1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/export.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/reboot.h> 12 #include <linux/prctl.h> 13 #include <linux/highuid.h> 14 #include <linux/fs.h> 15 #include <linux/kmod.h> 16 #include <linux/perf_event.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/gfp.h> 40 #include <linux/syscore_ops.h> 41 #include <linux/version.h> 42 #include <linux/ctype.h> 43 44 #include <linux/compat.h> 45 #include <linux/syscalls.h> 46 #include <linux/kprobes.h> 47 #include <linux/user_namespace.h> 48 49 #include <linux/kmsg_dump.h> 50 /* Move somewhere else to avoid recompiling? */ 51 #include <generated/utsrelease.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/io.h> 55 #include <asm/unistd.h> 56 57 #ifndef SET_UNALIGN_CTL 58 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 59 #endif 60 #ifndef GET_UNALIGN_CTL 61 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 62 #endif 63 #ifndef SET_FPEMU_CTL 64 # define SET_FPEMU_CTL(a,b) (-EINVAL) 65 #endif 66 #ifndef GET_FPEMU_CTL 67 # define GET_FPEMU_CTL(a,b) (-EINVAL) 68 #endif 69 #ifndef SET_FPEXC_CTL 70 # define SET_FPEXC_CTL(a,b) (-EINVAL) 71 #endif 72 #ifndef GET_FPEXC_CTL 73 # define GET_FPEXC_CTL(a,b) (-EINVAL) 74 #endif 75 #ifndef GET_ENDIAN 76 # define GET_ENDIAN(a,b) (-EINVAL) 77 #endif 78 #ifndef SET_ENDIAN 79 # define SET_ENDIAN(a,b) (-EINVAL) 80 #endif 81 #ifndef GET_TSC_CTL 82 # define GET_TSC_CTL(a) (-EINVAL) 83 #endif 84 #ifndef SET_TSC_CTL 85 # define SET_TSC_CTL(a) (-EINVAL) 86 #endif 87 88 /* 89 * this is where the system-wide overflow UID and GID are defined, for 90 * architectures that now have 32-bit UID/GID but didn't in the past 91 */ 92 93 int overflowuid = DEFAULT_OVERFLOWUID; 94 int overflowgid = DEFAULT_OVERFLOWGID; 95 96 #ifdef CONFIG_UID16 97 EXPORT_SYMBOL(overflowuid); 98 EXPORT_SYMBOL(overflowgid); 99 #endif 100 101 /* 102 * the same as above, but for filesystems which can only store a 16-bit 103 * UID and GID. as such, this is needed on all architectures 104 */ 105 106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 108 109 EXPORT_SYMBOL(fs_overflowuid); 110 EXPORT_SYMBOL(fs_overflowgid); 111 112 /* 113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 114 */ 115 116 int C_A_D = 1; 117 struct pid *cad_pid; 118 EXPORT_SYMBOL(cad_pid); 119 120 /* 121 * If set, this is used for preparing the system to power off. 122 */ 123 124 void (*pm_power_off_prepare)(void); 125 126 /* 127 * Returns true if current's euid is same as p's uid or euid, 128 * or has CAP_SYS_NICE to p's user_ns. 129 * 130 * Called with rcu_read_lock, creds are safe 131 */ 132 static bool set_one_prio_perm(struct task_struct *p) 133 { 134 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 135 136 if (pcred->user->user_ns == cred->user->user_ns && 137 (pcred->uid == cred->euid || 138 pcred->euid == cred->euid)) 139 return true; 140 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE)) 141 return true; 142 return false; 143 } 144 145 /* 146 * set the priority of a task 147 * - the caller must hold the RCU read lock 148 */ 149 static int set_one_prio(struct task_struct *p, int niceval, int error) 150 { 151 int no_nice; 152 153 if (!set_one_prio_perm(p)) { 154 error = -EPERM; 155 goto out; 156 } 157 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 158 error = -EACCES; 159 goto out; 160 } 161 no_nice = security_task_setnice(p, niceval); 162 if (no_nice) { 163 error = no_nice; 164 goto out; 165 } 166 if (error == -ESRCH) 167 error = 0; 168 set_user_nice(p, niceval); 169 out: 170 return error; 171 } 172 173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 174 { 175 struct task_struct *g, *p; 176 struct user_struct *user; 177 const struct cred *cred = current_cred(); 178 int error = -EINVAL; 179 struct pid *pgrp; 180 181 if (which > PRIO_USER || which < PRIO_PROCESS) 182 goto out; 183 184 /* normalize: avoid signed division (rounding problems) */ 185 error = -ESRCH; 186 if (niceval < -20) 187 niceval = -20; 188 if (niceval > 19) 189 niceval = 19; 190 191 rcu_read_lock(); 192 read_lock(&tasklist_lock); 193 switch (which) { 194 case PRIO_PROCESS: 195 if (who) 196 p = find_task_by_vpid(who); 197 else 198 p = current; 199 if (p) 200 error = set_one_prio(p, niceval, error); 201 break; 202 case PRIO_PGRP: 203 if (who) 204 pgrp = find_vpid(who); 205 else 206 pgrp = task_pgrp(current); 207 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 208 error = set_one_prio(p, niceval, error); 209 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 210 break; 211 case PRIO_USER: 212 user = (struct user_struct *) cred->user; 213 if (!who) 214 who = cred->uid; 215 else if ((who != cred->uid) && 216 !(user = find_user(who))) 217 goto out_unlock; /* No processes for this user */ 218 219 do_each_thread(g, p) { 220 if (__task_cred(p)->uid == who) 221 error = set_one_prio(p, niceval, error); 222 } while_each_thread(g, p); 223 if (who != cred->uid) 224 free_uid(user); /* For find_user() */ 225 break; 226 } 227 out_unlock: 228 read_unlock(&tasklist_lock); 229 rcu_read_unlock(); 230 out: 231 return error; 232 } 233 234 /* 235 * Ugh. To avoid negative return values, "getpriority()" will 236 * not return the normal nice-value, but a negated value that 237 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 238 * to stay compatible. 239 */ 240 SYSCALL_DEFINE2(getpriority, int, which, int, who) 241 { 242 struct task_struct *g, *p; 243 struct user_struct *user; 244 const struct cred *cred = current_cred(); 245 long niceval, retval = -ESRCH; 246 struct pid *pgrp; 247 248 if (which > PRIO_USER || which < PRIO_PROCESS) 249 return -EINVAL; 250 251 rcu_read_lock(); 252 read_lock(&tasklist_lock); 253 switch (which) { 254 case PRIO_PROCESS: 255 if (who) 256 p = find_task_by_vpid(who); 257 else 258 p = current; 259 if (p) { 260 niceval = 20 - task_nice(p); 261 if (niceval > retval) 262 retval = niceval; 263 } 264 break; 265 case PRIO_PGRP: 266 if (who) 267 pgrp = find_vpid(who); 268 else 269 pgrp = task_pgrp(current); 270 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 271 niceval = 20 - task_nice(p); 272 if (niceval > retval) 273 retval = niceval; 274 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 275 break; 276 case PRIO_USER: 277 user = (struct user_struct *) cred->user; 278 if (!who) 279 who = cred->uid; 280 else if ((who != cred->uid) && 281 !(user = find_user(who))) 282 goto out_unlock; /* No processes for this user */ 283 284 do_each_thread(g, p) { 285 if (__task_cred(p)->uid == who) { 286 niceval = 20 - task_nice(p); 287 if (niceval > retval) 288 retval = niceval; 289 } 290 } while_each_thread(g, p); 291 if (who != cred->uid) 292 free_uid(user); /* for find_user() */ 293 break; 294 } 295 out_unlock: 296 read_unlock(&tasklist_lock); 297 rcu_read_unlock(); 298 299 return retval; 300 } 301 302 /** 303 * emergency_restart - reboot the system 304 * 305 * Without shutting down any hardware or taking any locks 306 * reboot the system. This is called when we know we are in 307 * trouble so this is our best effort to reboot. This is 308 * safe to call in interrupt context. 309 */ 310 void emergency_restart(void) 311 { 312 kmsg_dump(KMSG_DUMP_EMERG); 313 machine_emergency_restart(); 314 } 315 EXPORT_SYMBOL_GPL(emergency_restart); 316 317 void kernel_restart_prepare(char *cmd) 318 { 319 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 320 system_state = SYSTEM_RESTART; 321 usermodehelper_disable(); 322 device_shutdown(); 323 syscore_shutdown(); 324 } 325 326 /** 327 * register_reboot_notifier - Register function to be called at reboot time 328 * @nb: Info about notifier function to be called 329 * 330 * Registers a function with the list of functions 331 * to be called at reboot time. 332 * 333 * Currently always returns zero, as blocking_notifier_chain_register() 334 * always returns zero. 335 */ 336 int register_reboot_notifier(struct notifier_block *nb) 337 { 338 return blocking_notifier_chain_register(&reboot_notifier_list, nb); 339 } 340 EXPORT_SYMBOL(register_reboot_notifier); 341 342 /** 343 * unregister_reboot_notifier - Unregister previously registered reboot notifier 344 * @nb: Hook to be unregistered 345 * 346 * Unregisters a previously registered reboot 347 * notifier function. 348 * 349 * Returns zero on success, or %-ENOENT on failure. 350 */ 351 int unregister_reboot_notifier(struct notifier_block *nb) 352 { 353 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); 354 } 355 EXPORT_SYMBOL(unregister_reboot_notifier); 356 357 /** 358 * kernel_restart - reboot the system 359 * @cmd: pointer to buffer containing command to execute for restart 360 * or %NULL 361 * 362 * Shutdown everything and perform a clean reboot. 363 * This is not safe to call in interrupt context. 364 */ 365 void kernel_restart(char *cmd) 366 { 367 kernel_restart_prepare(cmd); 368 if (!cmd) 369 printk(KERN_EMERG "Restarting system.\n"); 370 else 371 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 372 kmsg_dump(KMSG_DUMP_RESTART); 373 machine_restart(cmd); 374 } 375 EXPORT_SYMBOL_GPL(kernel_restart); 376 377 static void kernel_shutdown_prepare(enum system_states state) 378 { 379 blocking_notifier_call_chain(&reboot_notifier_list, 380 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 381 system_state = state; 382 usermodehelper_disable(); 383 device_shutdown(); 384 } 385 /** 386 * kernel_halt - halt the system 387 * 388 * Shutdown everything and perform a clean system halt. 389 */ 390 void kernel_halt(void) 391 { 392 kernel_shutdown_prepare(SYSTEM_HALT); 393 syscore_shutdown(); 394 printk(KERN_EMERG "System halted.\n"); 395 kmsg_dump(KMSG_DUMP_HALT); 396 machine_halt(); 397 } 398 399 EXPORT_SYMBOL_GPL(kernel_halt); 400 401 /** 402 * kernel_power_off - power_off the system 403 * 404 * Shutdown everything and perform a clean system power_off. 405 */ 406 void kernel_power_off(void) 407 { 408 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 409 if (pm_power_off_prepare) 410 pm_power_off_prepare(); 411 disable_nonboot_cpus(); 412 syscore_shutdown(); 413 printk(KERN_EMERG "Power down.\n"); 414 kmsg_dump(KMSG_DUMP_POWEROFF); 415 machine_power_off(); 416 } 417 EXPORT_SYMBOL_GPL(kernel_power_off); 418 419 static DEFINE_MUTEX(reboot_mutex); 420 421 /* 422 * Reboot system call: for obvious reasons only root may call it, 423 * and even root needs to set up some magic numbers in the registers 424 * so that some mistake won't make this reboot the whole machine. 425 * You can also set the meaning of the ctrl-alt-del-key here. 426 * 427 * reboot doesn't sync: do that yourself before calling this. 428 */ 429 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, 430 void __user *, arg) 431 { 432 char buffer[256]; 433 int ret = 0; 434 435 /* We only trust the superuser with rebooting the system. */ 436 if (!capable(CAP_SYS_BOOT)) 437 return -EPERM; 438 439 /* For safety, we require "magic" arguments. */ 440 if (magic1 != LINUX_REBOOT_MAGIC1 || 441 (magic2 != LINUX_REBOOT_MAGIC2 && 442 magic2 != LINUX_REBOOT_MAGIC2A && 443 magic2 != LINUX_REBOOT_MAGIC2B && 444 magic2 != LINUX_REBOOT_MAGIC2C)) 445 return -EINVAL; 446 447 /* 448 * If pid namespaces are enabled and the current task is in a child 449 * pid_namespace, the command is handled by reboot_pid_ns() which will 450 * call do_exit(). 451 */ 452 ret = reboot_pid_ns(task_active_pid_ns(current), cmd); 453 if (ret) 454 return ret; 455 456 /* Instead of trying to make the power_off code look like 457 * halt when pm_power_off is not set do it the easy way. 458 */ 459 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 460 cmd = LINUX_REBOOT_CMD_HALT; 461 462 mutex_lock(&reboot_mutex); 463 switch (cmd) { 464 case LINUX_REBOOT_CMD_RESTART: 465 kernel_restart(NULL); 466 break; 467 468 case LINUX_REBOOT_CMD_CAD_ON: 469 C_A_D = 1; 470 break; 471 472 case LINUX_REBOOT_CMD_CAD_OFF: 473 C_A_D = 0; 474 break; 475 476 case LINUX_REBOOT_CMD_HALT: 477 kernel_halt(); 478 do_exit(0); 479 panic("cannot halt"); 480 481 case LINUX_REBOOT_CMD_POWER_OFF: 482 kernel_power_off(); 483 do_exit(0); 484 break; 485 486 case LINUX_REBOOT_CMD_RESTART2: 487 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 488 ret = -EFAULT; 489 break; 490 } 491 buffer[sizeof(buffer) - 1] = '\0'; 492 493 kernel_restart(buffer); 494 break; 495 496 #ifdef CONFIG_KEXEC 497 case LINUX_REBOOT_CMD_KEXEC: 498 ret = kernel_kexec(); 499 break; 500 #endif 501 502 #ifdef CONFIG_HIBERNATION 503 case LINUX_REBOOT_CMD_SW_SUSPEND: 504 ret = hibernate(); 505 break; 506 #endif 507 508 default: 509 ret = -EINVAL; 510 break; 511 } 512 mutex_unlock(&reboot_mutex); 513 return ret; 514 } 515 516 static void deferred_cad(struct work_struct *dummy) 517 { 518 kernel_restart(NULL); 519 } 520 521 /* 522 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 523 * As it's called within an interrupt, it may NOT sync: the only choice 524 * is whether to reboot at once, or just ignore the ctrl-alt-del. 525 */ 526 void ctrl_alt_del(void) 527 { 528 static DECLARE_WORK(cad_work, deferred_cad); 529 530 if (C_A_D) 531 schedule_work(&cad_work); 532 else 533 kill_cad_pid(SIGINT, 1); 534 } 535 536 /* 537 * Unprivileged users may change the real gid to the effective gid 538 * or vice versa. (BSD-style) 539 * 540 * If you set the real gid at all, or set the effective gid to a value not 541 * equal to the real gid, then the saved gid is set to the new effective gid. 542 * 543 * This makes it possible for a setgid program to completely drop its 544 * privileges, which is often a useful assertion to make when you are doing 545 * a security audit over a program. 546 * 547 * The general idea is that a program which uses just setregid() will be 548 * 100% compatible with BSD. A program which uses just setgid() will be 549 * 100% compatible with POSIX with saved IDs. 550 * 551 * SMP: There are not races, the GIDs are checked only by filesystem 552 * operations (as far as semantic preservation is concerned). 553 */ 554 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 555 { 556 const struct cred *old; 557 struct cred *new; 558 int retval; 559 560 new = prepare_creds(); 561 if (!new) 562 return -ENOMEM; 563 old = current_cred(); 564 565 retval = -EPERM; 566 if (rgid != (gid_t) -1) { 567 if (old->gid == rgid || 568 old->egid == rgid || 569 nsown_capable(CAP_SETGID)) 570 new->gid = rgid; 571 else 572 goto error; 573 } 574 if (egid != (gid_t) -1) { 575 if (old->gid == egid || 576 old->egid == egid || 577 old->sgid == egid || 578 nsown_capable(CAP_SETGID)) 579 new->egid = egid; 580 else 581 goto error; 582 } 583 584 if (rgid != (gid_t) -1 || 585 (egid != (gid_t) -1 && egid != old->gid)) 586 new->sgid = new->egid; 587 new->fsgid = new->egid; 588 589 return commit_creds(new); 590 591 error: 592 abort_creds(new); 593 return retval; 594 } 595 596 /* 597 * setgid() is implemented like SysV w/ SAVED_IDS 598 * 599 * SMP: Same implicit races as above. 600 */ 601 SYSCALL_DEFINE1(setgid, gid_t, gid) 602 { 603 const struct cred *old; 604 struct cred *new; 605 int retval; 606 607 new = prepare_creds(); 608 if (!new) 609 return -ENOMEM; 610 old = current_cred(); 611 612 retval = -EPERM; 613 if (nsown_capable(CAP_SETGID)) 614 new->gid = new->egid = new->sgid = new->fsgid = gid; 615 else if (gid == old->gid || gid == old->sgid) 616 new->egid = new->fsgid = gid; 617 else 618 goto error; 619 620 return commit_creds(new); 621 622 error: 623 abort_creds(new); 624 return retval; 625 } 626 627 /* 628 * change the user struct in a credentials set to match the new UID 629 */ 630 static int set_user(struct cred *new) 631 { 632 struct user_struct *new_user; 633 634 new_user = alloc_uid(current_user_ns(), new->uid); 635 if (!new_user) 636 return -EAGAIN; 637 638 /* 639 * We don't fail in case of NPROC limit excess here because too many 640 * poorly written programs don't check set*uid() return code, assuming 641 * it never fails if called by root. We may still enforce NPROC limit 642 * for programs doing set*uid()+execve() by harmlessly deferring the 643 * failure to the execve() stage. 644 */ 645 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 646 new_user != INIT_USER) 647 current->flags |= PF_NPROC_EXCEEDED; 648 else 649 current->flags &= ~PF_NPROC_EXCEEDED; 650 651 free_uid(new->user); 652 new->user = new_user; 653 return 0; 654 } 655 656 /* 657 * Unprivileged users may change the real uid to the effective uid 658 * or vice versa. (BSD-style) 659 * 660 * If you set the real uid at all, or set the effective uid to a value not 661 * equal to the real uid, then the saved uid is set to the new effective uid. 662 * 663 * This makes it possible for a setuid program to completely drop its 664 * privileges, which is often a useful assertion to make when you are doing 665 * a security audit over a program. 666 * 667 * The general idea is that a program which uses just setreuid() will be 668 * 100% compatible with BSD. A program which uses just setuid() will be 669 * 100% compatible with POSIX with saved IDs. 670 */ 671 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 672 { 673 const struct cred *old; 674 struct cred *new; 675 int retval; 676 677 new = prepare_creds(); 678 if (!new) 679 return -ENOMEM; 680 old = current_cred(); 681 682 retval = -EPERM; 683 if (ruid != (uid_t) -1) { 684 new->uid = ruid; 685 if (old->uid != ruid && 686 old->euid != ruid && 687 !nsown_capable(CAP_SETUID)) 688 goto error; 689 } 690 691 if (euid != (uid_t) -1) { 692 new->euid = euid; 693 if (old->uid != euid && 694 old->euid != euid && 695 old->suid != euid && 696 !nsown_capable(CAP_SETUID)) 697 goto error; 698 } 699 700 if (new->uid != old->uid) { 701 retval = set_user(new); 702 if (retval < 0) 703 goto error; 704 } 705 if (ruid != (uid_t) -1 || 706 (euid != (uid_t) -1 && euid != old->uid)) 707 new->suid = new->euid; 708 new->fsuid = new->euid; 709 710 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 711 if (retval < 0) 712 goto error; 713 714 return commit_creds(new); 715 716 error: 717 abort_creds(new); 718 return retval; 719 } 720 721 /* 722 * setuid() is implemented like SysV with SAVED_IDS 723 * 724 * Note that SAVED_ID's is deficient in that a setuid root program 725 * like sendmail, for example, cannot set its uid to be a normal 726 * user and then switch back, because if you're root, setuid() sets 727 * the saved uid too. If you don't like this, blame the bright people 728 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 729 * will allow a root program to temporarily drop privileges and be able to 730 * regain them by swapping the real and effective uid. 731 */ 732 SYSCALL_DEFINE1(setuid, uid_t, uid) 733 { 734 const struct cred *old; 735 struct cred *new; 736 int retval; 737 738 new = prepare_creds(); 739 if (!new) 740 return -ENOMEM; 741 old = current_cred(); 742 743 retval = -EPERM; 744 if (nsown_capable(CAP_SETUID)) { 745 new->suid = new->uid = uid; 746 if (uid != old->uid) { 747 retval = set_user(new); 748 if (retval < 0) 749 goto error; 750 } 751 } else if (uid != old->uid && uid != new->suid) { 752 goto error; 753 } 754 755 new->fsuid = new->euid = uid; 756 757 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 758 if (retval < 0) 759 goto error; 760 761 return commit_creds(new); 762 763 error: 764 abort_creds(new); 765 return retval; 766 } 767 768 769 /* 770 * This function implements a generic ability to update ruid, euid, 771 * and suid. This allows you to implement the 4.4 compatible seteuid(). 772 */ 773 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 774 { 775 const struct cred *old; 776 struct cred *new; 777 int retval; 778 779 new = prepare_creds(); 780 if (!new) 781 return -ENOMEM; 782 783 old = current_cred(); 784 785 retval = -EPERM; 786 if (!nsown_capable(CAP_SETUID)) { 787 if (ruid != (uid_t) -1 && ruid != old->uid && 788 ruid != old->euid && ruid != old->suid) 789 goto error; 790 if (euid != (uid_t) -1 && euid != old->uid && 791 euid != old->euid && euid != old->suid) 792 goto error; 793 if (suid != (uid_t) -1 && suid != old->uid && 794 suid != old->euid && suid != old->suid) 795 goto error; 796 } 797 798 if (ruid != (uid_t) -1) { 799 new->uid = ruid; 800 if (ruid != old->uid) { 801 retval = set_user(new); 802 if (retval < 0) 803 goto error; 804 } 805 } 806 if (euid != (uid_t) -1) 807 new->euid = euid; 808 if (suid != (uid_t) -1) 809 new->suid = suid; 810 new->fsuid = new->euid; 811 812 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 813 if (retval < 0) 814 goto error; 815 816 return commit_creds(new); 817 818 error: 819 abort_creds(new); 820 return retval; 821 } 822 823 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) 824 { 825 const struct cred *cred = current_cred(); 826 int retval; 827 828 if (!(retval = put_user(cred->uid, ruid)) && 829 !(retval = put_user(cred->euid, euid))) 830 retval = put_user(cred->suid, suid); 831 832 return retval; 833 } 834 835 /* 836 * Same as above, but for rgid, egid, sgid. 837 */ 838 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 839 { 840 const struct cred *old; 841 struct cred *new; 842 int retval; 843 844 new = prepare_creds(); 845 if (!new) 846 return -ENOMEM; 847 old = current_cred(); 848 849 retval = -EPERM; 850 if (!nsown_capable(CAP_SETGID)) { 851 if (rgid != (gid_t) -1 && rgid != old->gid && 852 rgid != old->egid && rgid != old->sgid) 853 goto error; 854 if (egid != (gid_t) -1 && egid != old->gid && 855 egid != old->egid && egid != old->sgid) 856 goto error; 857 if (sgid != (gid_t) -1 && sgid != old->gid && 858 sgid != old->egid && sgid != old->sgid) 859 goto error; 860 } 861 862 if (rgid != (gid_t) -1) 863 new->gid = rgid; 864 if (egid != (gid_t) -1) 865 new->egid = egid; 866 if (sgid != (gid_t) -1) 867 new->sgid = sgid; 868 new->fsgid = new->egid; 869 870 return commit_creds(new); 871 872 error: 873 abort_creds(new); 874 return retval; 875 } 876 877 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) 878 { 879 const struct cred *cred = current_cred(); 880 int retval; 881 882 if (!(retval = put_user(cred->gid, rgid)) && 883 !(retval = put_user(cred->egid, egid))) 884 retval = put_user(cred->sgid, sgid); 885 886 return retval; 887 } 888 889 890 /* 891 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 892 * is used for "access()" and for the NFS daemon (letting nfsd stay at 893 * whatever uid it wants to). It normally shadows "euid", except when 894 * explicitly set by setfsuid() or for access.. 895 */ 896 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 897 { 898 const struct cred *old; 899 struct cred *new; 900 uid_t old_fsuid; 901 902 new = prepare_creds(); 903 if (!new) 904 return current_fsuid(); 905 old = current_cred(); 906 old_fsuid = old->fsuid; 907 908 if (uid == old->uid || uid == old->euid || 909 uid == old->suid || uid == old->fsuid || 910 nsown_capable(CAP_SETUID)) { 911 if (uid != old_fsuid) { 912 new->fsuid = uid; 913 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 914 goto change_okay; 915 } 916 } 917 918 abort_creds(new); 919 return old_fsuid; 920 921 change_okay: 922 commit_creds(new); 923 return old_fsuid; 924 } 925 926 /* 927 * Samma på svenska.. 928 */ 929 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 930 { 931 const struct cred *old; 932 struct cred *new; 933 gid_t old_fsgid; 934 935 new = prepare_creds(); 936 if (!new) 937 return current_fsgid(); 938 old = current_cred(); 939 old_fsgid = old->fsgid; 940 941 if (gid == old->gid || gid == old->egid || 942 gid == old->sgid || gid == old->fsgid || 943 nsown_capable(CAP_SETGID)) { 944 if (gid != old_fsgid) { 945 new->fsgid = gid; 946 goto change_okay; 947 } 948 } 949 950 abort_creds(new); 951 return old_fsgid; 952 953 change_okay: 954 commit_creds(new); 955 return old_fsgid; 956 } 957 958 void do_sys_times(struct tms *tms) 959 { 960 cputime_t tgutime, tgstime, cutime, cstime; 961 962 spin_lock_irq(¤t->sighand->siglock); 963 thread_group_times(current, &tgutime, &tgstime); 964 cutime = current->signal->cutime; 965 cstime = current->signal->cstime; 966 spin_unlock_irq(¤t->sighand->siglock); 967 tms->tms_utime = cputime_to_clock_t(tgutime); 968 tms->tms_stime = cputime_to_clock_t(tgstime); 969 tms->tms_cutime = cputime_to_clock_t(cutime); 970 tms->tms_cstime = cputime_to_clock_t(cstime); 971 } 972 973 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 974 { 975 if (tbuf) { 976 struct tms tmp; 977 978 do_sys_times(&tmp); 979 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 980 return -EFAULT; 981 } 982 force_successful_syscall_return(); 983 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 984 } 985 986 /* 987 * This needs some heavy checking ... 988 * I just haven't the stomach for it. I also don't fully 989 * understand sessions/pgrp etc. Let somebody who does explain it. 990 * 991 * OK, I think I have the protection semantics right.... this is really 992 * only important on a multi-user system anyway, to make sure one user 993 * can't send a signal to a process owned by another. -TYT, 12/12/91 994 * 995 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 996 * LBT 04.03.94 997 */ 998 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 999 { 1000 struct task_struct *p; 1001 struct task_struct *group_leader = current->group_leader; 1002 struct pid *pgrp; 1003 int err; 1004 1005 if (!pid) 1006 pid = task_pid_vnr(group_leader); 1007 if (!pgid) 1008 pgid = pid; 1009 if (pgid < 0) 1010 return -EINVAL; 1011 rcu_read_lock(); 1012 1013 /* From this point forward we keep holding onto the tasklist lock 1014 * so that our parent does not change from under us. -DaveM 1015 */ 1016 write_lock_irq(&tasklist_lock); 1017 1018 err = -ESRCH; 1019 p = find_task_by_vpid(pid); 1020 if (!p) 1021 goto out; 1022 1023 err = -EINVAL; 1024 if (!thread_group_leader(p)) 1025 goto out; 1026 1027 if (same_thread_group(p->real_parent, group_leader)) { 1028 err = -EPERM; 1029 if (task_session(p) != task_session(group_leader)) 1030 goto out; 1031 err = -EACCES; 1032 if (p->did_exec) 1033 goto out; 1034 } else { 1035 err = -ESRCH; 1036 if (p != group_leader) 1037 goto out; 1038 } 1039 1040 err = -EPERM; 1041 if (p->signal->leader) 1042 goto out; 1043 1044 pgrp = task_pid(p); 1045 if (pgid != pid) { 1046 struct task_struct *g; 1047 1048 pgrp = find_vpid(pgid); 1049 g = pid_task(pgrp, PIDTYPE_PGID); 1050 if (!g || task_session(g) != task_session(group_leader)) 1051 goto out; 1052 } 1053 1054 err = security_task_setpgid(p, pgid); 1055 if (err) 1056 goto out; 1057 1058 if (task_pgrp(p) != pgrp) 1059 change_pid(p, PIDTYPE_PGID, pgrp); 1060 1061 err = 0; 1062 out: 1063 /* All paths lead to here, thus we are safe. -DaveM */ 1064 write_unlock_irq(&tasklist_lock); 1065 rcu_read_unlock(); 1066 return err; 1067 } 1068 1069 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1070 { 1071 struct task_struct *p; 1072 struct pid *grp; 1073 int retval; 1074 1075 rcu_read_lock(); 1076 if (!pid) 1077 grp = task_pgrp(current); 1078 else { 1079 retval = -ESRCH; 1080 p = find_task_by_vpid(pid); 1081 if (!p) 1082 goto out; 1083 grp = task_pgrp(p); 1084 if (!grp) 1085 goto out; 1086 1087 retval = security_task_getpgid(p); 1088 if (retval) 1089 goto out; 1090 } 1091 retval = pid_vnr(grp); 1092 out: 1093 rcu_read_unlock(); 1094 return retval; 1095 } 1096 1097 #ifdef __ARCH_WANT_SYS_GETPGRP 1098 1099 SYSCALL_DEFINE0(getpgrp) 1100 { 1101 return sys_getpgid(0); 1102 } 1103 1104 #endif 1105 1106 SYSCALL_DEFINE1(getsid, pid_t, pid) 1107 { 1108 struct task_struct *p; 1109 struct pid *sid; 1110 int retval; 1111 1112 rcu_read_lock(); 1113 if (!pid) 1114 sid = task_session(current); 1115 else { 1116 retval = -ESRCH; 1117 p = find_task_by_vpid(pid); 1118 if (!p) 1119 goto out; 1120 sid = task_session(p); 1121 if (!sid) 1122 goto out; 1123 1124 retval = security_task_getsid(p); 1125 if (retval) 1126 goto out; 1127 } 1128 retval = pid_vnr(sid); 1129 out: 1130 rcu_read_unlock(); 1131 return retval; 1132 } 1133 1134 SYSCALL_DEFINE0(setsid) 1135 { 1136 struct task_struct *group_leader = current->group_leader; 1137 struct pid *sid = task_pid(group_leader); 1138 pid_t session = pid_vnr(sid); 1139 int err = -EPERM; 1140 1141 write_lock_irq(&tasklist_lock); 1142 /* Fail if I am already a session leader */ 1143 if (group_leader->signal->leader) 1144 goto out; 1145 1146 /* Fail if a process group id already exists that equals the 1147 * proposed session id. 1148 */ 1149 if (pid_task(sid, PIDTYPE_PGID)) 1150 goto out; 1151 1152 group_leader->signal->leader = 1; 1153 __set_special_pids(sid); 1154 1155 proc_clear_tty(group_leader); 1156 1157 err = session; 1158 out: 1159 write_unlock_irq(&tasklist_lock); 1160 if (err > 0) { 1161 proc_sid_connector(group_leader); 1162 sched_autogroup_create_attach(group_leader); 1163 } 1164 return err; 1165 } 1166 1167 DECLARE_RWSEM(uts_sem); 1168 1169 #ifdef COMPAT_UTS_MACHINE 1170 #define override_architecture(name) \ 1171 (personality(current->personality) == PER_LINUX32 && \ 1172 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1173 sizeof(COMPAT_UTS_MACHINE))) 1174 #else 1175 #define override_architecture(name) 0 1176 #endif 1177 1178 /* 1179 * Work around broken programs that cannot handle "Linux 3.0". 1180 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1181 */ 1182 static int override_release(char __user *release, int len) 1183 { 1184 int ret = 0; 1185 char buf[65]; 1186 1187 if (current->personality & UNAME26) { 1188 char *rest = UTS_RELEASE; 1189 int ndots = 0; 1190 unsigned v; 1191 1192 while (*rest) { 1193 if (*rest == '.' && ++ndots >= 3) 1194 break; 1195 if (!isdigit(*rest) && *rest != '.') 1196 break; 1197 rest++; 1198 } 1199 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40; 1200 snprintf(buf, len, "2.6.%u%s", v, rest); 1201 ret = copy_to_user(release, buf, len); 1202 } 1203 return ret; 1204 } 1205 1206 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1207 { 1208 int errno = 0; 1209 1210 down_read(&uts_sem); 1211 if (copy_to_user(name, utsname(), sizeof *name)) 1212 errno = -EFAULT; 1213 up_read(&uts_sem); 1214 1215 if (!errno && override_release(name->release, sizeof(name->release))) 1216 errno = -EFAULT; 1217 if (!errno && override_architecture(name)) 1218 errno = -EFAULT; 1219 return errno; 1220 } 1221 1222 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1223 /* 1224 * Old cruft 1225 */ 1226 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1227 { 1228 int error = 0; 1229 1230 if (!name) 1231 return -EFAULT; 1232 1233 down_read(&uts_sem); 1234 if (copy_to_user(name, utsname(), sizeof(*name))) 1235 error = -EFAULT; 1236 up_read(&uts_sem); 1237 1238 if (!error && override_release(name->release, sizeof(name->release))) 1239 error = -EFAULT; 1240 if (!error && override_architecture(name)) 1241 error = -EFAULT; 1242 return error; 1243 } 1244 1245 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1246 { 1247 int error; 1248 1249 if (!name) 1250 return -EFAULT; 1251 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) 1252 return -EFAULT; 1253 1254 down_read(&uts_sem); 1255 error = __copy_to_user(&name->sysname, &utsname()->sysname, 1256 __OLD_UTS_LEN); 1257 error |= __put_user(0, name->sysname + __OLD_UTS_LEN); 1258 error |= __copy_to_user(&name->nodename, &utsname()->nodename, 1259 __OLD_UTS_LEN); 1260 error |= __put_user(0, name->nodename + __OLD_UTS_LEN); 1261 error |= __copy_to_user(&name->release, &utsname()->release, 1262 __OLD_UTS_LEN); 1263 error |= __put_user(0, name->release + __OLD_UTS_LEN); 1264 error |= __copy_to_user(&name->version, &utsname()->version, 1265 __OLD_UTS_LEN); 1266 error |= __put_user(0, name->version + __OLD_UTS_LEN); 1267 error |= __copy_to_user(&name->machine, &utsname()->machine, 1268 __OLD_UTS_LEN); 1269 error |= __put_user(0, name->machine + __OLD_UTS_LEN); 1270 up_read(&uts_sem); 1271 1272 if (!error && override_architecture(name)) 1273 error = -EFAULT; 1274 if (!error && override_release(name->release, sizeof(name->release))) 1275 error = -EFAULT; 1276 return error ? -EFAULT : 0; 1277 } 1278 #endif 1279 1280 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1281 { 1282 int errno; 1283 char tmp[__NEW_UTS_LEN]; 1284 1285 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1286 return -EPERM; 1287 1288 if (len < 0 || len > __NEW_UTS_LEN) 1289 return -EINVAL; 1290 down_write(&uts_sem); 1291 errno = -EFAULT; 1292 if (!copy_from_user(tmp, name, len)) { 1293 struct new_utsname *u = utsname(); 1294 1295 memcpy(u->nodename, tmp, len); 1296 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1297 errno = 0; 1298 } 1299 uts_proc_notify(UTS_PROC_HOSTNAME); 1300 up_write(&uts_sem); 1301 return errno; 1302 } 1303 1304 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1305 1306 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1307 { 1308 int i, errno; 1309 struct new_utsname *u; 1310 1311 if (len < 0) 1312 return -EINVAL; 1313 down_read(&uts_sem); 1314 u = utsname(); 1315 i = 1 + strlen(u->nodename); 1316 if (i > len) 1317 i = len; 1318 errno = 0; 1319 if (copy_to_user(name, u->nodename, i)) 1320 errno = -EFAULT; 1321 up_read(&uts_sem); 1322 return errno; 1323 } 1324 1325 #endif 1326 1327 /* 1328 * Only setdomainname; getdomainname can be implemented by calling 1329 * uname() 1330 */ 1331 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1332 { 1333 int errno; 1334 char tmp[__NEW_UTS_LEN]; 1335 1336 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1337 return -EPERM; 1338 if (len < 0 || len > __NEW_UTS_LEN) 1339 return -EINVAL; 1340 1341 down_write(&uts_sem); 1342 errno = -EFAULT; 1343 if (!copy_from_user(tmp, name, len)) { 1344 struct new_utsname *u = utsname(); 1345 1346 memcpy(u->domainname, tmp, len); 1347 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1348 errno = 0; 1349 } 1350 uts_proc_notify(UTS_PROC_DOMAINNAME); 1351 up_write(&uts_sem); 1352 return errno; 1353 } 1354 1355 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1356 { 1357 struct rlimit value; 1358 int ret; 1359 1360 ret = do_prlimit(current, resource, NULL, &value); 1361 if (!ret) 1362 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1363 1364 return ret; 1365 } 1366 1367 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1368 1369 /* 1370 * Back compatibility for getrlimit. Needed for some apps. 1371 */ 1372 1373 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1374 struct rlimit __user *, rlim) 1375 { 1376 struct rlimit x; 1377 if (resource >= RLIM_NLIMITS) 1378 return -EINVAL; 1379 1380 task_lock(current->group_leader); 1381 x = current->signal->rlim[resource]; 1382 task_unlock(current->group_leader); 1383 if (x.rlim_cur > 0x7FFFFFFF) 1384 x.rlim_cur = 0x7FFFFFFF; 1385 if (x.rlim_max > 0x7FFFFFFF) 1386 x.rlim_max = 0x7FFFFFFF; 1387 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1388 } 1389 1390 #endif 1391 1392 static inline bool rlim64_is_infinity(__u64 rlim64) 1393 { 1394 #if BITS_PER_LONG < 64 1395 return rlim64 >= ULONG_MAX; 1396 #else 1397 return rlim64 == RLIM64_INFINITY; 1398 #endif 1399 } 1400 1401 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1402 { 1403 if (rlim->rlim_cur == RLIM_INFINITY) 1404 rlim64->rlim_cur = RLIM64_INFINITY; 1405 else 1406 rlim64->rlim_cur = rlim->rlim_cur; 1407 if (rlim->rlim_max == RLIM_INFINITY) 1408 rlim64->rlim_max = RLIM64_INFINITY; 1409 else 1410 rlim64->rlim_max = rlim->rlim_max; 1411 } 1412 1413 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1414 { 1415 if (rlim64_is_infinity(rlim64->rlim_cur)) 1416 rlim->rlim_cur = RLIM_INFINITY; 1417 else 1418 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1419 if (rlim64_is_infinity(rlim64->rlim_max)) 1420 rlim->rlim_max = RLIM_INFINITY; 1421 else 1422 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1423 } 1424 1425 /* make sure you are allowed to change @tsk limits before calling this */ 1426 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1427 struct rlimit *new_rlim, struct rlimit *old_rlim) 1428 { 1429 struct rlimit *rlim; 1430 int retval = 0; 1431 1432 if (resource >= RLIM_NLIMITS) 1433 return -EINVAL; 1434 if (new_rlim) { 1435 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1436 return -EINVAL; 1437 if (resource == RLIMIT_NOFILE && 1438 new_rlim->rlim_max > sysctl_nr_open) 1439 return -EPERM; 1440 } 1441 1442 /* protect tsk->signal and tsk->sighand from disappearing */ 1443 read_lock(&tasklist_lock); 1444 if (!tsk->sighand) { 1445 retval = -ESRCH; 1446 goto out; 1447 } 1448 1449 rlim = tsk->signal->rlim + resource; 1450 task_lock(tsk->group_leader); 1451 if (new_rlim) { 1452 /* Keep the capable check against init_user_ns until 1453 cgroups can contain all limits */ 1454 if (new_rlim->rlim_max > rlim->rlim_max && 1455 !capable(CAP_SYS_RESOURCE)) 1456 retval = -EPERM; 1457 if (!retval) 1458 retval = security_task_setrlimit(tsk->group_leader, 1459 resource, new_rlim); 1460 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { 1461 /* 1462 * The caller is asking for an immediate RLIMIT_CPU 1463 * expiry. But we use the zero value to mean "it was 1464 * never set". So let's cheat and make it one second 1465 * instead 1466 */ 1467 new_rlim->rlim_cur = 1; 1468 } 1469 } 1470 if (!retval) { 1471 if (old_rlim) 1472 *old_rlim = *rlim; 1473 if (new_rlim) 1474 *rlim = *new_rlim; 1475 } 1476 task_unlock(tsk->group_leader); 1477 1478 /* 1479 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1480 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1481 * very long-standing error, and fixing it now risks breakage of 1482 * applications, so we live with it 1483 */ 1484 if (!retval && new_rlim && resource == RLIMIT_CPU && 1485 new_rlim->rlim_cur != RLIM_INFINITY) 1486 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1487 out: 1488 read_unlock(&tasklist_lock); 1489 return retval; 1490 } 1491 1492 /* rcu lock must be held */ 1493 static int check_prlimit_permission(struct task_struct *task) 1494 { 1495 const struct cred *cred = current_cred(), *tcred; 1496 1497 if (current == task) 1498 return 0; 1499 1500 tcred = __task_cred(task); 1501 if (cred->user->user_ns == tcred->user->user_ns && 1502 (cred->uid == tcred->euid && 1503 cred->uid == tcred->suid && 1504 cred->uid == tcred->uid && 1505 cred->gid == tcred->egid && 1506 cred->gid == tcred->sgid && 1507 cred->gid == tcred->gid)) 1508 return 0; 1509 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE)) 1510 return 0; 1511 1512 return -EPERM; 1513 } 1514 1515 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1516 const struct rlimit64 __user *, new_rlim, 1517 struct rlimit64 __user *, old_rlim) 1518 { 1519 struct rlimit64 old64, new64; 1520 struct rlimit old, new; 1521 struct task_struct *tsk; 1522 int ret; 1523 1524 if (new_rlim) { 1525 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1526 return -EFAULT; 1527 rlim64_to_rlim(&new64, &new); 1528 } 1529 1530 rcu_read_lock(); 1531 tsk = pid ? find_task_by_vpid(pid) : current; 1532 if (!tsk) { 1533 rcu_read_unlock(); 1534 return -ESRCH; 1535 } 1536 ret = check_prlimit_permission(tsk); 1537 if (ret) { 1538 rcu_read_unlock(); 1539 return ret; 1540 } 1541 get_task_struct(tsk); 1542 rcu_read_unlock(); 1543 1544 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1545 old_rlim ? &old : NULL); 1546 1547 if (!ret && old_rlim) { 1548 rlim_to_rlim64(&old, &old64); 1549 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1550 ret = -EFAULT; 1551 } 1552 1553 put_task_struct(tsk); 1554 return ret; 1555 } 1556 1557 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1558 { 1559 struct rlimit new_rlim; 1560 1561 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1562 return -EFAULT; 1563 return do_prlimit(current, resource, &new_rlim, NULL); 1564 } 1565 1566 /* 1567 * It would make sense to put struct rusage in the task_struct, 1568 * except that would make the task_struct be *really big*. After 1569 * task_struct gets moved into malloc'ed memory, it would 1570 * make sense to do this. It will make moving the rest of the information 1571 * a lot simpler! (Which we're not doing right now because we're not 1572 * measuring them yet). 1573 * 1574 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1575 * races with threads incrementing their own counters. But since word 1576 * reads are atomic, we either get new values or old values and we don't 1577 * care which for the sums. We always take the siglock to protect reading 1578 * the c* fields from p->signal from races with exit.c updating those 1579 * fields when reaping, so a sample either gets all the additions of a 1580 * given child after it's reaped, or none so this sample is before reaping. 1581 * 1582 * Locking: 1583 * We need to take the siglock for CHILDEREN, SELF and BOTH 1584 * for the cases current multithreaded, non-current single threaded 1585 * non-current multithreaded. Thread traversal is now safe with 1586 * the siglock held. 1587 * Strictly speaking, we donot need to take the siglock if we are current and 1588 * single threaded, as no one else can take our signal_struct away, no one 1589 * else can reap the children to update signal->c* counters, and no one else 1590 * can race with the signal-> fields. If we do not take any lock, the 1591 * signal-> fields could be read out of order while another thread was just 1592 * exiting. So we should place a read memory barrier when we avoid the lock. 1593 * On the writer side, write memory barrier is implied in __exit_signal 1594 * as __exit_signal releases the siglock spinlock after updating the signal-> 1595 * fields. But we don't do this yet to keep things simple. 1596 * 1597 */ 1598 1599 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1600 { 1601 r->ru_nvcsw += t->nvcsw; 1602 r->ru_nivcsw += t->nivcsw; 1603 r->ru_minflt += t->min_flt; 1604 r->ru_majflt += t->maj_flt; 1605 r->ru_inblock += task_io_get_inblock(t); 1606 r->ru_oublock += task_io_get_oublock(t); 1607 } 1608 1609 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1610 { 1611 struct task_struct *t; 1612 unsigned long flags; 1613 cputime_t tgutime, tgstime, utime, stime; 1614 unsigned long maxrss = 0; 1615 1616 memset((char *) r, 0, sizeof *r); 1617 utime = stime = 0; 1618 1619 if (who == RUSAGE_THREAD) { 1620 task_times(current, &utime, &stime); 1621 accumulate_thread_rusage(p, r); 1622 maxrss = p->signal->maxrss; 1623 goto out; 1624 } 1625 1626 if (!lock_task_sighand(p, &flags)) 1627 return; 1628 1629 switch (who) { 1630 case RUSAGE_BOTH: 1631 case RUSAGE_CHILDREN: 1632 utime = p->signal->cutime; 1633 stime = p->signal->cstime; 1634 r->ru_nvcsw = p->signal->cnvcsw; 1635 r->ru_nivcsw = p->signal->cnivcsw; 1636 r->ru_minflt = p->signal->cmin_flt; 1637 r->ru_majflt = p->signal->cmaj_flt; 1638 r->ru_inblock = p->signal->cinblock; 1639 r->ru_oublock = p->signal->coublock; 1640 maxrss = p->signal->cmaxrss; 1641 1642 if (who == RUSAGE_CHILDREN) 1643 break; 1644 1645 case RUSAGE_SELF: 1646 thread_group_times(p, &tgutime, &tgstime); 1647 utime += tgutime; 1648 stime += tgstime; 1649 r->ru_nvcsw += p->signal->nvcsw; 1650 r->ru_nivcsw += p->signal->nivcsw; 1651 r->ru_minflt += p->signal->min_flt; 1652 r->ru_majflt += p->signal->maj_flt; 1653 r->ru_inblock += p->signal->inblock; 1654 r->ru_oublock += p->signal->oublock; 1655 if (maxrss < p->signal->maxrss) 1656 maxrss = p->signal->maxrss; 1657 t = p; 1658 do { 1659 accumulate_thread_rusage(t, r); 1660 t = next_thread(t); 1661 } while (t != p); 1662 break; 1663 1664 default: 1665 BUG(); 1666 } 1667 unlock_task_sighand(p, &flags); 1668 1669 out: 1670 cputime_to_timeval(utime, &r->ru_utime); 1671 cputime_to_timeval(stime, &r->ru_stime); 1672 1673 if (who != RUSAGE_CHILDREN) { 1674 struct mm_struct *mm = get_task_mm(p); 1675 if (mm) { 1676 setmax_mm_hiwater_rss(&maxrss, mm); 1677 mmput(mm); 1678 } 1679 } 1680 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1681 } 1682 1683 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1684 { 1685 struct rusage r; 1686 k_getrusage(p, who, &r); 1687 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1688 } 1689 1690 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1691 { 1692 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1693 who != RUSAGE_THREAD) 1694 return -EINVAL; 1695 return getrusage(current, who, ru); 1696 } 1697 1698 SYSCALL_DEFINE1(umask, int, mask) 1699 { 1700 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1701 return mask; 1702 } 1703 1704 #ifdef CONFIG_CHECKPOINT_RESTORE 1705 static int prctl_set_mm(int opt, unsigned long addr, 1706 unsigned long arg4, unsigned long arg5) 1707 { 1708 unsigned long rlim = rlimit(RLIMIT_DATA); 1709 unsigned long vm_req_flags; 1710 unsigned long vm_bad_flags; 1711 struct vm_area_struct *vma; 1712 int error = 0; 1713 struct mm_struct *mm = current->mm; 1714 1715 if (arg4 | arg5) 1716 return -EINVAL; 1717 1718 if (!capable(CAP_SYS_RESOURCE)) 1719 return -EPERM; 1720 1721 if (addr >= TASK_SIZE) 1722 return -EINVAL; 1723 1724 down_read(&mm->mmap_sem); 1725 vma = find_vma(mm, addr); 1726 1727 if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) { 1728 /* It must be existing VMA */ 1729 if (!vma || vma->vm_start > addr) 1730 goto out; 1731 } 1732 1733 error = -EINVAL; 1734 switch (opt) { 1735 case PR_SET_MM_START_CODE: 1736 case PR_SET_MM_END_CODE: 1737 vm_req_flags = VM_READ | VM_EXEC; 1738 vm_bad_flags = VM_WRITE | VM_MAYSHARE; 1739 1740 if ((vma->vm_flags & vm_req_flags) != vm_req_flags || 1741 (vma->vm_flags & vm_bad_flags)) 1742 goto out; 1743 1744 if (opt == PR_SET_MM_START_CODE) 1745 mm->start_code = addr; 1746 else 1747 mm->end_code = addr; 1748 break; 1749 1750 case PR_SET_MM_START_DATA: 1751 case PR_SET_MM_END_DATA: 1752 vm_req_flags = VM_READ | VM_WRITE; 1753 vm_bad_flags = VM_EXEC | VM_MAYSHARE; 1754 1755 if ((vma->vm_flags & vm_req_flags) != vm_req_flags || 1756 (vma->vm_flags & vm_bad_flags)) 1757 goto out; 1758 1759 if (opt == PR_SET_MM_START_DATA) 1760 mm->start_data = addr; 1761 else 1762 mm->end_data = addr; 1763 break; 1764 1765 case PR_SET_MM_START_STACK: 1766 1767 #ifdef CONFIG_STACK_GROWSUP 1768 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP; 1769 #else 1770 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN; 1771 #endif 1772 if ((vma->vm_flags & vm_req_flags) != vm_req_flags) 1773 goto out; 1774 1775 mm->start_stack = addr; 1776 break; 1777 1778 case PR_SET_MM_START_BRK: 1779 if (addr <= mm->end_data) 1780 goto out; 1781 1782 if (rlim < RLIM_INFINITY && 1783 (mm->brk - addr) + 1784 (mm->end_data - mm->start_data) > rlim) 1785 goto out; 1786 1787 mm->start_brk = addr; 1788 break; 1789 1790 case PR_SET_MM_BRK: 1791 if (addr <= mm->end_data) 1792 goto out; 1793 1794 if (rlim < RLIM_INFINITY && 1795 (addr - mm->start_brk) + 1796 (mm->end_data - mm->start_data) > rlim) 1797 goto out; 1798 1799 mm->brk = addr; 1800 break; 1801 1802 default: 1803 error = -EINVAL; 1804 goto out; 1805 } 1806 1807 error = 0; 1808 1809 out: 1810 up_read(&mm->mmap_sem); 1811 1812 return error; 1813 } 1814 #else /* CONFIG_CHECKPOINT_RESTORE */ 1815 static int prctl_set_mm(int opt, unsigned long addr, 1816 unsigned long arg4, unsigned long arg5) 1817 { 1818 return -EINVAL; 1819 } 1820 #endif 1821 1822 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 1823 unsigned long, arg4, unsigned long, arg5) 1824 { 1825 struct task_struct *me = current; 1826 unsigned char comm[sizeof(me->comm)]; 1827 long error; 1828 1829 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1830 if (error != -ENOSYS) 1831 return error; 1832 1833 error = 0; 1834 switch (option) { 1835 case PR_SET_PDEATHSIG: 1836 if (!valid_signal(arg2)) { 1837 error = -EINVAL; 1838 break; 1839 } 1840 me->pdeath_signal = arg2; 1841 error = 0; 1842 break; 1843 case PR_GET_PDEATHSIG: 1844 error = put_user(me->pdeath_signal, (int __user *)arg2); 1845 break; 1846 case PR_GET_DUMPABLE: 1847 error = get_dumpable(me->mm); 1848 break; 1849 case PR_SET_DUMPABLE: 1850 if (arg2 < 0 || arg2 > 1) { 1851 error = -EINVAL; 1852 break; 1853 } 1854 set_dumpable(me->mm, arg2); 1855 error = 0; 1856 break; 1857 1858 case PR_SET_UNALIGN: 1859 error = SET_UNALIGN_CTL(me, arg2); 1860 break; 1861 case PR_GET_UNALIGN: 1862 error = GET_UNALIGN_CTL(me, arg2); 1863 break; 1864 case PR_SET_FPEMU: 1865 error = SET_FPEMU_CTL(me, arg2); 1866 break; 1867 case PR_GET_FPEMU: 1868 error = GET_FPEMU_CTL(me, arg2); 1869 break; 1870 case PR_SET_FPEXC: 1871 error = SET_FPEXC_CTL(me, arg2); 1872 break; 1873 case PR_GET_FPEXC: 1874 error = GET_FPEXC_CTL(me, arg2); 1875 break; 1876 case PR_GET_TIMING: 1877 error = PR_TIMING_STATISTICAL; 1878 break; 1879 case PR_SET_TIMING: 1880 if (arg2 != PR_TIMING_STATISTICAL) 1881 error = -EINVAL; 1882 else 1883 error = 0; 1884 break; 1885 1886 case PR_SET_NAME: 1887 comm[sizeof(me->comm)-1] = 0; 1888 if (strncpy_from_user(comm, (char __user *)arg2, 1889 sizeof(me->comm) - 1) < 0) 1890 return -EFAULT; 1891 set_task_comm(me, comm); 1892 proc_comm_connector(me); 1893 return 0; 1894 case PR_GET_NAME: 1895 get_task_comm(comm, me); 1896 if (copy_to_user((char __user *)arg2, comm, 1897 sizeof(comm))) 1898 return -EFAULT; 1899 return 0; 1900 case PR_GET_ENDIAN: 1901 error = GET_ENDIAN(me, arg2); 1902 break; 1903 case PR_SET_ENDIAN: 1904 error = SET_ENDIAN(me, arg2); 1905 break; 1906 1907 case PR_GET_SECCOMP: 1908 error = prctl_get_seccomp(); 1909 break; 1910 case PR_SET_SECCOMP: 1911 error = prctl_set_seccomp(arg2); 1912 break; 1913 case PR_GET_TSC: 1914 error = GET_TSC_CTL(arg2); 1915 break; 1916 case PR_SET_TSC: 1917 error = SET_TSC_CTL(arg2); 1918 break; 1919 case PR_TASK_PERF_EVENTS_DISABLE: 1920 error = perf_event_task_disable(); 1921 break; 1922 case PR_TASK_PERF_EVENTS_ENABLE: 1923 error = perf_event_task_enable(); 1924 break; 1925 case PR_GET_TIMERSLACK: 1926 error = current->timer_slack_ns; 1927 break; 1928 case PR_SET_TIMERSLACK: 1929 if (arg2 <= 0) 1930 current->timer_slack_ns = 1931 current->default_timer_slack_ns; 1932 else 1933 current->timer_slack_ns = arg2; 1934 error = 0; 1935 break; 1936 case PR_MCE_KILL: 1937 if (arg4 | arg5) 1938 return -EINVAL; 1939 switch (arg2) { 1940 case PR_MCE_KILL_CLEAR: 1941 if (arg3 != 0) 1942 return -EINVAL; 1943 current->flags &= ~PF_MCE_PROCESS; 1944 break; 1945 case PR_MCE_KILL_SET: 1946 current->flags |= PF_MCE_PROCESS; 1947 if (arg3 == PR_MCE_KILL_EARLY) 1948 current->flags |= PF_MCE_EARLY; 1949 else if (arg3 == PR_MCE_KILL_LATE) 1950 current->flags &= ~PF_MCE_EARLY; 1951 else if (arg3 == PR_MCE_KILL_DEFAULT) 1952 current->flags &= 1953 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 1954 else 1955 return -EINVAL; 1956 break; 1957 default: 1958 return -EINVAL; 1959 } 1960 error = 0; 1961 break; 1962 case PR_MCE_KILL_GET: 1963 if (arg2 | arg3 | arg4 | arg5) 1964 return -EINVAL; 1965 if (current->flags & PF_MCE_PROCESS) 1966 error = (current->flags & PF_MCE_EARLY) ? 1967 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 1968 else 1969 error = PR_MCE_KILL_DEFAULT; 1970 break; 1971 case PR_SET_MM: 1972 error = prctl_set_mm(arg2, arg3, arg4, arg5); 1973 break; 1974 case PR_SET_CHILD_SUBREAPER: 1975 me->signal->is_child_subreaper = !!arg2; 1976 error = 0; 1977 break; 1978 case PR_GET_CHILD_SUBREAPER: 1979 error = put_user(me->signal->is_child_subreaper, 1980 (int __user *) arg2); 1981 break; 1982 default: 1983 error = -EINVAL; 1984 break; 1985 } 1986 return error; 1987 } 1988 1989 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 1990 struct getcpu_cache __user *, unused) 1991 { 1992 int err = 0; 1993 int cpu = raw_smp_processor_id(); 1994 if (cpup) 1995 err |= put_user(cpu, cpup); 1996 if (nodep) 1997 err |= put_user(cpu_to_node(cpu), nodep); 1998 return err ? -EFAULT : 0; 1999 } 2000 2001 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 2002 2003 static void argv_cleanup(struct subprocess_info *info) 2004 { 2005 argv_free(info->argv); 2006 } 2007 2008 /** 2009 * orderly_poweroff - Trigger an orderly system poweroff 2010 * @force: force poweroff if command execution fails 2011 * 2012 * This may be called from any context to trigger a system shutdown. 2013 * If the orderly shutdown fails, it will force an immediate shutdown. 2014 */ 2015 int orderly_poweroff(bool force) 2016 { 2017 int argc; 2018 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 2019 static char *envp[] = { 2020 "HOME=/", 2021 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 2022 NULL 2023 }; 2024 int ret = -ENOMEM; 2025 struct subprocess_info *info; 2026 2027 if (argv == NULL) { 2028 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 2029 __func__, poweroff_cmd); 2030 goto out; 2031 } 2032 2033 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 2034 if (info == NULL) { 2035 argv_free(argv); 2036 goto out; 2037 } 2038 2039 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); 2040 2041 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 2042 2043 out: 2044 if (ret && force) { 2045 printk(KERN_WARNING "Failed to start orderly shutdown: " 2046 "forcing the issue\n"); 2047 2048 /* I guess this should try to kick off some daemon to 2049 sync and poweroff asap. Or not even bother syncing 2050 if we're doing an emergency shutdown? */ 2051 emergency_sync(); 2052 kernel_power_off(); 2053 } 2054 2055 return ret; 2056 } 2057 EXPORT_SYMBOL_GPL(orderly_poweroff); 2058