xref: /openbmc/linux/kernel/sys.c (revision 78c99ba1)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/perf_counter.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/getcpu.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/seccomp.h>
36 #include <linux/cpu.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 
40 #include <linux/compat.h>
41 #include <linux/syscalls.h>
42 #include <linux/kprobes.h>
43 #include <linux/user_namespace.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/unistd.h>
48 
49 #ifndef SET_UNALIGN_CTL
50 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef GET_UNALIGN_CTL
53 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef SET_FPEMU_CTL
56 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
57 #endif
58 #ifndef GET_FPEMU_CTL
59 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
60 #endif
61 #ifndef SET_FPEXC_CTL
62 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
63 #endif
64 #ifndef GET_FPEXC_CTL
65 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
66 #endif
67 #ifndef GET_ENDIAN
68 # define GET_ENDIAN(a,b)	(-EINVAL)
69 #endif
70 #ifndef SET_ENDIAN
71 # define SET_ENDIAN(a,b)	(-EINVAL)
72 #endif
73 #ifndef GET_TSC_CTL
74 # define GET_TSC_CTL(a)		(-EINVAL)
75 #endif
76 #ifndef SET_TSC_CTL
77 # define SET_TSC_CTL(a)		(-EINVAL)
78 #endif
79 
80 /*
81  * this is where the system-wide overflow UID and GID are defined, for
82  * architectures that now have 32-bit UID/GID but didn't in the past
83  */
84 
85 int overflowuid = DEFAULT_OVERFLOWUID;
86 int overflowgid = DEFAULT_OVERFLOWGID;
87 
88 #ifdef CONFIG_UID16
89 EXPORT_SYMBOL(overflowuid);
90 EXPORT_SYMBOL(overflowgid);
91 #endif
92 
93 /*
94  * the same as above, but for filesystems which can only store a 16-bit
95  * UID and GID. as such, this is needed on all architectures
96  */
97 
98 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
99 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
100 
101 EXPORT_SYMBOL(fs_overflowuid);
102 EXPORT_SYMBOL(fs_overflowgid);
103 
104 /*
105  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
106  */
107 
108 int C_A_D = 1;
109 struct pid *cad_pid;
110 EXPORT_SYMBOL(cad_pid);
111 
112 /*
113  * If set, this is used for preparing the system to power off.
114  */
115 
116 void (*pm_power_off_prepare)(void);
117 
118 /*
119  * set the priority of a task
120  * - the caller must hold the RCU read lock
121  */
122 static int set_one_prio(struct task_struct *p, int niceval, int error)
123 {
124 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
125 	int no_nice;
126 
127 	if (pcred->uid  != cred->euid &&
128 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
129 		error = -EPERM;
130 		goto out;
131 	}
132 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
133 		error = -EACCES;
134 		goto out;
135 	}
136 	no_nice = security_task_setnice(p, niceval);
137 	if (no_nice) {
138 		error = no_nice;
139 		goto out;
140 	}
141 	if (error == -ESRCH)
142 		error = 0;
143 	set_user_nice(p, niceval);
144 out:
145 	return error;
146 }
147 
148 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
149 {
150 	struct task_struct *g, *p;
151 	struct user_struct *user;
152 	const struct cred *cred = current_cred();
153 	int error = -EINVAL;
154 	struct pid *pgrp;
155 
156 	if (which > PRIO_USER || which < PRIO_PROCESS)
157 		goto out;
158 
159 	/* normalize: avoid signed division (rounding problems) */
160 	error = -ESRCH;
161 	if (niceval < -20)
162 		niceval = -20;
163 	if (niceval > 19)
164 		niceval = 19;
165 
166 	read_lock(&tasklist_lock);
167 	switch (which) {
168 		case PRIO_PROCESS:
169 			if (who)
170 				p = find_task_by_vpid(who);
171 			else
172 				p = current;
173 			if (p)
174 				error = set_one_prio(p, niceval, error);
175 			break;
176 		case PRIO_PGRP:
177 			if (who)
178 				pgrp = find_vpid(who);
179 			else
180 				pgrp = task_pgrp(current);
181 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
182 				error = set_one_prio(p, niceval, error);
183 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
184 			break;
185 		case PRIO_USER:
186 			user = (struct user_struct *) cred->user;
187 			if (!who)
188 				who = cred->uid;
189 			else if ((who != cred->uid) &&
190 				 !(user = find_user(who)))
191 				goto out_unlock;	/* No processes for this user */
192 
193 			do_each_thread(g, p)
194 				if (__task_cred(p)->uid == who)
195 					error = set_one_prio(p, niceval, error);
196 			while_each_thread(g, p);
197 			if (who != cred->uid)
198 				free_uid(user);		/* For find_user() */
199 			break;
200 	}
201 out_unlock:
202 	read_unlock(&tasklist_lock);
203 out:
204 	return error;
205 }
206 
207 /*
208  * Ugh. To avoid negative return values, "getpriority()" will
209  * not return the normal nice-value, but a negated value that
210  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
211  * to stay compatible.
212  */
213 SYSCALL_DEFINE2(getpriority, int, which, int, who)
214 {
215 	struct task_struct *g, *p;
216 	struct user_struct *user;
217 	const struct cred *cred = current_cred();
218 	long niceval, retval = -ESRCH;
219 	struct pid *pgrp;
220 
221 	if (which > PRIO_USER || which < PRIO_PROCESS)
222 		return -EINVAL;
223 
224 	read_lock(&tasklist_lock);
225 	switch (which) {
226 		case PRIO_PROCESS:
227 			if (who)
228 				p = find_task_by_vpid(who);
229 			else
230 				p = current;
231 			if (p) {
232 				niceval = 20 - task_nice(p);
233 				if (niceval > retval)
234 					retval = niceval;
235 			}
236 			break;
237 		case PRIO_PGRP:
238 			if (who)
239 				pgrp = find_vpid(who);
240 			else
241 				pgrp = task_pgrp(current);
242 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
243 				niceval = 20 - task_nice(p);
244 				if (niceval > retval)
245 					retval = niceval;
246 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
247 			break;
248 		case PRIO_USER:
249 			user = (struct user_struct *) cred->user;
250 			if (!who)
251 				who = cred->uid;
252 			else if ((who != cred->uid) &&
253 				 !(user = find_user(who)))
254 				goto out_unlock;	/* No processes for this user */
255 
256 			do_each_thread(g, p)
257 				if (__task_cred(p)->uid == who) {
258 					niceval = 20 - task_nice(p);
259 					if (niceval > retval)
260 						retval = niceval;
261 				}
262 			while_each_thread(g, p);
263 			if (who != cred->uid)
264 				free_uid(user);		/* for find_user() */
265 			break;
266 	}
267 out_unlock:
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
273 /**
274  *	emergency_restart - reboot the system
275  *
276  *	Without shutting down any hardware or taking any locks
277  *	reboot the system.  This is called when we know we are in
278  *	trouble so this is our best effort to reboot.  This is
279  *	safe to call in interrupt context.
280  */
281 void emergency_restart(void)
282 {
283 	machine_emergency_restart();
284 }
285 EXPORT_SYMBOL_GPL(emergency_restart);
286 
287 void kernel_restart_prepare(char *cmd)
288 {
289 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
290 	system_state = SYSTEM_RESTART;
291 	device_shutdown();
292 	sysdev_shutdown();
293 }
294 
295 /**
296  *	kernel_restart - reboot the system
297  *	@cmd: pointer to buffer containing command to execute for restart
298  *		or %NULL
299  *
300  *	Shutdown everything and perform a clean reboot.
301  *	This is not safe to call in interrupt context.
302  */
303 void kernel_restart(char *cmd)
304 {
305 	kernel_restart_prepare(cmd);
306 	if (!cmd)
307 		printk(KERN_EMERG "Restarting system.\n");
308 	else
309 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
310 	machine_restart(cmd);
311 }
312 EXPORT_SYMBOL_GPL(kernel_restart);
313 
314 static void kernel_shutdown_prepare(enum system_states state)
315 {
316 	blocking_notifier_call_chain(&reboot_notifier_list,
317 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
318 	system_state = state;
319 	device_shutdown();
320 }
321 /**
322  *	kernel_halt - halt the system
323  *
324  *	Shutdown everything and perform a clean system halt.
325  */
326 void kernel_halt(void)
327 {
328 	kernel_shutdown_prepare(SYSTEM_HALT);
329 	sysdev_shutdown();
330 	printk(KERN_EMERG "System halted.\n");
331 	machine_halt();
332 }
333 
334 EXPORT_SYMBOL_GPL(kernel_halt);
335 
336 /**
337  *	kernel_power_off - power_off the system
338  *
339  *	Shutdown everything and perform a clean system power_off.
340  */
341 void kernel_power_off(void)
342 {
343 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
344 	if (pm_power_off_prepare)
345 		pm_power_off_prepare();
346 	disable_nonboot_cpus();
347 	sysdev_shutdown();
348 	printk(KERN_EMERG "Power down.\n");
349 	machine_power_off();
350 }
351 EXPORT_SYMBOL_GPL(kernel_power_off);
352 /*
353  * Reboot system call: for obvious reasons only root may call it,
354  * and even root needs to set up some magic numbers in the registers
355  * so that some mistake won't make this reboot the whole machine.
356  * You can also set the meaning of the ctrl-alt-del-key here.
357  *
358  * reboot doesn't sync: do that yourself before calling this.
359  */
360 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
361 		void __user *, arg)
362 {
363 	char buffer[256];
364 	int ret = 0;
365 
366 	/* We only trust the superuser with rebooting the system. */
367 	if (!capable(CAP_SYS_BOOT))
368 		return -EPERM;
369 
370 	/* For safety, we require "magic" arguments. */
371 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
372 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
373 	                magic2 != LINUX_REBOOT_MAGIC2A &&
374 			magic2 != LINUX_REBOOT_MAGIC2B &&
375 	                magic2 != LINUX_REBOOT_MAGIC2C))
376 		return -EINVAL;
377 
378 	/* Instead of trying to make the power_off code look like
379 	 * halt when pm_power_off is not set do it the easy way.
380 	 */
381 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
382 		cmd = LINUX_REBOOT_CMD_HALT;
383 
384 	lock_kernel();
385 	switch (cmd) {
386 	case LINUX_REBOOT_CMD_RESTART:
387 		kernel_restart(NULL);
388 		break;
389 
390 	case LINUX_REBOOT_CMD_CAD_ON:
391 		C_A_D = 1;
392 		break;
393 
394 	case LINUX_REBOOT_CMD_CAD_OFF:
395 		C_A_D = 0;
396 		break;
397 
398 	case LINUX_REBOOT_CMD_HALT:
399 		kernel_halt();
400 		unlock_kernel();
401 		do_exit(0);
402 		panic("cannot halt");
403 
404 	case LINUX_REBOOT_CMD_POWER_OFF:
405 		kernel_power_off();
406 		unlock_kernel();
407 		do_exit(0);
408 		break;
409 
410 	case LINUX_REBOOT_CMD_RESTART2:
411 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
412 			unlock_kernel();
413 			return -EFAULT;
414 		}
415 		buffer[sizeof(buffer) - 1] = '\0';
416 
417 		kernel_restart(buffer);
418 		break;
419 
420 #ifdef CONFIG_KEXEC
421 	case LINUX_REBOOT_CMD_KEXEC:
422 		ret = kernel_kexec();
423 		break;
424 #endif
425 
426 #ifdef CONFIG_HIBERNATION
427 	case LINUX_REBOOT_CMD_SW_SUSPEND:
428 		ret = hibernate();
429 		break;
430 #endif
431 
432 	default:
433 		ret = -EINVAL;
434 		break;
435 	}
436 	unlock_kernel();
437 	return ret;
438 }
439 
440 static void deferred_cad(struct work_struct *dummy)
441 {
442 	kernel_restart(NULL);
443 }
444 
445 /*
446  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
447  * As it's called within an interrupt, it may NOT sync: the only choice
448  * is whether to reboot at once, or just ignore the ctrl-alt-del.
449  */
450 void ctrl_alt_del(void)
451 {
452 	static DECLARE_WORK(cad_work, deferred_cad);
453 
454 	if (C_A_D)
455 		schedule_work(&cad_work);
456 	else
457 		kill_cad_pid(SIGINT, 1);
458 }
459 
460 /*
461  * Unprivileged users may change the real gid to the effective gid
462  * or vice versa.  (BSD-style)
463  *
464  * If you set the real gid at all, or set the effective gid to a value not
465  * equal to the real gid, then the saved gid is set to the new effective gid.
466  *
467  * This makes it possible for a setgid program to completely drop its
468  * privileges, which is often a useful assertion to make when you are doing
469  * a security audit over a program.
470  *
471  * The general idea is that a program which uses just setregid() will be
472  * 100% compatible with BSD.  A program which uses just setgid() will be
473  * 100% compatible with POSIX with saved IDs.
474  *
475  * SMP: There are not races, the GIDs are checked only by filesystem
476  *      operations (as far as semantic preservation is concerned).
477  */
478 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
479 {
480 	const struct cred *old;
481 	struct cred *new;
482 	int retval;
483 
484 	new = prepare_creds();
485 	if (!new)
486 		return -ENOMEM;
487 	old = current_cred();
488 
489 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
490 	if (retval)
491 		goto error;
492 
493 	retval = -EPERM;
494 	if (rgid != (gid_t) -1) {
495 		if (old->gid == rgid ||
496 		    old->egid == rgid ||
497 		    capable(CAP_SETGID))
498 			new->gid = rgid;
499 		else
500 			goto error;
501 	}
502 	if (egid != (gid_t) -1) {
503 		if (old->gid == egid ||
504 		    old->egid == egid ||
505 		    old->sgid == egid ||
506 		    capable(CAP_SETGID))
507 			new->egid = egid;
508 		else
509 			goto error;
510 	}
511 
512 	if (rgid != (gid_t) -1 ||
513 	    (egid != (gid_t) -1 && egid != old->gid))
514 		new->sgid = new->egid;
515 	new->fsgid = new->egid;
516 
517 	return commit_creds(new);
518 
519 error:
520 	abort_creds(new);
521 	return retval;
522 }
523 
524 /*
525  * setgid() is implemented like SysV w/ SAVED_IDS
526  *
527  * SMP: Same implicit races as above.
528  */
529 SYSCALL_DEFINE1(setgid, gid_t, gid)
530 {
531 	const struct cred *old;
532 	struct cred *new;
533 	int retval;
534 
535 	new = prepare_creds();
536 	if (!new)
537 		return -ENOMEM;
538 	old = current_cred();
539 
540 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
541 	if (retval)
542 		goto error;
543 
544 	retval = -EPERM;
545 	if (capable(CAP_SETGID))
546 		new->gid = new->egid = new->sgid = new->fsgid = gid;
547 	else if (gid == old->gid || gid == old->sgid)
548 		new->egid = new->fsgid = gid;
549 	else
550 		goto error;
551 
552 	return commit_creds(new);
553 
554 error:
555 	abort_creds(new);
556 	return retval;
557 }
558 
559 /*
560  * change the user struct in a credentials set to match the new UID
561  */
562 static int set_user(struct cred *new)
563 {
564 	struct user_struct *new_user;
565 
566 	new_user = alloc_uid(current_user_ns(), new->uid);
567 	if (!new_user)
568 		return -EAGAIN;
569 
570 	if (!task_can_switch_user(new_user, current)) {
571 		free_uid(new_user);
572 		return -EINVAL;
573 	}
574 
575 	if (atomic_read(&new_user->processes) >=
576 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
577 			new_user != INIT_USER) {
578 		free_uid(new_user);
579 		return -EAGAIN;
580 	}
581 
582 	free_uid(new->user);
583 	new->user = new_user;
584 	return 0;
585 }
586 
587 /*
588  * Unprivileged users may change the real uid to the effective uid
589  * or vice versa.  (BSD-style)
590  *
591  * If you set the real uid at all, or set the effective uid to a value not
592  * equal to the real uid, then the saved uid is set to the new effective uid.
593  *
594  * This makes it possible for a setuid program to completely drop its
595  * privileges, which is often a useful assertion to make when you are doing
596  * a security audit over a program.
597  *
598  * The general idea is that a program which uses just setreuid() will be
599  * 100% compatible with BSD.  A program which uses just setuid() will be
600  * 100% compatible with POSIX with saved IDs.
601  */
602 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
603 {
604 	const struct cred *old;
605 	struct cred *new;
606 	int retval;
607 
608 	new = prepare_creds();
609 	if (!new)
610 		return -ENOMEM;
611 	old = current_cred();
612 
613 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
614 	if (retval)
615 		goto error;
616 
617 	retval = -EPERM;
618 	if (ruid != (uid_t) -1) {
619 		new->uid = ruid;
620 		if (old->uid != ruid &&
621 		    old->euid != ruid &&
622 		    !capable(CAP_SETUID))
623 			goto error;
624 	}
625 
626 	if (euid != (uid_t) -1) {
627 		new->euid = euid;
628 		if (old->uid != euid &&
629 		    old->euid != euid &&
630 		    old->suid != euid &&
631 		    !capable(CAP_SETUID))
632 			goto error;
633 	}
634 
635 	if (new->uid != old->uid) {
636 		retval = set_user(new);
637 		if (retval < 0)
638 			goto error;
639 	}
640 	if (ruid != (uid_t) -1 ||
641 	    (euid != (uid_t) -1 && euid != old->uid))
642 		new->suid = new->euid;
643 	new->fsuid = new->euid;
644 
645 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
646 	if (retval < 0)
647 		goto error;
648 
649 	return commit_creds(new);
650 
651 error:
652 	abort_creds(new);
653 	return retval;
654 }
655 
656 /*
657  * setuid() is implemented like SysV with SAVED_IDS
658  *
659  * Note that SAVED_ID's is deficient in that a setuid root program
660  * like sendmail, for example, cannot set its uid to be a normal
661  * user and then switch back, because if you're root, setuid() sets
662  * the saved uid too.  If you don't like this, blame the bright people
663  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
664  * will allow a root program to temporarily drop privileges and be able to
665  * regain them by swapping the real and effective uid.
666  */
667 SYSCALL_DEFINE1(setuid, uid_t, uid)
668 {
669 	const struct cred *old;
670 	struct cred *new;
671 	int retval;
672 
673 	new = prepare_creds();
674 	if (!new)
675 		return -ENOMEM;
676 	old = current_cred();
677 
678 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
679 	if (retval)
680 		goto error;
681 
682 	retval = -EPERM;
683 	if (capable(CAP_SETUID)) {
684 		new->suid = new->uid = uid;
685 		if (uid != old->uid) {
686 			retval = set_user(new);
687 			if (retval < 0)
688 				goto error;
689 		}
690 	} else if (uid != old->uid && uid != new->suid) {
691 		goto error;
692 	}
693 
694 	new->fsuid = new->euid = uid;
695 
696 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
697 	if (retval < 0)
698 		goto error;
699 
700 	return commit_creds(new);
701 
702 error:
703 	abort_creds(new);
704 	return retval;
705 }
706 
707 
708 /*
709  * This function implements a generic ability to update ruid, euid,
710  * and suid.  This allows you to implement the 4.4 compatible seteuid().
711  */
712 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
713 {
714 	const struct cred *old;
715 	struct cred *new;
716 	int retval;
717 
718 	new = prepare_creds();
719 	if (!new)
720 		return -ENOMEM;
721 
722 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
723 	if (retval)
724 		goto error;
725 	old = current_cred();
726 
727 	retval = -EPERM;
728 	if (!capable(CAP_SETUID)) {
729 		if (ruid != (uid_t) -1 && ruid != old->uid &&
730 		    ruid != old->euid  && ruid != old->suid)
731 			goto error;
732 		if (euid != (uid_t) -1 && euid != old->uid &&
733 		    euid != old->euid  && euid != old->suid)
734 			goto error;
735 		if (suid != (uid_t) -1 && suid != old->uid &&
736 		    suid != old->euid  && suid != old->suid)
737 			goto error;
738 	}
739 
740 	if (ruid != (uid_t) -1) {
741 		new->uid = ruid;
742 		if (ruid != old->uid) {
743 			retval = set_user(new);
744 			if (retval < 0)
745 				goto error;
746 		}
747 	}
748 	if (euid != (uid_t) -1)
749 		new->euid = euid;
750 	if (suid != (uid_t) -1)
751 		new->suid = suid;
752 	new->fsuid = new->euid;
753 
754 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
755 	if (retval < 0)
756 		goto error;
757 
758 	return commit_creds(new);
759 
760 error:
761 	abort_creds(new);
762 	return retval;
763 }
764 
765 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
766 {
767 	const struct cred *cred = current_cred();
768 	int retval;
769 
770 	if (!(retval   = put_user(cred->uid,  ruid)) &&
771 	    !(retval   = put_user(cred->euid, euid)))
772 		retval = put_user(cred->suid, suid);
773 
774 	return retval;
775 }
776 
777 /*
778  * Same as above, but for rgid, egid, sgid.
779  */
780 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
781 {
782 	const struct cred *old;
783 	struct cred *new;
784 	int retval;
785 
786 	new = prepare_creds();
787 	if (!new)
788 		return -ENOMEM;
789 	old = current_cred();
790 
791 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
792 	if (retval)
793 		goto error;
794 
795 	retval = -EPERM;
796 	if (!capable(CAP_SETGID)) {
797 		if (rgid != (gid_t) -1 && rgid != old->gid &&
798 		    rgid != old->egid  && rgid != old->sgid)
799 			goto error;
800 		if (egid != (gid_t) -1 && egid != old->gid &&
801 		    egid != old->egid  && egid != old->sgid)
802 			goto error;
803 		if (sgid != (gid_t) -1 && sgid != old->gid &&
804 		    sgid != old->egid  && sgid != old->sgid)
805 			goto error;
806 	}
807 
808 	if (rgid != (gid_t) -1)
809 		new->gid = rgid;
810 	if (egid != (gid_t) -1)
811 		new->egid = egid;
812 	if (sgid != (gid_t) -1)
813 		new->sgid = sgid;
814 	new->fsgid = new->egid;
815 
816 	return commit_creds(new);
817 
818 error:
819 	abort_creds(new);
820 	return retval;
821 }
822 
823 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
824 {
825 	const struct cred *cred = current_cred();
826 	int retval;
827 
828 	if (!(retval   = put_user(cred->gid,  rgid)) &&
829 	    !(retval   = put_user(cred->egid, egid)))
830 		retval = put_user(cred->sgid, sgid);
831 
832 	return retval;
833 }
834 
835 
836 /*
837  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
838  * is used for "access()" and for the NFS daemon (letting nfsd stay at
839  * whatever uid it wants to). It normally shadows "euid", except when
840  * explicitly set by setfsuid() or for access..
841  */
842 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
843 {
844 	const struct cred *old;
845 	struct cred *new;
846 	uid_t old_fsuid;
847 
848 	new = prepare_creds();
849 	if (!new)
850 		return current_fsuid();
851 	old = current_cred();
852 	old_fsuid = old->fsuid;
853 
854 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
855 		goto error;
856 
857 	if (uid == old->uid  || uid == old->euid  ||
858 	    uid == old->suid || uid == old->fsuid ||
859 	    capable(CAP_SETUID)) {
860 		if (uid != old_fsuid) {
861 			new->fsuid = uid;
862 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
863 				goto change_okay;
864 		}
865 	}
866 
867 error:
868 	abort_creds(new);
869 	return old_fsuid;
870 
871 change_okay:
872 	commit_creds(new);
873 	return old_fsuid;
874 }
875 
876 /*
877  * Samma på svenska..
878  */
879 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
880 {
881 	const struct cred *old;
882 	struct cred *new;
883 	gid_t old_fsgid;
884 
885 	new = prepare_creds();
886 	if (!new)
887 		return current_fsgid();
888 	old = current_cred();
889 	old_fsgid = old->fsgid;
890 
891 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
892 		goto error;
893 
894 	if (gid == old->gid  || gid == old->egid  ||
895 	    gid == old->sgid || gid == old->fsgid ||
896 	    capable(CAP_SETGID)) {
897 		if (gid != old_fsgid) {
898 			new->fsgid = gid;
899 			goto change_okay;
900 		}
901 	}
902 
903 error:
904 	abort_creds(new);
905 	return old_fsgid;
906 
907 change_okay:
908 	commit_creds(new);
909 	return old_fsgid;
910 }
911 
912 void do_sys_times(struct tms *tms)
913 {
914 	struct task_cputime cputime;
915 	cputime_t cutime, cstime;
916 
917 	thread_group_cputime(current, &cputime);
918 	spin_lock_irq(&current->sighand->siglock);
919 	cutime = current->signal->cutime;
920 	cstime = current->signal->cstime;
921 	spin_unlock_irq(&current->sighand->siglock);
922 	tms->tms_utime = cputime_to_clock_t(cputime.utime);
923 	tms->tms_stime = cputime_to_clock_t(cputime.stime);
924 	tms->tms_cutime = cputime_to_clock_t(cutime);
925 	tms->tms_cstime = cputime_to_clock_t(cstime);
926 }
927 
928 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
929 {
930 	if (tbuf) {
931 		struct tms tmp;
932 
933 		do_sys_times(&tmp);
934 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
935 			return -EFAULT;
936 	}
937 	force_successful_syscall_return();
938 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
939 }
940 
941 /*
942  * This needs some heavy checking ...
943  * I just haven't the stomach for it. I also don't fully
944  * understand sessions/pgrp etc. Let somebody who does explain it.
945  *
946  * OK, I think I have the protection semantics right.... this is really
947  * only important on a multi-user system anyway, to make sure one user
948  * can't send a signal to a process owned by another.  -TYT, 12/12/91
949  *
950  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
951  * LBT 04.03.94
952  */
953 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
954 {
955 	struct task_struct *p;
956 	struct task_struct *group_leader = current->group_leader;
957 	struct pid *pgrp;
958 	int err;
959 
960 	if (!pid)
961 		pid = task_pid_vnr(group_leader);
962 	if (!pgid)
963 		pgid = pid;
964 	if (pgid < 0)
965 		return -EINVAL;
966 
967 	/* From this point forward we keep holding onto the tasklist lock
968 	 * so that our parent does not change from under us. -DaveM
969 	 */
970 	write_lock_irq(&tasklist_lock);
971 
972 	err = -ESRCH;
973 	p = find_task_by_vpid(pid);
974 	if (!p)
975 		goto out;
976 
977 	err = -EINVAL;
978 	if (!thread_group_leader(p))
979 		goto out;
980 
981 	if (same_thread_group(p->real_parent, group_leader)) {
982 		err = -EPERM;
983 		if (task_session(p) != task_session(group_leader))
984 			goto out;
985 		err = -EACCES;
986 		if (p->did_exec)
987 			goto out;
988 	} else {
989 		err = -ESRCH;
990 		if (p != group_leader)
991 			goto out;
992 	}
993 
994 	err = -EPERM;
995 	if (p->signal->leader)
996 		goto out;
997 
998 	pgrp = task_pid(p);
999 	if (pgid != pid) {
1000 		struct task_struct *g;
1001 
1002 		pgrp = find_vpid(pgid);
1003 		g = pid_task(pgrp, PIDTYPE_PGID);
1004 		if (!g || task_session(g) != task_session(group_leader))
1005 			goto out;
1006 	}
1007 
1008 	err = security_task_setpgid(p, pgid);
1009 	if (err)
1010 		goto out;
1011 
1012 	if (task_pgrp(p) != pgrp)
1013 		change_pid(p, PIDTYPE_PGID, pgrp);
1014 
1015 	err = 0;
1016 out:
1017 	/* All paths lead to here, thus we are safe. -DaveM */
1018 	write_unlock_irq(&tasklist_lock);
1019 	return err;
1020 }
1021 
1022 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1023 {
1024 	struct task_struct *p;
1025 	struct pid *grp;
1026 	int retval;
1027 
1028 	rcu_read_lock();
1029 	if (!pid)
1030 		grp = task_pgrp(current);
1031 	else {
1032 		retval = -ESRCH;
1033 		p = find_task_by_vpid(pid);
1034 		if (!p)
1035 			goto out;
1036 		grp = task_pgrp(p);
1037 		if (!grp)
1038 			goto out;
1039 
1040 		retval = security_task_getpgid(p);
1041 		if (retval)
1042 			goto out;
1043 	}
1044 	retval = pid_vnr(grp);
1045 out:
1046 	rcu_read_unlock();
1047 	return retval;
1048 }
1049 
1050 #ifdef __ARCH_WANT_SYS_GETPGRP
1051 
1052 SYSCALL_DEFINE0(getpgrp)
1053 {
1054 	return sys_getpgid(0);
1055 }
1056 
1057 #endif
1058 
1059 SYSCALL_DEFINE1(getsid, pid_t, pid)
1060 {
1061 	struct task_struct *p;
1062 	struct pid *sid;
1063 	int retval;
1064 
1065 	rcu_read_lock();
1066 	if (!pid)
1067 		sid = task_session(current);
1068 	else {
1069 		retval = -ESRCH;
1070 		p = find_task_by_vpid(pid);
1071 		if (!p)
1072 			goto out;
1073 		sid = task_session(p);
1074 		if (!sid)
1075 			goto out;
1076 
1077 		retval = security_task_getsid(p);
1078 		if (retval)
1079 			goto out;
1080 	}
1081 	retval = pid_vnr(sid);
1082 out:
1083 	rcu_read_unlock();
1084 	return retval;
1085 }
1086 
1087 SYSCALL_DEFINE0(setsid)
1088 {
1089 	struct task_struct *group_leader = current->group_leader;
1090 	struct pid *sid = task_pid(group_leader);
1091 	pid_t session = pid_vnr(sid);
1092 	int err = -EPERM;
1093 
1094 	write_lock_irq(&tasklist_lock);
1095 	/* Fail if I am already a session leader */
1096 	if (group_leader->signal->leader)
1097 		goto out;
1098 
1099 	/* Fail if a process group id already exists that equals the
1100 	 * proposed session id.
1101 	 */
1102 	if (pid_task(sid, PIDTYPE_PGID))
1103 		goto out;
1104 
1105 	group_leader->signal->leader = 1;
1106 	__set_special_pids(sid);
1107 
1108 	proc_clear_tty(group_leader);
1109 
1110 	err = session;
1111 out:
1112 	write_unlock_irq(&tasklist_lock);
1113 	return err;
1114 }
1115 
1116 /*
1117  * Supplementary group IDs
1118  */
1119 
1120 /* init to 2 - one for init_task, one to ensure it is never freed */
1121 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1122 
1123 struct group_info *groups_alloc(int gidsetsize)
1124 {
1125 	struct group_info *group_info;
1126 	int nblocks;
1127 	int i;
1128 
1129 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1130 	/* Make sure we always allocate at least one indirect block pointer */
1131 	nblocks = nblocks ? : 1;
1132 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1133 	if (!group_info)
1134 		return NULL;
1135 	group_info->ngroups = gidsetsize;
1136 	group_info->nblocks = nblocks;
1137 	atomic_set(&group_info->usage, 1);
1138 
1139 	if (gidsetsize <= NGROUPS_SMALL)
1140 		group_info->blocks[0] = group_info->small_block;
1141 	else {
1142 		for (i = 0; i < nblocks; i++) {
1143 			gid_t *b;
1144 			b = (void *)__get_free_page(GFP_USER);
1145 			if (!b)
1146 				goto out_undo_partial_alloc;
1147 			group_info->blocks[i] = b;
1148 		}
1149 	}
1150 	return group_info;
1151 
1152 out_undo_partial_alloc:
1153 	while (--i >= 0) {
1154 		free_page((unsigned long)group_info->blocks[i]);
1155 	}
1156 	kfree(group_info);
1157 	return NULL;
1158 }
1159 
1160 EXPORT_SYMBOL(groups_alloc);
1161 
1162 void groups_free(struct group_info *group_info)
1163 {
1164 	if (group_info->blocks[0] != group_info->small_block) {
1165 		int i;
1166 		for (i = 0; i < group_info->nblocks; i++)
1167 			free_page((unsigned long)group_info->blocks[i]);
1168 	}
1169 	kfree(group_info);
1170 }
1171 
1172 EXPORT_SYMBOL(groups_free);
1173 
1174 /* export the group_info to a user-space array */
1175 static int groups_to_user(gid_t __user *grouplist,
1176 			  const struct group_info *group_info)
1177 {
1178 	int i;
1179 	unsigned int count = group_info->ngroups;
1180 
1181 	for (i = 0; i < group_info->nblocks; i++) {
1182 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1183 		unsigned int len = cp_count * sizeof(*grouplist);
1184 
1185 		if (copy_to_user(grouplist, group_info->blocks[i], len))
1186 			return -EFAULT;
1187 
1188 		grouplist += NGROUPS_PER_BLOCK;
1189 		count -= cp_count;
1190 	}
1191 	return 0;
1192 }
1193 
1194 /* fill a group_info from a user-space array - it must be allocated already */
1195 static int groups_from_user(struct group_info *group_info,
1196     gid_t __user *grouplist)
1197 {
1198 	int i;
1199 	unsigned int count = group_info->ngroups;
1200 
1201 	for (i = 0; i < group_info->nblocks; i++) {
1202 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1203 		unsigned int len = cp_count * sizeof(*grouplist);
1204 
1205 		if (copy_from_user(group_info->blocks[i], grouplist, len))
1206 			return -EFAULT;
1207 
1208 		grouplist += NGROUPS_PER_BLOCK;
1209 		count -= cp_count;
1210 	}
1211 	return 0;
1212 }
1213 
1214 /* a simple Shell sort */
1215 static void groups_sort(struct group_info *group_info)
1216 {
1217 	int base, max, stride;
1218 	int gidsetsize = group_info->ngroups;
1219 
1220 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1221 		; /* nothing */
1222 	stride /= 3;
1223 
1224 	while (stride) {
1225 		max = gidsetsize - stride;
1226 		for (base = 0; base < max; base++) {
1227 			int left = base;
1228 			int right = left + stride;
1229 			gid_t tmp = GROUP_AT(group_info, right);
1230 
1231 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1232 				GROUP_AT(group_info, right) =
1233 				    GROUP_AT(group_info, left);
1234 				right = left;
1235 				left -= stride;
1236 			}
1237 			GROUP_AT(group_info, right) = tmp;
1238 		}
1239 		stride /= 3;
1240 	}
1241 }
1242 
1243 /* a simple bsearch */
1244 int groups_search(const struct group_info *group_info, gid_t grp)
1245 {
1246 	unsigned int left, right;
1247 
1248 	if (!group_info)
1249 		return 0;
1250 
1251 	left = 0;
1252 	right = group_info->ngroups;
1253 	while (left < right) {
1254 		unsigned int mid = (left+right)/2;
1255 		int cmp = grp - GROUP_AT(group_info, mid);
1256 		if (cmp > 0)
1257 			left = mid + 1;
1258 		else if (cmp < 0)
1259 			right = mid;
1260 		else
1261 			return 1;
1262 	}
1263 	return 0;
1264 }
1265 
1266 /**
1267  * set_groups - Change a group subscription in a set of credentials
1268  * @new: The newly prepared set of credentials to alter
1269  * @group_info: The group list to install
1270  *
1271  * Validate a group subscription and, if valid, insert it into a set
1272  * of credentials.
1273  */
1274 int set_groups(struct cred *new, struct group_info *group_info)
1275 {
1276 	int retval;
1277 
1278 	retval = security_task_setgroups(group_info);
1279 	if (retval)
1280 		return retval;
1281 
1282 	put_group_info(new->group_info);
1283 	groups_sort(group_info);
1284 	get_group_info(group_info);
1285 	new->group_info = group_info;
1286 	return 0;
1287 }
1288 
1289 EXPORT_SYMBOL(set_groups);
1290 
1291 /**
1292  * set_current_groups - Change current's group subscription
1293  * @group_info: The group list to impose
1294  *
1295  * Validate a group subscription and, if valid, impose it upon current's task
1296  * security record.
1297  */
1298 int set_current_groups(struct group_info *group_info)
1299 {
1300 	struct cred *new;
1301 	int ret;
1302 
1303 	new = prepare_creds();
1304 	if (!new)
1305 		return -ENOMEM;
1306 
1307 	ret = set_groups(new, group_info);
1308 	if (ret < 0) {
1309 		abort_creds(new);
1310 		return ret;
1311 	}
1312 
1313 	return commit_creds(new);
1314 }
1315 
1316 EXPORT_SYMBOL(set_current_groups);
1317 
1318 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1319 {
1320 	const struct cred *cred = current_cred();
1321 	int i;
1322 
1323 	if (gidsetsize < 0)
1324 		return -EINVAL;
1325 
1326 	/* no need to grab task_lock here; it cannot change */
1327 	i = cred->group_info->ngroups;
1328 	if (gidsetsize) {
1329 		if (i > gidsetsize) {
1330 			i = -EINVAL;
1331 			goto out;
1332 		}
1333 		if (groups_to_user(grouplist, cred->group_info)) {
1334 			i = -EFAULT;
1335 			goto out;
1336 		}
1337 	}
1338 out:
1339 	return i;
1340 }
1341 
1342 /*
1343  *	SMP: Our groups are copy-on-write. We can set them safely
1344  *	without another task interfering.
1345  */
1346 
1347 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1348 {
1349 	struct group_info *group_info;
1350 	int retval;
1351 
1352 	if (!capable(CAP_SETGID))
1353 		return -EPERM;
1354 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1355 		return -EINVAL;
1356 
1357 	group_info = groups_alloc(gidsetsize);
1358 	if (!group_info)
1359 		return -ENOMEM;
1360 	retval = groups_from_user(group_info, grouplist);
1361 	if (retval) {
1362 		put_group_info(group_info);
1363 		return retval;
1364 	}
1365 
1366 	retval = set_current_groups(group_info);
1367 	put_group_info(group_info);
1368 
1369 	return retval;
1370 }
1371 
1372 /*
1373  * Check whether we're fsgid/egid or in the supplemental group..
1374  */
1375 int in_group_p(gid_t grp)
1376 {
1377 	const struct cred *cred = current_cred();
1378 	int retval = 1;
1379 
1380 	if (grp != cred->fsgid)
1381 		retval = groups_search(cred->group_info, grp);
1382 	return retval;
1383 }
1384 
1385 EXPORT_SYMBOL(in_group_p);
1386 
1387 int in_egroup_p(gid_t grp)
1388 {
1389 	const struct cred *cred = current_cred();
1390 	int retval = 1;
1391 
1392 	if (grp != cred->egid)
1393 		retval = groups_search(cred->group_info, grp);
1394 	return retval;
1395 }
1396 
1397 EXPORT_SYMBOL(in_egroup_p);
1398 
1399 DECLARE_RWSEM(uts_sem);
1400 
1401 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1402 {
1403 	int errno = 0;
1404 
1405 	down_read(&uts_sem);
1406 	if (copy_to_user(name, utsname(), sizeof *name))
1407 		errno = -EFAULT;
1408 	up_read(&uts_sem);
1409 	return errno;
1410 }
1411 
1412 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1413 {
1414 	int errno;
1415 	char tmp[__NEW_UTS_LEN];
1416 
1417 	if (!capable(CAP_SYS_ADMIN))
1418 		return -EPERM;
1419 	if (len < 0 || len > __NEW_UTS_LEN)
1420 		return -EINVAL;
1421 	down_write(&uts_sem);
1422 	errno = -EFAULT;
1423 	if (!copy_from_user(tmp, name, len)) {
1424 		struct new_utsname *u = utsname();
1425 
1426 		memcpy(u->nodename, tmp, len);
1427 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1428 		errno = 0;
1429 	}
1430 	up_write(&uts_sem);
1431 	return errno;
1432 }
1433 
1434 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1435 
1436 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1437 {
1438 	int i, errno;
1439 	struct new_utsname *u;
1440 
1441 	if (len < 0)
1442 		return -EINVAL;
1443 	down_read(&uts_sem);
1444 	u = utsname();
1445 	i = 1 + strlen(u->nodename);
1446 	if (i > len)
1447 		i = len;
1448 	errno = 0;
1449 	if (copy_to_user(name, u->nodename, i))
1450 		errno = -EFAULT;
1451 	up_read(&uts_sem);
1452 	return errno;
1453 }
1454 
1455 #endif
1456 
1457 /*
1458  * Only setdomainname; getdomainname can be implemented by calling
1459  * uname()
1460  */
1461 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1462 {
1463 	int errno;
1464 	char tmp[__NEW_UTS_LEN];
1465 
1466 	if (!capable(CAP_SYS_ADMIN))
1467 		return -EPERM;
1468 	if (len < 0 || len > __NEW_UTS_LEN)
1469 		return -EINVAL;
1470 
1471 	down_write(&uts_sem);
1472 	errno = -EFAULT;
1473 	if (!copy_from_user(tmp, name, len)) {
1474 		struct new_utsname *u = utsname();
1475 
1476 		memcpy(u->domainname, tmp, len);
1477 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1478 		errno = 0;
1479 	}
1480 	up_write(&uts_sem);
1481 	return errno;
1482 }
1483 
1484 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1485 {
1486 	if (resource >= RLIM_NLIMITS)
1487 		return -EINVAL;
1488 	else {
1489 		struct rlimit value;
1490 		task_lock(current->group_leader);
1491 		value = current->signal->rlim[resource];
1492 		task_unlock(current->group_leader);
1493 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1494 	}
1495 }
1496 
1497 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1498 
1499 /*
1500  *	Back compatibility for getrlimit. Needed for some apps.
1501  */
1502 
1503 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1504 		struct rlimit __user *, rlim)
1505 {
1506 	struct rlimit x;
1507 	if (resource >= RLIM_NLIMITS)
1508 		return -EINVAL;
1509 
1510 	task_lock(current->group_leader);
1511 	x = current->signal->rlim[resource];
1512 	task_unlock(current->group_leader);
1513 	if (x.rlim_cur > 0x7FFFFFFF)
1514 		x.rlim_cur = 0x7FFFFFFF;
1515 	if (x.rlim_max > 0x7FFFFFFF)
1516 		x.rlim_max = 0x7FFFFFFF;
1517 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1518 }
1519 
1520 #endif
1521 
1522 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1523 {
1524 	struct rlimit new_rlim, *old_rlim;
1525 	int retval;
1526 
1527 	if (resource >= RLIM_NLIMITS)
1528 		return -EINVAL;
1529 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1530 		return -EFAULT;
1531 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1532 		return -EINVAL;
1533 	old_rlim = current->signal->rlim + resource;
1534 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1535 	    !capable(CAP_SYS_RESOURCE))
1536 		return -EPERM;
1537 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1538 		return -EPERM;
1539 
1540 	retval = security_task_setrlimit(resource, &new_rlim);
1541 	if (retval)
1542 		return retval;
1543 
1544 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1545 		/*
1546 		 * The caller is asking for an immediate RLIMIT_CPU
1547 		 * expiry.  But we use the zero value to mean "it was
1548 		 * never set".  So let's cheat and make it one second
1549 		 * instead
1550 		 */
1551 		new_rlim.rlim_cur = 1;
1552 	}
1553 
1554 	task_lock(current->group_leader);
1555 	*old_rlim = new_rlim;
1556 	task_unlock(current->group_leader);
1557 
1558 	if (resource != RLIMIT_CPU)
1559 		goto out;
1560 
1561 	/*
1562 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1563 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1564 	 * very long-standing error, and fixing it now risks breakage of
1565 	 * applications, so we live with it
1566 	 */
1567 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1568 		goto out;
1569 
1570 	update_rlimit_cpu(new_rlim.rlim_cur);
1571 out:
1572 	return 0;
1573 }
1574 
1575 /*
1576  * It would make sense to put struct rusage in the task_struct,
1577  * except that would make the task_struct be *really big*.  After
1578  * task_struct gets moved into malloc'ed memory, it would
1579  * make sense to do this.  It will make moving the rest of the information
1580  * a lot simpler!  (Which we're not doing right now because we're not
1581  * measuring them yet).
1582  *
1583  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1584  * races with threads incrementing their own counters.  But since word
1585  * reads are atomic, we either get new values or old values and we don't
1586  * care which for the sums.  We always take the siglock to protect reading
1587  * the c* fields from p->signal from races with exit.c updating those
1588  * fields when reaping, so a sample either gets all the additions of a
1589  * given child after it's reaped, or none so this sample is before reaping.
1590  *
1591  * Locking:
1592  * We need to take the siglock for CHILDEREN, SELF and BOTH
1593  * for  the cases current multithreaded, non-current single threaded
1594  * non-current multithreaded.  Thread traversal is now safe with
1595  * the siglock held.
1596  * Strictly speaking, we donot need to take the siglock if we are current and
1597  * single threaded,  as no one else can take our signal_struct away, no one
1598  * else can  reap the  children to update signal->c* counters, and no one else
1599  * can race with the signal-> fields. If we do not take any lock, the
1600  * signal-> fields could be read out of order while another thread was just
1601  * exiting. So we should  place a read memory barrier when we avoid the lock.
1602  * On the writer side,  write memory barrier is implied in  __exit_signal
1603  * as __exit_signal releases  the siglock spinlock after updating the signal->
1604  * fields. But we don't do this yet to keep things simple.
1605  *
1606  */
1607 
1608 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1609 {
1610 	r->ru_nvcsw += t->nvcsw;
1611 	r->ru_nivcsw += t->nivcsw;
1612 	r->ru_minflt += t->min_flt;
1613 	r->ru_majflt += t->maj_flt;
1614 	r->ru_inblock += task_io_get_inblock(t);
1615 	r->ru_oublock += task_io_get_oublock(t);
1616 }
1617 
1618 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1619 {
1620 	struct task_struct *t;
1621 	unsigned long flags;
1622 	cputime_t utime, stime;
1623 	struct task_cputime cputime;
1624 
1625 	memset((char *) r, 0, sizeof *r);
1626 	utime = stime = cputime_zero;
1627 
1628 	if (who == RUSAGE_THREAD) {
1629 		utime = task_utime(current);
1630 		stime = task_stime(current);
1631 		accumulate_thread_rusage(p, r);
1632 		goto out;
1633 	}
1634 
1635 	if (!lock_task_sighand(p, &flags))
1636 		return;
1637 
1638 	switch (who) {
1639 		case RUSAGE_BOTH:
1640 		case RUSAGE_CHILDREN:
1641 			utime = p->signal->cutime;
1642 			stime = p->signal->cstime;
1643 			r->ru_nvcsw = p->signal->cnvcsw;
1644 			r->ru_nivcsw = p->signal->cnivcsw;
1645 			r->ru_minflt = p->signal->cmin_flt;
1646 			r->ru_majflt = p->signal->cmaj_flt;
1647 			r->ru_inblock = p->signal->cinblock;
1648 			r->ru_oublock = p->signal->coublock;
1649 
1650 			if (who == RUSAGE_CHILDREN)
1651 				break;
1652 
1653 		case RUSAGE_SELF:
1654 			thread_group_cputime(p, &cputime);
1655 			utime = cputime_add(utime, cputime.utime);
1656 			stime = cputime_add(stime, cputime.stime);
1657 			r->ru_nvcsw += p->signal->nvcsw;
1658 			r->ru_nivcsw += p->signal->nivcsw;
1659 			r->ru_minflt += p->signal->min_flt;
1660 			r->ru_majflt += p->signal->maj_flt;
1661 			r->ru_inblock += p->signal->inblock;
1662 			r->ru_oublock += p->signal->oublock;
1663 			t = p;
1664 			do {
1665 				accumulate_thread_rusage(t, r);
1666 				t = next_thread(t);
1667 			} while (t != p);
1668 			break;
1669 
1670 		default:
1671 			BUG();
1672 	}
1673 	unlock_task_sighand(p, &flags);
1674 
1675 out:
1676 	cputime_to_timeval(utime, &r->ru_utime);
1677 	cputime_to_timeval(stime, &r->ru_stime);
1678 }
1679 
1680 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1681 {
1682 	struct rusage r;
1683 	k_getrusage(p, who, &r);
1684 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1685 }
1686 
1687 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1688 {
1689 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1690 	    who != RUSAGE_THREAD)
1691 		return -EINVAL;
1692 	return getrusage(current, who, ru);
1693 }
1694 
1695 SYSCALL_DEFINE1(umask, int, mask)
1696 {
1697 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1698 	return mask;
1699 }
1700 
1701 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1702 		unsigned long, arg4, unsigned long, arg5)
1703 {
1704 	struct task_struct *me = current;
1705 	unsigned char comm[sizeof(me->comm)];
1706 	long error;
1707 
1708 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1709 	if (error != -ENOSYS)
1710 		return error;
1711 
1712 	error = 0;
1713 	switch (option) {
1714 		case PR_SET_PDEATHSIG:
1715 			if (!valid_signal(arg2)) {
1716 				error = -EINVAL;
1717 				break;
1718 			}
1719 			me->pdeath_signal = arg2;
1720 			error = 0;
1721 			break;
1722 		case PR_GET_PDEATHSIG:
1723 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1724 			break;
1725 		case PR_GET_DUMPABLE:
1726 			error = get_dumpable(me->mm);
1727 			break;
1728 		case PR_SET_DUMPABLE:
1729 			if (arg2 < 0 || arg2 > 1) {
1730 				error = -EINVAL;
1731 				break;
1732 			}
1733 			set_dumpable(me->mm, arg2);
1734 			error = 0;
1735 			break;
1736 
1737 		case PR_SET_UNALIGN:
1738 			error = SET_UNALIGN_CTL(me, arg2);
1739 			break;
1740 		case PR_GET_UNALIGN:
1741 			error = GET_UNALIGN_CTL(me, arg2);
1742 			break;
1743 		case PR_SET_FPEMU:
1744 			error = SET_FPEMU_CTL(me, arg2);
1745 			break;
1746 		case PR_GET_FPEMU:
1747 			error = GET_FPEMU_CTL(me, arg2);
1748 			break;
1749 		case PR_SET_FPEXC:
1750 			error = SET_FPEXC_CTL(me, arg2);
1751 			break;
1752 		case PR_GET_FPEXC:
1753 			error = GET_FPEXC_CTL(me, arg2);
1754 			break;
1755 		case PR_GET_TIMING:
1756 			error = PR_TIMING_STATISTICAL;
1757 			break;
1758 		case PR_SET_TIMING:
1759 			if (arg2 != PR_TIMING_STATISTICAL)
1760 				error = -EINVAL;
1761 			else
1762 				error = 0;
1763 			break;
1764 
1765 		case PR_SET_NAME:
1766 			comm[sizeof(me->comm)-1] = 0;
1767 			if (strncpy_from_user(comm, (char __user *)arg2,
1768 					      sizeof(me->comm) - 1) < 0)
1769 				return -EFAULT;
1770 			set_task_comm(me, comm);
1771 			return 0;
1772 		case PR_GET_NAME:
1773 			get_task_comm(comm, me);
1774 			if (copy_to_user((char __user *)arg2, comm,
1775 					 sizeof(comm)))
1776 				return -EFAULT;
1777 			return 0;
1778 		case PR_GET_ENDIAN:
1779 			error = GET_ENDIAN(me, arg2);
1780 			break;
1781 		case PR_SET_ENDIAN:
1782 			error = SET_ENDIAN(me, arg2);
1783 			break;
1784 
1785 		case PR_GET_SECCOMP:
1786 			error = prctl_get_seccomp();
1787 			break;
1788 		case PR_SET_SECCOMP:
1789 			error = prctl_set_seccomp(arg2);
1790 			break;
1791 		case PR_GET_TSC:
1792 			error = GET_TSC_CTL(arg2);
1793 			break;
1794 		case PR_SET_TSC:
1795 			error = SET_TSC_CTL(arg2);
1796 			break;
1797 		case PR_TASK_PERF_COUNTERS_DISABLE:
1798 			error = perf_counter_task_disable();
1799 			break;
1800 		case PR_TASK_PERF_COUNTERS_ENABLE:
1801 			error = perf_counter_task_enable();
1802 			break;
1803 		case PR_GET_TIMERSLACK:
1804 			error = current->timer_slack_ns;
1805 			break;
1806 		case PR_SET_TIMERSLACK:
1807 			if (arg2 <= 0)
1808 				current->timer_slack_ns =
1809 					current->default_timer_slack_ns;
1810 			else
1811 				current->timer_slack_ns = arg2;
1812 			error = 0;
1813 			break;
1814 		default:
1815 			error = -EINVAL;
1816 			break;
1817 	}
1818 	return error;
1819 }
1820 
1821 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1822 		struct getcpu_cache __user *, unused)
1823 {
1824 	int err = 0;
1825 	int cpu = raw_smp_processor_id();
1826 	if (cpup)
1827 		err |= put_user(cpu, cpup);
1828 	if (nodep)
1829 		err |= put_user(cpu_to_node(cpu), nodep);
1830 	return err ? -EFAULT : 0;
1831 }
1832 
1833 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1834 
1835 static void argv_cleanup(char **argv, char **envp)
1836 {
1837 	argv_free(argv);
1838 }
1839 
1840 /**
1841  * orderly_poweroff - Trigger an orderly system poweroff
1842  * @force: force poweroff if command execution fails
1843  *
1844  * This may be called from any context to trigger a system shutdown.
1845  * If the orderly shutdown fails, it will force an immediate shutdown.
1846  */
1847 int orderly_poweroff(bool force)
1848 {
1849 	int argc;
1850 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1851 	static char *envp[] = {
1852 		"HOME=/",
1853 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1854 		NULL
1855 	};
1856 	int ret = -ENOMEM;
1857 	struct subprocess_info *info;
1858 
1859 	if (argv == NULL) {
1860 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1861 		       __func__, poweroff_cmd);
1862 		goto out;
1863 	}
1864 
1865 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1866 	if (info == NULL) {
1867 		argv_free(argv);
1868 		goto out;
1869 	}
1870 
1871 	call_usermodehelper_setcleanup(info, argv_cleanup);
1872 
1873 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1874 
1875   out:
1876 	if (ret && force) {
1877 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1878 		       "forcing the issue\n");
1879 
1880 		/* I guess this should try to kick off some daemon to
1881 		   sync and poweroff asap.  Or not even bother syncing
1882 		   if we're doing an emergency shutdown? */
1883 		emergency_sync();
1884 		kernel_power_off();
1885 	}
1886 
1887 	return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(orderly_poweroff);
1890