xref: /openbmc/linux/kernel/sys.c (revision 643d1f7f)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/unistd.h>
45 
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef SET_FPEMU_CTL
53 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef GET_FPEMU_CTL
56 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
57 #endif
58 #ifndef SET_FPEXC_CTL
59 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
60 #endif
61 #ifndef GET_FPEXC_CTL
62 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
63 #endif
64 #ifndef GET_ENDIAN
65 # define GET_ENDIAN(a,b)	(-EINVAL)
66 #endif
67 #ifndef SET_ENDIAN
68 # define SET_ENDIAN(a,b)	(-EINVAL)
69 #endif
70 
71 /*
72  * this is where the system-wide overflow UID and GID are defined, for
73  * architectures that now have 32-bit UID/GID but didn't in the past
74  */
75 
76 int overflowuid = DEFAULT_OVERFLOWUID;
77 int overflowgid = DEFAULT_OVERFLOWGID;
78 
79 #ifdef CONFIG_UID16
80 EXPORT_SYMBOL(overflowuid);
81 EXPORT_SYMBOL(overflowgid);
82 #endif
83 
84 /*
85  * the same as above, but for filesystems which can only store a 16-bit
86  * UID and GID. as such, this is needed on all architectures
87  */
88 
89 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
90 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
91 
92 EXPORT_SYMBOL(fs_overflowuid);
93 EXPORT_SYMBOL(fs_overflowgid);
94 
95 /*
96  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
97  */
98 
99 int C_A_D = 1;
100 struct pid *cad_pid;
101 EXPORT_SYMBOL(cad_pid);
102 
103 /*
104  * If set, this is used for preparing the system to power off.
105  */
106 
107 void (*pm_power_off_prepare)(void);
108 
109 static int set_one_prio(struct task_struct *p, int niceval, int error)
110 {
111 	int no_nice;
112 
113 	if (p->uid != current->euid &&
114 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
115 		error = -EPERM;
116 		goto out;
117 	}
118 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
119 		error = -EACCES;
120 		goto out;
121 	}
122 	no_nice = security_task_setnice(p, niceval);
123 	if (no_nice) {
124 		error = no_nice;
125 		goto out;
126 	}
127 	if (error == -ESRCH)
128 		error = 0;
129 	set_user_nice(p, niceval);
130 out:
131 	return error;
132 }
133 
134 asmlinkage long sys_setpriority(int which, int who, int niceval)
135 {
136 	struct task_struct *g, *p;
137 	struct user_struct *user;
138 	int error = -EINVAL;
139 	struct pid *pgrp;
140 
141 	if (which > PRIO_USER || which < PRIO_PROCESS)
142 		goto out;
143 
144 	/* normalize: avoid signed division (rounding problems) */
145 	error = -ESRCH;
146 	if (niceval < -20)
147 		niceval = -20;
148 	if (niceval > 19)
149 		niceval = 19;
150 
151 	read_lock(&tasklist_lock);
152 	switch (which) {
153 		case PRIO_PROCESS:
154 			if (who)
155 				p = find_task_by_vpid(who);
156 			else
157 				p = current;
158 			if (p)
159 				error = set_one_prio(p, niceval, error);
160 			break;
161 		case PRIO_PGRP:
162 			if (who)
163 				pgrp = find_vpid(who);
164 			else
165 				pgrp = task_pgrp(current);
166 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
167 				error = set_one_prio(p, niceval, error);
168 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
169 			break;
170 		case PRIO_USER:
171 			user = current->user;
172 			if (!who)
173 				who = current->uid;
174 			else
175 				if ((who != current->uid) && !(user = find_user(who)))
176 					goto out_unlock;	/* No processes for this user */
177 
178 			do_each_thread(g, p)
179 				if (p->uid == who)
180 					error = set_one_prio(p, niceval, error);
181 			while_each_thread(g, p);
182 			if (who != current->uid)
183 				free_uid(user);		/* For find_user() */
184 			break;
185 	}
186 out_unlock:
187 	read_unlock(&tasklist_lock);
188 out:
189 	return error;
190 }
191 
192 /*
193  * Ugh. To avoid negative return values, "getpriority()" will
194  * not return the normal nice-value, but a negated value that
195  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
196  * to stay compatible.
197  */
198 asmlinkage long sys_getpriority(int which, int who)
199 {
200 	struct task_struct *g, *p;
201 	struct user_struct *user;
202 	long niceval, retval = -ESRCH;
203 	struct pid *pgrp;
204 
205 	if (which > PRIO_USER || which < PRIO_PROCESS)
206 		return -EINVAL;
207 
208 	read_lock(&tasklist_lock);
209 	switch (which) {
210 		case PRIO_PROCESS:
211 			if (who)
212 				p = find_task_by_vpid(who);
213 			else
214 				p = current;
215 			if (p) {
216 				niceval = 20 - task_nice(p);
217 				if (niceval > retval)
218 					retval = niceval;
219 			}
220 			break;
221 		case PRIO_PGRP:
222 			if (who)
223 				pgrp = find_vpid(who);
224 			else
225 				pgrp = task_pgrp(current);
226 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
227 				niceval = 20 - task_nice(p);
228 				if (niceval > retval)
229 					retval = niceval;
230 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
231 			break;
232 		case PRIO_USER:
233 			user = current->user;
234 			if (!who)
235 				who = current->uid;
236 			else
237 				if ((who != current->uid) && !(user = find_user(who)))
238 					goto out_unlock;	/* No processes for this user */
239 
240 			do_each_thread(g, p)
241 				if (p->uid == who) {
242 					niceval = 20 - task_nice(p);
243 					if (niceval > retval)
244 						retval = niceval;
245 				}
246 			while_each_thread(g, p);
247 			if (who != current->uid)
248 				free_uid(user);		/* for find_user() */
249 			break;
250 	}
251 out_unlock:
252 	read_unlock(&tasklist_lock);
253 
254 	return retval;
255 }
256 
257 /**
258  *	emergency_restart - reboot the system
259  *
260  *	Without shutting down any hardware or taking any locks
261  *	reboot the system.  This is called when we know we are in
262  *	trouble so this is our best effort to reboot.  This is
263  *	safe to call in interrupt context.
264  */
265 void emergency_restart(void)
266 {
267 	machine_emergency_restart();
268 }
269 EXPORT_SYMBOL_GPL(emergency_restart);
270 
271 static void kernel_restart_prepare(char *cmd)
272 {
273 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
274 	system_state = SYSTEM_RESTART;
275 	device_shutdown();
276 	sysdev_shutdown();
277 }
278 
279 /**
280  *	kernel_restart - reboot the system
281  *	@cmd: pointer to buffer containing command to execute for restart
282  *		or %NULL
283  *
284  *	Shutdown everything and perform a clean reboot.
285  *	This is not safe to call in interrupt context.
286  */
287 void kernel_restart(char *cmd)
288 {
289 	kernel_restart_prepare(cmd);
290 	if (!cmd)
291 		printk(KERN_EMERG "Restarting system.\n");
292 	else
293 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
294 	machine_restart(cmd);
295 }
296 EXPORT_SYMBOL_GPL(kernel_restart);
297 
298 /**
299  *	kernel_kexec - reboot the system
300  *
301  *	Move into place and start executing a preloaded standalone
302  *	executable.  If nothing was preloaded return an error.
303  */
304 static void kernel_kexec(void)
305 {
306 #ifdef CONFIG_KEXEC
307 	struct kimage *image;
308 	image = xchg(&kexec_image, NULL);
309 	if (!image)
310 		return;
311 	kernel_restart_prepare(NULL);
312 	printk(KERN_EMERG "Starting new kernel\n");
313 	machine_shutdown();
314 	machine_kexec(image);
315 #endif
316 }
317 
318 void kernel_shutdown_prepare(enum system_states state)
319 {
320 	blocking_notifier_call_chain(&reboot_notifier_list,
321 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
322 	system_state = state;
323 	device_shutdown();
324 }
325 /**
326  *	kernel_halt - halt the system
327  *
328  *	Shutdown everything and perform a clean system halt.
329  */
330 void kernel_halt(void)
331 {
332 	kernel_shutdown_prepare(SYSTEM_HALT);
333 	sysdev_shutdown();
334 	printk(KERN_EMERG "System halted.\n");
335 	machine_halt();
336 }
337 
338 EXPORT_SYMBOL_GPL(kernel_halt);
339 
340 /**
341  *	kernel_power_off - power_off the system
342  *
343  *	Shutdown everything and perform a clean system power_off.
344  */
345 void kernel_power_off(void)
346 {
347 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
348 	if (pm_power_off_prepare)
349 		pm_power_off_prepare();
350 	disable_nonboot_cpus();
351 	sysdev_shutdown();
352 	printk(KERN_EMERG "Power down.\n");
353 	machine_power_off();
354 }
355 EXPORT_SYMBOL_GPL(kernel_power_off);
356 /*
357  * Reboot system call: for obvious reasons only root may call it,
358  * and even root needs to set up some magic numbers in the registers
359  * so that some mistake won't make this reboot the whole machine.
360  * You can also set the meaning of the ctrl-alt-del-key here.
361  *
362  * reboot doesn't sync: do that yourself before calling this.
363  */
364 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
365 {
366 	char buffer[256];
367 
368 	/* We only trust the superuser with rebooting the system. */
369 	if (!capable(CAP_SYS_BOOT))
370 		return -EPERM;
371 
372 	/* For safety, we require "magic" arguments. */
373 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
374 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
375 	                magic2 != LINUX_REBOOT_MAGIC2A &&
376 			magic2 != LINUX_REBOOT_MAGIC2B &&
377 	                magic2 != LINUX_REBOOT_MAGIC2C))
378 		return -EINVAL;
379 
380 	/* Instead of trying to make the power_off code look like
381 	 * halt when pm_power_off is not set do it the easy way.
382 	 */
383 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
384 		cmd = LINUX_REBOOT_CMD_HALT;
385 
386 	lock_kernel();
387 	switch (cmd) {
388 	case LINUX_REBOOT_CMD_RESTART:
389 		kernel_restart(NULL);
390 		break;
391 
392 	case LINUX_REBOOT_CMD_CAD_ON:
393 		C_A_D = 1;
394 		break;
395 
396 	case LINUX_REBOOT_CMD_CAD_OFF:
397 		C_A_D = 0;
398 		break;
399 
400 	case LINUX_REBOOT_CMD_HALT:
401 		kernel_halt();
402 		unlock_kernel();
403 		do_exit(0);
404 		break;
405 
406 	case LINUX_REBOOT_CMD_POWER_OFF:
407 		kernel_power_off();
408 		unlock_kernel();
409 		do_exit(0);
410 		break;
411 
412 	case LINUX_REBOOT_CMD_RESTART2:
413 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
414 			unlock_kernel();
415 			return -EFAULT;
416 		}
417 		buffer[sizeof(buffer) - 1] = '\0';
418 
419 		kernel_restart(buffer);
420 		break;
421 
422 	case LINUX_REBOOT_CMD_KEXEC:
423 		kernel_kexec();
424 		unlock_kernel();
425 		return -EINVAL;
426 
427 #ifdef CONFIG_HIBERNATION
428 	case LINUX_REBOOT_CMD_SW_SUSPEND:
429 		{
430 			int ret = hibernate();
431 			unlock_kernel();
432 			return ret;
433 		}
434 #endif
435 
436 	default:
437 		unlock_kernel();
438 		return -EINVAL;
439 	}
440 	unlock_kernel();
441 	return 0;
442 }
443 
444 static void deferred_cad(struct work_struct *dummy)
445 {
446 	kernel_restart(NULL);
447 }
448 
449 /*
450  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451  * As it's called within an interrupt, it may NOT sync: the only choice
452  * is whether to reboot at once, or just ignore the ctrl-alt-del.
453  */
454 void ctrl_alt_del(void)
455 {
456 	static DECLARE_WORK(cad_work, deferred_cad);
457 
458 	if (C_A_D)
459 		schedule_work(&cad_work);
460 	else
461 		kill_cad_pid(SIGINT, 1);
462 }
463 
464 /*
465  * Unprivileged users may change the real gid to the effective gid
466  * or vice versa.  (BSD-style)
467  *
468  * If you set the real gid at all, or set the effective gid to a value not
469  * equal to the real gid, then the saved gid is set to the new effective gid.
470  *
471  * This makes it possible for a setgid program to completely drop its
472  * privileges, which is often a useful assertion to make when you are doing
473  * a security audit over a program.
474  *
475  * The general idea is that a program which uses just setregid() will be
476  * 100% compatible with BSD.  A program which uses just setgid() will be
477  * 100% compatible with POSIX with saved IDs.
478  *
479  * SMP: There are not races, the GIDs are checked only by filesystem
480  *      operations (as far as semantic preservation is concerned).
481  */
482 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
483 {
484 	int old_rgid = current->gid;
485 	int old_egid = current->egid;
486 	int new_rgid = old_rgid;
487 	int new_egid = old_egid;
488 	int retval;
489 
490 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
491 	if (retval)
492 		return retval;
493 
494 	if (rgid != (gid_t) -1) {
495 		if ((old_rgid == rgid) ||
496 		    (current->egid==rgid) ||
497 		    capable(CAP_SETGID))
498 			new_rgid = rgid;
499 		else
500 			return -EPERM;
501 	}
502 	if (egid != (gid_t) -1) {
503 		if ((old_rgid == egid) ||
504 		    (current->egid == egid) ||
505 		    (current->sgid == egid) ||
506 		    capable(CAP_SETGID))
507 			new_egid = egid;
508 		else
509 			return -EPERM;
510 	}
511 	if (new_egid != old_egid) {
512 		set_dumpable(current->mm, suid_dumpable);
513 		smp_wmb();
514 	}
515 	if (rgid != (gid_t) -1 ||
516 	    (egid != (gid_t) -1 && egid != old_rgid))
517 		current->sgid = new_egid;
518 	current->fsgid = new_egid;
519 	current->egid = new_egid;
520 	current->gid = new_rgid;
521 	key_fsgid_changed(current);
522 	proc_id_connector(current, PROC_EVENT_GID);
523 	return 0;
524 }
525 
526 /*
527  * setgid() is implemented like SysV w/ SAVED_IDS
528  *
529  * SMP: Same implicit races as above.
530  */
531 asmlinkage long sys_setgid(gid_t gid)
532 {
533 	int old_egid = current->egid;
534 	int retval;
535 
536 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
537 	if (retval)
538 		return retval;
539 
540 	if (capable(CAP_SETGID)) {
541 		if (old_egid != gid) {
542 			set_dumpable(current->mm, suid_dumpable);
543 			smp_wmb();
544 		}
545 		current->gid = current->egid = current->sgid = current->fsgid = gid;
546 	} else if ((gid == current->gid) || (gid == current->sgid)) {
547 		if (old_egid != gid) {
548 			set_dumpable(current->mm, suid_dumpable);
549 			smp_wmb();
550 		}
551 		current->egid = current->fsgid = gid;
552 	}
553 	else
554 		return -EPERM;
555 
556 	key_fsgid_changed(current);
557 	proc_id_connector(current, PROC_EVENT_GID);
558 	return 0;
559 }
560 
561 static int set_user(uid_t new_ruid, int dumpclear)
562 {
563 	struct user_struct *new_user;
564 
565 	new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
566 	if (!new_user)
567 		return -EAGAIN;
568 
569 	if (atomic_read(&new_user->processes) >=
570 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
571 			new_user != current->nsproxy->user_ns->root_user) {
572 		free_uid(new_user);
573 		return -EAGAIN;
574 	}
575 
576 	switch_uid(new_user);
577 
578 	if (dumpclear) {
579 		set_dumpable(current->mm, suid_dumpable);
580 		smp_wmb();
581 	}
582 	current->uid = new_ruid;
583 	return 0;
584 }
585 
586 /*
587  * Unprivileged users may change the real uid to the effective uid
588  * or vice versa.  (BSD-style)
589  *
590  * If you set the real uid at all, or set the effective uid to a value not
591  * equal to the real uid, then the saved uid is set to the new effective uid.
592  *
593  * This makes it possible for a setuid program to completely drop its
594  * privileges, which is often a useful assertion to make when you are doing
595  * a security audit over a program.
596  *
597  * The general idea is that a program which uses just setreuid() will be
598  * 100% compatible with BSD.  A program which uses just setuid() will be
599  * 100% compatible with POSIX with saved IDs.
600  */
601 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
602 {
603 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
604 	int retval;
605 
606 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
607 	if (retval)
608 		return retval;
609 
610 	new_ruid = old_ruid = current->uid;
611 	new_euid = old_euid = current->euid;
612 	old_suid = current->suid;
613 
614 	if (ruid != (uid_t) -1) {
615 		new_ruid = ruid;
616 		if ((old_ruid != ruid) &&
617 		    (current->euid != ruid) &&
618 		    !capable(CAP_SETUID))
619 			return -EPERM;
620 	}
621 
622 	if (euid != (uid_t) -1) {
623 		new_euid = euid;
624 		if ((old_ruid != euid) &&
625 		    (current->euid != euid) &&
626 		    (current->suid != euid) &&
627 		    !capable(CAP_SETUID))
628 			return -EPERM;
629 	}
630 
631 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
632 		return -EAGAIN;
633 
634 	if (new_euid != old_euid) {
635 		set_dumpable(current->mm, suid_dumpable);
636 		smp_wmb();
637 	}
638 	current->fsuid = current->euid = new_euid;
639 	if (ruid != (uid_t) -1 ||
640 	    (euid != (uid_t) -1 && euid != old_ruid))
641 		current->suid = current->euid;
642 	current->fsuid = current->euid;
643 
644 	key_fsuid_changed(current);
645 	proc_id_connector(current, PROC_EVENT_UID);
646 
647 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
648 }
649 
650 
651 
652 /*
653  * setuid() is implemented like SysV with SAVED_IDS
654  *
655  * Note that SAVED_ID's is deficient in that a setuid root program
656  * like sendmail, for example, cannot set its uid to be a normal
657  * user and then switch back, because if you're root, setuid() sets
658  * the saved uid too.  If you don't like this, blame the bright people
659  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
660  * will allow a root program to temporarily drop privileges and be able to
661  * regain them by swapping the real and effective uid.
662  */
663 asmlinkage long sys_setuid(uid_t uid)
664 {
665 	int old_euid = current->euid;
666 	int old_ruid, old_suid, new_suid;
667 	int retval;
668 
669 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
670 	if (retval)
671 		return retval;
672 
673 	old_ruid = current->uid;
674 	old_suid = current->suid;
675 	new_suid = old_suid;
676 
677 	if (capable(CAP_SETUID)) {
678 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
679 			return -EAGAIN;
680 		new_suid = uid;
681 	} else if ((uid != current->uid) && (uid != new_suid))
682 		return -EPERM;
683 
684 	if (old_euid != uid) {
685 		set_dumpable(current->mm, suid_dumpable);
686 		smp_wmb();
687 	}
688 	current->fsuid = current->euid = uid;
689 	current->suid = new_suid;
690 
691 	key_fsuid_changed(current);
692 	proc_id_connector(current, PROC_EVENT_UID);
693 
694 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
695 }
696 
697 
698 /*
699  * This function implements a generic ability to update ruid, euid,
700  * and suid.  This allows you to implement the 4.4 compatible seteuid().
701  */
702 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
703 {
704 	int old_ruid = current->uid;
705 	int old_euid = current->euid;
706 	int old_suid = current->suid;
707 	int retval;
708 
709 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
710 	if (retval)
711 		return retval;
712 
713 	if (!capable(CAP_SETUID)) {
714 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
715 		    (ruid != current->euid) && (ruid != current->suid))
716 			return -EPERM;
717 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
718 		    (euid != current->euid) && (euid != current->suid))
719 			return -EPERM;
720 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
721 		    (suid != current->euid) && (suid != current->suid))
722 			return -EPERM;
723 	}
724 	if (ruid != (uid_t) -1) {
725 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
726 			return -EAGAIN;
727 	}
728 	if (euid != (uid_t) -1) {
729 		if (euid != current->euid) {
730 			set_dumpable(current->mm, suid_dumpable);
731 			smp_wmb();
732 		}
733 		current->euid = euid;
734 	}
735 	current->fsuid = current->euid;
736 	if (suid != (uid_t) -1)
737 		current->suid = suid;
738 
739 	key_fsuid_changed(current);
740 	proc_id_connector(current, PROC_EVENT_UID);
741 
742 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
743 }
744 
745 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
746 {
747 	int retval;
748 
749 	if (!(retval = put_user(current->uid, ruid)) &&
750 	    !(retval = put_user(current->euid, euid)))
751 		retval = put_user(current->suid, suid);
752 
753 	return retval;
754 }
755 
756 /*
757  * Same as above, but for rgid, egid, sgid.
758  */
759 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
760 {
761 	int retval;
762 
763 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
764 	if (retval)
765 		return retval;
766 
767 	if (!capable(CAP_SETGID)) {
768 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
769 		    (rgid != current->egid) && (rgid != current->sgid))
770 			return -EPERM;
771 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
772 		    (egid != current->egid) && (egid != current->sgid))
773 			return -EPERM;
774 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
775 		    (sgid != current->egid) && (sgid != current->sgid))
776 			return -EPERM;
777 	}
778 	if (egid != (gid_t) -1) {
779 		if (egid != current->egid) {
780 			set_dumpable(current->mm, suid_dumpable);
781 			smp_wmb();
782 		}
783 		current->egid = egid;
784 	}
785 	current->fsgid = current->egid;
786 	if (rgid != (gid_t) -1)
787 		current->gid = rgid;
788 	if (sgid != (gid_t) -1)
789 		current->sgid = sgid;
790 
791 	key_fsgid_changed(current);
792 	proc_id_connector(current, PROC_EVENT_GID);
793 	return 0;
794 }
795 
796 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
797 {
798 	int retval;
799 
800 	if (!(retval = put_user(current->gid, rgid)) &&
801 	    !(retval = put_user(current->egid, egid)))
802 		retval = put_user(current->sgid, sgid);
803 
804 	return retval;
805 }
806 
807 
808 /*
809  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
810  * is used for "access()" and for the NFS daemon (letting nfsd stay at
811  * whatever uid it wants to). It normally shadows "euid", except when
812  * explicitly set by setfsuid() or for access..
813  */
814 asmlinkage long sys_setfsuid(uid_t uid)
815 {
816 	int old_fsuid;
817 
818 	old_fsuid = current->fsuid;
819 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
820 		return old_fsuid;
821 
822 	if (uid == current->uid || uid == current->euid ||
823 	    uid == current->suid || uid == current->fsuid ||
824 	    capable(CAP_SETUID)) {
825 		if (uid != old_fsuid) {
826 			set_dumpable(current->mm, suid_dumpable);
827 			smp_wmb();
828 		}
829 		current->fsuid = uid;
830 	}
831 
832 	key_fsuid_changed(current);
833 	proc_id_connector(current, PROC_EVENT_UID);
834 
835 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
836 
837 	return old_fsuid;
838 }
839 
840 /*
841  * Samma på svenska..
842  */
843 asmlinkage long sys_setfsgid(gid_t gid)
844 {
845 	int old_fsgid;
846 
847 	old_fsgid = current->fsgid;
848 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
849 		return old_fsgid;
850 
851 	if (gid == current->gid || gid == current->egid ||
852 	    gid == current->sgid || gid == current->fsgid ||
853 	    capable(CAP_SETGID)) {
854 		if (gid != old_fsgid) {
855 			set_dumpable(current->mm, suid_dumpable);
856 			smp_wmb();
857 		}
858 		current->fsgid = gid;
859 		key_fsgid_changed(current);
860 		proc_id_connector(current, PROC_EVENT_GID);
861 	}
862 	return old_fsgid;
863 }
864 
865 asmlinkage long sys_times(struct tms __user * tbuf)
866 {
867 	/*
868 	 *	In the SMP world we might just be unlucky and have one of
869 	 *	the times increment as we use it. Since the value is an
870 	 *	atomically safe type this is just fine. Conceptually its
871 	 *	as if the syscall took an instant longer to occur.
872 	 */
873 	if (tbuf) {
874 		struct tms tmp;
875 		struct task_struct *tsk = current;
876 		struct task_struct *t;
877 		cputime_t utime, stime, cutime, cstime;
878 
879 		spin_lock_irq(&tsk->sighand->siglock);
880 		utime = tsk->signal->utime;
881 		stime = tsk->signal->stime;
882 		t = tsk;
883 		do {
884 			utime = cputime_add(utime, t->utime);
885 			stime = cputime_add(stime, t->stime);
886 			t = next_thread(t);
887 		} while (t != tsk);
888 
889 		cutime = tsk->signal->cutime;
890 		cstime = tsk->signal->cstime;
891 		spin_unlock_irq(&tsk->sighand->siglock);
892 
893 		tmp.tms_utime = cputime_to_clock_t(utime);
894 		tmp.tms_stime = cputime_to_clock_t(stime);
895 		tmp.tms_cutime = cputime_to_clock_t(cutime);
896 		tmp.tms_cstime = cputime_to_clock_t(cstime);
897 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
898 			return -EFAULT;
899 	}
900 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
901 }
902 
903 /*
904  * This needs some heavy checking ...
905  * I just haven't the stomach for it. I also don't fully
906  * understand sessions/pgrp etc. Let somebody who does explain it.
907  *
908  * OK, I think I have the protection semantics right.... this is really
909  * only important on a multi-user system anyway, to make sure one user
910  * can't send a signal to a process owned by another.  -TYT, 12/12/91
911  *
912  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
913  * LBT 04.03.94
914  */
915 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
916 {
917 	struct task_struct *p;
918 	struct task_struct *group_leader = current->group_leader;
919 	int err = -EINVAL;
920 	struct pid_namespace *ns;
921 
922 	if (!pid)
923 		pid = task_pid_vnr(group_leader);
924 	if (!pgid)
925 		pgid = pid;
926 	if (pgid < 0)
927 		return -EINVAL;
928 
929 	/* From this point forward we keep holding onto the tasklist lock
930 	 * so that our parent does not change from under us. -DaveM
931 	 */
932 	ns = current->nsproxy->pid_ns;
933 
934 	write_lock_irq(&tasklist_lock);
935 
936 	err = -ESRCH;
937 	p = find_task_by_pid_ns(pid, ns);
938 	if (!p)
939 		goto out;
940 
941 	err = -EINVAL;
942 	if (!thread_group_leader(p))
943 		goto out;
944 
945 	if (p->real_parent->tgid == group_leader->tgid) {
946 		err = -EPERM;
947 		if (task_session(p) != task_session(group_leader))
948 			goto out;
949 		err = -EACCES;
950 		if (p->did_exec)
951 			goto out;
952 	} else {
953 		err = -ESRCH;
954 		if (p != group_leader)
955 			goto out;
956 	}
957 
958 	err = -EPERM;
959 	if (p->signal->leader)
960 		goto out;
961 
962 	if (pgid != pid) {
963 		struct task_struct *g;
964 
965 		g = find_task_by_pid_type_ns(PIDTYPE_PGID, pgid, ns);
966 		if (!g || task_session(g) != task_session(group_leader))
967 			goto out;
968 	}
969 
970 	err = security_task_setpgid(p, pgid);
971 	if (err)
972 		goto out;
973 
974 	if (task_pgrp_nr_ns(p, ns) != pgid) {
975 		struct pid *pid;
976 
977 		detach_pid(p, PIDTYPE_PGID);
978 		pid = find_vpid(pgid);
979 		attach_pid(p, PIDTYPE_PGID, pid);
980 		set_task_pgrp(p, pid_nr(pid));
981 	}
982 
983 	err = 0;
984 out:
985 	/* All paths lead to here, thus we are safe. -DaveM */
986 	write_unlock_irq(&tasklist_lock);
987 	return err;
988 }
989 
990 asmlinkage long sys_getpgid(pid_t pid)
991 {
992 	if (!pid)
993 		return task_pgrp_vnr(current);
994 	else {
995 		int retval;
996 		struct task_struct *p;
997 		struct pid_namespace *ns;
998 
999 		ns = current->nsproxy->pid_ns;
1000 
1001 		read_lock(&tasklist_lock);
1002 		p = find_task_by_pid_ns(pid, ns);
1003 		retval = -ESRCH;
1004 		if (p) {
1005 			retval = security_task_getpgid(p);
1006 			if (!retval)
1007 				retval = task_pgrp_nr_ns(p, ns);
1008 		}
1009 		read_unlock(&tasklist_lock);
1010 		return retval;
1011 	}
1012 }
1013 
1014 #ifdef __ARCH_WANT_SYS_GETPGRP
1015 
1016 asmlinkage long sys_getpgrp(void)
1017 {
1018 	/* SMP - assuming writes are word atomic this is fine */
1019 	return task_pgrp_vnr(current);
1020 }
1021 
1022 #endif
1023 
1024 asmlinkage long sys_getsid(pid_t pid)
1025 {
1026 	if (!pid)
1027 		return task_session_vnr(current);
1028 	else {
1029 		int retval;
1030 		struct task_struct *p;
1031 		struct pid_namespace *ns;
1032 
1033 		ns = current->nsproxy->pid_ns;
1034 
1035 		read_lock(&tasklist_lock);
1036 		p = find_task_by_pid_ns(pid, ns);
1037 		retval = -ESRCH;
1038 		if (p) {
1039 			retval = security_task_getsid(p);
1040 			if (!retval)
1041 				retval = task_session_nr_ns(p, ns);
1042 		}
1043 		read_unlock(&tasklist_lock);
1044 		return retval;
1045 	}
1046 }
1047 
1048 asmlinkage long sys_setsid(void)
1049 {
1050 	struct task_struct *group_leader = current->group_leader;
1051 	pid_t session;
1052 	int err = -EPERM;
1053 
1054 	write_lock_irq(&tasklist_lock);
1055 
1056 	/* Fail if I am already a session leader */
1057 	if (group_leader->signal->leader)
1058 		goto out;
1059 
1060 	session = group_leader->pid;
1061 	/* Fail if a process group id already exists that equals the
1062 	 * proposed session id.
1063 	 *
1064 	 * Don't check if session id == 1 because kernel threads use this
1065 	 * session id and so the check will always fail and make it so
1066 	 * init cannot successfully call setsid.
1067 	 */
1068 	if (session > 1 && find_task_by_pid_type_ns(PIDTYPE_PGID,
1069 				session, &init_pid_ns))
1070 		goto out;
1071 
1072 	group_leader->signal->leader = 1;
1073 	__set_special_pids(session, session);
1074 
1075 	spin_lock(&group_leader->sighand->siglock);
1076 	group_leader->signal->tty = NULL;
1077 	spin_unlock(&group_leader->sighand->siglock);
1078 
1079 	err = task_pgrp_vnr(group_leader);
1080 out:
1081 	write_unlock_irq(&tasklist_lock);
1082 	return err;
1083 }
1084 
1085 /*
1086  * Supplementary group IDs
1087  */
1088 
1089 /* init to 2 - one for init_task, one to ensure it is never freed */
1090 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1091 
1092 struct group_info *groups_alloc(int gidsetsize)
1093 {
1094 	struct group_info *group_info;
1095 	int nblocks;
1096 	int i;
1097 
1098 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1099 	/* Make sure we always allocate at least one indirect block pointer */
1100 	nblocks = nblocks ? : 1;
1101 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1102 	if (!group_info)
1103 		return NULL;
1104 	group_info->ngroups = gidsetsize;
1105 	group_info->nblocks = nblocks;
1106 	atomic_set(&group_info->usage, 1);
1107 
1108 	if (gidsetsize <= NGROUPS_SMALL)
1109 		group_info->blocks[0] = group_info->small_block;
1110 	else {
1111 		for (i = 0; i < nblocks; i++) {
1112 			gid_t *b;
1113 			b = (void *)__get_free_page(GFP_USER);
1114 			if (!b)
1115 				goto out_undo_partial_alloc;
1116 			group_info->blocks[i] = b;
1117 		}
1118 	}
1119 	return group_info;
1120 
1121 out_undo_partial_alloc:
1122 	while (--i >= 0) {
1123 		free_page((unsigned long)group_info->blocks[i]);
1124 	}
1125 	kfree(group_info);
1126 	return NULL;
1127 }
1128 
1129 EXPORT_SYMBOL(groups_alloc);
1130 
1131 void groups_free(struct group_info *group_info)
1132 {
1133 	if (group_info->blocks[0] != group_info->small_block) {
1134 		int i;
1135 		for (i = 0; i < group_info->nblocks; i++)
1136 			free_page((unsigned long)group_info->blocks[i]);
1137 	}
1138 	kfree(group_info);
1139 }
1140 
1141 EXPORT_SYMBOL(groups_free);
1142 
1143 /* export the group_info to a user-space array */
1144 static int groups_to_user(gid_t __user *grouplist,
1145     struct group_info *group_info)
1146 {
1147 	int i;
1148 	int count = group_info->ngroups;
1149 
1150 	for (i = 0; i < group_info->nblocks; i++) {
1151 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1152 		int off = i * NGROUPS_PER_BLOCK;
1153 		int len = cp_count * sizeof(*grouplist);
1154 
1155 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1156 			return -EFAULT;
1157 
1158 		count -= cp_count;
1159 	}
1160 	return 0;
1161 }
1162 
1163 /* fill a group_info from a user-space array - it must be allocated already */
1164 static int groups_from_user(struct group_info *group_info,
1165     gid_t __user *grouplist)
1166 {
1167 	int i;
1168 	int count = group_info->ngroups;
1169 
1170 	for (i = 0; i < group_info->nblocks; i++) {
1171 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1172 		int off = i * NGROUPS_PER_BLOCK;
1173 		int len = cp_count * sizeof(*grouplist);
1174 
1175 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1176 			return -EFAULT;
1177 
1178 		count -= cp_count;
1179 	}
1180 	return 0;
1181 }
1182 
1183 /* a simple Shell sort */
1184 static void groups_sort(struct group_info *group_info)
1185 {
1186 	int base, max, stride;
1187 	int gidsetsize = group_info->ngroups;
1188 
1189 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1190 		; /* nothing */
1191 	stride /= 3;
1192 
1193 	while (stride) {
1194 		max = gidsetsize - stride;
1195 		for (base = 0; base < max; base++) {
1196 			int left = base;
1197 			int right = left + stride;
1198 			gid_t tmp = GROUP_AT(group_info, right);
1199 
1200 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1201 				GROUP_AT(group_info, right) =
1202 				    GROUP_AT(group_info, left);
1203 				right = left;
1204 				left -= stride;
1205 			}
1206 			GROUP_AT(group_info, right) = tmp;
1207 		}
1208 		stride /= 3;
1209 	}
1210 }
1211 
1212 /* a simple bsearch */
1213 int groups_search(struct group_info *group_info, gid_t grp)
1214 {
1215 	unsigned int left, right;
1216 
1217 	if (!group_info)
1218 		return 0;
1219 
1220 	left = 0;
1221 	right = group_info->ngroups;
1222 	while (left < right) {
1223 		unsigned int mid = (left+right)/2;
1224 		int cmp = grp - GROUP_AT(group_info, mid);
1225 		if (cmp > 0)
1226 			left = mid + 1;
1227 		else if (cmp < 0)
1228 			right = mid;
1229 		else
1230 			return 1;
1231 	}
1232 	return 0;
1233 }
1234 
1235 /* validate and set current->group_info */
1236 int set_current_groups(struct group_info *group_info)
1237 {
1238 	int retval;
1239 	struct group_info *old_info;
1240 
1241 	retval = security_task_setgroups(group_info);
1242 	if (retval)
1243 		return retval;
1244 
1245 	groups_sort(group_info);
1246 	get_group_info(group_info);
1247 
1248 	task_lock(current);
1249 	old_info = current->group_info;
1250 	current->group_info = group_info;
1251 	task_unlock(current);
1252 
1253 	put_group_info(old_info);
1254 
1255 	return 0;
1256 }
1257 
1258 EXPORT_SYMBOL(set_current_groups);
1259 
1260 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1261 {
1262 	int i = 0;
1263 
1264 	/*
1265 	 *	SMP: Nobody else can change our grouplist. Thus we are
1266 	 *	safe.
1267 	 */
1268 
1269 	if (gidsetsize < 0)
1270 		return -EINVAL;
1271 
1272 	/* no need to grab task_lock here; it cannot change */
1273 	i = current->group_info->ngroups;
1274 	if (gidsetsize) {
1275 		if (i > gidsetsize) {
1276 			i = -EINVAL;
1277 			goto out;
1278 		}
1279 		if (groups_to_user(grouplist, current->group_info)) {
1280 			i = -EFAULT;
1281 			goto out;
1282 		}
1283 	}
1284 out:
1285 	return i;
1286 }
1287 
1288 /*
1289  *	SMP: Our groups are copy-on-write. We can set them safely
1290  *	without another task interfering.
1291  */
1292 
1293 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1294 {
1295 	struct group_info *group_info;
1296 	int retval;
1297 
1298 	if (!capable(CAP_SETGID))
1299 		return -EPERM;
1300 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1301 		return -EINVAL;
1302 
1303 	group_info = groups_alloc(gidsetsize);
1304 	if (!group_info)
1305 		return -ENOMEM;
1306 	retval = groups_from_user(group_info, grouplist);
1307 	if (retval) {
1308 		put_group_info(group_info);
1309 		return retval;
1310 	}
1311 
1312 	retval = set_current_groups(group_info);
1313 	put_group_info(group_info);
1314 
1315 	return retval;
1316 }
1317 
1318 /*
1319  * Check whether we're fsgid/egid or in the supplemental group..
1320  */
1321 int in_group_p(gid_t grp)
1322 {
1323 	int retval = 1;
1324 	if (grp != current->fsgid)
1325 		retval = groups_search(current->group_info, grp);
1326 	return retval;
1327 }
1328 
1329 EXPORT_SYMBOL(in_group_p);
1330 
1331 int in_egroup_p(gid_t grp)
1332 {
1333 	int retval = 1;
1334 	if (grp != current->egid)
1335 		retval = groups_search(current->group_info, grp);
1336 	return retval;
1337 }
1338 
1339 EXPORT_SYMBOL(in_egroup_p);
1340 
1341 DECLARE_RWSEM(uts_sem);
1342 
1343 EXPORT_SYMBOL(uts_sem);
1344 
1345 asmlinkage long sys_newuname(struct new_utsname __user * name)
1346 {
1347 	int errno = 0;
1348 
1349 	down_read(&uts_sem);
1350 	if (copy_to_user(name, utsname(), sizeof *name))
1351 		errno = -EFAULT;
1352 	up_read(&uts_sem);
1353 	return errno;
1354 }
1355 
1356 asmlinkage long sys_sethostname(char __user *name, int len)
1357 {
1358 	int errno;
1359 	char tmp[__NEW_UTS_LEN];
1360 
1361 	if (!capable(CAP_SYS_ADMIN))
1362 		return -EPERM;
1363 	if (len < 0 || len > __NEW_UTS_LEN)
1364 		return -EINVAL;
1365 	down_write(&uts_sem);
1366 	errno = -EFAULT;
1367 	if (!copy_from_user(tmp, name, len)) {
1368 		memcpy(utsname()->nodename, tmp, len);
1369 		utsname()->nodename[len] = 0;
1370 		errno = 0;
1371 	}
1372 	up_write(&uts_sem);
1373 	return errno;
1374 }
1375 
1376 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1377 
1378 asmlinkage long sys_gethostname(char __user *name, int len)
1379 {
1380 	int i, errno;
1381 
1382 	if (len < 0)
1383 		return -EINVAL;
1384 	down_read(&uts_sem);
1385 	i = 1 + strlen(utsname()->nodename);
1386 	if (i > len)
1387 		i = len;
1388 	errno = 0;
1389 	if (copy_to_user(name, utsname()->nodename, i))
1390 		errno = -EFAULT;
1391 	up_read(&uts_sem);
1392 	return errno;
1393 }
1394 
1395 #endif
1396 
1397 /*
1398  * Only setdomainname; getdomainname can be implemented by calling
1399  * uname()
1400  */
1401 asmlinkage long sys_setdomainname(char __user *name, int len)
1402 {
1403 	int errno;
1404 	char tmp[__NEW_UTS_LEN];
1405 
1406 	if (!capable(CAP_SYS_ADMIN))
1407 		return -EPERM;
1408 	if (len < 0 || len > __NEW_UTS_LEN)
1409 		return -EINVAL;
1410 
1411 	down_write(&uts_sem);
1412 	errno = -EFAULT;
1413 	if (!copy_from_user(tmp, name, len)) {
1414 		memcpy(utsname()->domainname, tmp, len);
1415 		utsname()->domainname[len] = 0;
1416 		errno = 0;
1417 	}
1418 	up_write(&uts_sem);
1419 	return errno;
1420 }
1421 
1422 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1423 {
1424 	if (resource >= RLIM_NLIMITS)
1425 		return -EINVAL;
1426 	else {
1427 		struct rlimit value;
1428 		task_lock(current->group_leader);
1429 		value = current->signal->rlim[resource];
1430 		task_unlock(current->group_leader);
1431 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1432 	}
1433 }
1434 
1435 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1436 
1437 /*
1438  *	Back compatibility for getrlimit. Needed for some apps.
1439  */
1440 
1441 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1442 {
1443 	struct rlimit x;
1444 	if (resource >= RLIM_NLIMITS)
1445 		return -EINVAL;
1446 
1447 	task_lock(current->group_leader);
1448 	x = current->signal->rlim[resource];
1449 	task_unlock(current->group_leader);
1450 	if (x.rlim_cur > 0x7FFFFFFF)
1451 		x.rlim_cur = 0x7FFFFFFF;
1452 	if (x.rlim_max > 0x7FFFFFFF)
1453 		x.rlim_max = 0x7FFFFFFF;
1454 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1455 }
1456 
1457 #endif
1458 
1459 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1460 {
1461 	struct rlimit new_rlim, *old_rlim;
1462 	unsigned long it_prof_secs;
1463 	int retval;
1464 
1465 	if (resource >= RLIM_NLIMITS)
1466 		return -EINVAL;
1467 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1468 		return -EFAULT;
1469 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1470 		return -EINVAL;
1471 	old_rlim = current->signal->rlim + resource;
1472 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1473 	    !capable(CAP_SYS_RESOURCE))
1474 		return -EPERM;
1475 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1476 		return -EPERM;
1477 
1478 	retval = security_task_setrlimit(resource, &new_rlim);
1479 	if (retval)
1480 		return retval;
1481 
1482 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1483 		/*
1484 		 * The caller is asking for an immediate RLIMIT_CPU
1485 		 * expiry.  But we use the zero value to mean "it was
1486 		 * never set".  So let's cheat and make it one second
1487 		 * instead
1488 		 */
1489 		new_rlim.rlim_cur = 1;
1490 	}
1491 
1492 	task_lock(current->group_leader);
1493 	*old_rlim = new_rlim;
1494 	task_unlock(current->group_leader);
1495 
1496 	if (resource != RLIMIT_CPU)
1497 		goto out;
1498 
1499 	/*
1500 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1501 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1502 	 * very long-standing error, and fixing it now risks breakage of
1503 	 * applications, so we live with it
1504 	 */
1505 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1506 		goto out;
1507 
1508 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1509 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1510 		unsigned long rlim_cur = new_rlim.rlim_cur;
1511 		cputime_t cputime;
1512 
1513 		cputime = secs_to_cputime(rlim_cur);
1514 		read_lock(&tasklist_lock);
1515 		spin_lock_irq(&current->sighand->siglock);
1516 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1517 		spin_unlock_irq(&current->sighand->siglock);
1518 		read_unlock(&tasklist_lock);
1519 	}
1520 out:
1521 	return 0;
1522 }
1523 
1524 /*
1525  * It would make sense to put struct rusage in the task_struct,
1526  * except that would make the task_struct be *really big*.  After
1527  * task_struct gets moved into malloc'ed memory, it would
1528  * make sense to do this.  It will make moving the rest of the information
1529  * a lot simpler!  (Which we're not doing right now because we're not
1530  * measuring them yet).
1531  *
1532  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1533  * races with threads incrementing their own counters.  But since word
1534  * reads are atomic, we either get new values or old values and we don't
1535  * care which for the sums.  We always take the siglock to protect reading
1536  * the c* fields from p->signal from races with exit.c updating those
1537  * fields when reaping, so a sample either gets all the additions of a
1538  * given child after it's reaped, or none so this sample is before reaping.
1539  *
1540  * Locking:
1541  * We need to take the siglock for CHILDEREN, SELF and BOTH
1542  * for  the cases current multithreaded, non-current single threaded
1543  * non-current multithreaded.  Thread traversal is now safe with
1544  * the siglock held.
1545  * Strictly speaking, we donot need to take the siglock if we are current and
1546  * single threaded,  as no one else can take our signal_struct away, no one
1547  * else can  reap the  children to update signal->c* counters, and no one else
1548  * can race with the signal-> fields. If we do not take any lock, the
1549  * signal-> fields could be read out of order while another thread was just
1550  * exiting. So we should  place a read memory barrier when we avoid the lock.
1551  * On the writer side,  write memory barrier is implied in  __exit_signal
1552  * as __exit_signal releases  the siglock spinlock after updating the signal->
1553  * fields. But we don't do this yet to keep things simple.
1554  *
1555  */
1556 
1557 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1558 {
1559 	struct task_struct *t;
1560 	unsigned long flags;
1561 	cputime_t utime, stime;
1562 
1563 	memset((char *) r, 0, sizeof *r);
1564 	utime = stime = cputime_zero;
1565 
1566 	rcu_read_lock();
1567 	if (!lock_task_sighand(p, &flags)) {
1568 		rcu_read_unlock();
1569 		return;
1570 	}
1571 
1572 	switch (who) {
1573 		case RUSAGE_BOTH:
1574 		case RUSAGE_CHILDREN:
1575 			utime = p->signal->cutime;
1576 			stime = p->signal->cstime;
1577 			r->ru_nvcsw = p->signal->cnvcsw;
1578 			r->ru_nivcsw = p->signal->cnivcsw;
1579 			r->ru_minflt = p->signal->cmin_flt;
1580 			r->ru_majflt = p->signal->cmaj_flt;
1581 			r->ru_inblock = p->signal->cinblock;
1582 			r->ru_oublock = p->signal->coublock;
1583 
1584 			if (who == RUSAGE_CHILDREN)
1585 				break;
1586 
1587 		case RUSAGE_SELF:
1588 			utime = cputime_add(utime, p->signal->utime);
1589 			stime = cputime_add(stime, p->signal->stime);
1590 			r->ru_nvcsw += p->signal->nvcsw;
1591 			r->ru_nivcsw += p->signal->nivcsw;
1592 			r->ru_minflt += p->signal->min_flt;
1593 			r->ru_majflt += p->signal->maj_flt;
1594 			r->ru_inblock += p->signal->inblock;
1595 			r->ru_oublock += p->signal->oublock;
1596 			t = p;
1597 			do {
1598 				utime = cputime_add(utime, t->utime);
1599 				stime = cputime_add(stime, t->stime);
1600 				r->ru_nvcsw += t->nvcsw;
1601 				r->ru_nivcsw += t->nivcsw;
1602 				r->ru_minflt += t->min_flt;
1603 				r->ru_majflt += t->maj_flt;
1604 				r->ru_inblock += task_io_get_inblock(t);
1605 				r->ru_oublock += task_io_get_oublock(t);
1606 				t = next_thread(t);
1607 			} while (t != p);
1608 			break;
1609 
1610 		default:
1611 			BUG();
1612 	}
1613 
1614 	unlock_task_sighand(p, &flags);
1615 	rcu_read_unlock();
1616 
1617 	cputime_to_timeval(utime, &r->ru_utime);
1618 	cputime_to_timeval(stime, &r->ru_stime);
1619 }
1620 
1621 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1622 {
1623 	struct rusage r;
1624 	k_getrusage(p, who, &r);
1625 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1626 }
1627 
1628 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1629 {
1630 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1631 		return -EINVAL;
1632 	return getrusage(current, who, ru);
1633 }
1634 
1635 asmlinkage long sys_umask(int mask)
1636 {
1637 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1638 	return mask;
1639 }
1640 
1641 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1642 			  unsigned long arg4, unsigned long arg5)
1643 {
1644 	long error;
1645 
1646 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1647 	if (error)
1648 		return error;
1649 
1650 	switch (option) {
1651 		case PR_SET_PDEATHSIG:
1652 			if (!valid_signal(arg2)) {
1653 				error = -EINVAL;
1654 				break;
1655 			}
1656 			current->pdeath_signal = arg2;
1657 			break;
1658 		case PR_GET_PDEATHSIG:
1659 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1660 			break;
1661 		case PR_GET_DUMPABLE:
1662 			error = get_dumpable(current->mm);
1663 			break;
1664 		case PR_SET_DUMPABLE:
1665 			if (arg2 < 0 || arg2 > 1) {
1666 				error = -EINVAL;
1667 				break;
1668 			}
1669 			set_dumpable(current->mm, arg2);
1670 			break;
1671 
1672 		case PR_SET_UNALIGN:
1673 			error = SET_UNALIGN_CTL(current, arg2);
1674 			break;
1675 		case PR_GET_UNALIGN:
1676 			error = GET_UNALIGN_CTL(current, arg2);
1677 			break;
1678 		case PR_SET_FPEMU:
1679 			error = SET_FPEMU_CTL(current, arg2);
1680 			break;
1681 		case PR_GET_FPEMU:
1682 			error = GET_FPEMU_CTL(current, arg2);
1683 			break;
1684 		case PR_SET_FPEXC:
1685 			error = SET_FPEXC_CTL(current, arg2);
1686 			break;
1687 		case PR_GET_FPEXC:
1688 			error = GET_FPEXC_CTL(current, arg2);
1689 			break;
1690 		case PR_GET_TIMING:
1691 			error = PR_TIMING_STATISTICAL;
1692 			break;
1693 		case PR_SET_TIMING:
1694 			if (arg2 == PR_TIMING_STATISTICAL)
1695 				error = 0;
1696 			else
1697 				error = -EINVAL;
1698 			break;
1699 
1700 		case PR_GET_KEEPCAPS:
1701 			if (current->keep_capabilities)
1702 				error = 1;
1703 			break;
1704 		case PR_SET_KEEPCAPS:
1705 			if (arg2 != 0 && arg2 != 1) {
1706 				error = -EINVAL;
1707 				break;
1708 			}
1709 			current->keep_capabilities = arg2;
1710 			break;
1711 		case PR_SET_NAME: {
1712 			struct task_struct *me = current;
1713 			unsigned char ncomm[sizeof(me->comm)];
1714 
1715 			ncomm[sizeof(me->comm)-1] = 0;
1716 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1717 						sizeof(me->comm)-1) < 0)
1718 				return -EFAULT;
1719 			set_task_comm(me, ncomm);
1720 			return 0;
1721 		}
1722 		case PR_GET_NAME: {
1723 			struct task_struct *me = current;
1724 			unsigned char tcomm[sizeof(me->comm)];
1725 
1726 			get_task_comm(tcomm, me);
1727 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1728 				return -EFAULT;
1729 			return 0;
1730 		}
1731 		case PR_GET_ENDIAN:
1732 			error = GET_ENDIAN(current, arg2);
1733 			break;
1734 		case PR_SET_ENDIAN:
1735 			error = SET_ENDIAN(current, arg2);
1736 			break;
1737 
1738 		case PR_GET_SECCOMP:
1739 			error = prctl_get_seccomp();
1740 			break;
1741 		case PR_SET_SECCOMP:
1742 			error = prctl_set_seccomp(arg2);
1743 			break;
1744 
1745 		default:
1746 			error = -EINVAL;
1747 			break;
1748 	}
1749 	return error;
1750 }
1751 
1752 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1753 			   struct getcpu_cache __user *unused)
1754 {
1755 	int err = 0;
1756 	int cpu = raw_smp_processor_id();
1757 	if (cpup)
1758 		err |= put_user(cpu, cpup);
1759 	if (nodep)
1760 		err |= put_user(cpu_to_node(cpu), nodep);
1761 	return err ? -EFAULT : 0;
1762 }
1763 
1764 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1765 
1766 static void argv_cleanup(char **argv, char **envp)
1767 {
1768 	argv_free(argv);
1769 }
1770 
1771 /**
1772  * orderly_poweroff - Trigger an orderly system poweroff
1773  * @force: force poweroff if command execution fails
1774  *
1775  * This may be called from any context to trigger a system shutdown.
1776  * If the orderly shutdown fails, it will force an immediate shutdown.
1777  */
1778 int orderly_poweroff(bool force)
1779 {
1780 	int argc;
1781 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1782 	static char *envp[] = {
1783 		"HOME=/",
1784 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1785 		NULL
1786 	};
1787 	int ret = -ENOMEM;
1788 	struct subprocess_info *info;
1789 
1790 	if (argv == NULL) {
1791 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1792 		       __func__, poweroff_cmd);
1793 		goto out;
1794 	}
1795 
1796 	info = call_usermodehelper_setup(argv[0], argv, envp);
1797 	if (info == NULL) {
1798 		argv_free(argv);
1799 		goto out;
1800 	}
1801 
1802 	call_usermodehelper_setcleanup(info, argv_cleanup);
1803 
1804 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1805 
1806   out:
1807 	if (ret && force) {
1808 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1809 		       "forcing the issue\n");
1810 
1811 		/* I guess this should try to kick off some daemon to
1812 		   sync and poweroff asap.  Or not even bother syncing
1813 		   if we're doing an emergency shutdown? */
1814 		emergency_sync();
1815 		kernel_power_off();
1816 	}
1817 
1818 	return ret;
1819 }
1820 EXPORT_SYMBOL_GPL(orderly_poweroff);
1821