xref: /openbmc/linux/kernel/sys.c (revision 63dc02bd)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
43 
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
48 
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/unistd.h>
56 
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef SET_FPEMU_CTL
64 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_FPEMU_CTL
67 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_FPEXC_CTL
70 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_FPEXC_CTL
73 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
74 #endif
75 #ifndef GET_ENDIAN
76 # define GET_ENDIAN(a,b)	(-EINVAL)
77 #endif
78 #ifndef SET_ENDIAN
79 # define SET_ENDIAN(a,b)	(-EINVAL)
80 #endif
81 #ifndef GET_TSC_CTL
82 # define GET_TSC_CTL(a)		(-EINVAL)
83 #endif
84 #ifndef SET_TSC_CTL
85 # define SET_TSC_CTL(a)		(-EINVAL)
86 #endif
87 
88 /*
89  * this is where the system-wide overflow UID and GID are defined, for
90  * architectures that now have 32-bit UID/GID but didn't in the past
91  */
92 
93 int overflowuid = DEFAULT_OVERFLOWUID;
94 int overflowgid = DEFAULT_OVERFLOWGID;
95 
96 #ifdef CONFIG_UID16
97 EXPORT_SYMBOL(overflowuid);
98 EXPORT_SYMBOL(overflowgid);
99 #endif
100 
101 /*
102  * the same as above, but for filesystems which can only store a 16-bit
103  * UID and GID. as such, this is needed on all architectures
104  */
105 
106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108 
109 EXPORT_SYMBOL(fs_overflowuid);
110 EXPORT_SYMBOL(fs_overflowgid);
111 
112 /*
113  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114  */
115 
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119 
120 /*
121  * If set, this is used for preparing the system to power off.
122  */
123 
124 void (*pm_power_off_prepare)(void);
125 
126 /*
127  * Returns true if current's euid is same as p's uid or euid,
128  * or has CAP_SYS_NICE to p's user_ns.
129  *
130  * Called with rcu_read_lock, creds are safe
131  */
132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135 
136 	if (pcred->user->user_ns == cred->user->user_ns &&
137 	    (pcred->uid  == cred->euid ||
138 	     pcred->euid == cred->euid))
139 		return true;
140 	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
141 		return true;
142 	return false;
143 }
144 
145 /*
146  * set the priority of a task
147  * - the caller must hold the RCU read lock
148  */
149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151 	int no_nice;
152 
153 	if (!set_one_prio_perm(p)) {
154 		error = -EPERM;
155 		goto out;
156 	}
157 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158 		error = -EACCES;
159 		goto out;
160 	}
161 	no_nice = security_task_setnice(p, niceval);
162 	if (no_nice) {
163 		error = no_nice;
164 		goto out;
165 	}
166 	if (error == -ESRCH)
167 		error = 0;
168 	set_user_nice(p, niceval);
169 out:
170 	return error;
171 }
172 
173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175 	struct task_struct *g, *p;
176 	struct user_struct *user;
177 	const struct cred *cred = current_cred();
178 	int error = -EINVAL;
179 	struct pid *pgrp;
180 
181 	if (which > PRIO_USER || which < PRIO_PROCESS)
182 		goto out;
183 
184 	/* normalize: avoid signed division (rounding problems) */
185 	error = -ESRCH;
186 	if (niceval < -20)
187 		niceval = -20;
188 	if (niceval > 19)
189 		niceval = 19;
190 
191 	rcu_read_lock();
192 	read_lock(&tasklist_lock);
193 	switch (which) {
194 		case PRIO_PROCESS:
195 			if (who)
196 				p = find_task_by_vpid(who);
197 			else
198 				p = current;
199 			if (p)
200 				error = set_one_prio(p, niceval, error);
201 			break;
202 		case PRIO_PGRP:
203 			if (who)
204 				pgrp = find_vpid(who);
205 			else
206 				pgrp = task_pgrp(current);
207 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208 				error = set_one_prio(p, niceval, error);
209 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210 			break;
211 		case PRIO_USER:
212 			user = (struct user_struct *) cred->user;
213 			if (!who)
214 				who = cred->uid;
215 			else if ((who != cred->uid) &&
216 				 !(user = find_user(who)))
217 				goto out_unlock;	/* No processes for this user */
218 
219 			do_each_thread(g, p) {
220 				if (__task_cred(p)->uid == who)
221 					error = set_one_prio(p, niceval, error);
222 			} while_each_thread(g, p);
223 			if (who != cred->uid)
224 				free_uid(user);		/* For find_user() */
225 			break;
226 	}
227 out_unlock:
228 	read_unlock(&tasklist_lock);
229 	rcu_read_unlock();
230 out:
231 	return error;
232 }
233 
234 /*
235  * Ugh. To avoid negative return values, "getpriority()" will
236  * not return the normal nice-value, but a negated value that
237  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238  * to stay compatible.
239  */
240 SYSCALL_DEFINE2(getpriority, int, which, int, who)
241 {
242 	struct task_struct *g, *p;
243 	struct user_struct *user;
244 	const struct cred *cred = current_cred();
245 	long niceval, retval = -ESRCH;
246 	struct pid *pgrp;
247 
248 	if (which > PRIO_USER || which < PRIO_PROCESS)
249 		return -EINVAL;
250 
251 	rcu_read_lock();
252 	read_lock(&tasklist_lock);
253 	switch (which) {
254 		case PRIO_PROCESS:
255 			if (who)
256 				p = find_task_by_vpid(who);
257 			else
258 				p = current;
259 			if (p) {
260 				niceval = 20 - task_nice(p);
261 				if (niceval > retval)
262 					retval = niceval;
263 			}
264 			break;
265 		case PRIO_PGRP:
266 			if (who)
267 				pgrp = find_vpid(who);
268 			else
269 				pgrp = task_pgrp(current);
270 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
271 				niceval = 20 - task_nice(p);
272 				if (niceval > retval)
273 					retval = niceval;
274 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
275 			break;
276 		case PRIO_USER:
277 			user = (struct user_struct *) cred->user;
278 			if (!who)
279 				who = cred->uid;
280 			else if ((who != cred->uid) &&
281 				 !(user = find_user(who)))
282 				goto out_unlock;	/* No processes for this user */
283 
284 			do_each_thread(g, p) {
285 				if (__task_cred(p)->uid == who) {
286 					niceval = 20 - task_nice(p);
287 					if (niceval > retval)
288 						retval = niceval;
289 				}
290 			} while_each_thread(g, p);
291 			if (who != cred->uid)
292 				free_uid(user);		/* for find_user() */
293 			break;
294 	}
295 out_unlock:
296 	read_unlock(&tasklist_lock);
297 	rcu_read_unlock();
298 
299 	return retval;
300 }
301 
302 /**
303  *	emergency_restart - reboot the system
304  *
305  *	Without shutting down any hardware or taking any locks
306  *	reboot the system.  This is called when we know we are in
307  *	trouble so this is our best effort to reboot.  This is
308  *	safe to call in interrupt context.
309  */
310 void emergency_restart(void)
311 {
312 	kmsg_dump(KMSG_DUMP_EMERG);
313 	machine_emergency_restart();
314 }
315 EXPORT_SYMBOL_GPL(emergency_restart);
316 
317 void kernel_restart_prepare(char *cmd)
318 {
319 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
320 	system_state = SYSTEM_RESTART;
321 	usermodehelper_disable();
322 	device_shutdown();
323 	syscore_shutdown();
324 }
325 
326 /**
327  *	register_reboot_notifier - Register function to be called at reboot time
328  *	@nb: Info about notifier function to be called
329  *
330  *	Registers a function with the list of functions
331  *	to be called at reboot time.
332  *
333  *	Currently always returns zero, as blocking_notifier_chain_register()
334  *	always returns zero.
335  */
336 int register_reboot_notifier(struct notifier_block *nb)
337 {
338 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
339 }
340 EXPORT_SYMBOL(register_reboot_notifier);
341 
342 /**
343  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
344  *	@nb: Hook to be unregistered
345  *
346  *	Unregisters a previously registered reboot
347  *	notifier function.
348  *
349  *	Returns zero on success, or %-ENOENT on failure.
350  */
351 int unregister_reboot_notifier(struct notifier_block *nb)
352 {
353 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
354 }
355 EXPORT_SYMBOL(unregister_reboot_notifier);
356 
357 /**
358  *	kernel_restart - reboot the system
359  *	@cmd: pointer to buffer containing command to execute for restart
360  *		or %NULL
361  *
362  *	Shutdown everything and perform a clean reboot.
363  *	This is not safe to call in interrupt context.
364  */
365 void kernel_restart(char *cmd)
366 {
367 	kernel_restart_prepare(cmd);
368 	if (!cmd)
369 		printk(KERN_EMERG "Restarting system.\n");
370 	else
371 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
372 	kmsg_dump(KMSG_DUMP_RESTART);
373 	machine_restart(cmd);
374 }
375 EXPORT_SYMBOL_GPL(kernel_restart);
376 
377 static void kernel_shutdown_prepare(enum system_states state)
378 {
379 	blocking_notifier_call_chain(&reboot_notifier_list,
380 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
381 	system_state = state;
382 	usermodehelper_disable();
383 	device_shutdown();
384 }
385 /**
386  *	kernel_halt - halt the system
387  *
388  *	Shutdown everything and perform a clean system halt.
389  */
390 void kernel_halt(void)
391 {
392 	kernel_shutdown_prepare(SYSTEM_HALT);
393 	syscore_shutdown();
394 	printk(KERN_EMERG "System halted.\n");
395 	kmsg_dump(KMSG_DUMP_HALT);
396 	machine_halt();
397 }
398 
399 EXPORT_SYMBOL_GPL(kernel_halt);
400 
401 /**
402  *	kernel_power_off - power_off the system
403  *
404  *	Shutdown everything and perform a clean system power_off.
405  */
406 void kernel_power_off(void)
407 {
408 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
409 	if (pm_power_off_prepare)
410 		pm_power_off_prepare();
411 	disable_nonboot_cpus();
412 	syscore_shutdown();
413 	printk(KERN_EMERG "Power down.\n");
414 	kmsg_dump(KMSG_DUMP_POWEROFF);
415 	machine_power_off();
416 }
417 EXPORT_SYMBOL_GPL(kernel_power_off);
418 
419 static DEFINE_MUTEX(reboot_mutex);
420 
421 /*
422  * Reboot system call: for obvious reasons only root may call it,
423  * and even root needs to set up some magic numbers in the registers
424  * so that some mistake won't make this reboot the whole machine.
425  * You can also set the meaning of the ctrl-alt-del-key here.
426  *
427  * reboot doesn't sync: do that yourself before calling this.
428  */
429 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
430 		void __user *, arg)
431 {
432 	char buffer[256];
433 	int ret = 0;
434 
435 	/* We only trust the superuser with rebooting the system. */
436 	if (!capable(CAP_SYS_BOOT))
437 		return -EPERM;
438 
439 	/* For safety, we require "magic" arguments. */
440 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
441 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
442 	                magic2 != LINUX_REBOOT_MAGIC2A &&
443 			magic2 != LINUX_REBOOT_MAGIC2B &&
444 	                magic2 != LINUX_REBOOT_MAGIC2C))
445 		return -EINVAL;
446 
447 	/*
448 	 * If pid namespaces are enabled and the current task is in a child
449 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
450 	 * call do_exit().
451 	 */
452 	ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
453 	if (ret)
454 		return ret;
455 
456 	/* Instead of trying to make the power_off code look like
457 	 * halt when pm_power_off is not set do it the easy way.
458 	 */
459 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
460 		cmd = LINUX_REBOOT_CMD_HALT;
461 
462 	mutex_lock(&reboot_mutex);
463 	switch (cmd) {
464 	case LINUX_REBOOT_CMD_RESTART:
465 		kernel_restart(NULL);
466 		break;
467 
468 	case LINUX_REBOOT_CMD_CAD_ON:
469 		C_A_D = 1;
470 		break;
471 
472 	case LINUX_REBOOT_CMD_CAD_OFF:
473 		C_A_D = 0;
474 		break;
475 
476 	case LINUX_REBOOT_CMD_HALT:
477 		kernel_halt();
478 		do_exit(0);
479 		panic("cannot halt");
480 
481 	case LINUX_REBOOT_CMD_POWER_OFF:
482 		kernel_power_off();
483 		do_exit(0);
484 		break;
485 
486 	case LINUX_REBOOT_CMD_RESTART2:
487 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
488 			ret = -EFAULT;
489 			break;
490 		}
491 		buffer[sizeof(buffer) - 1] = '\0';
492 
493 		kernel_restart(buffer);
494 		break;
495 
496 #ifdef CONFIG_KEXEC
497 	case LINUX_REBOOT_CMD_KEXEC:
498 		ret = kernel_kexec();
499 		break;
500 #endif
501 
502 #ifdef CONFIG_HIBERNATION
503 	case LINUX_REBOOT_CMD_SW_SUSPEND:
504 		ret = hibernate();
505 		break;
506 #endif
507 
508 	default:
509 		ret = -EINVAL;
510 		break;
511 	}
512 	mutex_unlock(&reboot_mutex);
513 	return ret;
514 }
515 
516 static void deferred_cad(struct work_struct *dummy)
517 {
518 	kernel_restart(NULL);
519 }
520 
521 /*
522  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
523  * As it's called within an interrupt, it may NOT sync: the only choice
524  * is whether to reboot at once, or just ignore the ctrl-alt-del.
525  */
526 void ctrl_alt_del(void)
527 {
528 	static DECLARE_WORK(cad_work, deferred_cad);
529 
530 	if (C_A_D)
531 		schedule_work(&cad_work);
532 	else
533 		kill_cad_pid(SIGINT, 1);
534 }
535 
536 /*
537  * Unprivileged users may change the real gid to the effective gid
538  * or vice versa.  (BSD-style)
539  *
540  * If you set the real gid at all, or set the effective gid to a value not
541  * equal to the real gid, then the saved gid is set to the new effective gid.
542  *
543  * This makes it possible for a setgid program to completely drop its
544  * privileges, which is often a useful assertion to make when you are doing
545  * a security audit over a program.
546  *
547  * The general idea is that a program which uses just setregid() will be
548  * 100% compatible with BSD.  A program which uses just setgid() will be
549  * 100% compatible with POSIX with saved IDs.
550  *
551  * SMP: There are not races, the GIDs are checked only by filesystem
552  *      operations (as far as semantic preservation is concerned).
553  */
554 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
555 {
556 	const struct cred *old;
557 	struct cred *new;
558 	int retval;
559 
560 	new = prepare_creds();
561 	if (!new)
562 		return -ENOMEM;
563 	old = current_cred();
564 
565 	retval = -EPERM;
566 	if (rgid != (gid_t) -1) {
567 		if (old->gid == rgid ||
568 		    old->egid == rgid ||
569 		    nsown_capable(CAP_SETGID))
570 			new->gid = rgid;
571 		else
572 			goto error;
573 	}
574 	if (egid != (gid_t) -1) {
575 		if (old->gid == egid ||
576 		    old->egid == egid ||
577 		    old->sgid == egid ||
578 		    nsown_capable(CAP_SETGID))
579 			new->egid = egid;
580 		else
581 			goto error;
582 	}
583 
584 	if (rgid != (gid_t) -1 ||
585 	    (egid != (gid_t) -1 && egid != old->gid))
586 		new->sgid = new->egid;
587 	new->fsgid = new->egid;
588 
589 	return commit_creds(new);
590 
591 error:
592 	abort_creds(new);
593 	return retval;
594 }
595 
596 /*
597  * setgid() is implemented like SysV w/ SAVED_IDS
598  *
599  * SMP: Same implicit races as above.
600  */
601 SYSCALL_DEFINE1(setgid, gid_t, gid)
602 {
603 	const struct cred *old;
604 	struct cred *new;
605 	int retval;
606 
607 	new = prepare_creds();
608 	if (!new)
609 		return -ENOMEM;
610 	old = current_cred();
611 
612 	retval = -EPERM;
613 	if (nsown_capable(CAP_SETGID))
614 		new->gid = new->egid = new->sgid = new->fsgid = gid;
615 	else if (gid == old->gid || gid == old->sgid)
616 		new->egid = new->fsgid = gid;
617 	else
618 		goto error;
619 
620 	return commit_creds(new);
621 
622 error:
623 	abort_creds(new);
624 	return retval;
625 }
626 
627 /*
628  * change the user struct in a credentials set to match the new UID
629  */
630 static int set_user(struct cred *new)
631 {
632 	struct user_struct *new_user;
633 
634 	new_user = alloc_uid(current_user_ns(), new->uid);
635 	if (!new_user)
636 		return -EAGAIN;
637 
638 	/*
639 	 * We don't fail in case of NPROC limit excess here because too many
640 	 * poorly written programs don't check set*uid() return code, assuming
641 	 * it never fails if called by root.  We may still enforce NPROC limit
642 	 * for programs doing set*uid()+execve() by harmlessly deferring the
643 	 * failure to the execve() stage.
644 	 */
645 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
646 			new_user != INIT_USER)
647 		current->flags |= PF_NPROC_EXCEEDED;
648 	else
649 		current->flags &= ~PF_NPROC_EXCEEDED;
650 
651 	free_uid(new->user);
652 	new->user = new_user;
653 	return 0;
654 }
655 
656 /*
657  * Unprivileged users may change the real uid to the effective uid
658  * or vice versa.  (BSD-style)
659  *
660  * If you set the real uid at all, or set the effective uid to a value not
661  * equal to the real uid, then the saved uid is set to the new effective uid.
662  *
663  * This makes it possible for a setuid program to completely drop its
664  * privileges, which is often a useful assertion to make when you are doing
665  * a security audit over a program.
666  *
667  * The general idea is that a program which uses just setreuid() will be
668  * 100% compatible with BSD.  A program which uses just setuid() will be
669  * 100% compatible with POSIX with saved IDs.
670  */
671 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
672 {
673 	const struct cred *old;
674 	struct cred *new;
675 	int retval;
676 
677 	new = prepare_creds();
678 	if (!new)
679 		return -ENOMEM;
680 	old = current_cred();
681 
682 	retval = -EPERM;
683 	if (ruid != (uid_t) -1) {
684 		new->uid = ruid;
685 		if (old->uid != ruid &&
686 		    old->euid != ruid &&
687 		    !nsown_capable(CAP_SETUID))
688 			goto error;
689 	}
690 
691 	if (euid != (uid_t) -1) {
692 		new->euid = euid;
693 		if (old->uid != euid &&
694 		    old->euid != euid &&
695 		    old->suid != euid &&
696 		    !nsown_capable(CAP_SETUID))
697 			goto error;
698 	}
699 
700 	if (new->uid != old->uid) {
701 		retval = set_user(new);
702 		if (retval < 0)
703 			goto error;
704 	}
705 	if (ruid != (uid_t) -1 ||
706 	    (euid != (uid_t) -1 && euid != old->uid))
707 		new->suid = new->euid;
708 	new->fsuid = new->euid;
709 
710 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
711 	if (retval < 0)
712 		goto error;
713 
714 	return commit_creds(new);
715 
716 error:
717 	abort_creds(new);
718 	return retval;
719 }
720 
721 /*
722  * setuid() is implemented like SysV with SAVED_IDS
723  *
724  * Note that SAVED_ID's is deficient in that a setuid root program
725  * like sendmail, for example, cannot set its uid to be a normal
726  * user and then switch back, because if you're root, setuid() sets
727  * the saved uid too.  If you don't like this, blame the bright people
728  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
729  * will allow a root program to temporarily drop privileges and be able to
730  * regain them by swapping the real and effective uid.
731  */
732 SYSCALL_DEFINE1(setuid, uid_t, uid)
733 {
734 	const struct cred *old;
735 	struct cred *new;
736 	int retval;
737 
738 	new = prepare_creds();
739 	if (!new)
740 		return -ENOMEM;
741 	old = current_cred();
742 
743 	retval = -EPERM;
744 	if (nsown_capable(CAP_SETUID)) {
745 		new->suid = new->uid = uid;
746 		if (uid != old->uid) {
747 			retval = set_user(new);
748 			if (retval < 0)
749 				goto error;
750 		}
751 	} else if (uid != old->uid && uid != new->suid) {
752 		goto error;
753 	}
754 
755 	new->fsuid = new->euid = uid;
756 
757 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
758 	if (retval < 0)
759 		goto error;
760 
761 	return commit_creds(new);
762 
763 error:
764 	abort_creds(new);
765 	return retval;
766 }
767 
768 
769 /*
770  * This function implements a generic ability to update ruid, euid,
771  * and suid.  This allows you to implement the 4.4 compatible seteuid().
772  */
773 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
774 {
775 	const struct cred *old;
776 	struct cred *new;
777 	int retval;
778 
779 	new = prepare_creds();
780 	if (!new)
781 		return -ENOMEM;
782 
783 	old = current_cred();
784 
785 	retval = -EPERM;
786 	if (!nsown_capable(CAP_SETUID)) {
787 		if (ruid != (uid_t) -1 && ruid != old->uid &&
788 		    ruid != old->euid  && ruid != old->suid)
789 			goto error;
790 		if (euid != (uid_t) -1 && euid != old->uid &&
791 		    euid != old->euid  && euid != old->suid)
792 			goto error;
793 		if (suid != (uid_t) -1 && suid != old->uid &&
794 		    suid != old->euid  && suid != old->suid)
795 			goto error;
796 	}
797 
798 	if (ruid != (uid_t) -1) {
799 		new->uid = ruid;
800 		if (ruid != old->uid) {
801 			retval = set_user(new);
802 			if (retval < 0)
803 				goto error;
804 		}
805 	}
806 	if (euid != (uid_t) -1)
807 		new->euid = euid;
808 	if (suid != (uid_t) -1)
809 		new->suid = suid;
810 	new->fsuid = new->euid;
811 
812 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
813 	if (retval < 0)
814 		goto error;
815 
816 	return commit_creds(new);
817 
818 error:
819 	abort_creds(new);
820 	return retval;
821 }
822 
823 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
824 {
825 	const struct cred *cred = current_cred();
826 	int retval;
827 
828 	if (!(retval   = put_user(cred->uid,  ruid)) &&
829 	    !(retval   = put_user(cred->euid, euid)))
830 		retval = put_user(cred->suid, suid);
831 
832 	return retval;
833 }
834 
835 /*
836  * Same as above, but for rgid, egid, sgid.
837  */
838 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
839 {
840 	const struct cred *old;
841 	struct cred *new;
842 	int retval;
843 
844 	new = prepare_creds();
845 	if (!new)
846 		return -ENOMEM;
847 	old = current_cred();
848 
849 	retval = -EPERM;
850 	if (!nsown_capable(CAP_SETGID)) {
851 		if (rgid != (gid_t) -1 && rgid != old->gid &&
852 		    rgid != old->egid  && rgid != old->sgid)
853 			goto error;
854 		if (egid != (gid_t) -1 && egid != old->gid &&
855 		    egid != old->egid  && egid != old->sgid)
856 			goto error;
857 		if (sgid != (gid_t) -1 && sgid != old->gid &&
858 		    sgid != old->egid  && sgid != old->sgid)
859 			goto error;
860 	}
861 
862 	if (rgid != (gid_t) -1)
863 		new->gid = rgid;
864 	if (egid != (gid_t) -1)
865 		new->egid = egid;
866 	if (sgid != (gid_t) -1)
867 		new->sgid = sgid;
868 	new->fsgid = new->egid;
869 
870 	return commit_creds(new);
871 
872 error:
873 	abort_creds(new);
874 	return retval;
875 }
876 
877 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
878 {
879 	const struct cred *cred = current_cred();
880 	int retval;
881 
882 	if (!(retval   = put_user(cred->gid,  rgid)) &&
883 	    !(retval   = put_user(cred->egid, egid)))
884 		retval = put_user(cred->sgid, sgid);
885 
886 	return retval;
887 }
888 
889 
890 /*
891  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
892  * is used for "access()" and for the NFS daemon (letting nfsd stay at
893  * whatever uid it wants to). It normally shadows "euid", except when
894  * explicitly set by setfsuid() or for access..
895  */
896 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
897 {
898 	const struct cred *old;
899 	struct cred *new;
900 	uid_t old_fsuid;
901 
902 	new = prepare_creds();
903 	if (!new)
904 		return current_fsuid();
905 	old = current_cred();
906 	old_fsuid = old->fsuid;
907 
908 	if (uid == old->uid  || uid == old->euid  ||
909 	    uid == old->suid || uid == old->fsuid ||
910 	    nsown_capable(CAP_SETUID)) {
911 		if (uid != old_fsuid) {
912 			new->fsuid = uid;
913 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
914 				goto change_okay;
915 		}
916 	}
917 
918 	abort_creds(new);
919 	return old_fsuid;
920 
921 change_okay:
922 	commit_creds(new);
923 	return old_fsuid;
924 }
925 
926 /*
927  * Samma på svenska..
928  */
929 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
930 {
931 	const struct cred *old;
932 	struct cred *new;
933 	gid_t old_fsgid;
934 
935 	new = prepare_creds();
936 	if (!new)
937 		return current_fsgid();
938 	old = current_cred();
939 	old_fsgid = old->fsgid;
940 
941 	if (gid == old->gid  || gid == old->egid  ||
942 	    gid == old->sgid || gid == old->fsgid ||
943 	    nsown_capable(CAP_SETGID)) {
944 		if (gid != old_fsgid) {
945 			new->fsgid = gid;
946 			goto change_okay;
947 		}
948 	}
949 
950 	abort_creds(new);
951 	return old_fsgid;
952 
953 change_okay:
954 	commit_creds(new);
955 	return old_fsgid;
956 }
957 
958 void do_sys_times(struct tms *tms)
959 {
960 	cputime_t tgutime, tgstime, cutime, cstime;
961 
962 	spin_lock_irq(&current->sighand->siglock);
963 	thread_group_times(current, &tgutime, &tgstime);
964 	cutime = current->signal->cutime;
965 	cstime = current->signal->cstime;
966 	spin_unlock_irq(&current->sighand->siglock);
967 	tms->tms_utime = cputime_to_clock_t(tgutime);
968 	tms->tms_stime = cputime_to_clock_t(tgstime);
969 	tms->tms_cutime = cputime_to_clock_t(cutime);
970 	tms->tms_cstime = cputime_to_clock_t(cstime);
971 }
972 
973 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
974 {
975 	if (tbuf) {
976 		struct tms tmp;
977 
978 		do_sys_times(&tmp);
979 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
980 			return -EFAULT;
981 	}
982 	force_successful_syscall_return();
983 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
984 }
985 
986 /*
987  * This needs some heavy checking ...
988  * I just haven't the stomach for it. I also don't fully
989  * understand sessions/pgrp etc. Let somebody who does explain it.
990  *
991  * OK, I think I have the protection semantics right.... this is really
992  * only important on a multi-user system anyway, to make sure one user
993  * can't send a signal to a process owned by another.  -TYT, 12/12/91
994  *
995  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
996  * LBT 04.03.94
997  */
998 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
999 {
1000 	struct task_struct *p;
1001 	struct task_struct *group_leader = current->group_leader;
1002 	struct pid *pgrp;
1003 	int err;
1004 
1005 	if (!pid)
1006 		pid = task_pid_vnr(group_leader);
1007 	if (!pgid)
1008 		pgid = pid;
1009 	if (pgid < 0)
1010 		return -EINVAL;
1011 	rcu_read_lock();
1012 
1013 	/* From this point forward we keep holding onto the tasklist lock
1014 	 * so that our parent does not change from under us. -DaveM
1015 	 */
1016 	write_lock_irq(&tasklist_lock);
1017 
1018 	err = -ESRCH;
1019 	p = find_task_by_vpid(pid);
1020 	if (!p)
1021 		goto out;
1022 
1023 	err = -EINVAL;
1024 	if (!thread_group_leader(p))
1025 		goto out;
1026 
1027 	if (same_thread_group(p->real_parent, group_leader)) {
1028 		err = -EPERM;
1029 		if (task_session(p) != task_session(group_leader))
1030 			goto out;
1031 		err = -EACCES;
1032 		if (p->did_exec)
1033 			goto out;
1034 	} else {
1035 		err = -ESRCH;
1036 		if (p != group_leader)
1037 			goto out;
1038 	}
1039 
1040 	err = -EPERM;
1041 	if (p->signal->leader)
1042 		goto out;
1043 
1044 	pgrp = task_pid(p);
1045 	if (pgid != pid) {
1046 		struct task_struct *g;
1047 
1048 		pgrp = find_vpid(pgid);
1049 		g = pid_task(pgrp, PIDTYPE_PGID);
1050 		if (!g || task_session(g) != task_session(group_leader))
1051 			goto out;
1052 	}
1053 
1054 	err = security_task_setpgid(p, pgid);
1055 	if (err)
1056 		goto out;
1057 
1058 	if (task_pgrp(p) != pgrp)
1059 		change_pid(p, PIDTYPE_PGID, pgrp);
1060 
1061 	err = 0;
1062 out:
1063 	/* All paths lead to here, thus we are safe. -DaveM */
1064 	write_unlock_irq(&tasklist_lock);
1065 	rcu_read_unlock();
1066 	return err;
1067 }
1068 
1069 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1070 {
1071 	struct task_struct *p;
1072 	struct pid *grp;
1073 	int retval;
1074 
1075 	rcu_read_lock();
1076 	if (!pid)
1077 		grp = task_pgrp(current);
1078 	else {
1079 		retval = -ESRCH;
1080 		p = find_task_by_vpid(pid);
1081 		if (!p)
1082 			goto out;
1083 		grp = task_pgrp(p);
1084 		if (!grp)
1085 			goto out;
1086 
1087 		retval = security_task_getpgid(p);
1088 		if (retval)
1089 			goto out;
1090 	}
1091 	retval = pid_vnr(grp);
1092 out:
1093 	rcu_read_unlock();
1094 	return retval;
1095 }
1096 
1097 #ifdef __ARCH_WANT_SYS_GETPGRP
1098 
1099 SYSCALL_DEFINE0(getpgrp)
1100 {
1101 	return sys_getpgid(0);
1102 }
1103 
1104 #endif
1105 
1106 SYSCALL_DEFINE1(getsid, pid_t, pid)
1107 {
1108 	struct task_struct *p;
1109 	struct pid *sid;
1110 	int retval;
1111 
1112 	rcu_read_lock();
1113 	if (!pid)
1114 		sid = task_session(current);
1115 	else {
1116 		retval = -ESRCH;
1117 		p = find_task_by_vpid(pid);
1118 		if (!p)
1119 			goto out;
1120 		sid = task_session(p);
1121 		if (!sid)
1122 			goto out;
1123 
1124 		retval = security_task_getsid(p);
1125 		if (retval)
1126 			goto out;
1127 	}
1128 	retval = pid_vnr(sid);
1129 out:
1130 	rcu_read_unlock();
1131 	return retval;
1132 }
1133 
1134 SYSCALL_DEFINE0(setsid)
1135 {
1136 	struct task_struct *group_leader = current->group_leader;
1137 	struct pid *sid = task_pid(group_leader);
1138 	pid_t session = pid_vnr(sid);
1139 	int err = -EPERM;
1140 
1141 	write_lock_irq(&tasklist_lock);
1142 	/* Fail if I am already a session leader */
1143 	if (group_leader->signal->leader)
1144 		goto out;
1145 
1146 	/* Fail if a process group id already exists that equals the
1147 	 * proposed session id.
1148 	 */
1149 	if (pid_task(sid, PIDTYPE_PGID))
1150 		goto out;
1151 
1152 	group_leader->signal->leader = 1;
1153 	__set_special_pids(sid);
1154 
1155 	proc_clear_tty(group_leader);
1156 
1157 	err = session;
1158 out:
1159 	write_unlock_irq(&tasklist_lock);
1160 	if (err > 0) {
1161 		proc_sid_connector(group_leader);
1162 		sched_autogroup_create_attach(group_leader);
1163 	}
1164 	return err;
1165 }
1166 
1167 DECLARE_RWSEM(uts_sem);
1168 
1169 #ifdef COMPAT_UTS_MACHINE
1170 #define override_architecture(name) \
1171 	(personality(current->personality) == PER_LINUX32 && \
1172 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1173 		      sizeof(COMPAT_UTS_MACHINE)))
1174 #else
1175 #define override_architecture(name)	0
1176 #endif
1177 
1178 /*
1179  * Work around broken programs that cannot handle "Linux 3.0".
1180  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1181  */
1182 static int override_release(char __user *release, int len)
1183 {
1184 	int ret = 0;
1185 	char buf[65];
1186 
1187 	if (current->personality & UNAME26) {
1188 		char *rest = UTS_RELEASE;
1189 		int ndots = 0;
1190 		unsigned v;
1191 
1192 		while (*rest) {
1193 			if (*rest == '.' && ++ndots >= 3)
1194 				break;
1195 			if (!isdigit(*rest) && *rest != '.')
1196 				break;
1197 			rest++;
1198 		}
1199 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1200 		snprintf(buf, len, "2.6.%u%s", v, rest);
1201 		ret = copy_to_user(release, buf, len);
1202 	}
1203 	return ret;
1204 }
1205 
1206 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1207 {
1208 	int errno = 0;
1209 
1210 	down_read(&uts_sem);
1211 	if (copy_to_user(name, utsname(), sizeof *name))
1212 		errno = -EFAULT;
1213 	up_read(&uts_sem);
1214 
1215 	if (!errno && override_release(name->release, sizeof(name->release)))
1216 		errno = -EFAULT;
1217 	if (!errno && override_architecture(name))
1218 		errno = -EFAULT;
1219 	return errno;
1220 }
1221 
1222 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1223 /*
1224  * Old cruft
1225  */
1226 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1227 {
1228 	int error = 0;
1229 
1230 	if (!name)
1231 		return -EFAULT;
1232 
1233 	down_read(&uts_sem);
1234 	if (copy_to_user(name, utsname(), sizeof(*name)))
1235 		error = -EFAULT;
1236 	up_read(&uts_sem);
1237 
1238 	if (!error && override_release(name->release, sizeof(name->release)))
1239 		error = -EFAULT;
1240 	if (!error && override_architecture(name))
1241 		error = -EFAULT;
1242 	return error;
1243 }
1244 
1245 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1246 {
1247 	int error;
1248 
1249 	if (!name)
1250 		return -EFAULT;
1251 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1252 		return -EFAULT;
1253 
1254 	down_read(&uts_sem);
1255 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1256 			       __OLD_UTS_LEN);
1257 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1258 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1259 				__OLD_UTS_LEN);
1260 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1261 	error |= __copy_to_user(&name->release, &utsname()->release,
1262 				__OLD_UTS_LEN);
1263 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1264 	error |= __copy_to_user(&name->version, &utsname()->version,
1265 				__OLD_UTS_LEN);
1266 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1267 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1268 				__OLD_UTS_LEN);
1269 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1270 	up_read(&uts_sem);
1271 
1272 	if (!error && override_architecture(name))
1273 		error = -EFAULT;
1274 	if (!error && override_release(name->release, sizeof(name->release)))
1275 		error = -EFAULT;
1276 	return error ? -EFAULT : 0;
1277 }
1278 #endif
1279 
1280 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1281 {
1282 	int errno;
1283 	char tmp[__NEW_UTS_LEN];
1284 
1285 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1286 		return -EPERM;
1287 
1288 	if (len < 0 || len > __NEW_UTS_LEN)
1289 		return -EINVAL;
1290 	down_write(&uts_sem);
1291 	errno = -EFAULT;
1292 	if (!copy_from_user(tmp, name, len)) {
1293 		struct new_utsname *u = utsname();
1294 
1295 		memcpy(u->nodename, tmp, len);
1296 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1297 		errno = 0;
1298 	}
1299 	uts_proc_notify(UTS_PROC_HOSTNAME);
1300 	up_write(&uts_sem);
1301 	return errno;
1302 }
1303 
1304 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1305 
1306 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1307 {
1308 	int i, errno;
1309 	struct new_utsname *u;
1310 
1311 	if (len < 0)
1312 		return -EINVAL;
1313 	down_read(&uts_sem);
1314 	u = utsname();
1315 	i = 1 + strlen(u->nodename);
1316 	if (i > len)
1317 		i = len;
1318 	errno = 0;
1319 	if (copy_to_user(name, u->nodename, i))
1320 		errno = -EFAULT;
1321 	up_read(&uts_sem);
1322 	return errno;
1323 }
1324 
1325 #endif
1326 
1327 /*
1328  * Only setdomainname; getdomainname can be implemented by calling
1329  * uname()
1330  */
1331 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1332 {
1333 	int errno;
1334 	char tmp[__NEW_UTS_LEN];
1335 
1336 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1337 		return -EPERM;
1338 	if (len < 0 || len > __NEW_UTS_LEN)
1339 		return -EINVAL;
1340 
1341 	down_write(&uts_sem);
1342 	errno = -EFAULT;
1343 	if (!copy_from_user(tmp, name, len)) {
1344 		struct new_utsname *u = utsname();
1345 
1346 		memcpy(u->domainname, tmp, len);
1347 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1348 		errno = 0;
1349 	}
1350 	uts_proc_notify(UTS_PROC_DOMAINNAME);
1351 	up_write(&uts_sem);
1352 	return errno;
1353 }
1354 
1355 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1356 {
1357 	struct rlimit value;
1358 	int ret;
1359 
1360 	ret = do_prlimit(current, resource, NULL, &value);
1361 	if (!ret)
1362 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1363 
1364 	return ret;
1365 }
1366 
1367 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1368 
1369 /*
1370  *	Back compatibility for getrlimit. Needed for some apps.
1371  */
1372 
1373 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1374 		struct rlimit __user *, rlim)
1375 {
1376 	struct rlimit x;
1377 	if (resource >= RLIM_NLIMITS)
1378 		return -EINVAL;
1379 
1380 	task_lock(current->group_leader);
1381 	x = current->signal->rlim[resource];
1382 	task_unlock(current->group_leader);
1383 	if (x.rlim_cur > 0x7FFFFFFF)
1384 		x.rlim_cur = 0x7FFFFFFF;
1385 	if (x.rlim_max > 0x7FFFFFFF)
1386 		x.rlim_max = 0x7FFFFFFF;
1387 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1388 }
1389 
1390 #endif
1391 
1392 static inline bool rlim64_is_infinity(__u64 rlim64)
1393 {
1394 #if BITS_PER_LONG < 64
1395 	return rlim64 >= ULONG_MAX;
1396 #else
1397 	return rlim64 == RLIM64_INFINITY;
1398 #endif
1399 }
1400 
1401 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1402 {
1403 	if (rlim->rlim_cur == RLIM_INFINITY)
1404 		rlim64->rlim_cur = RLIM64_INFINITY;
1405 	else
1406 		rlim64->rlim_cur = rlim->rlim_cur;
1407 	if (rlim->rlim_max == RLIM_INFINITY)
1408 		rlim64->rlim_max = RLIM64_INFINITY;
1409 	else
1410 		rlim64->rlim_max = rlim->rlim_max;
1411 }
1412 
1413 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1414 {
1415 	if (rlim64_is_infinity(rlim64->rlim_cur))
1416 		rlim->rlim_cur = RLIM_INFINITY;
1417 	else
1418 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1419 	if (rlim64_is_infinity(rlim64->rlim_max))
1420 		rlim->rlim_max = RLIM_INFINITY;
1421 	else
1422 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1423 }
1424 
1425 /* make sure you are allowed to change @tsk limits before calling this */
1426 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1427 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1428 {
1429 	struct rlimit *rlim;
1430 	int retval = 0;
1431 
1432 	if (resource >= RLIM_NLIMITS)
1433 		return -EINVAL;
1434 	if (new_rlim) {
1435 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1436 			return -EINVAL;
1437 		if (resource == RLIMIT_NOFILE &&
1438 				new_rlim->rlim_max > sysctl_nr_open)
1439 			return -EPERM;
1440 	}
1441 
1442 	/* protect tsk->signal and tsk->sighand from disappearing */
1443 	read_lock(&tasklist_lock);
1444 	if (!tsk->sighand) {
1445 		retval = -ESRCH;
1446 		goto out;
1447 	}
1448 
1449 	rlim = tsk->signal->rlim + resource;
1450 	task_lock(tsk->group_leader);
1451 	if (new_rlim) {
1452 		/* Keep the capable check against init_user_ns until
1453 		   cgroups can contain all limits */
1454 		if (new_rlim->rlim_max > rlim->rlim_max &&
1455 				!capable(CAP_SYS_RESOURCE))
1456 			retval = -EPERM;
1457 		if (!retval)
1458 			retval = security_task_setrlimit(tsk->group_leader,
1459 					resource, new_rlim);
1460 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1461 			/*
1462 			 * The caller is asking for an immediate RLIMIT_CPU
1463 			 * expiry.  But we use the zero value to mean "it was
1464 			 * never set".  So let's cheat and make it one second
1465 			 * instead
1466 			 */
1467 			new_rlim->rlim_cur = 1;
1468 		}
1469 	}
1470 	if (!retval) {
1471 		if (old_rlim)
1472 			*old_rlim = *rlim;
1473 		if (new_rlim)
1474 			*rlim = *new_rlim;
1475 	}
1476 	task_unlock(tsk->group_leader);
1477 
1478 	/*
1479 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1480 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1481 	 * very long-standing error, and fixing it now risks breakage of
1482 	 * applications, so we live with it
1483 	 */
1484 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1485 			 new_rlim->rlim_cur != RLIM_INFINITY)
1486 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1487 out:
1488 	read_unlock(&tasklist_lock);
1489 	return retval;
1490 }
1491 
1492 /* rcu lock must be held */
1493 static int check_prlimit_permission(struct task_struct *task)
1494 {
1495 	const struct cred *cred = current_cred(), *tcred;
1496 
1497 	if (current == task)
1498 		return 0;
1499 
1500 	tcred = __task_cred(task);
1501 	if (cred->user->user_ns == tcred->user->user_ns &&
1502 	    (cred->uid == tcred->euid &&
1503 	     cred->uid == tcred->suid &&
1504 	     cred->uid == tcred->uid  &&
1505 	     cred->gid == tcred->egid &&
1506 	     cred->gid == tcred->sgid &&
1507 	     cred->gid == tcred->gid))
1508 		return 0;
1509 	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1510 		return 0;
1511 
1512 	return -EPERM;
1513 }
1514 
1515 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1516 		const struct rlimit64 __user *, new_rlim,
1517 		struct rlimit64 __user *, old_rlim)
1518 {
1519 	struct rlimit64 old64, new64;
1520 	struct rlimit old, new;
1521 	struct task_struct *tsk;
1522 	int ret;
1523 
1524 	if (new_rlim) {
1525 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1526 			return -EFAULT;
1527 		rlim64_to_rlim(&new64, &new);
1528 	}
1529 
1530 	rcu_read_lock();
1531 	tsk = pid ? find_task_by_vpid(pid) : current;
1532 	if (!tsk) {
1533 		rcu_read_unlock();
1534 		return -ESRCH;
1535 	}
1536 	ret = check_prlimit_permission(tsk);
1537 	if (ret) {
1538 		rcu_read_unlock();
1539 		return ret;
1540 	}
1541 	get_task_struct(tsk);
1542 	rcu_read_unlock();
1543 
1544 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1545 			old_rlim ? &old : NULL);
1546 
1547 	if (!ret && old_rlim) {
1548 		rlim_to_rlim64(&old, &old64);
1549 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1550 			ret = -EFAULT;
1551 	}
1552 
1553 	put_task_struct(tsk);
1554 	return ret;
1555 }
1556 
1557 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1558 {
1559 	struct rlimit new_rlim;
1560 
1561 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1562 		return -EFAULT;
1563 	return do_prlimit(current, resource, &new_rlim, NULL);
1564 }
1565 
1566 /*
1567  * It would make sense to put struct rusage in the task_struct,
1568  * except that would make the task_struct be *really big*.  After
1569  * task_struct gets moved into malloc'ed memory, it would
1570  * make sense to do this.  It will make moving the rest of the information
1571  * a lot simpler!  (Which we're not doing right now because we're not
1572  * measuring them yet).
1573  *
1574  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1575  * races with threads incrementing their own counters.  But since word
1576  * reads are atomic, we either get new values or old values and we don't
1577  * care which for the sums.  We always take the siglock to protect reading
1578  * the c* fields from p->signal from races with exit.c updating those
1579  * fields when reaping, so a sample either gets all the additions of a
1580  * given child after it's reaped, or none so this sample is before reaping.
1581  *
1582  * Locking:
1583  * We need to take the siglock for CHILDEREN, SELF and BOTH
1584  * for  the cases current multithreaded, non-current single threaded
1585  * non-current multithreaded.  Thread traversal is now safe with
1586  * the siglock held.
1587  * Strictly speaking, we donot need to take the siglock if we are current and
1588  * single threaded,  as no one else can take our signal_struct away, no one
1589  * else can  reap the  children to update signal->c* counters, and no one else
1590  * can race with the signal-> fields. If we do not take any lock, the
1591  * signal-> fields could be read out of order while another thread was just
1592  * exiting. So we should  place a read memory barrier when we avoid the lock.
1593  * On the writer side,  write memory barrier is implied in  __exit_signal
1594  * as __exit_signal releases  the siglock spinlock after updating the signal->
1595  * fields. But we don't do this yet to keep things simple.
1596  *
1597  */
1598 
1599 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1600 {
1601 	r->ru_nvcsw += t->nvcsw;
1602 	r->ru_nivcsw += t->nivcsw;
1603 	r->ru_minflt += t->min_flt;
1604 	r->ru_majflt += t->maj_flt;
1605 	r->ru_inblock += task_io_get_inblock(t);
1606 	r->ru_oublock += task_io_get_oublock(t);
1607 }
1608 
1609 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1610 {
1611 	struct task_struct *t;
1612 	unsigned long flags;
1613 	cputime_t tgutime, tgstime, utime, stime;
1614 	unsigned long maxrss = 0;
1615 
1616 	memset((char *) r, 0, sizeof *r);
1617 	utime = stime = 0;
1618 
1619 	if (who == RUSAGE_THREAD) {
1620 		task_times(current, &utime, &stime);
1621 		accumulate_thread_rusage(p, r);
1622 		maxrss = p->signal->maxrss;
1623 		goto out;
1624 	}
1625 
1626 	if (!lock_task_sighand(p, &flags))
1627 		return;
1628 
1629 	switch (who) {
1630 		case RUSAGE_BOTH:
1631 		case RUSAGE_CHILDREN:
1632 			utime = p->signal->cutime;
1633 			stime = p->signal->cstime;
1634 			r->ru_nvcsw = p->signal->cnvcsw;
1635 			r->ru_nivcsw = p->signal->cnivcsw;
1636 			r->ru_minflt = p->signal->cmin_flt;
1637 			r->ru_majflt = p->signal->cmaj_flt;
1638 			r->ru_inblock = p->signal->cinblock;
1639 			r->ru_oublock = p->signal->coublock;
1640 			maxrss = p->signal->cmaxrss;
1641 
1642 			if (who == RUSAGE_CHILDREN)
1643 				break;
1644 
1645 		case RUSAGE_SELF:
1646 			thread_group_times(p, &tgutime, &tgstime);
1647 			utime += tgutime;
1648 			stime += tgstime;
1649 			r->ru_nvcsw += p->signal->nvcsw;
1650 			r->ru_nivcsw += p->signal->nivcsw;
1651 			r->ru_minflt += p->signal->min_flt;
1652 			r->ru_majflt += p->signal->maj_flt;
1653 			r->ru_inblock += p->signal->inblock;
1654 			r->ru_oublock += p->signal->oublock;
1655 			if (maxrss < p->signal->maxrss)
1656 				maxrss = p->signal->maxrss;
1657 			t = p;
1658 			do {
1659 				accumulate_thread_rusage(t, r);
1660 				t = next_thread(t);
1661 			} while (t != p);
1662 			break;
1663 
1664 		default:
1665 			BUG();
1666 	}
1667 	unlock_task_sighand(p, &flags);
1668 
1669 out:
1670 	cputime_to_timeval(utime, &r->ru_utime);
1671 	cputime_to_timeval(stime, &r->ru_stime);
1672 
1673 	if (who != RUSAGE_CHILDREN) {
1674 		struct mm_struct *mm = get_task_mm(p);
1675 		if (mm) {
1676 			setmax_mm_hiwater_rss(&maxrss, mm);
1677 			mmput(mm);
1678 		}
1679 	}
1680 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1681 }
1682 
1683 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1684 {
1685 	struct rusage r;
1686 	k_getrusage(p, who, &r);
1687 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1688 }
1689 
1690 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1691 {
1692 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1693 	    who != RUSAGE_THREAD)
1694 		return -EINVAL;
1695 	return getrusage(current, who, ru);
1696 }
1697 
1698 SYSCALL_DEFINE1(umask, int, mask)
1699 {
1700 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1701 	return mask;
1702 }
1703 
1704 #ifdef CONFIG_CHECKPOINT_RESTORE
1705 static int prctl_set_mm(int opt, unsigned long addr,
1706 			unsigned long arg4, unsigned long arg5)
1707 {
1708 	unsigned long rlim = rlimit(RLIMIT_DATA);
1709 	unsigned long vm_req_flags;
1710 	unsigned long vm_bad_flags;
1711 	struct vm_area_struct *vma;
1712 	int error = 0;
1713 	struct mm_struct *mm = current->mm;
1714 
1715 	if (arg4 | arg5)
1716 		return -EINVAL;
1717 
1718 	if (!capable(CAP_SYS_RESOURCE))
1719 		return -EPERM;
1720 
1721 	if (addr >= TASK_SIZE)
1722 		return -EINVAL;
1723 
1724 	down_read(&mm->mmap_sem);
1725 	vma = find_vma(mm, addr);
1726 
1727 	if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1728 		/* It must be existing VMA */
1729 		if (!vma || vma->vm_start > addr)
1730 			goto out;
1731 	}
1732 
1733 	error = -EINVAL;
1734 	switch (opt) {
1735 	case PR_SET_MM_START_CODE:
1736 	case PR_SET_MM_END_CODE:
1737 		vm_req_flags = VM_READ | VM_EXEC;
1738 		vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1739 
1740 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1741 		    (vma->vm_flags & vm_bad_flags))
1742 			goto out;
1743 
1744 		if (opt == PR_SET_MM_START_CODE)
1745 			mm->start_code = addr;
1746 		else
1747 			mm->end_code = addr;
1748 		break;
1749 
1750 	case PR_SET_MM_START_DATA:
1751 	case PR_SET_MM_END_DATA:
1752 		vm_req_flags = VM_READ | VM_WRITE;
1753 		vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1754 
1755 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1756 		    (vma->vm_flags & vm_bad_flags))
1757 			goto out;
1758 
1759 		if (opt == PR_SET_MM_START_DATA)
1760 			mm->start_data = addr;
1761 		else
1762 			mm->end_data = addr;
1763 		break;
1764 
1765 	case PR_SET_MM_START_STACK:
1766 
1767 #ifdef CONFIG_STACK_GROWSUP
1768 		vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1769 #else
1770 		vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1771 #endif
1772 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1773 			goto out;
1774 
1775 		mm->start_stack = addr;
1776 		break;
1777 
1778 	case PR_SET_MM_START_BRK:
1779 		if (addr <= mm->end_data)
1780 			goto out;
1781 
1782 		if (rlim < RLIM_INFINITY &&
1783 		    (mm->brk - addr) +
1784 		    (mm->end_data - mm->start_data) > rlim)
1785 			goto out;
1786 
1787 		mm->start_brk = addr;
1788 		break;
1789 
1790 	case PR_SET_MM_BRK:
1791 		if (addr <= mm->end_data)
1792 			goto out;
1793 
1794 		if (rlim < RLIM_INFINITY &&
1795 		    (addr - mm->start_brk) +
1796 		    (mm->end_data - mm->start_data) > rlim)
1797 			goto out;
1798 
1799 		mm->brk = addr;
1800 		break;
1801 
1802 	default:
1803 		error = -EINVAL;
1804 		goto out;
1805 	}
1806 
1807 	error = 0;
1808 
1809 out:
1810 	up_read(&mm->mmap_sem);
1811 
1812 	return error;
1813 }
1814 #else /* CONFIG_CHECKPOINT_RESTORE */
1815 static int prctl_set_mm(int opt, unsigned long addr,
1816 			unsigned long arg4, unsigned long arg5)
1817 {
1818 	return -EINVAL;
1819 }
1820 #endif
1821 
1822 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1823 		unsigned long, arg4, unsigned long, arg5)
1824 {
1825 	struct task_struct *me = current;
1826 	unsigned char comm[sizeof(me->comm)];
1827 	long error;
1828 
1829 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1830 	if (error != -ENOSYS)
1831 		return error;
1832 
1833 	error = 0;
1834 	switch (option) {
1835 		case PR_SET_PDEATHSIG:
1836 			if (!valid_signal(arg2)) {
1837 				error = -EINVAL;
1838 				break;
1839 			}
1840 			me->pdeath_signal = arg2;
1841 			error = 0;
1842 			break;
1843 		case PR_GET_PDEATHSIG:
1844 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1845 			break;
1846 		case PR_GET_DUMPABLE:
1847 			error = get_dumpable(me->mm);
1848 			break;
1849 		case PR_SET_DUMPABLE:
1850 			if (arg2 < 0 || arg2 > 1) {
1851 				error = -EINVAL;
1852 				break;
1853 			}
1854 			set_dumpable(me->mm, arg2);
1855 			error = 0;
1856 			break;
1857 
1858 		case PR_SET_UNALIGN:
1859 			error = SET_UNALIGN_CTL(me, arg2);
1860 			break;
1861 		case PR_GET_UNALIGN:
1862 			error = GET_UNALIGN_CTL(me, arg2);
1863 			break;
1864 		case PR_SET_FPEMU:
1865 			error = SET_FPEMU_CTL(me, arg2);
1866 			break;
1867 		case PR_GET_FPEMU:
1868 			error = GET_FPEMU_CTL(me, arg2);
1869 			break;
1870 		case PR_SET_FPEXC:
1871 			error = SET_FPEXC_CTL(me, arg2);
1872 			break;
1873 		case PR_GET_FPEXC:
1874 			error = GET_FPEXC_CTL(me, arg2);
1875 			break;
1876 		case PR_GET_TIMING:
1877 			error = PR_TIMING_STATISTICAL;
1878 			break;
1879 		case PR_SET_TIMING:
1880 			if (arg2 != PR_TIMING_STATISTICAL)
1881 				error = -EINVAL;
1882 			else
1883 				error = 0;
1884 			break;
1885 
1886 		case PR_SET_NAME:
1887 			comm[sizeof(me->comm)-1] = 0;
1888 			if (strncpy_from_user(comm, (char __user *)arg2,
1889 					      sizeof(me->comm) - 1) < 0)
1890 				return -EFAULT;
1891 			set_task_comm(me, comm);
1892 			proc_comm_connector(me);
1893 			return 0;
1894 		case PR_GET_NAME:
1895 			get_task_comm(comm, me);
1896 			if (copy_to_user((char __user *)arg2, comm,
1897 					 sizeof(comm)))
1898 				return -EFAULT;
1899 			return 0;
1900 		case PR_GET_ENDIAN:
1901 			error = GET_ENDIAN(me, arg2);
1902 			break;
1903 		case PR_SET_ENDIAN:
1904 			error = SET_ENDIAN(me, arg2);
1905 			break;
1906 
1907 		case PR_GET_SECCOMP:
1908 			error = prctl_get_seccomp();
1909 			break;
1910 		case PR_SET_SECCOMP:
1911 			error = prctl_set_seccomp(arg2);
1912 			break;
1913 		case PR_GET_TSC:
1914 			error = GET_TSC_CTL(arg2);
1915 			break;
1916 		case PR_SET_TSC:
1917 			error = SET_TSC_CTL(arg2);
1918 			break;
1919 		case PR_TASK_PERF_EVENTS_DISABLE:
1920 			error = perf_event_task_disable();
1921 			break;
1922 		case PR_TASK_PERF_EVENTS_ENABLE:
1923 			error = perf_event_task_enable();
1924 			break;
1925 		case PR_GET_TIMERSLACK:
1926 			error = current->timer_slack_ns;
1927 			break;
1928 		case PR_SET_TIMERSLACK:
1929 			if (arg2 <= 0)
1930 				current->timer_slack_ns =
1931 					current->default_timer_slack_ns;
1932 			else
1933 				current->timer_slack_ns = arg2;
1934 			error = 0;
1935 			break;
1936 		case PR_MCE_KILL:
1937 			if (arg4 | arg5)
1938 				return -EINVAL;
1939 			switch (arg2) {
1940 			case PR_MCE_KILL_CLEAR:
1941 				if (arg3 != 0)
1942 					return -EINVAL;
1943 				current->flags &= ~PF_MCE_PROCESS;
1944 				break;
1945 			case PR_MCE_KILL_SET:
1946 				current->flags |= PF_MCE_PROCESS;
1947 				if (arg3 == PR_MCE_KILL_EARLY)
1948 					current->flags |= PF_MCE_EARLY;
1949 				else if (arg3 == PR_MCE_KILL_LATE)
1950 					current->flags &= ~PF_MCE_EARLY;
1951 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1952 					current->flags &=
1953 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1954 				else
1955 					return -EINVAL;
1956 				break;
1957 			default:
1958 				return -EINVAL;
1959 			}
1960 			error = 0;
1961 			break;
1962 		case PR_MCE_KILL_GET:
1963 			if (arg2 | arg3 | arg4 | arg5)
1964 				return -EINVAL;
1965 			if (current->flags & PF_MCE_PROCESS)
1966 				error = (current->flags & PF_MCE_EARLY) ?
1967 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1968 			else
1969 				error = PR_MCE_KILL_DEFAULT;
1970 			break;
1971 		case PR_SET_MM:
1972 			error = prctl_set_mm(arg2, arg3, arg4, arg5);
1973 			break;
1974 		case PR_SET_CHILD_SUBREAPER:
1975 			me->signal->is_child_subreaper = !!arg2;
1976 			error = 0;
1977 			break;
1978 		case PR_GET_CHILD_SUBREAPER:
1979 			error = put_user(me->signal->is_child_subreaper,
1980 					 (int __user *) arg2);
1981 			break;
1982 		default:
1983 			error = -EINVAL;
1984 			break;
1985 	}
1986 	return error;
1987 }
1988 
1989 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1990 		struct getcpu_cache __user *, unused)
1991 {
1992 	int err = 0;
1993 	int cpu = raw_smp_processor_id();
1994 	if (cpup)
1995 		err |= put_user(cpu, cpup);
1996 	if (nodep)
1997 		err |= put_user(cpu_to_node(cpu), nodep);
1998 	return err ? -EFAULT : 0;
1999 }
2000 
2001 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2002 
2003 static void argv_cleanup(struct subprocess_info *info)
2004 {
2005 	argv_free(info->argv);
2006 }
2007 
2008 /**
2009  * orderly_poweroff - Trigger an orderly system poweroff
2010  * @force: force poweroff if command execution fails
2011  *
2012  * This may be called from any context to trigger a system shutdown.
2013  * If the orderly shutdown fails, it will force an immediate shutdown.
2014  */
2015 int orderly_poweroff(bool force)
2016 {
2017 	int argc;
2018 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2019 	static char *envp[] = {
2020 		"HOME=/",
2021 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2022 		NULL
2023 	};
2024 	int ret = -ENOMEM;
2025 	struct subprocess_info *info;
2026 
2027 	if (argv == NULL) {
2028 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2029 		       __func__, poweroff_cmd);
2030 		goto out;
2031 	}
2032 
2033 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
2034 	if (info == NULL) {
2035 		argv_free(argv);
2036 		goto out;
2037 	}
2038 
2039 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
2040 
2041 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
2042 
2043   out:
2044 	if (ret && force) {
2045 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2046 		       "forcing the issue\n");
2047 
2048 		/* I guess this should try to kick off some daemon to
2049 		   sync and poweroff asap.  Or not even bother syncing
2050 		   if we're doing an emergency shutdown? */
2051 		emergency_sync();
2052 		kernel_power_off();
2053 	}
2054 
2055 	return ret;
2056 }
2057 EXPORT_SYMBOL_GPL(orderly_poweroff);
2058