1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/ptrace.h> 37 #include <linux/fs_struct.h> 38 39 #include <linux/compat.h> 40 #include <linux/syscalls.h> 41 #include <linux/kprobes.h> 42 #include <linux/user_namespace.h> 43 44 #include <asm/uaccess.h> 45 #include <asm/io.h> 46 #include <asm/unistd.h> 47 48 #ifndef SET_UNALIGN_CTL 49 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 50 #endif 51 #ifndef GET_UNALIGN_CTL 52 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 53 #endif 54 #ifndef SET_FPEMU_CTL 55 # define SET_FPEMU_CTL(a,b) (-EINVAL) 56 #endif 57 #ifndef GET_FPEMU_CTL 58 # define GET_FPEMU_CTL(a,b) (-EINVAL) 59 #endif 60 #ifndef SET_FPEXC_CTL 61 # define SET_FPEXC_CTL(a,b) (-EINVAL) 62 #endif 63 #ifndef GET_FPEXC_CTL 64 # define GET_FPEXC_CTL(a,b) (-EINVAL) 65 #endif 66 #ifndef GET_ENDIAN 67 # define GET_ENDIAN(a,b) (-EINVAL) 68 #endif 69 #ifndef SET_ENDIAN 70 # define SET_ENDIAN(a,b) (-EINVAL) 71 #endif 72 #ifndef GET_TSC_CTL 73 # define GET_TSC_CTL(a) (-EINVAL) 74 #endif 75 #ifndef SET_TSC_CTL 76 # define SET_TSC_CTL(a) (-EINVAL) 77 #endif 78 79 /* 80 * this is where the system-wide overflow UID and GID are defined, for 81 * architectures that now have 32-bit UID/GID but didn't in the past 82 */ 83 84 int overflowuid = DEFAULT_OVERFLOWUID; 85 int overflowgid = DEFAULT_OVERFLOWGID; 86 87 #ifdef CONFIG_UID16 88 EXPORT_SYMBOL(overflowuid); 89 EXPORT_SYMBOL(overflowgid); 90 #endif 91 92 /* 93 * the same as above, but for filesystems which can only store a 16-bit 94 * UID and GID. as such, this is needed on all architectures 95 */ 96 97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 99 100 EXPORT_SYMBOL(fs_overflowuid); 101 EXPORT_SYMBOL(fs_overflowgid); 102 103 /* 104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 105 */ 106 107 int C_A_D = 1; 108 struct pid *cad_pid; 109 EXPORT_SYMBOL(cad_pid); 110 111 /* 112 * If set, this is used for preparing the system to power off. 113 */ 114 115 void (*pm_power_off_prepare)(void); 116 117 /* 118 * set the priority of a task 119 * - the caller must hold the RCU read lock 120 */ 121 static int set_one_prio(struct task_struct *p, int niceval, int error) 122 { 123 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 124 int no_nice; 125 126 if (pcred->uid != cred->euid && 127 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) { 128 error = -EPERM; 129 goto out; 130 } 131 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 132 error = -EACCES; 133 goto out; 134 } 135 no_nice = security_task_setnice(p, niceval); 136 if (no_nice) { 137 error = no_nice; 138 goto out; 139 } 140 if (error == -ESRCH) 141 error = 0; 142 set_user_nice(p, niceval); 143 out: 144 return error; 145 } 146 147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 148 { 149 struct task_struct *g, *p; 150 struct user_struct *user; 151 const struct cred *cred = current_cred(); 152 int error = -EINVAL; 153 struct pid *pgrp; 154 155 if (which > PRIO_USER || which < PRIO_PROCESS) 156 goto out; 157 158 /* normalize: avoid signed division (rounding problems) */ 159 error = -ESRCH; 160 if (niceval < -20) 161 niceval = -20; 162 if (niceval > 19) 163 niceval = 19; 164 165 read_lock(&tasklist_lock); 166 switch (which) { 167 case PRIO_PROCESS: 168 if (who) 169 p = find_task_by_vpid(who); 170 else 171 p = current; 172 if (p) 173 error = set_one_prio(p, niceval, error); 174 break; 175 case PRIO_PGRP: 176 if (who) 177 pgrp = find_vpid(who); 178 else 179 pgrp = task_pgrp(current); 180 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 181 error = set_one_prio(p, niceval, error); 182 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 183 break; 184 case PRIO_USER: 185 user = (struct user_struct *) cred->user; 186 if (!who) 187 who = cred->uid; 188 else if ((who != cred->uid) && 189 !(user = find_user(who))) 190 goto out_unlock; /* No processes for this user */ 191 192 do_each_thread(g, p) 193 if (__task_cred(p)->uid == who) 194 error = set_one_prio(p, niceval, error); 195 while_each_thread(g, p); 196 if (who != cred->uid) 197 free_uid(user); /* For find_user() */ 198 break; 199 } 200 out_unlock: 201 read_unlock(&tasklist_lock); 202 out: 203 return error; 204 } 205 206 /* 207 * Ugh. To avoid negative return values, "getpriority()" will 208 * not return the normal nice-value, but a negated value that 209 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 210 * to stay compatible. 211 */ 212 SYSCALL_DEFINE2(getpriority, int, which, int, who) 213 { 214 struct task_struct *g, *p; 215 struct user_struct *user; 216 const struct cred *cred = current_cred(); 217 long niceval, retval = -ESRCH; 218 struct pid *pgrp; 219 220 if (which > PRIO_USER || which < PRIO_PROCESS) 221 return -EINVAL; 222 223 read_lock(&tasklist_lock); 224 switch (which) { 225 case PRIO_PROCESS: 226 if (who) 227 p = find_task_by_vpid(who); 228 else 229 p = current; 230 if (p) { 231 niceval = 20 - task_nice(p); 232 if (niceval > retval) 233 retval = niceval; 234 } 235 break; 236 case PRIO_PGRP: 237 if (who) 238 pgrp = find_vpid(who); 239 else 240 pgrp = task_pgrp(current); 241 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 242 niceval = 20 - task_nice(p); 243 if (niceval > retval) 244 retval = niceval; 245 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 246 break; 247 case PRIO_USER: 248 user = (struct user_struct *) cred->user; 249 if (!who) 250 who = cred->uid; 251 else if ((who != cred->uid) && 252 !(user = find_user(who))) 253 goto out_unlock; /* No processes for this user */ 254 255 do_each_thread(g, p) 256 if (__task_cred(p)->uid == who) { 257 niceval = 20 - task_nice(p); 258 if (niceval > retval) 259 retval = niceval; 260 } 261 while_each_thread(g, p); 262 if (who != cred->uid) 263 free_uid(user); /* for find_user() */ 264 break; 265 } 266 out_unlock: 267 read_unlock(&tasklist_lock); 268 269 return retval; 270 } 271 272 /** 273 * emergency_restart - reboot the system 274 * 275 * Without shutting down any hardware or taking any locks 276 * reboot the system. This is called when we know we are in 277 * trouble so this is our best effort to reboot. This is 278 * safe to call in interrupt context. 279 */ 280 void emergency_restart(void) 281 { 282 machine_emergency_restart(); 283 } 284 EXPORT_SYMBOL_GPL(emergency_restart); 285 286 void kernel_restart_prepare(char *cmd) 287 { 288 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 289 system_state = SYSTEM_RESTART; 290 device_shutdown(); 291 sysdev_shutdown(); 292 } 293 294 /** 295 * kernel_restart - reboot the system 296 * @cmd: pointer to buffer containing command to execute for restart 297 * or %NULL 298 * 299 * Shutdown everything and perform a clean reboot. 300 * This is not safe to call in interrupt context. 301 */ 302 void kernel_restart(char *cmd) 303 { 304 kernel_restart_prepare(cmd); 305 if (!cmd) 306 printk(KERN_EMERG "Restarting system.\n"); 307 else 308 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 309 machine_restart(cmd); 310 } 311 EXPORT_SYMBOL_GPL(kernel_restart); 312 313 static void kernel_shutdown_prepare(enum system_states state) 314 { 315 blocking_notifier_call_chain(&reboot_notifier_list, 316 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 317 system_state = state; 318 device_shutdown(); 319 } 320 /** 321 * kernel_halt - halt the system 322 * 323 * Shutdown everything and perform a clean system halt. 324 */ 325 void kernel_halt(void) 326 { 327 kernel_shutdown_prepare(SYSTEM_HALT); 328 sysdev_shutdown(); 329 printk(KERN_EMERG "System halted.\n"); 330 machine_halt(); 331 } 332 333 EXPORT_SYMBOL_GPL(kernel_halt); 334 335 /** 336 * kernel_power_off - power_off the system 337 * 338 * Shutdown everything and perform a clean system power_off. 339 */ 340 void kernel_power_off(void) 341 { 342 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 343 if (pm_power_off_prepare) 344 pm_power_off_prepare(); 345 disable_nonboot_cpus(); 346 sysdev_shutdown(); 347 printk(KERN_EMERG "Power down.\n"); 348 machine_power_off(); 349 } 350 EXPORT_SYMBOL_GPL(kernel_power_off); 351 /* 352 * Reboot system call: for obvious reasons only root may call it, 353 * and even root needs to set up some magic numbers in the registers 354 * so that some mistake won't make this reboot the whole machine. 355 * You can also set the meaning of the ctrl-alt-del-key here. 356 * 357 * reboot doesn't sync: do that yourself before calling this. 358 */ 359 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, 360 void __user *, arg) 361 { 362 char buffer[256]; 363 int ret = 0; 364 365 /* We only trust the superuser with rebooting the system. */ 366 if (!capable(CAP_SYS_BOOT)) 367 return -EPERM; 368 369 /* For safety, we require "magic" arguments. */ 370 if (magic1 != LINUX_REBOOT_MAGIC1 || 371 (magic2 != LINUX_REBOOT_MAGIC2 && 372 magic2 != LINUX_REBOOT_MAGIC2A && 373 magic2 != LINUX_REBOOT_MAGIC2B && 374 magic2 != LINUX_REBOOT_MAGIC2C)) 375 return -EINVAL; 376 377 /* Instead of trying to make the power_off code look like 378 * halt when pm_power_off is not set do it the easy way. 379 */ 380 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 381 cmd = LINUX_REBOOT_CMD_HALT; 382 383 lock_kernel(); 384 switch (cmd) { 385 case LINUX_REBOOT_CMD_RESTART: 386 kernel_restart(NULL); 387 break; 388 389 case LINUX_REBOOT_CMD_CAD_ON: 390 C_A_D = 1; 391 break; 392 393 case LINUX_REBOOT_CMD_CAD_OFF: 394 C_A_D = 0; 395 break; 396 397 case LINUX_REBOOT_CMD_HALT: 398 kernel_halt(); 399 unlock_kernel(); 400 do_exit(0); 401 panic("cannot halt"); 402 403 case LINUX_REBOOT_CMD_POWER_OFF: 404 kernel_power_off(); 405 unlock_kernel(); 406 do_exit(0); 407 break; 408 409 case LINUX_REBOOT_CMD_RESTART2: 410 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 411 unlock_kernel(); 412 return -EFAULT; 413 } 414 buffer[sizeof(buffer) - 1] = '\0'; 415 416 kernel_restart(buffer); 417 break; 418 419 #ifdef CONFIG_KEXEC 420 case LINUX_REBOOT_CMD_KEXEC: 421 ret = kernel_kexec(); 422 break; 423 #endif 424 425 #ifdef CONFIG_HIBERNATION 426 case LINUX_REBOOT_CMD_SW_SUSPEND: 427 ret = hibernate(); 428 break; 429 #endif 430 431 default: 432 ret = -EINVAL; 433 break; 434 } 435 unlock_kernel(); 436 return ret; 437 } 438 439 static void deferred_cad(struct work_struct *dummy) 440 { 441 kernel_restart(NULL); 442 } 443 444 /* 445 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 446 * As it's called within an interrupt, it may NOT sync: the only choice 447 * is whether to reboot at once, or just ignore the ctrl-alt-del. 448 */ 449 void ctrl_alt_del(void) 450 { 451 static DECLARE_WORK(cad_work, deferred_cad); 452 453 if (C_A_D) 454 schedule_work(&cad_work); 455 else 456 kill_cad_pid(SIGINT, 1); 457 } 458 459 /* 460 * Unprivileged users may change the real gid to the effective gid 461 * or vice versa. (BSD-style) 462 * 463 * If you set the real gid at all, or set the effective gid to a value not 464 * equal to the real gid, then the saved gid is set to the new effective gid. 465 * 466 * This makes it possible for a setgid program to completely drop its 467 * privileges, which is often a useful assertion to make when you are doing 468 * a security audit over a program. 469 * 470 * The general idea is that a program which uses just setregid() will be 471 * 100% compatible with BSD. A program which uses just setgid() will be 472 * 100% compatible with POSIX with saved IDs. 473 * 474 * SMP: There are not races, the GIDs are checked only by filesystem 475 * operations (as far as semantic preservation is concerned). 476 */ 477 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 478 { 479 const struct cred *old; 480 struct cred *new; 481 int retval; 482 483 new = prepare_creds(); 484 if (!new) 485 return -ENOMEM; 486 old = current_cred(); 487 488 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 489 if (retval) 490 goto error; 491 492 retval = -EPERM; 493 if (rgid != (gid_t) -1) { 494 if (old->gid == rgid || 495 old->egid == rgid || 496 capable(CAP_SETGID)) 497 new->gid = rgid; 498 else 499 goto error; 500 } 501 if (egid != (gid_t) -1) { 502 if (old->gid == egid || 503 old->egid == egid || 504 old->sgid == egid || 505 capable(CAP_SETGID)) 506 new->egid = egid; 507 else 508 goto error; 509 } 510 511 if (rgid != (gid_t) -1 || 512 (egid != (gid_t) -1 && egid != old->gid)) 513 new->sgid = new->egid; 514 new->fsgid = new->egid; 515 516 return commit_creds(new); 517 518 error: 519 abort_creds(new); 520 return retval; 521 } 522 523 /* 524 * setgid() is implemented like SysV w/ SAVED_IDS 525 * 526 * SMP: Same implicit races as above. 527 */ 528 SYSCALL_DEFINE1(setgid, gid_t, gid) 529 { 530 const struct cred *old; 531 struct cred *new; 532 int retval; 533 534 new = prepare_creds(); 535 if (!new) 536 return -ENOMEM; 537 old = current_cred(); 538 539 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 540 if (retval) 541 goto error; 542 543 retval = -EPERM; 544 if (capable(CAP_SETGID)) 545 new->gid = new->egid = new->sgid = new->fsgid = gid; 546 else if (gid == old->gid || gid == old->sgid) 547 new->egid = new->fsgid = gid; 548 else 549 goto error; 550 551 return commit_creds(new); 552 553 error: 554 abort_creds(new); 555 return retval; 556 } 557 558 /* 559 * change the user struct in a credentials set to match the new UID 560 */ 561 static int set_user(struct cred *new) 562 { 563 struct user_struct *new_user; 564 565 new_user = alloc_uid(current_user_ns(), new->uid); 566 if (!new_user) 567 return -EAGAIN; 568 569 if (!task_can_switch_user(new_user, current)) { 570 free_uid(new_user); 571 return -EINVAL; 572 } 573 574 if (atomic_read(&new_user->processes) >= 575 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 576 new_user != INIT_USER) { 577 free_uid(new_user); 578 return -EAGAIN; 579 } 580 581 free_uid(new->user); 582 new->user = new_user; 583 return 0; 584 } 585 586 /* 587 * Unprivileged users may change the real uid to the effective uid 588 * or vice versa. (BSD-style) 589 * 590 * If you set the real uid at all, or set the effective uid to a value not 591 * equal to the real uid, then the saved uid is set to the new effective uid. 592 * 593 * This makes it possible for a setuid program to completely drop its 594 * privileges, which is often a useful assertion to make when you are doing 595 * a security audit over a program. 596 * 597 * The general idea is that a program which uses just setreuid() will be 598 * 100% compatible with BSD. A program which uses just setuid() will be 599 * 100% compatible with POSIX with saved IDs. 600 */ 601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 602 { 603 const struct cred *old; 604 struct cred *new; 605 int retval; 606 607 new = prepare_creds(); 608 if (!new) 609 return -ENOMEM; 610 old = current_cred(); 611 612 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 613 if (retval) 614 goto error; 615 616 retval = -EPERM; 617 if (ruid != (uid_t) -1) { 618 new->uid = ruid; 619 if (old->uid != ruid && 620 old->euid != ruid && 621 !capable(CAP_SETUID)) 622 goto error; 623 } 624 625 if (euid != (uid_t) -1) { 626 new->euid = euid; 627 if (old->uid != euid && 628 old->euid != euid && 629 old->suid != euid && 630 !capable(CAP_SETUID)) 631 goto error; 632 } 633 634 if (new->uid != old->uid) { 635 retval = set_user(new); 636 if (retval < 0) 637 goto error; 638 } 639 if (ruid != (uid_t) -1 || 640 (euid != (uid_t) -1 && euid != old->uid)) 641 new->suid = new->euid; 642 new->fsuid = new->euid; 643 644 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 645 if (retval < 0) 646 goto error; 647 648 return commit_creds(new); 649 650 error: 651 abort_creds(new); 652 return retval; 653 } 654 655 /* 656 * setuid() is implemented like SysV with SAVED_IDS 657 * 658 * Note that SAVED_ID's is deficient in that a setuid root program 659 * like sendmail, for example, cannot set its uid to be a normal 660 * user and then switch back, because if you're root, setuid() sets 661 * the saved uid too. If you don't like this, blame the bright people 662 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 663 * will allow a root program to temporarily drop privileges and be able to 664 * regain them by swapping the real and effective uid. 665 */ 666 SYSCALL_DEFINE1(setuid, uid_t, uid) 667 { 668 const struct cred *old; 669 struct cred *new; 670 int retval; 671 672 new = prepare_creds(); 673 if (!new) 674 return -ENOMEM; 675 old = current_cred(); 676 677 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 678 if (retval) 679 goto error; 680 681 retval = -EPERM; 682 if (capable(CAP_SETUID)) { 683 new->suid = new->uid = uid; 684 if (uid != old->uid) { 685 retval = set_user(new); 686 if (retval < 0) 687 goto error; 688 } 689 } else if (uid != old->uid && uid != new->suid) { 690 goto error; 691 } 692 693 new->fsuid = new->euid = uid; 694 695 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 696 if (retval < 0) 697 goto error; 698 699 return commit_creds(new); 700 701 error: 702 abort_creds(new); 703 return retval; 704 } 705 706 707 /* 708 * This function implements a generic ability to update ruid, euid, 709 * and suid. This allows you to implement the 4.4 compatible seteuid(). 710 */ 711 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 712 { 713 const struct cred *old; 714 struct cred *new; 715 int retval; 716 717 new = prepare_creds(); 718 if (!new) 719 return -ENOMEM; 720 721 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 722 if (retval) 723 goto error; 724 old = current_cred(); 725 726 retval = -EPERM; 727 if (!capable(CAP_SETUID)) { 728 if (ruid != (uid_t) -1 && ruid != old->uid && 729 ruid != old->euid && ruid != old->suid) 730 goto error; 731 if (euid != (uid_t) -1 && euid != old->uid && 732 euid != old->euid && euid != old->suid) 733 goto error; 734 if (suid != (uid_t) -1 && suid != old->uid && 735 suid != old->euid && suid != old->suid) 736 goto error; 737 } 738 739 if (ruid != (uid_t) -1) { 740 new->uid = ruid; 741 if (ruid != old->uid) { 742 retval = set_user(new); 743 if (retval < 0) 744 goto error; 745 } 746 } 747 if (euid != (uid_t) -1) 748 new->euid = euid; 749 if (suid != (uid_t) -1) 750 new->suid = suid; 751 new->fsuid = new->euid; 752 753 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 754 if (retval < 0) 755 goto error; 756 757 return commit_creds(new); 758 759 error: 760 abort_creds(new); 761 return retval; 762 } 763 764 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) 765 { 766 const struct cred *cred = current_cred(); 767 int retval; 768 769 if (!(retval = put_user(cred->uid, ruid)) && 770 !(retval = put_user(cred->euid, euid))) 771 retval = put_user(cred->suid, suid); 772 773 return retval; 774 } 775 776 /* 777 * Same as above, but for rgid, egid, sgid. 778 */ 779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 780 { 781 const struct cred *old; 782 struct cred *new; 783 int retval; 784 785 new = prepare_creds(); 786 if (!new) 787 return -ENOMEM; 788 old = current_cred(); 789 790 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 791 if (retval) 792 goto error; 793 794 retval = -EPERM; 795 if (!capable(CAP_SETGID)) { 796 if (rgid != (gid_t) -1 && rgid != old->gid && 797 rgid != old->egid && rgid != old->sgid) 798 goto error; 799 if (egid != (gid_t) -1 && egid != old->gid && 800 egid != old->egid && egid != old->sgid) 801 goto error; 802 if (sgid != (gid_t) -1 && sgid != old->gid && 803 sgid != old->egid && sgid != old->sgid) 804 goto error; 805 } 806 807 if (rgid != (gid_t) -1) 808 new->gid = rgid; 809 if (egid != (gid_t) -1) 810 new->egid = egid; 811 if (sgid != (gid_t) -1) 812 new->sgid = sgid; 813 new->fsgid = new->egid; 814 815 return commit_creds(new); 816 817 error: 818 abort_creds(new); 819 return retval; 820 } 821 822 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) 823 { 824 const struct cred *cred = current_cred(); 825 int retval; 826 827 if (!(retval = put_user(cred->gid, rgid)) && 828 !(retval = put_user(cred->egid, egid))) 829 retval = put_user(cred->sgid, sgid); 830 831 return retval; 832 } 833 834 835 /* 836 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 837 * is used for "access()" and for the NFS daemon (letting nfsd stay at 838 * whatever uid it wants to). It normally shadows "euid", except when 839 * explicitly set by setfsuid() or for access.. 840 */ 841 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 842 { 843 const struct cred *old; 844 struct cred *new; 845 uid_t old_fsuid; 846 847 new = prepare_creds(); 848 if (!new) 849 return current_fsuid(); 850 old = current_cred(); 851 old_fsuid = old->fsuid; 852 853 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0) 854 goto error; 855 856 if (uid == old->uid || uid == old->euid || 857 uid == old->suid || uid == old->fsuid || 858 capable(CAP_SETUID)) { 859 if (uid != old_fsuid) { 860 new->fsuid = uid; 861 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 862 goto change_okay; 863 } 864 } 865 866 error: 867 abort_creds(new); 868 return old_fsuid; 869 870 change_okay: 871 commit_creds(new); 872 return old_fsuid; 873 } 874 875 /* 876 * Samma på svenska.. 877 */ 878 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 879 { 880 const struct cred *old; 881 struct cred *new; 882 gid_t old_fsgid; 883 884 new = prepare_creds(); 885 if (!new) 886 return current_fsgid(); 887 old = current_cred(); 888 old_fsgid = old->fsgid; 889 890 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 891 goto error; 892 893 if (gid == old->gid || gid == old->egid || 894 gid == old->sgid || gid == old->fsgid || 895 capable(CAP_SETGID)) { 896 if (gid != old_fsgid) { 897 new->fsgid = gid; 898 goto change_okay; 899 } 900 } 901 902 error: 903 abort_creds(new); 904 return old_fsgid; 905 906 change_okay: 907 commit_creds(new); 908 return old_fsgid; 909 } 910 911 void do_sys_times(struct tms *tms) 912 { 913 struct task_cputime cputime; 914 cputime_t cutime, cstime; 915 916 thread_group_cputime(current, &cputime); 917 spin_lock_irq(¤t->sighand->siglock); 918 cutime = current->signal->cutime; 919 cstime = current->signal->cstime; 920 spin_unlock_irq(¤t->sighand->siglock); 921 tms->tms_utime = cputime_to_clock_t(cputime.utime); 922 tms->tms_stime = cputime_to_clock_t(cputime.stime); 923 tms->tms_cutime = cputime_to_clock_t(cutime); 924 tms->tms_cstime = cputime_to_clock_t(cstime); 925 } 926 927 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 928 { 929 if (tbuf) { 930 struct tms tmp; 931 932 do_sys_times(&tmp); 933 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 934 return -EFAULT; 935 } 936 force_successful_syscall_return(); 937 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 938 } 939 940 /* 941 * This needs some heavy checking ... 942 * I just haven't the stomach for it. I also don't fully 943 * understand sessions/pgrp etc. Let somebody who does explain it. 944 * 945 * OK, I think I have the protection semantics right.... this is really 946 * only important on a multi-user system anyway, to make sure one user 947 * can't send a signal to a process owned by another. -TYT, 12/12/91 948 * 949 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 950 * LBT 04.03.94 951 */ 952 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 953 { 954 struct task_struct *p; 955 struct task_struct *group_leader = current->group_leader; 956 struct pid *pgrp; 957 int err; 958 959 if (!pid) 960 pid = task_pid_vnr(group_leader); 961 if (!pgid) 962 pgid = pid; 963 if (pgid < 0) 964 return -EINVAL; 965 966 /* From this point forward we keep holding onto the tasklist lock 967 * so that our parent does not change from under us. -DaveM 968 */ 969 write_lock_irq(&tasklist_lock); 970 971 err = -ESRCH; 972 p = find_task_by_vpid(pid); 973 if (!p) 974 goto out; 975 976 err = -EINVAL; 977 if (!thread_group_leader(p)) 978 goto out; 979 980 if (same_thread_group(p->real_parent, group_leader)) { 981 err = -EPERM; 982 if (task_session(p) != task_session(group_leader)) 983 goto out; 984 err = -EACCES; 985 if (p->did_exec) 986 goto out; 987 } else { 988 err = -ESRCH; 989 if (p != group_leader) 990 goto out; 991 } 992 993 err = -EPERM; 994 if (p->signal->leader) 995 goto out; 996 997 pgrp = task_pid(p); 998 if (pgid != pid) { 999 struct task_struct *g; 1000 1001 pgrp = find_vpid(pgid); 1002 g = pid_task(pgrp, PIDTYPE_PGID); 1003 if (!g || task_session(g) != task_session(group_leader)) 1004 goto out; 1005 } 1006 1007 err = security_task_setpgid(p, pgid); 1008 if (err) 1009 goto out; 1010 1011 if (task_pgrp(p) != pgrp) 1012 change_pid(p, PIDTYPE_PGID, pgrp); 1013 1014 err = 0; 1015 out: 1016 /* All paths lead to here, thus we are safe. -DaveM */ 1017 write_unlock_irq(&tasklist_lock); 1018 return err; 1019 } 1020 1021 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1022 { 1023 struct task_struct *p; 1024 struct pid *grp; 1025 int retval; 1026 1027 rcu_read_lock(); 1028 if (!pid) 1029 grp = task_pgrp(current); 1030 else { 1031 retval = -ESRCH; 1032 p = find_task_by_vpid(pid); 1033 if (!p) 1034 goto out; 1035 grp = task_pgrp(p); 1036 if (!grp) 1037 goto out; 1038 1039 retval = security_task_getpgid(p); 1040 if (retval) 1041 goto out; 1042 } 1043 retval = pid_vnr(grp); 1044 out: 1045 rcu_read_unlock(); 1046 return retval; 1047 } 1048 1049 #ifdef __ARCH_WANT_SYS_GETPGRP 1050 1051 SYSCALL_DEFINE0(getpgrp) 1052 { 1053 return sys_getpgid(0); 1054 } 1055 1056 #endif 1057 1058 SYSCALL_DEFINE1(getsid, pid_t, pid) 1059 { 1060 struct task_struct *p; 1061 struct pid *sid; 1062 int retval; 1063 1064 rcu_read_lock(); 1065 if (!pid) 1066 sid = task_session(current); 1067 else { 1068 retval = -ESRCH; 1069 p = find_task_by_vpid(pid); 1070 if (!p) 1071 goto out; 1072 sid = task_session(p); 1073 if (!sid) 1074 goto out; 1075 1076 retval = security_task_getsid(p); 1077 if (retval) 1078 goto out; 1079 } 1080 retval = pid_vnr(sid); 1081 out: 1082 rcu_read_unlock(); 1083 return retval; 1084 } 1085 1086 SYSCALL_DEFINE0(setsid) 1087 { 1088 struct task_struct *group_leader = current->group_leader; 1089 struct pid *sid = task_pid(group_leader); 1090 pid_t session = pid_vnr(sid); 1091 int err = -EPERM; 1092 1093 write_lock_irq(&tasklist_lock); 1094 /* Fail if I am already a session leader */ 1095 if (group_leader->signal->leader) 1096 goto out; 1097 1098 /* Fail if a process group id already exists that equals the 1099 * proposed session id. 1100 */ 1101 if (pid_task(sid, PIDTYPE_PGID)) 1102 goto out; 1103 1104 group_leader->signal->leader = 1; 1105 __set_special_pids(sid); 1106 1107 proc_clear_tty(group_leader); 1108 1109 err = session; 1110 out: 1111 write_unlock_irq(&tasklist_lock); 1112 return err; 1113 } 1114 1115 /* 1116 * Supplementary group IDs 1117 */ 1118 1119 /* init to 2 - one for init_task, one to ensure it is never freed */ 1120 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1121 1122 struct group_info *groups_alloc(int gidsetsize) 1123 { 1124 struct group_info *group_info; 1125 int nblocks; 1126 int i; 1127 1128 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1129 /* Make sure we always allocate at least one indirect block pointer */ 1130 nblocks = nblocks ? : 1; 1131 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1132 if (!group_info) 1133 return NULL; 1134 group_info->ngroups = gidsetsize; 1135 group_info->nblocks = nblocks; 1136 atomic_set(&group_info->usage, 1); 1137 1138 if (gidsetsize <= NGROUPS_SMALL) 1139 group_info->blocks[0] = group_info->small_block; 1140 else { 1141 for (i = 0; i < nblocks; i++) { 1142 gid_t *b; 1143 b = (void *)__get_free_page(GFP_USER); 1144 if (!b) 1145 goto out_undo_partial_alloc; 1146 group_info->blocks[i] = b; 1147 } 1148 } 1149 return group_info; 1150 1151 out_undo_partial_alloc: 1152 while (--i >= 0) { 1153 free_page((unsigned long)group_info->blocks[i]); 1154 } 1155 kfree(group_info); 1156 return NULL; 1157 } 1158 1159 EXPORT_SYMBOL(groups_alloc); 1160 1161 void groups_free(struct group_info *group_info) 1162 { 1163 if (group_info->blocks[0] != group_info->small_block) { 1164 int i; 1165 for (i = 0; i < group_info->nblocks; i++) 1166 free_page((unsigned long)group_info->blocks[i]); 1167 } 1168 kfree(group_info); 1169 } 1170 1171 EXPORT_SYMBOL(groups_free); 1172 1173 /* export the group_info to a user-space array */ 1174 static int groups_to_user(gid_t __user *grouplist, 1175 const struct group_info *group_info) 1176 { 1177 int i; 1178 unsigned int count = group_info->ngroups; 1179 1180 for (i = 0; i < group_info->nblocks; i++) { 1181 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1182 unsigned int len = cp_count * sizeof(*grouplist); 1183 1184 if (copy_to_user(grouplist, group_info->blocks[i], len)) 1185 return -EFAULT; 1186 1187 grouplist += NGROUPS_PER_BLOCK; 1188 count -= cp_count; 1189 } 1190 return 0; 1191 } 1192 1193 /* fill a group_info from a user-space array - it must be allocated already */ 1194 static int groups_from_user(struct group_info *group_info, 1195 gid_t __user *grouplist) 1196 { 1197 int i; 1198 unsigned int count = group_info->ngroups; 1199 1200 for (i = 0; i < group_info->nblocks; i++) { 1201 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1202 unsigned int len = cp_count * sizeof(*grouplist); 1203 1204 if (copy_from_user(group_info->blocks[i], grouplist, len)) 1205 return -EFAULT; 1206 1207 grouplist += NGROUPS_PER_BLOCK; 1208 count -= cp_count; 1209 } 1210 return 0; 1211 } 1212 1213 /* a simple Shell sort */ 1214 static void groups_sort(struct group_info *group_info) 1215 { 1216 int base, max, stride; 1217 int gidsetsize = group_info->ngroups; 1218 1219 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1220 ; /* nothing */ 1221 stride /= 3; 1222 1223 while (stride) { 1224 max = gidsetsize - stride; 1225 for (base = 0; base < max; base++) { 1226 int left = base; 1227 int right = left + stride; 1228 gid_t tmp = GROUP_AT(group_info, right); 1229 1230 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1231 GROUP_AT(group_info, right) = 1232 GROUP_AT(group_info, left); 1233 right = left; 1234 left -= stride; 1235 } 1236 GROUP_AT(group_info, right) = tmp; 1237 } 1238 stride /= 3; 1239 } 1240 } 1241 1242 /* a simple bsearch */ 1243 int groups_search(const struct group_info *group_info, gid_t grp) 1244 { 1245 unsigned int left, right; 1246 1247 if (!group_info) 1248 return 0; 1249 1250 left = 0; 1251 right = group_info->ngroups; 1252 while (left < right) { 1253 unsigned int mid = (left+right)/2; 1254 int cmp = grp - GROUP_AT(group_info, mid); 1255 if (cmp > 0) 1256 left = mid + 1; 1257 else if (cmp < 0) 1258 right = mid; 1259 else 1260 return 1; 1261 } 1262 return 0; 1263 } 1264 1265 /** 1266 * set_groups - Change a group subscription in a set of credentials 1267 * @new: The newly prepared set of credentials to alter 1268 * @group_info: The group list to install 1269 * 1270 * Validate a group subscription and, if valid, insert it into a set 1271 * of credentials. 1272 */ 1273 int set_groups(struct cred *new, struct group_info *group_info) 1274 { 1275 int retval; 1276 1277 retval = security_task_setgroups(group_info); 1278 if (retval) 1279 return retval; 1280 1281 put_group_info(new->group_info); 1282 groups_sort(group_info); 1283 get_group_info(group_info); 1284 new->group_info = group_info; 1285 return 0; 1286 } 1287 1288 EXPORT_SYMBOL(set_groups); 1289 1290 /** 1291 * set_current_groups - Change current's group subscription 1292 * @group_info: The group list to impose 1293 * 1294 * Validate a group subscription and, if valid, impose it upon current's task 1295 * security record. 1296 */ 1297 int set_current_groups(struct group_info *group_info) 1298 { 1299 struct cred *new; 1300 int ret; 1301 1302 new = prepare_creds(); 1303 if (!new) 1304 return -ENOMEM; 1305 1306 ret = set_groups(new, group_info); 1307 if (ret < 0) { 1308 abort_creds(new); 1309 return ret; 1310 } 1311 1312 return commit_creds(new); 1313 } 1314 1315 EXPORT_SYMBOL(set_current_groups); 1316 1317 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist) 1318 { 1319 const struct cred *cred = current_cred(); 1320 int i; 1321 1322 if (gidsetsize < 0) 1323 return -EINVAL; 1324 1325 /* no need to grab task_lock here; it cannot change */ 1326 i = cred->group_info->ngroups; 1327 if (gidsetsize) { 1328 if (i > gidsetsize) { 1329 i = -EINVAL; 1330 goto out; 1331 } 1332 if (groups_to_user(grouplist, cred->group_info)) { 1333 i = -EFAULT; 1334 goto out; 1335 } 1336 } 1337 out: 1338 return i; 1339 } 1340 1341 /* 1342 * SMP: Our groups are copy-on-write. We can set them safely 1343 * without another task interfering. 1344 */ 1345 1346 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist) 1347 { 1348 struct group_info *group_info; 1349 int retval; 1350 1351 if (!capable(CAP_SETGID)) 1352 return -EPERM; 1353 if ((unsigned)gidsetsize > NGROUPS_MAX) 1354 return -EINVAL; 1355 1356 group_info = groups_alloc(gidsetsize); 1357 if (!group_info) 1358 return -ENOMEM; 1359 retval = groups_from_user(group_info, grouplist); 1360 if (retval) { 1361 put_group_info(group_info); 1362 return retval; 1363 } 1364 1365 retval = set_current_groups(group_info); 1366 put_group_info(group_info); 1367 1368 return retval; 1369 } 1370 1371 /* 1372 * Check whether we're fsgid/egid or in the supplemental group.. 1373 */ 1374 int in_group_p(gid_t grp) 1375 { 1376 const struct cred *cred = current_cred(); 1377 int retval = 1; 1378 1379 if (grp != cred->fsgid) 1380 retval = groups_search(cred->group_info, grp); 1381 return retval; 1382 } 1383 1384 EXPORT_SYMBOL(in_group_p); 1385 1386 int in_egroup_p(gid_t grp) 1387 { 1388 const struct cred *cred = current_cred(); 1389 int retval = 1; 1390 1391 if (grp != cred->egid) 1392 retval = groups_search(cred->group_info, grp); 1393 return retval; 1394 } 1395 1396 EXPORT_SYMBOL(in_egroup_p); 1397 1398 DECLARE_RWSEM(uts_sem); 1399 1400 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1401 { 1402 int errno = 0; 1403 1404 down_read(&uts_sem); 1405 if (copy_to_user(name, utsname(), sizeof *name)) 1406 errno = -EFAULT; 1407 up_read(&uts_sem); 1408 return errno; 1409 } 1410 1411 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1412 { 1413 int errno; 1414 char tmp[__NEW_UTS_LEN]; 1415 1416 if (!capable(CAP_SYS_ADMIN)) 1417 return -EPERM; 1418 if (len < 0 || len > __NEW_UTS_LEN) 1419 return -EINVAL; 1420 down_write(&uts_sem); 1421 errno = -EFAULT; 1422 if (!copy_from_user(tmp, name, len)) { 1423 struct new_utsname *u = utsname(); 1424 1425 memcpy(u->nodename, tmp, len); 1426 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1427 errno = 0; 1428 } 1429 up_write(&uts_sem); 1430 return errno; 1431 } 1432 1433 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1434 1435 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1436 { 1437 int i, errno; 1438 struct new_utsname *u; 1439 1440 if (len < 0) 1441 return -EINVAL; 1442 down_read(&uts_sem); 1443 u = utsname(); 1444 i = 1 + strlen(u->nodename); 1445 if (i > len) 1446 i = len; 1447 errno = 0; 1448 if (copy_to_user(name, u->nodename, i)) 1449 errno = -EFAULT; 1450 up_read(&uts_sem); 1451 return errno; 1452 } 1453 1454 #endif 1455 1456 /* 1457 * Only setdomainname; getdomainname can be implemented by calling 1458 * uname() 1459 */ 1460 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1461 { 1462 int errno; 1463 char tmp[__NEW_UTS_LEN]; 1464 1465 if (!capable(CAP_SYS_ADMIN)) 1466 return -EPERM; 1467 if (len < 0 || len > __NEW_UTS_LEN) 1468 return -EINVAL; 1469 1470 down_write(&uts_sem); 1471 errno = -EFAULT; 1472 if (!copy_from_user(tmp, name, len)) { 1473 struct new_utsname *u = utsname(); 1474 1475 memcpy(u->domainname, tmp, len); 1476 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1477 errno = 0; 1478 } 1479 up_write(&uts_sem); 1480 return errno; 1481 } 1482 1483 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1484 { 1485 if (resource >= RLIM_NLIMITS) 1486 return -EINVAL; 1487 else { 1488 struct rlimit value; 1489 task_lock(current->group_leader); 1490 value = current->signal->rlim[resource]; 1491 task_unlock(current->group_leader); 1492 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1493 } 1494 } 1495 1496 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1497 1498 /* 1499 * Back compatibility for getrlimit. Needed for some apps. 1500 */ 1501 1502 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1503 struct rlimit __user *, rlim) 1504 { 1505 struct rlimit x; 1506 if (resource >= RLIM_NLIMITS) 1507 return -EINVAL; 1508 1509 task_lock(current->group_leader); 1510 x = current->signal->rlim[resource]; 1511 task_unlock(current->group_leader); 1512 if (x.rlim_cur > 0x7FFFFFFF) 1513 x.rlim_cur = 0x7FFFFFFF; 1514 if (x.rlim_max > 0x7FFFFFFF) 1515 x.rlim_max = 0x7FFFFFFF; 1516 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1517 } 1518 1519 #endif 1520 1521 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1522 { 1523 struct rlimit new_rlim, *old_rlim; 1524 int retval; 1525 1526 if (resource >= RLIM_NLIMITS) 1527 return -EINVAL; 1528 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1529 return -EFAULT; 1530 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1531 return -EINVAL; 1532 old_rlim = current->signal->rlim + resource; 1533 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1534 !capable(CAP_SYS_RESOURCE)) 1535 return -EPERM; 1536 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open) 1537 return -EPERM; 1538 1539 retval = security_task_setrlimit(resource, &new_rlim); 1540 if (retval) 1541 return retval; 1542 1543 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) { 1544 /* 1545 * The caller is asking for an immediate RLIMIT_CPU 1546 * expiry. But we use the zero value to mean "it was 1547 * never set". So let's cheat and make it one second 1548 * instead 1549 */ 1550 new_rlim.rlim_cur = 1; 1551 } 1552 1553 task_lock(current->group_leader); 1554 *old_rlim = new_rlim; 1555 task_unlock(current->group_leader); 1556 1557 if (resource != RLIMIT_CPU) 1558 goto out; 1559 1560 /* 1561 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1562 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1563 * very long-standing error, and fixing it now risks breakage of 1564 * applications, so we live with it 1565 */ 1566 if (new_rlim.rlim_cur == RLIM_INFINITY) 1567 goto out; 1568 1569 update_rlimit_cpu(new_rlim.rlim_cur); 1570 out: 1571 return 0; 1572 } 1573 1574 /* 1575 * It would make sense to put struct rusage in the task_struct, 1576 * except that would make the task_struct be *really big*. After 1577 * task_struct gets moved into malloc'ed memory, it would 1578 * make sense to do this. It will make moving the rest of the information 1579 * a lot simpler! (Which we're not doing right now because we're not 1580 * measuring them yet). 1581 * 1582 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1583 * races with threads incrementing their own counters. But since word 1584 * reads are atomic, we either get new values or old values and we don't 1585 * care which for the sums. We always take the siglock to protect reading 1586 * the c* fields from p->signal from races with exit.c updating those 1587 * fields when reaping, so a sample either gets all the additions of a 1588 * given child after it's reaped, or none so this sample is before reaping. 1589 * 1590 * Locking: 1591 * We need to take the siglock for CHILDEREN, SELF and BOTH 1592 * for the cases current multithreaded, non-current single threaded 1593 * non-current multithreaded. Thread traversal is now safe with 1594 * the siglock held. 1595 * Strictly speaking, we donot need to take the siglock if we are current and 1596 * single threaded, as no one else can take our signal_struct away, no one 1597 * else can reap the children to update signal->c* counters, and no one else 1598 * can race with the signal-> fields. If we do not take any lock, the 1599 * signal-> fields could be read out of order while another thread was just 1600 * exiting. So we should place a read memory barrier when we avoid the lock. 1601 * On the writer side, write memory barrier is implied in __exit_signal 1602 * as __exit_signal releases the siglock spinlock after updating the signal-> 1603 * fields. But we don't do this yet to keep things simple. 1604 * 1605 */ 1606 1607 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1608 { 1609 r->ru_nvcsw += t->nvcsw; 1610 r->ru_nivcsw += t->nivcsw; 1611 r->ru_minflt += t->min_flt; 1612 r->ru_majflt += t->maj_flt; 1613 r->ru_inblock += task_io_get_inblock(t); 1614 r->ru_oublock += task_io_get_oublock(t); 1615 } 1616 1617 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1618 { 1619 struct task_struct *t; 1620 unsigned long flags; 1621 cputime_t utime, stime; 1622 struct task_cputime cputime; 1623 1624 memset((char *) r, 0, sizeof *r); 1625 utime = stime = cputime_zero; 1626 1627 if (who == RUSAGE_THREAD) { 1628 utime = task_utime(current); 1629 stime = task_stime(current); 1630 accumulate_thread_rusage(p, r); 1631 goto out; 1632 } 1633 1634 if (!lock_task_sighand(p, &flags)) 1635 return; 1636 1637 switch (who) { 1638 case RUSAGE_BOTH: 1639 case RUSAGE_CHILDREN: 1640 utime = p->signal->cutime; 1641 stime = p->signal->cstime; 1642 r->ru_nvcsw = p->signal->cnvcsw; 1643 r->ru_nivcsw = p->signal->cnivcsw; 1644 r->ru_minflt = p->signal->cmin_flt; 1645 r->ru_majflt = p->signal->cmaj_flt; 1646 r->ru_inblock = p->signal->cinblock; 1647 r->ru_oublock = p->signal->coublock; 1648 1649 if (who == RUSAGE_CHILDREN) 1650 break; 1651 1652 case RUSAGE_SELF: 1653 thread_group_cputime(p, &cputime); 1654 utime = cputime_add(utime, cputime.utime); 1655 stime = cputime_add(stime, cputime.stime); 1656 r->ru_nvcsw += p->signal->nvcsw; 1657 r->ru_nivcsw += p->signal->nivcsw; 1658 r->ru_minflt += p->signal->min_flt; 1659 r->ru_majflt += p->signal->maj_flt; 1660 r->ru_inblock += p->signal->inblock; 1661 r->ru_oublock += p->signal->oublock; 1662 t = p; 1663 do { 1664 accumulate_thread_rusage(t, r); 1665 t = next_thread(t); 1666 } while (t != p); 1667 break; 1668 1669 default: 1670 BUG(); 1671 } 1672 unlock_task_sighand(p, &flags); 1673 1674 out: 1675 cputime_to_timeval(utime, &r->ru_utime); 1676 cputime_to_timeval(stime, &r->ru_stime); 1677 } 1678 1679 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1680 { 1681 struct rusage r; 1682 k_getrusage(p, who, &r); 1683 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1684 } 1685 1686 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1687 { 1688 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1689 who != RUSAGE_THREAD) 1690 return -EINVAL; 1691 return getrusage(current, who, ru); 1692 } 1693 1694 SYSCALL_DEFINE1(umask, int, mask) 1695 { 1696 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1697 return mask; 1698 } 1699 1700 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 1701 unsigned long, arg4, unsigned long, arg5) 1702 { 1703 struct task_struct *me = current; 1704 unsigned char comm[sizeof(me->comm)]; 1705 long error; 1706 1707 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1708 if (error != -ENOSYS) 1709 return error; 1710 1711 error = 0; 1712 switch (option) { 1713 case PR_SET_PDEATHSIG: 1714 if (!valid_signal(arg2)) { 1715 error = -EINVAL; 1716 break; 1717 } 1718 me->pdeath_signal = arg2; 1719 error = 0; 1720 break; 1721 case PR_GET_PDEATHSIG: 1722 error = put_user(me->pdeath_signal, (int __user *)arg2); 1723 break; 1724 case PR_GET_DUMPABLE: 1725 error = get_dumpable(me->mm); 1726 break; 1727 case PR_SET_DUMPABLE: 1728 if (arg2 < 0 || arg2 > 1) { 1729 error = -EINVAL; 1730 break; 1731 } 1732 set_dumpable(me->mm, arg2); 1733 error = 0; 1734 break; 1735 1736 case PR_SET_UNALIGN: 1737 error = SET_UNALIGN_CTL(me, arg2); 1738 break; 1739 case PR_GET_UNALIGN: 1740 error = GET_UNALIGN_CTL(me, arg2); 1741 break; 1742 case PR_SET_FPEMU: 1743 error = SET_FPEMU_CTL(me, arg2); 1744 break; 1745 case PR_GET_FPEMU: 1746 error = GET_FPEMU_CTL(me, arg2); 1747 break; 1748 case PR_SET_FPEXC: 1749 error = SET_FPEXC_CTL(me, arg2); 1750 break; 1751 case PR_GET_FPEXC: 1752 error = GET_FPEXC_CTL(me, arg2); 1753 break; 1754 case PR_GET_TIMING: 1755 error = PR_TIMING_STATISTICAL; 1756 break; 1757 case PR_SET_TIMING: 1758 if (arg2 != PR_TIMING_STATISTICAL) 1759 error = -EINVAL; 1760 else 1761 error = 0; 1762 break; 1763 1764 case PR_SET_NAME: 1765 comm[sizeof(me->comm)-1] = 0; 1766 if (strncpy_from_user(comm, (char __user *)arg2, 1767 sizeof(me->comm) - 1) < 0) 1768 return -EFAULT; 1769 set_task_comm(me, comm); 1770 return 0; 1771 case PR_GET_NAME: 1772 get_task_comm(comm, me); 1773 if (copy_to_user((char __user *)arg2, comm, 1774 sizeof(comm))) 1775 return -EFAULT; 1776 return 0; 1777 case PR_GET_ENDIAN: 1778 error = GET_ENDIAN(me, arg2); 1779 break; 1780 case PR_SET_ENDIAN: 1781 error = SET_ENDIAN(me, arg2); 1782 break; 1783 1784 case PR_GET_SECCOMP: 1785 error = prctl_get_seccomp(); 1786 break; 1787 case PR_SET_SECCOMP: 1788 error = prctl_set_seccomp(arg2); 1789 break; 1790 case PR_GET_TSC: 1791 error = GET_TSC_CTL(arg2); 1792 break; 1793 case PR_SET_TSC: 1794 error = SET_TSC_CTL(arg2); 1795 break; 1796 case PR_GET_TIMERSLACK: 1797 error = current->timer_slack_ns; 1798 break; 1799 case PR_SET_TIMERSLACK: 1800 if (arg2 <= 0) 1801 current->timer_slack_ns = 1802 current->default_timer_slack_ns; 1803 else 1804 current->timer_slack_ns = arg2; 1805 error = 0; 1806 break; 1807 default: 1808 error = -EINVAL; 1809 break; 1810 } 1811 return error; 1812 } 1813 1814 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 1815 struct getcpu_cache __user *, unused) 1816 { 1817 int err = 0; 1818 int cpu = raw_smp_processor_id(); 1819 if (cpup) 1820 err |= put_user(cpu, cpup); 1821 if (nodep) 1822 err |= put_user(cpu_to_node(cpu), nodep); 1823 return err ? -EFAULT : 0; 1824 } 1825 1826 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1827 1828 static void argv_cleanup(char **argv, char **envp) 1829 { 1830 argv_free(argv); 1831 } 1832 1833 /** 1834 * orderly_poweroff - Trigger an orderly system poweroff 1835 * @force: force poweroff if command execution fails 1836 * 1837 * This may be called from any context to trigger a system shutdown. 1838 * If the orderly shutdown fails, it will force an immediate shutdown. 1839 */ 1840 int orderly_poweroff(bool force) 1841 { 1842 int argc; 1843 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1844 static char *envp[] = { 1845 "HOME=/", 1846 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1847 NULL 1848 }; 1849 int ret = -ENOMEM; 1850 struct subprocess_info *info; 1851 1852 if (argv == NULL) { 1853 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1854 __func__, poweroff_cmd); 1855 goto out; 1856 } 1857 1858 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 1859 if (info == NULL) { 1860 argv_free(argv); 1861 goto out; 1862 } 1863 1864 call_usermodehelper_setcleanup(info, argv_cleanup); 1865 1866 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1867 1868 out: 1869 if (ret && force) { 1870 printk(KERN_WARNING "Failed to start orderly shutdown: " 1871 "forcing the issue\n"); 1872 1873 /* I guess this should try to kick off some daemon to 1874 sync and poweroff asap. Or not even bother syncing 1875 if we're doing an emergency shutdown? */ 1876 emergency_sync(); 1877 kernel_power_off(); 1878 } 1879 1880 return ret; 1881 } 1882 EXPORT_SYMBOL_GPL(orderly_poweroff); 1883