->ru_nvcsw = p->signal->cnvcsw;
1643 			r->ru_nivcsw = p->signal->cnivcsw;
1644 			r->ru_minflt = p->signal->cmin_flt;
1645 			r->ru_majflt = p->signal->cmaj_flt;
1646 			r->ru_inblock = p->signal->cinblock;
1647 			r->ru_oublock = p->signal->coublock;
1648 
1649 			if (who == RUSAGE_CHILDREN)
1650 				break;
1651 
1652 		case RUSAGE_SELF:
1653 			thread_group_cputime(p, &cputime);
1654 			utime = cputime_add(utime, cputime.utime);
1655 			stime = cputime_add(stime, cputime.stime);
1656 			r->ru_nvcsw += p->signal->nvcsw;
1657 			r->ru_nivcsw += p->signal->nivcsw;
1658 			r->ru_minflt += p->signal->min_flt;
1659 			r->ru_majflt += p->signal->maj_flt;
1660 			r->ru_inblock += p->signal->inblock;
1661 			r->ru_oublock += p->signal->oublock;
1662 			t = p;
1663 			do {
1664 				accumulate_thread_rusage(t, r);
1665 				t = next_thread(t);
1666 			} while (t != p);
1667 			break;
1668 
1669 		default:
1670 			BUG();
1671 	}
1672 	unlock_task_sighand(p, &flags);
1673 
1674 out:
1675 	cputime_to_timeval(utime, &r->ru_utime);
1676 	cputime_to_timeval(stime, &r->ru_stime);
1677 }
1678 
1679 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1680 {
1681 	struct rusage r;
1682 	k_getrusage(p, who, &r);
1683 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1684 }
1685 
1686 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1687 {
1688 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1689 	    who != RUSAGE_THREAD)
1690 		return -EINVAL;
1691 	return getrusage(current, who, ru);
1692 }
1693 
1694 SYSCALL_DEFINE1(umask, int, mask)
1695 {
1696 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1697 	return mask;
1698 }
1699 
1700 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1701 		unsigned long, arg4, unsigned long, arg5)
1702 {
1703 	struct task_struct *me = current;
1704 	unsigned char comm[sizeof(me->comm)];
1705 	long error;
1706 
1707 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1708 	if (error != -ENOSYS)
1709 		return error;
1710 
1711 	error = 0;
1712 	switch (option) {
1713 		case PR_SET_PDEATHSIG:
1714 			if (!valid_signal(arg2)) {
1715 				error = -EINVAL;
1716 				break;
1717 			}
1718 			me->pdeath_signal = arg2;
1719 			error = 0;
1720 			break;
1721 		case PR_GET_PDEATHSIG:
1722 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1723 			break;
1724 		case PR_GET_DUMPABLE:
1725 			error = get_dumpable(me->mm);
1726 			break;
1727 		case PR_SET_DUMPABLE:
1728 			if (arg2 < 0 || arg2 > 1) {
1729 				error = -EINVAL;
1730 				break;
1731 			}
1732 			set_dumpable(me->mm, arg2);
1733 			error = 0;
1734 			break;
1735 
1736 		case PR_SET_UNALIGN:
1737 			error = SET_UNALIGN_CTL(me, arg2);
1738 			break;
1739 		case PR_GET_UNALIGN:
1740 			error = GET_UNALIGN_CTL(me, arg2);
1741 			break;
1742 		case PR_SET_FPEMU:
1743 			error = SET_FPEMU_CTL(me, arg2);
1744 			break;
1745 		case PR_GET_FPEMU:
1746 			error = GET_FPEMU_CTL(me, arg2);
1747 			break;
1748 		case PR_SET_FPEXC:
1749 			error = SET_FPEXC_CTL(me, arg2);
1750 			break;
1751 		case PR_GET_FPEXC:
1752 			error = GET_FPEXC_CTL(me, arg2);
1753 			break;
1754 		case PR_GET_TIMING:
1755 			error = PR_TIMING_STATISTICAL;
1756 			break;
1757 		case PR_SET_TIMING:
1758 			if (arg2 != PR_TIMING_STATISTICAL)
1759 				error = -EINVAL;
1760 			else
1761 				error = 0;
1762 			break;
1763 
1764 		case PR_SET_NAME:
1765 			comm[sizeof(me->comm)-1] = 0;
1766 			if (strncpy_from_user(comm, (char __user *)arg2,
1767 					      sizeof(me->comm) - 1) < 0)
1768 				return -EFAULT;
1769 			set_task_comm(me, comm);
1770 			return 0;
1771 		case PR_GET_NAME:
1772 			get_task_comm(comm, me);
1773 			if (copy_to_user((char __user *)arg2, comm,
1774 					 sizeof(comm)))
1775 				return -EFAULT;
1776 			return 0;
1777 		case PR_GET_ENDIAN:
1778 			error = GET_ENDIAN(me, arg2);
1779 			break;
1780 		case PR_SET_ENDIAN:
1781 			error = SET_ENDIAN(me, arg2);
1782 			break;
1783 
1784 		case PR_GET_SECCOMP:
1785 			error = prctl_get_seccomp();
1786 			break;
1787 		case PR_SET_SECCOMP:
1788 			error = prctl_set_seccomp(arg2);
1789 			break;
1790 		case PR_GET_TSC:
1791 			error = GET_TSC_CTL(arg2);
1792 			break;
1793 		case PR_SET_TSC:
1794 			error = SET_TSC_CTL(arg2);
1795 			break;
1796 		case PR_GET_TIMERSLACK:
1797 			error = current->timer_slack_ns;
1798 			break;
1799 		case PR_SET_TIMERSLACK:
1800 			if (arg2 <= 0)
1801 				current->timer_slack_ns =
1802 					current->default_timer_slack_ns;
1803 			else
1804 				current->timer_slack_ns = arg2;
1805 			error = 0;
1806 			break;
1807 		default:
1808 			error = -EINVAL;
1809 			break;
1810 	}
1811 	return error;
1812 }
1813 
1814 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1815 		struct getcpu_cache __user *, unused)
1816 {
1817 	int err = 0;
1818 	int cpu = raw_smp_processor_id();
1819 	if (cpup)
1820 		err |= put_user(cpu, cpup);
1821 	if (nodep)
1822 		err |= put_user(cpu_to_node(cpu), nodep);
1823 	return err ? -EFAULT : 0;
1824 }
1825 
1826 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1827 
1828 static void argv_cleanup(char **argv, char **envp)
1829 {
1830 	argv_free(argv);
1831 }
1832 
1833 /**
1834  * orderly_poweroff - Trigger an orderly system poweroff
1835  * @force: force poweroff if command execution fails
1836  *
1837  * This may be called from any context to trigger a system shutdown.
1838  * If the orderly shutdown fails, it will force an immediate shutdown.
1839  */
1840 int orderly_poweroff(bool force)
1841 {
1842 	int argc;
1843 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1844 	static char *envp[] = {
1845 		"HOME=/",
1846 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1847 		NULL
1848 	};
1849 	int ret = -ENOMEM;
1850 	struct subprocess_info *info;
1851 
1852 	if (argv == NULL) {
1853 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1854 		       __func__, poweroff_cmd);
1855 		goto out;
1856 	}
1857 
1858 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1859 	if (info == NULL) {
1860 		argv_free(argv);
1861 		goto out;
1862 	}
1863 
1864 	call_usermodehelper_setcleanup(info, argv_cleanup);
1865 
1866 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1867 
1868   out:
1869 	if (ret && force) {
1870 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1871 		       "forcing the issue\n");
1872 
1873 		/* I guess this should try to kick off some daemon to
1874 		   sync and poweroff asap.  Or not even bother syncing
1875 		   if we're doing an emergency shutdown? */
1876 		emergency_sync();
1877 		kernel_power_off();
1878 	}
1879 
1880 	return ret;
1881 }
1882 EXPORT_SYMBOL_GPL(orderly_poweroff);
1883