1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 37 #include <linux/compat.h> 38 #include <linux/syscalls.h> 39 #include <linux/kprobes.h> 40 #include <linux/user_namespace.h> 41 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/unistd.h> 45 46 #ifndef SET_UNALIGN_CTL 47 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 48 #endif 49 #ifndef GET_UNALIGN_CTL 50 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 51 #endif 52 #ifndef SET_FPEMU_CTL 53 # define SET_FPEMU_CTL(a,b) (-EINVAL) 54 #endif 55 #ifndef GET_FPEMU_CTL 56 # define GET_FPEMU_CTL(a,b) (-EINVAL) 57 #endif 58 #ifndef SET_FPEXC_CTL 59 # define SET_FPEXC_CTL(a,b) (-EINVAL) 60 #endif 61 #ifndef GET_FPEXC_CTL 62 # define GET_FPEXC_CTL(a,b) (-EINVAL) 63 #endif 64 #ifndef GET_ENDIAN 65 # define GET_ENDIAN(a,b) (-EINVAL) 66 #endif 67 #ifndef SET_ENDIAN 68 # define SET_ENDIAN(a,b) (-EINVAL) 69 #endif 70 71 /* 72 * this is where the system-wide overflow UID and GID are defined, for 73 * architectures that now have 32-bit UID/GID but didn't in the past 74 */ 75 76 int overflowuid = DEFAULT_OVERFLOWUID; 77 int overflowgid = DEFAULT_OVERFLOWGID; 78 79 #ifdef CONFIG_UID16 80 EXPORT_SYMBOL(overflowuid); 81 EXPORT_SYMBOL(overflowgid); 82 #endif 83 84 /* 85 * the same as above, but for filesystems which can only store a 16-bit 86 * UID and GID. as such, this is needed on all architectures 87 */ 88 89 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 90 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 91 92 EXPORT_SYMBOL(fs_overflowuid); 93 EXPORT_SYMBOL(fs_overflowgid); 94 95 /* 96 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 97 */ 98 99 int C_A_D = 1; 100 struct pid *cad_pid; 101 EXPORT_SYMBOL(cad_pid); 102 103 /* 104 * If set, this is used for preparing the system to power off. 105 */ 106 107 void (*pm_power_off_prepare)(void); 108 109 static int set_one_prio(struct task_struct *p, int niceval, int error) 110 { 111 int no_nice; 112 113 if (p->uid != current->euid && 114 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 115 error = -EPERM; 116 goto out; 117 } 118 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 119 error = -EACCES; 120 goto out; 121 } 122 no_nice = security_task_setnice(p, niceval); 123 if (no_nice) { 124 error = no_nice; 125 goto out; 126 } 127 if (error == -ESRCH) 128 error = 0; 129 set_user_nice(p, niceval); 130 out: 131 return error; 132 } 133 134 asmlinkage long sys_setpriority(int which, int who, int niceval) 135 { 136 struct task_struct *g, *p; 137 struct user_struct *user; 138 int error = -EINVAL; 139 struct pid *pgrp; 140 141 if (which > PRIO_USER || which < PRIO_PROCESS) 142 goto out; 143 144 /* normalize: avoid signed division (rounding problems) */ 145 error = -ESRCH; 146 if (niceval < -20) 147 niceval = -20; 148 if (niceval > 19) 149 niceval = 19; 150 151 read_lock(&tasklist_lock); 152 switch (which) { 153 case PRIO_PROCESS: 154 if (who) 155 p = find_task_by_vpid(who); 156 else 157 p = current; 158 if (p) 159 error = set_one_prio(p, niceval, error); 160 break; 161 case PRIO_PGRP: 162 if (who) 163 pgrp = find_vpid(who); 164 else 165 pgrp = task_pgrp(current); 166 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 167 error = set_one_prio(p, niceval, error); 168 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 169 break; 170 case PRIO_USER: 171 user = current->user; 172 if (!who) 173 who = current->uid; 174 else 175 if ((who != current->uid) && !(user = find_user(who))) 176 goto out_unlock; /* No processes for this user */ 177 178 do_each_thread(g, p) 179 if (p->uid == who) 180 error = set_one_prio(p, niceval, error); 181 while_each_thread(g, p); 182 if (who != current->uid) 183 free_uid(user); /* For find_user() */ 184 break; 185 } 186 out_unlock: 187 read_unlock(&tasklist_lock); 188 out: 189 return error; 190 } 191 192 /* 193 * Ugh. To avoid negative return values, "getpriority()" will 194 * not return the normal nice-value, but a negated value that 195 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 196 * to stay compatible. 197 */ 198 asmlinkage long sys_getpriority(int which, int who) 199 { 200 struct task_struct *g, *p; 201 struct user_struct *user; 202 long niceval, retval = -ESRCH; 203 struct pid *pgrp; 204 205 if (which > PRIO_USER || which < PRIO_PROCESS) 206 return -EINVAL; 207 208 read_lock(&tasklist_lock); 209 switch (which) { 210 case PRIO_PROCESS: 211 if (who) 212 p = find_task_by_vpid(who); 213 else 214 p = current; 215 if (p) { 216 niceval = 20 - task_nice(p); 217 if (niceval > retval) 218 retval = niceval; 219 } 220 break; 221 case PRIO_PGRP: 222 if (who) 223 pgrp = find_vpid(who); 224 else 225 pgrp = task_pgrp(current); 226 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 227 niceval = 20 - task_nice(p); 228 if (niceval > retval) 229 retval = niceval; 230 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 231 break; 232 case PRIO_USER: 233 user = current->user; 234 if (!who) 235 who = current->uid; 236 else 237 if ((who != current->uid) && !(user = find_user(who))) 238 goto out_unlock; /* No processes for this user */ 239 240 do_each_thread(g, p) 241 if (p->uid == who) { 242 niceval = 20 - task_nice(p); 243 if (niceval > retval) 244 retval = niceval; 245 } 246 while_each_thread(g, p); 247 if (who != current->uid) 248 free_uid(user); /* for find_user() */ 249 break; 250 } 251 out_unlock: 252 read_unlock(&tasklist_lock); 253 254 return retval; 255 } 256 257 /** 258 * emergency_restart - reboot the system 259 * 260 * Without shutting down any hardware or taking any locks 261 * reboot the system. This is called when we know we are in 262 * trouble so this is our best effort to reboot. This is 263 * safe to call in interrupt context. 264 */ 265 void emergency_restart(void) 266 { 267 machine_emergency_restart(); 268 } 269 EXPORT_SYMBOL_GPL(emergency_restart); 270 271 static void kernel_restart_prepare(char *cmd) 272 { 273 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 274 system_state = SYSTEM_RESTART; 275 device_shutdown(); 276 sysdev_shutdown(); 277 } 278 279 /** 280 * kernel_restart - reboot the system 281 * @cmd: pointer to buffer containing command to execute for restart 282 * or %NULL 283 * 284 * Shutdown everything and perform a clean reboot. 285 * This is not safe to call in interrupt context. 286 */ 287 void kernel_restart(char *cmd) 288 { 289 kernel_restart_prepare(cmd); 290 if (!cmd) 291 printk(KERN_EMERG "Restarting system.\n"); 292 else 293 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 294 machine_restart(cmd); 295 } 296 EXPORT_SYMBOL_GPL(kernel_restart); 297 298 /** 299 * kernel_kexec - reboot the system 300 * 301 * Move into place and start executing a preloaded standalone 302 * executable. If nothing was preloaded return an error. 303 */ 304 static void kernel_kexec(void) 305 { 306 #ifdef CONFIG_KEXEC 307 struct kimage *image; 308 image = xchg(&kexec_image, NULL); 309 if (!image) 310 return; 311 kernel_restart_prepare(NULL); 312 printk(KERN_EMERG "Starting new kernel\n"); 313 machine_shutdown(); 314 machine_kexec(image); 315 #endif 316 } 317 318 void kernel_shutdown_prepare(enum system_states state) 319 { 320 blocking_notifier_call_chain(&reboot_notifier_list, 321 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 322 system_state = state; 323 device_shutdown(); 324 } 325 /** 326 * kernel_halt - halt the system 327 * 328 * Shutdown everything and perform a clean system halt. 329 */ 330 void kernel_halt(void) 331 { 332 kernel_shutdown_prepare(SYSTEM_HALT); 333 sysdev_shutdown(); 334 printk(KERN_EMERG "System halted.\n"); 335 machine_halt(); 336 } 337 338 EXPORT_SYMBOL_GPL(kernel_halt); 339 340 /** 341 * kernel_power_off - power_off the system 342 * 343 * Shutdown everything and perform a clean system power_off. 344 */ 345 void kernel_power_off(void) 346 { 347 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 348 if (pm_power_off_prepare) 349 pm_power_off_prepare(); 350 disable_nonboot_cpus(); 351 sysdev_shutdown(); 352 printk(KERN_EMERG "Power down.\n"); 353 machine_power_off(); 354 } 355 EXPORT_SYMBOL_GPL(kernel_power_off); 356 /* 357 * Reboot system call: for obvious reasons only root may call it, 358 * and even root needs to set up some magic numbers in the registers 359 * so that some mistake won't make this reboot the whole machine. 360 * You can also set the meaning of the ctrl-alt-del-key here. 361 * 362 * reboot doesn't sync: do that yourself before calling this. 363 */ 364 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 365 { 366 char buffer[256]; 367 368 /* We only trust the superuser with rebooting the system. */ 369 if (!capable(CAP_SYS_BOOT)) 370 return -EPERM; 371 372 /* For safety, we require "magic" arguments. */ 373 if (magic1 != LINUX_REBOOT_MAGIC1 || 374 (magic2 != LINUX_REBOOT_MAGIC2 && 375 magic2 != LINUX_REBOOT_MAGIC2A && 376 magic2 != LINUX_REBOOT_MAGIC2B && 377 magic2 != LINUX_REBOOT_MAGIC2C)) 378 return -EINVAL; 379 380 /* Instead of trying to make the power_off code look like 381 * halt when pm_power_off is not set do it the easy way. 382 */ 383 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 384 cmd = LINUX_REBOOT_CMD_HALT; 385 386 lock_kernel(); 387 switch (cmd) { 388 case LINUX_REBOOT_CMD_RESTART: 389 kernel_restart(NULL); 390 break; 391 392 case LINUX_REBOOT_CMD_CAD_ON: 393 C_A_D = 1; 394 break; 395 396 case LINUX_REBOOT_CMD_CAD_OFF: 397 C_A_D = 0; 398 break; 399 400 case LINUX_REBOOT_CMD_HALT: 401 kernel_halt(); 402 unlock_kernel(); 403 do_exit(0); 404 break; 405 406 case LINUX_REBOOT_CMD_POWER_OFF: 407 kernel_power_off(); 408 unlock_kernel(); 409 do_exit(0); 410 break; 411 412 case LINUX_REBOOT_CMD_RESTART2: 413 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 414 unlock_kernel(); 415 return -EFAULT; 416 } 417 buffer[sizeof(buffer) - 1] = '\0'; 418 419 kernel_restart(buffer); 420 break; 421 422 case LINUX_REBOOT_CMD_KEXEC: 423 kernel_kexec(); 424 unlock_kernel(); 425 return -EINVAL; 426 427 #ifdef CONFIG_HIBERNATION 428 case LINUX_REBOOT_CMD_SW_SUSPEND: 429 { 430 int ret = hibernate(); 431 unlock_kernel(); 432 return ret; 433 } 434 #endif 435 436 default: 437 unlock_kernel(); 438 return -EINVAL; 439 } 440 unlock_kernel(); 441 return 0; 442 } 443 444 static void deferred_cad(struct work_struct *dummy) 445 { 446 kernel_restart(NULL); 447 } 448 449 /* 450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 451 * As it's called within an interrupt, it may NOT sync: the only choice 452 * is whether to reboot at once, or just ignore the ctrl-alt-del. 453 */ 454 void ctrl_alt_del(void) 455 { 456 static DECLARE_WORK(cad_work, deferred_cad); 457 458 if (C_A_D) 459 schedule_work(&cad_work); 460 else 461 kill_cad_pid(SIGINT, 1); 462 } 463 464 /* 465 * Unprivileged users may change the real gid to the effective gid 466 * or vice versa. (BSD-style) 467 * 468 * If you set the real gid at all, or set the effective gid to a value not 469 * equal to the real gid, then the saved gid is set to the new effective gid. 470 * 471 * This makes it possible for a setgid program to completely drop its 472 * privileges, which is often a useful assertion to make when you are doing 473 * a security audit over a program. 474 * 475 * The general idea is that a program which uses just setregid() will be 476 * 100% compatible with BSD. A program which uses just setgid() will be 477 * 100% compatible with POSIX with saved IDs. 478 * 479 * SMP: There are not races, the GIDs are checked only by filesystem 480 * operations (as far as semantic preservation is concerned). 481 */ 482 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 483 { 484 int old_rgid = current->gid; 485 int old_egid = current->egid; 486 int new_rgid = old_rgid; 487 int new_egid = old_egid; 488 int retval; 489 490 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 491 if (retval) 492 return retval; 493 494 if (rgid != (gid_t) -1) { 495 if ((old_rgid == rgid) || 496 (current->egid==rgid) || 497 capable(CAP_SETGID)) 498 new_rgid = rgid; 499 else 500 return -EPERM; 501 } 502 if (egid != (gid_t) -1) { 503 if ((old_rgid == egid) || 504 (current->egid == egid) || 505 (current->sgid == egid) || 506 capable(CAP_SETGID)) 507 new_egid = egid; 508 else 509 return -EPERM; 510 } 511 if (new_egid != old_egid) { 512 set_dumpable(current->mm, suid_dumpable); 513 smp_wmb(); 514 } 515 if (rgid != (gid_t) -1 || 516 (egid != (gid_t) -1 && egid != old_rgid)) 517 current->sgid = new_egid; 518 current->fsgid = new_egid; 519 current->egid = new_egid; 520 current->gid = new_rgid; 521 key_fsgid_changed(current); 522 proc_id_connector(current, PROC_EVENT_GID); 523 return 0; 524 } 525 526 /* 527 * setgid() is implemented like SysV w/ SAVED_IDS 528 * 529 * SMP: Same implicit races as above. 530 */ 531 asmlinkage long sys_setgid(gid_t gid) 532 { 533 int old_egid = current->egid; 534 int retval; 535 536 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 537 if (retval) 538 return retval; 539 540 if (capable(CAP_SETGID)) { 541 if (old_egid != gid) { 542 set_dumpable(current->mm, suid_dumpable); 543 smp_wmb(); 544 } 545 current->gid = current->egid = current->sgid = current->fsgid = gid; 546 } else if ((gid == current->gid) || (gid == current->sgid)) { 547 if (old_egid != gid) { 548 set_dumpable(current->mm, suid_dumpable); 549 smp_wmb(); 550 } 551 current->egid = current->fsgid = gid; 552 } 553 else 554 return -EPERM; 555 556 key_fsgid_changed(current); 557 proc_id_connector(current, PROC_EVENT_GID); 558 return 0; 559 } 560 561 static int set_user(uid_t new_ruid, int dumpclear) 562 { 563 struct user_struct *new_user; 564 565 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid); 566 if (!new_user) 567 return -EAGAIN; 568 569 if (atomic_read(&new_user->processes) >= 570 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 571 new_user != current->nsproxy->user_ns->root_user) { 572 free_uid(new_user); 573 return -EAGAIN; 574 } 575 576 switch_uid(new_user); 577 578 if (dumpclear) { 579 set_dumpable(current->mm, suid_dumpable); 580 smp_wmb(); 581 } 582 current->uid = new_ruid; 583 return 0; 584 } 585 586 /* 587 * Unprivileged users may change the real uid to the effective uid 588 * or vice versa. (BSD-style) 589 * 590 * If you set the real uid at all, or set the effective uid to a value not 591 * equal to the real uid, then the saved uid is set to the new effective uid. 592 * 593 * This makes it possible for a setuid program to completely drop its 594 * privileges, which is often a useful assertion to make when you are doing 595 * a security audit over a program. 596 * 597 * The general idea is that a program which uses just setreuid() will be 598 * 100% compatible with BSD. A program which uses just setuid() will be 599 * 100% compatible with POSIX with saved IDs. 600 */ 601 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 602 { 603 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 604 int retval; 605 606 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 607 if (retval) 608 return retval; 609 610 new_ruid = old_ruid = current->uid; 611 new_euid = old_euid = current->euid; 612 old_suid = current->suid; 613 614 if (ruid != (uid_t) -1) { 615 new_ruid = ruid; 616 if ((old_ruid != ruid) && 617 (current->euid != ruid) && 618 !capable(CAP_SETUID)) 619 return -EPERM; 620 } 621 622 if (euid != (uid_t) -1) { 623 new_euid = euid; 624 if ((old_ruid != euid) && 625 (current->euid != euid) && 626 (current->suid != euid) && 627 !capable(CAP_SETUID)) 628 return -EPERM; 629 } 630 631 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 632 return -EAGAIN; 633 634 if (new_euid != old_euid) { 635 set_dumpable(current->mm, suid_dumpable); 636 smp_wmb(); 637 } 638 current->fsuid = current->euid = new_euid; 639 if (ruid != (uid_t) -1 || 640 (euid != (uid_t) -1 && euid != old_ruid)) 641 current->suid = current->euid; 642 current->fsuid = current->euid; 643 644 key_fsuid_changed(current); 645 proc_id_connector(current, PROC_EVENT_UID); 646 647 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 648 } 649 650 651 652 /* 653 * setuid() is implemented like SysV with SAVED_IDS 654 * 655 * Note that SAVED_ID's is deficient in that a setuid root program 656 * like sendmail, for example, cannot set its uid to be a normal 657 * user and then switch back, because if you're root, setuid() sets 658 * the saved uid too. If you don't like this, blame the bright people 659 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 660 * will allow a root program to temporarily drop privileges and be able to 661 * regain them by swapping the real and effective uid. 662 */ 663 asmlinkage long sys_setuid(uid_t uid) 664 { 665 int old_euid = current->euid; 666 int old_ruid, old_suid, new_suid; 667 int retval; 668 669 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 670 if (retval) 671 return retval; 672 673 old_ruid = current->uid; 674 old_suid = current->suid; 675 new_suid = old_suid; 676 677 if (capable(CAP_SETUID)) { 678 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 679 return -EAGAIN; 680 new_suid = uid; 681 } else if ((uid != current->uid) && (uid != new_suid)) 682 return -EPERM; 683 684 if (old_euid != uid) { 685 set_dumpable(current->mm, suid_dumpable); 686 smp_wmb(); 687 } 688 current->fsuid = current->euid = uid; 689 current->suid = new_suid; 690 691 key_fsuid_changed(current); 692 proc_id_connector(current, PROC_EVENT_UID); 693 694 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 695 } 696 697 698 /* 699 * This function implements a generic ability to update ruid, euid, 700 * and suid. This allows you to implement the 4.4 compatible seteuid(). 701 */ 702 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 703 { 704 int old_ruid = current->uid; 705 int old_euid = current->euid; 706 int old_suid = current->suid; 707 int retval; 708 709 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 710 if (retval) 711 return retval; 712 713 if (!capable(CAP_SETUID)) { 714 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 715 (ruid != current->euid) && (ruid != current->suid)) 716 return -EPERM; 717 if ((euid != (uid_t) -1) && (euid != current->uid) && 718 (euid != current->euid) && (euid != current->suid)) 719 return -EPERM; 720 if ((suid != (uid_t) -1) && (suid != current->uid) && 721 (suid != current->euid) && (suid != current->suid)) 722 return -EPERM; 723 } 724 if (ruid != (uid_t) -1) { 725 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 726 return -EAGAIN; 727 } 728 if (euid != (uid_t) -1) { 729 if (euid != current->euid) { 730 set_dumpable(current->mm, suid_dumpable); 731 smp_wmb(); 732 } 733 current->euid = euid; 734 } 735 current->fsuid = current->euid; 736 if (suid != (uid_t) -1) 737 current->suid = suid; 738 739 key_fsuid_changed(current); 740 proc_id_connector(current, PROC_EVENT_UID); 741 742 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 743 } 744 745 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 746 { 747 int retval; 748 749 if (!(retval = put_user(current->uid, ruid)) && 750 !(retval = put_user(current->euid, euid))) 751 retval = put_user(current->suid, suid); 752 753 return retval; 754 } 755 756 /* 757 * Same as above, but for rgid, egid, sgid. 758 */ 759 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 760 { 761 int retval; 762 763 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 764 if (retval) 765 return retval; 766 767 if (!capable(CAP_SETGID)) { 768 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 769 (rgid != current->egid) && (rgid != current->sgid)) 770 return -EPERM; 771 if ((egid != (gid_t) -1) && (egid != current->gid) && 772 (egid != current->egid) && (egid != current->sgid)) 773 return -EPERM; 774 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 775 (sgid != current->egid) && (sgid != current->sgid)) 776 return -EPERM; 777 } 778 if (egid != (gid_t) -1) { 779 if (egid != current->egid) { 780 set_dumpable(current->mm, suid_dumpable); 781 smp_wmb(); 782 } 783 current->egid = egid; 784 } 785 current->fsgid = current->egid; 786 if (rgid != (gid_t) -1) 787 current->gid = rgid; 788 if (sgid != (gid_t) -1) 789 current->sgid = sgid; 790 791 key_fsgid_changed(current); 792 proc_id_connector(current, PROC_EVENT_GID); 793 return 0; 794 } 795 796 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 797 { 798 int retval; 799 800 if (!(retval = put_user(current->gid, rgid)) && 801 !(retval = put_user(current->egid, egid))) 802 retval = put_user(current->sgid, sgid); 803 804 return retval; 805 } 806 807 808 /* 809 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 810 * is used for "access()" and for the NFS daemon (letting nfsd stay at 811 * whatever uid it wants to). It normally shadows "euid", except when 812 * explicitly set by setfsuid() or for access.. 813 */ 814 asmlinkage long sys_setfsuid(uid_t uid) 815 { 816 int old_fsuid; 817 818 old_fsuid = current->fsuid; 819 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 820 return old_fsuid; 821 822 if (uid == current->uid || uid == current->euid || 823 uid == current->suid || uid == current->fsuid || 824 capable(CAP_SETUID)) { 825 if (uid != old_fsuid) { 826 set_dumpable(current->mm, suid_dumpable); 827 smp_wmb(); 828 } 829 current->fsuid = uid; 830 } 831 832 key_fsuid_changed(current); 833 proc_id_connector(current, PROC_EVENT_UID); 834 835 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 836 837 return old_fsuid; 838 } 839 840 /* 841 * Samma på svenska.. 842 */ 843 asmlinkage long sys_setfsgid(gid_t gid) 844 { 845 int old_fsgid; 846 847 old_fsgid = current->fsgid; 848 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 849 return old_fsgid; 850 851 if (gid == current->gid || gid == current->egid || 852 gid == current->sgid || gid == current->fsgid || 853 capable(CAP_SETGID)) { 854 if (gid != old_fsgid) { 855 set_dumpable(current->mm, suid_dumpable); 856 smp_wmb(); 857 } 858 current->fsgid = gid; 859 key_fsgid_changed(current); 860 proc_id_connector(current, PROC_EVENT_GID); 861 } 862 return old_fsgid; 863 } 864 865 asmlinkage long sys_times(struct tms __user * tbuf) 866 { 867 /* 868 * In the SMP world we might just be unlucky and have one of 869 * the times increment as we use it. Since the value is an 870 * atomically safe type this is just fine. Conceptually its 871 * as if the syscall took an instant longer to occur. 872 */ 873 if (tbuf) { 874 struct tms tmp; 875 struct task_struct *tsk = current; 876 struct task_struct *t; 877 cputime_t utime, stime, cutime, cstime; 878 879 spin_lock_irq(&tsk->sighand->siglock); 880 utime = tsk->signal->utime; 881 stime = tsk->signal->stime; 882 t = tsk; 883 do { 884 utime = cputime_add(utime, t->utime); 885 stime = cputime_add(stime, t->stime); 886 t = next_thread(t); 887 } while (t != tsk); 888 889 cutime = tsk->signal->cutime; 890 cstime = tsk->signal->cstime; 891 spin_unlock_irq(&tsk->sighand->siglock); 892 893 tmp.tms_utime = cputime_to_clock_t(utime); 894 tmp.tms_stime = cputime_to_clock_t(stime); 895 tmp.tms_cutime = cputime_to_clock_t(cutime); 896 tmp.tms_cstime = cputime_to_clock_t(cstime); 897 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 898 return -EFAULT; 899 } 900 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 901 } 902 903 /* 904 * This needs some heavy checking ... 905 * I just haven't the stomach for it. I also don't fully 906 * understand sessions/pgrp etc. Let somebody who does explain it. 907 * 908 * OK, I think I have the protection semantics right.... this is really 909 * only important on a multi-user system anyway, to make sure one user 910 * can't send a signal to a process owned by another. -TYT, 12/12/91 911 * 912 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 913 * LBT 04.03.94 914 */ 915 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 916 { 917 struct task_struct *p; 918 struct task_struct *group_leader = current->group_leader; 919 int err = -EINVAL; 920 struct pid_namespace *ns; 921 922 if (!pid) 923 pid = task_pid_vnr(group_leader); 924 if (!pgid) 925 pgid = pid; 926 if (pgid < 0) 927 return -EINVAL; 928 929 /* From this point forward we keep holding onto the tasklist lock 930 * so that our parent does not change from under us. -DaveM 931 */ 932 ns = current->nsproxy->pid_ns; 933 934 write_lock_irq(&tasklist_lock); 935 936 err = -ESRCH; 937 p = find_task_by_pid_ns(pid, ns); 938 if (!p) 939 goto out; 940 941 err = -EINVAL; 942 if (!thread_group_leader(p)) 943 goto out; 944 945 if (p->real_parent->tgid == group_leader->tgid) { 946 err = -EPERM; 947 if (task_session(p) != task_session(group_leader)) 948 goto out; 949 err = -EACCES; 950 if (p->did_exec) 951 goto out; 952 } else { 953 err = -ESRCH; 954 if (p != group_leader) 955 goto out; 956 } 957 958 err = -EPERM; 959 if (p->signal->leader) 960 goto out; 961 962 if (pgid != pid) { 963 struct task_struct *g; 964 965 g = find_task_by_pid_type_ns(PIDTYPE_PGID, pgid, ns); 966 if (!g || task_session(g) != task_session(group_leader)) 967 goto out; 968 } 969 970 err = security_task_setpgid(p, pgid); 971 if (err) 972 goto out; 973 974 if (task_pgrp_nr_ns(p, ns) != pgid) { 975 struct pid *pid; 976 977 detach_pid(p, PIDTYPE_PGID); 978 pid = find_vpid(pgid); 979 attach_pid(p, PIDTYPE_PGID, pid); 980 set_task_pgrp(p, pid_nr(pid)); 981 } 982 983 err = 0; 984 out: 985 /* All paths lead to here, thus we are safe. -DaveM */ 986 write_unlock_irq(&tasklist_lock); 987 return err; 988 } 989 990 asmlinkage long sys_getpgid(pid_t pid) 991 { 992 if (!pid) 993 return task_pgrp_vnr(current); 994 else { 995 int retval; 996 struct task_struct *p; 997 struct pid_namespace *ns; 998 999 ns = current->nsproxy->pid_ns; 1000 1001 read_lock(&tasklist_lock); 1002 p = find_task_by_pid_ns(pid, ns); 1003 retval = -ESRCH; 1004 if (p) { 1005 retval = security_task_getpgid(p); 1006 if (!retval) 1007 retval = task_pgrp_nr_ns(p, ns); 1008 } 1009 read_unlock(&tasklist_lock); 1010 return retval; 1011 } 1012 } 1013 1014 #ifdef __ARCH_WANT_SYS_GETPGRP 1015 1016 asmlinkage long sys_getpgrp(void) 1017 { 1018 /* SMP - assuming writes are word atomic this is fine */ 1019 return task_pgrp_vnr(current); 1020 } 1021 1022 #endif 1023 1024 asmlinkage long sys_getsid(pid_t pid) 1025 { 1026 if (!pid) 1027 return task_session_vnr(current); 1028 else { 1029 int retval; 1030 struct task_struct *p; 1031 struct pid_namespace *ns; 1032 1033 ns = current->nsproxy->pid_ns; 1034 1035 read_lock(&tasklist_lock); 1036 p = find_task_by_pid_ns(pid, ns); 1037 retval = -ESRCH; 1038 if (p) { 1039 retval = security_task_getsid(p); 1040 if (!retval) 1041 retval = task_session_nr_ns(p, ns); 1042 } 1043 read_unlock(&tasklist_lock); 1044 return retval; 1045 } 1046 } 1047 1048 asmlinkage long sys_setsid(void) 1049 { 1050 struct task_struct *group_leader = current->group_leader; 1051 pid_t session; 1052 int err = -EPERM; 1053 1054 write_lock_irq(&tasklist_lock); 1055 1056 /* Fail if I am already a session leader */ 1057 if (group_leader->signal->leader) 1058 goto out; 1059 1060 session = group_leader->pid; 1061 /* Fail if a process group id already exists that equals the 1062 * proposed session id. 1063 * 1064 * Don't check if session id == 1 because kernel threads use this 1065 * session id and so the check will always fail and make it so 1066 * init cannot successfully call setsid. 1067 */ 1068 if (session > 1 && find_task_by_pid_type_ns(PIDTYPE_PGID, 1069 session, &init_pid_ns)) 1070 goto out; 1071 1072 group_leader->signal->leader = 1; 1073 __set_special_pids(session, session); 1074 1075 spin_lock(&group_leader->sighand->siglock); 1076 group_leader->signal->tty = NULL; 1077 spin_unlock(&group_leader->sighand->siglock); 1078 1079 err = task_pgrp_vnr(group_leader); 1080 out: 1081 write_unlock_irq(&tasklist_lock); 1082 return err; 1083 } 1084 1085 /* 1086 * Supplementary group IDs 1087 */ 1088 1089 /* init to 2 - one for init_task, one to ensure it is never freed */ 1090 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1091 1092 struct group_info *groups_alloc(int gidsetsize) 1093 { 1094 struct group_info *group_info; 1095 int nblocks; 1096 int i; 1097 1098 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1099 /* Make sure we always allocate at least one indirect block pointer */ 1100 nblocks = nblocks ? : 1; 1101 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1102 if (!group_info) 1103 return NULL; 1104 group_info->ngroups = gidsetsize; 1105 group_info->nblocks = nblocks; 1106 atomic_set(&group_info->usage, 1); 1107 1108 if (gidsetsize <= NGROUPS_SMALL) 1109 group_info->blocks[0] = group_info->small_block; 1110 else { 1111 for (i = 0; i < nblocks; i++) { 1112 gid_t *b; 1113 b = (void *)__get_free_page(GFP_USER); 1114 if (!b) 1115 goto out_undo_partial_alloc; 1116 group_info->blocks[i] = b; 1117 } 1118 } 1119 return group_info; 1120 1121 out_undo_partial_alloc: 1122 while (--i >= 0) { 1123 free_page((unsigned long)group_info->blocks[i]); 1124 } 1125 kfree(group_info); 1126 return NULL; 1127 } 1128 1129 EXPORT_SYMBOL(groups_alloc); 1130 1131 void groups_free(struct group_info *group_info) 1132 { 1133 if (group_info->blocks[0] != group_info->small_block) { 1134 int i; 1135 for (i = 0; i < group_info->nblocks; i++) 1136 free_page((unsigned long)group_info->blocks[i]); 1137 } 1138 kfree(group_info); 1139 } 1140 1141 EXPORT_SYMBOL(groups_free); 1142 1143 /* export the group_info to a user-space array */ 1144 static int groups_to_user(gid_t __user *grouplist, 1145 struct group_info *group_info) 1146 { 1147 int i; 1148 int count = group_info->ngroups; 1149 1150 for (i = 0; i < group_info->nblocks; i++) { 1151 int cp_count = min(NGROUPS_PER_BLOCK, count); 1152 int off = i * NGROUPS_PER_BLOCK; 1153 int len = cp_count * sizeof(*grouplist); 1154 1155 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1156 return -EFAULT; 1157 1158 count -= cp_count; 1159 } 1160 return 0; 1161 } 1162 1163 /* fill a group_info from a user-space array - it must be allocated already */ 1164 static int groups_from_user(struct group_info *group_info, 1165 gid_t __user *grouplist) 1166 { 1167 int i; 1168 int count = group_info->ngroups; 1169 1170 for (i = 0; i < group_info->nblocks; i++) { 1171 int cp_count = min(NGROUPS_PER_BLOCK, count); 1172 int off = i * NGROUPS_PER_BLOCK; 1173 int len = cp_count * sizeof(*grouplist); 1174 1175 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1176 return -EFAULT; 1177 1178 count -= cp_count; 1179 } 1180 return 0; 1181 } 1182 1183 /* a simple Shell sort */ 1184 static void groups_sort(struct group_info *group_info) 1185 { 1186 int base, max, stride; 1187 int gidsetsize = group_info->ngroups; 1188 1189 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1190 ; /* nothing */ 1191 stride /= 3; 1192 1193 while (stride) { 1194 max = gidsetsize - stride; 1195 for (base = 0; base < max; base++) { 1196 int left = base; 1197 int right = left + stride; 1198 gid_t tmp = GROUP_AT(group_info, right); 1199 1200 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1201 GROUP_AT(group_info, right) = 1202 GROUP_AT(group_info, left); 1203 right = left; 1204 left -= stride; 1205 } 1206 GROUP_AT(group_info, right) = tmp; 1207 } 1208 stride /= 3; 1209 } 1210 } 1211 1212 /* a simple bsearch */ 1213 int groups_search(struct group_info *group_info, gid_t grp) 1214 { 1215 unsigned int left, right; 1216 1217 if (!group_info) 1218 return 0; 1219 1220 left = 0; 1221 right = group_info->ngroups; 1222 while (left < right) { 1223 unsigned int mid = (left+right)/2; 1224 int cmp = grp - GROUP_AT(group_info, mid); 1225 if (cmp > 0) 1226 left = mid + 1; 1227 else if (cmp < 0) 1228 right = mid; 1229 else 1230 return 1; 1231 } 1232 return 0; 1233 } 1234 1235 /* validate and set current->group_info */ 1236 int set_current_groups(struct group_info *group_info) 1237 { 1238 int retval; 1239 struct group_info *old_info; 1240 1241 retval = security_task_setgroups(group_info); 1242 if (retval) 1243 return retval; 1244 1245 groups_sort(group_info); 1246 get_group_info(group_info); 1247 1248 task_lock(current); 1249 old_info = current->group_info; 1250 current->group_info = group_info; 1251 task_unlock(current); 1252 1253 put_group_info(old_info); 1254 1255 return 0; 1256 } 1257 1258 EXPORT_SYMBOL(set_current_groups); 1259 1260 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1261 { 1262 int i = 0; 1263 1264 /* 1265 * SMP: Nobody else can change our grouplist. Thus we are 1266 * safe. 1267 */ 1268 1269 if (gidsetsize < 0) 1270 return -EINVAL; 1271 1272 /* no need to grab task_lock here; it cannot change */ 1273 i = current->group_info->ngroups; 1274 if (gidsetsize) { 1275 if (i > gidsetsize) { 1276 i = -EINVAL; 1277 goto out; 1278 } 1279 if (groups_to_user(grouplist, current->group_info)) { 1280 i = -EFAULT; 1281 goto out; 1282 } 1283 } 1284 out: 1285 return i; 1286 } 1287 1288 /* 1289 * SMP: Our groups are copy-on-write. We can set them safely 1290 * without another task interfering. 1291 */ 1292 1293 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1294 { 1295 struct group_info *group_info; 1296 int retval; 1297 1298 if (!capable(CAP_SETGID)) 1299 return -EPERM; 1300 if ((unsigned)gidsetsize > NGROUPS_MAX) 1301 return -EINVAL; 1302 1303 group_info = groups_alloc(gidsetsize); 1304 if (!group_info) 1305 return -ENOMEM; 1306 retval = groups_from_user(group_info, grouplist); 1307 if (retval) { 1308 put_group_info(group_info); 1309 return retval; 1310 } 1311 1312 retval = set_current_groups(group_info); 1313 put_group_info(group_info); 1314 1315 return retval; 1316 } 1317 1318 /* 1319 * Check whether we're fsgid/egid or in the supplemental group.. 1320 */ 1321 int in_group_p(gid_t grp) 1322 { 1323 int retval = 1; 1324 if (grp != current->fsgid) 1325 retval = groups_search(current->group_info, grp); 1326 return retval; 1327 } 1328 1329 EXPORT_SYMBOL(in_group_p); 1330 1331 int in_egroup_p(gid_t grp) 1332 { 1333 int retval = 1; 1334 if (grp != current->egid) 1335 retval = groups_search(current->group_info, grp); 1336 return retval; 1337 } 1338 1339 EXPORT_SYMBOL(in_egroup_p); 1340 1341 DECLARE_RWSEM(uts_sem); 1342 1343 EXPORT_SYMBOL(uts_sem); 1344 1345 asmlinkage long sys_newuname(struct new_utsname __user * name) 1346 { 1347 int errno = 0; 1348 1349 down_read(&uts_sem); 1350 if (copy_to_user(name, utsname(), sizeof *name)) 1351 errno = -EFAULT; 1352 up_read(&uts_sem); 1353 return errno; 1354 } 1355 1356 asmlinkage long sys_sethostname(char __user *name, int len) 1357 { 1358 int errno; 1359 char tmp[__NEW_UTS_LEN]; 1360 1361 if (!capable(CAP_SYS_ADMIN)) 1362 return -EPERM; 1363 if (len < 0 || len > __NEW_UTS_LEN) 1364 return -EINVAL; 1365 down_write(&uts_sem); 1366 errno = -EFAULT; 1367 if (!copy_from_user(tmp, name, len)) { 1368 memcpy(utsname()->nodename, tmp, len); 1369 utsname()->nodename[len] = 0; 1370 errno = 0; 1371 } 1372 up_write(&uts_sem); 1373 return errno; 1374 } 1375 1376 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1377 1378 asmlinkage long sys_gethostname(char __user *name, int len) 1379 { 1380 int i, errno; 1381 1382 if (len < 0) 1383 return -EINVAL; 1384 down_read(&uts_sem); 1385 i = 1 + strlen(utsname()->nodename); 1386 if (i > len) 1387 i = len; 1388 errno = 0; 1389 if (copy_to_user(name, utsname()->nodename, i)) 1390 errno = -EFAULT; 1391 up_read(&uts_sem); 1392 return errno; 1393 } 1394 1395 #endif 1396 1397 /* 1398 * Only setdomainname; getdomainname can be implemented by calling 1399 * uname() 1400 */ 1401 asmlinkage long sys_setdomainname(char __user *name, int len) 1402 { 1403 int errno; 1404 char tmp[__NEW_UTS_LEN]; 1405 1406 if (!capable(CAP_SYS_ADMIN)) 1407 return -EPERM; 1408 if (len < 0 || len > __NEW_UTS_LEN) 1409 return -EINVAL; 1410 1411 down_write(&uts_sem); 1412 errno = -EFAULT; 1413 if (!copy_from_user(tmp, name, len)) { 1414 memcpy(utsname()->domainname, tmp, len); 1415 utsname()->domainname[len] = 0; 1416 errno = 0; 1417 } 1418 up_write(&uts_sem); 1419 return errno; 1420 } 1421 1422 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1423 { 1424 if (resource >= RLIM_NLIMITS) 1425 return -EINVAL; 1426 else { 1427 struct rlimit value; 1428 task_lock(current->group_leader); 1429 value = current->signal->rlim[resource]; 1430 task_unlock(current->group_leader); 1431 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1432 } 1433 } 1434 1435 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1436 1437 /* 1438 * Back compatibility for getrlimit. Needed for some apps. 1439 */ 1440 1441 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1442 { 1443 struct rlimit x; 1444 if (resource >= RLIM_NLIMITS) 1445 return -EINVAL; 1446 1447 task_lock(current->group_leader); 1448 x = current->signal->rlim[resource]; 1449 task_unlock(current->group_leader); 1450 if (x.rlim_cur > 0x7FFFFFFF) 1451 x.rlim_cur = 0x7FFFFFFF; 1452 if (x.rlim_max > 0x7FFFFFFF) 1453 x.rlim_max = 0x7FFFFFFF; 1454 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1455 } 1456 1457 #endif 1458 1459 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1460 { 1461 struct rlimit new_rlim, *old_rlim; 1462 unsigned long it_prof_secs; 1463 int retval; 1464 1465 if (resource >= RLIM_NLIMITS) 1466 return -EINVAL; 1467 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1468 return -EFAULT; 1469 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1470 return -EINVAL; 1471 old_rlim = current->signal->rlim + resource; 1472 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1473 !capable(CAP_SYS_RESOURCE)) 1474 return -EPERM; 1475 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1476 return -EPERM; 1477 1478 retval = security_task_setrlimit(resource, &new_rlim); 1479 if (retval) 1480 return retval; 1481 1482 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) { 1483 /* 1484 * The caller is asking for an immediate RLIMIT_CPU 1485 * expiry. But we use the zero value to mean "it was 1486 * never set". So let's cheat and make it one second 1487 * instead 1488 */ 1489 new_rlim.rlim_cur = 1; 1490 } 1491 1492 task_lock(current->group_leader); 1493 *old_rlim = new_rlim; 1494 task_unlock(current->group_leader); 1495 1496 if (resource != RLIMIT_CPU) 1497 goto out; 1498 1499 /* 1500 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1501 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1502 * very long-standing error, and fixing it now risks breakage of 1503 * applications, so we live with it 1504 */ 1505 if (new_rlim.rlim_cur == RLIM_INFINITY) 1506 goto out; 1507 1508 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 1509 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { 1510 unsigned long rlim_cur = new_rlim.rlim_cur; 1511 cputime_t cputime; 1512 1513 cputime = secs_to_cputime(rlim_cur); 1514 read_lock(&tasklist_lock); 1515 spin_lock_irq(¤t->sighand->siglock); 1516 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 1517 spin_unlock_irq(¤t->sighand->siglock); 1518 read_unlock(&tasklist_lock); 1519 } 1520 out: 1521 return 0; 1522 } 1523 1524 /* 1525 * It would make sense to put struct rusage in the task_struct, 1526 * except that would make the task_struct be *really big*. After 1527 * task_struct gets moved into malloc'ed memory, it would 1528 * make sense to do this. It will make moving the rest of the information 1529 * a lot simpler! (Which we're not doing right now because we're not 1530 * measuring them yet). 1531 * 1532 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1533 * races with threads incrementing their own counters. But since word 1534 * reads are atomic, we either get new values or old values and we don't 1535 * care which for the sums. We always take the siglock to protect reading 1536 * the c* fields from p->signal from races with exit.c updating those 1537 * fields when reaping, so a sample either gets all the additions of a 1538 * given child after it's reaped, or none so this sample is before reaping. 1539 * 1540 * Locking: 1541 * We need to take the siglock for CHILDEREN, SELF and BOTH 1542 * for the cases current multithreaded, non-current single threaded 1543 * non-current multithreaded. Thread traversal is now safe with 1544 * the siglock held. 1545 * Strictly speaking, we donot need to take the siglock if we are current and 1546 * single threaded, as no one else can take our signal_struct away, no one 1547 * else can reap the children to update signal->c* counters, and no one else 1548 * can race with the signal-> fields. If we do not take any lock, the 1549 * signal-> fields could be read out of order while another thread was just 1550 * exiting. So we should place a read memory barrier when we avoid the lock. 1551 * On the writer side, write memory barrier is implied in __exit_signal 1552 * as __exit_signal releases the siglock spinlock after updating the signal-> 1553 * fields. But we don't do this yet to keep things simple. 1554 * 1555 */ 1556 1557 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1558 { 1559 struct task_struct *t; 1560 unsigned long flags; 1561 cputime_t utime, stime; 1562 1563 memset((char *) r, 0, sizeof *r); 1564 utime = stime = cputime_zero; 1565 1566 rcu_read_lock(); 1567 if (!lock_task_sighand(p, &flags)) { 1568 rcu_read_unlock(); 1569 return; 1570 } 1571 1572 switch (who) { 1573 case RUSAGE_BOTH: 1574 case RUSAGE_CHILDREN: 1575 utime = p->signal->cutime; 1576 stime = p->signal->cstime; 1577 r->ru_nvcsw = p->signal->cnvcsw; 1578 r->ru_nivcsw = p->signal->cnivcsw; 1579 r->ru_minflt = p->signal->cmin_flt; 1580 r->ru_majflt = p->signal->cmaj_flt; 1581 r->ru_inblock = p->signal->cinblock; 1582 r->ru_oublock = p->signal->coublock; 1583 1584 if (who == RUSAGE_CHILDREN) 1585 break; 1586 1587 case RUSAGE_SELF: 1588 utime = cputime_add(utime, p->signal->utime); 1589 stime = cputime_add(stime, p->signal->stime); 1590 r->ru_nvcsw += p->signal->nvcsw; 1591 r->ru_nivcsw += p->signal->nivcsw; 1592 r->ru_minflt += p->signal->min_flt; 1593 r->ru_majflt += p->signal->maj_flt; 1594 r->ru_inblock += p->signal->inblock; 1595 r->ru_oublock += p->signal->oublock; 1596 t = p; 1597 do { 1598 utime = cputime_add(utime, t->utime); 1599 stime = cputime_add(stime, t->stime); 1600 r->ru_nvcsw += t->nvcsw; 1601 r->ru_nivcsw += t->nivcsw; 1602 r->ru_minflt += t->min_flt; 1603 r->ru_majflt += t->maj_flt; 1604 r->ru_inblock += task_io_get_inblock(t); 1605 r->ru_oublock += task_io_get_oublock(t); 1606 t = next_thread(t); 1607 } while (t != p); 1608 break; 1609 1610 default: 1611 BUG(); 1612 } 1613 1614 unlock_task_sighand(p, &flags); 1615 rcu_read_unlock(); 1616 1617 cputime_to_timeval(utime, &r->ru_utime); 1618 cputime_to_timeval(stime, &r->ru_stime); 1619 } 1620 1621 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1622 { 1623 struct rusage r; 1624 k_getrusage(p, who, &r); 1625 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1626 } 1627 1628 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1629 { 1630 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1631 return -EINVAL; 1632 return getrusage(current, who, ru); 1633 } 1634 1635 asmlinkage long sys_umask(int mask) 1636 { 1637 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1638 return mask; 1639 } 1640 1641 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1642 unsigned long arg4, unsigned long arg5) 1643 { 1644 long error; 1645 1646 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1647 if (error) 1648 return error; 1649 1650 switch (option) { 1651 case PR_SET_PDEATHSIG: 1652 if (!valid_signal(arg2)) { 1653 error = -EINVAL; 1654 break; 1655 } 1656 current->pdeath_signal = arg2; 1657 break; 1658 case PR_GET_PDEATHSIG: 1659 error = put_user(current->pdeath_signal, (int __user *)arg2); 1660 break; 1661 case PR_GET_DUMPABLE: 1662 error = get_dumpable(current->mm); 1663 break; 1664 case PR_SET_DUMPABLE: 1665 if (arg2 < 0 || arg2 > 1) { 1666 error = -EINVAL; 1667 break; 1668 } 1669 set_dumpable(current->mm, arg2); 1670 break; 1671 1672 case PR_SET_UNALIGN: 1673 error = SET_UNALIGN_CTL(current, arg2); 1674 break; 1675 case PR_GET_UNALIGN: 1676 error = GET_UNALIGN_CTL(current, arg2); 1677 break; 1678 case PR_SET_FPEMU: 1679 error = SET_FPEMU_CTL(current, arg2); 1680 break; 1681 case PR_GET_FPEMU: 1682 error = GET_FPEMU_CTL(current, arg2); 1683 break; 1684 case PR_SET_FPEXC: 1685 error = SET_FPEXC_CTL(current, arg2); 1686 break; 1687 case PR_GET_FPEXC: 1688 error = GET_FPEXC_CTL(current, arg2); 1689 break; 1690 case PR_GET_TIMING: 1691 error = PR_TIMING_STATISTICAL; 1692 break; 1693 case PR_SET_TIMING: 1694 if (arg2 == PR_TIMING_STATISTICAL) 1695 error = 0; 1696 else 1697 error = -EINVAL; 1698 break; 1699 1700 case PR_GET_KEEPCAPS: 1701 if (current->keep_capabilities) 1702 error = 1; 1703 break; 1704 case PR_SET_KEEPCAPS: 1705 if (arg2 != 0 && arg2 != 1) { 1706 error = -EINVAL; 1707 break; 1708 } 1709 current->keep_capabilities = arg2; 1710 break; 1711 case PR_SET_NAME: { 1712 struct task_struct *me = current; 1713 unsigned char ncomm[sizeof(me->comm)]; 1714 1715 ncomm[sizeof(me->comm)-1] = 0; 1716 if (strncpy_from_user(ncomm, (char __user *)arg2, 1717 sizeof(me->comm)-1) < 0) 1718 return -EFAULT; 1719 set_task_comm(me, ncomm); 1720 return 0; 1721 } 1722 case PR_GET_NAME: { 1723 struct task_struct *me = current; 1724 unsigned char tcomm[sizeof(me->comm)]; 1725 1726 get_task_comm(tcomm, me); 1727 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1728 return -EFAULT; 1729 return 0; 1730 } 1731 case PR_GET_ENDIAN: 1732 error = GET_ENDIAN(current, arg2); 1733 break; 1734 case PR_SET_ENDIAN: 1735 error = SET_ENDIAN(current, arg2); 1736 break; 1737 1738 case PR_GET_SECCOMP: 1739 error = prctl_get_seccomp(); 1740 break; 1741 case PR_SET_SECCOMP: 1742 error = prctl_set_seccomp(arg2); 1743 break; 1744 1745 default: 1746 error = -EINVAL; 1747 break; 1748 } 1749 return error; 1750 } 1751 1752 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep, 1753 struct getcpu_cache __user *unused) 1754 { 1755 int err = 0; 1756 int cpu = raw_smp_processor_id(); 1757 if (cpup) 1758 err |= put_user(cpu, cpup); 1759 if (nodep) 1760 err |= put_user(cpu_to_node(cpu), nodep); 1761 return err ? -EFAULT : 0; 1762 } 1763 1764 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1765 1766 static void argv_cleanup(char **argv, char **envp) 1767 { 1768 argv_free(argv); 1769 } 1770 1771 /** 1772 * orderly_poweroff - Trigger an orderly system poweroff 1773 * @force: force poweroff if command execution fails 1774 * 1775 * This may be called from any context to trigger a system shutdown. 1776 * If the orderly shutdown fails, it will force an immediate shutdown. 1777 */ 1778 int orderly_poweroff(bool force) 1779 { 1780 int argc; 1781 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1782 static char *envp[] = { 1783 "HOME=/", 1784 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1785 NULL 1786 }; 1787 int ret = -ENOMEM; 1788 struct subprocess_info *info; 1789 1790 if (argv == NULL) { 1791 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1792 __func__, poweroff_cmd); 1793 goto out; 1794 } 1795 1796 info = call_usermodehelper_setup(argv[0], argv, envp); 1797 if (info == NULL) { 1798 argv_free(argv); 1799 goto out; 1800 } 1801 1802 call_usermodehelper_setcleanup(info, argv_cleanup); 1803 1804 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1805 1806 out: 1807 if (ret && force) { 1808 printk(KERN_WARNING "Failed to start orderly shutdown: " 1809 "forcing the issue\n"); 1810 1811 /* I guess this should try to kick off some daemon to 1812 sync and poweroff asap. Or not even bother syncing 1813 if we're doing an emergency shutdown? */ 1814 emergency_sync(); 1815 kernel_power_off(); 1816 } 1817 1818 return ret; 1819 } 1820 EXPORT_SYMBOL_GPL(orderly_poweroff); 1821