xref: /openbmc/linux/kernel/sys.c (revision 606d099c)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
40 
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef GET_ENDIAN
60 # define GET_ENDIAN(a,b)	(-EINVAL)
61 #endif
62 #ifndef SET_ENDIAN
63 # define SET_ENDIAN(a,b)	(-EINVAL)
64 #endif
65 
66 /*
67  * this is where the system-wide overflow UID and GID are defined, for
68  * architectures that now have 32-bit UID/GID but didn't in the past
69  */
70 
71 int overflowuid = DEFAULT_OVERFLOWUID;
72 int overflowgid = DEFAULT_OVERFLOWGID;
73 
74 #ifdef CONFIG_UID16
75 EXPORT_SYMBOL(overflowuid);
76 EXPORT_SYMBOL(overflowgid);
77 #endif
78 
79 /*
80  * the same as above, but for filesystems which can only store a 16-bit
81  * UID and GID. as such, this is needed on all architectures
82  */
83 
84 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
85 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
86 
87 EXPORT_SYMBOL(fs_overflowuid);
88 EXPORT_SYMBOL(fs_overflowgid);
89 
90 /*
91  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
92  */
93 
94 int C_A_D = 1;
95 struct pid *cad_pid;
96 EXPORT_SYMBOL(cad_pid);
97 
98 /*
99  *	Notifier list for kernel code which wants to be called
100  *	at shutdown. This is used to stop any idling DMA operations
101  *	and the like.
102  */
103 
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
105 
106 /*
107  *	Notifier chain core routines.  The exported routines below
108  *	are layered on top of these, with appropriate locking added.
109  */
110 
111 static int notifier_chain_register(struct notifier_block **nl,
112 		struct notifier_block *n)
113 {
114 	while ((*nl) != NULL) {
115 		if (n->priority > (*nl)->priority)
116 			break;
117 		nl = &((*nl)->next);
118 	}
119 	n->next = *nl;
120 	rcu_assign_pointer(*nl, n);
121 	return 0;
122 }
123 
124 static int notifier_chain_unregister(struct notifier_block **nl,
125 		struct notifier_block *n)
126 {
127 	while ((*nl) != NULL) {
128 		if ((*nl) == n) {
129 			rcu_assign_pointer(*nl, n->next);
130 			return 0;
131 		}
132 		nl = &((*nl)->next);
133 	}
134 	return -ENOENT;
135 }
136 
137 static int __kprobes notifier_call_chain(struct notifier_block **nl,
138 		unsigned long val, void *v)
139 {
140 	int ret = NOTIFY_DONE;
141 	struct notifier_block *nb, *next_nb;
142 
143 	nb = rcu_dereference(*nl);
144 	while (nb) {
145 		next_nb = rcu_dereference(nb->next);
146 		ret = nb->notifier_call(nb, val, v);
147 		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
148 			break;
149 		nb = next_nb;
150 	}
151 	return ret;
152 }
153 
154 /*
155  *	Atomic notifier chain routines.  Registration and unregistration
156  *	use a spinlock, and call_chain is synchronized by RCU (no locks).
157  */
158 
159 /**
160  *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161  *	@nh: Pointer to head of the atomic notifier chain
162  *	@n: New entry in notifier chain
163  *
164  *	Adds a notifier to an atomic notifier chain.
165  *
166  *	Currently always returns zero.
167  */
168 
169 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
170 		struct notifier_block *n)
171 {
172 	unsigned long flags;
173 	int ret;
174 
175 	spin_lock_irqsave(&nh->lock, flags);
176 	ret = notifier_chain_register(&nh->head, n);
177 	spin_unlock_irqrestore(&nh->lock, flags);
178 	return ret;
179 }
180 
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
182 
183 /**
184  *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185  *	@nh: Pointer to head of the atomic notifier chain
186  *	@n: Entry to remove from notifier chain
187  *
188  *	Removes a notifier from an atomic notifier chain.
189  *
190  *	Returns zero on success or %-ENOENT on failure.
191  */
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
193 		struct notifier_block *n)
194 {
195 	unsigned long flags;
196 	int ret;
197 
198 	spin_lock_irqsave(&nh->lock, flags);
199 	ret = notifier_chain_unregister(&nh->head, n);
200 	spin_unlock_irqrestore(&nh->lock, flags);
201 	synchronize_rcu();
202 	return ret;
203 }
204 
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
206 
207 /**
208  *	atomic_notifier_call_chain - Call functions in an atomic notifier chain
209  *	@nh: Pointer to head of the atomic notifier chain
210  *	@val: Value passed unmodified to notifier function
211  *	@v: Pointer passed unmodified to notifier function
212  *
213  *	Calls each function in a notifier chain in turn.  The functions
214  *	run in an atomic context, so they must not block.
215  *	This routine uses RCU to synchronize with changes to the chain.
216  *
217  *	If the return value of the notifier can be and'ed
218  *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
219  *	will return immediately, with the return value of
220  *	the notifier function which halted execution.
221  *	Otherwise the return value is the return value
222  *	of the last notifier function called.
223  */
224 
225 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
226 		unsigned long val, void *v)
227 {
228 	int ret;
229 
230 	rcu_read_lock();
231 	ret = notifier_call_chain(&nh->head, val, v);
232 	rcu_read_unlock();
233 	return ret;
234 }
235 
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
237 
238 /*
239  *	Blocking notifier chain routines.  All access to the chain is
240  *	synchronized by an rwsem.
241  */
242 
243 /**
244  *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245  *	@nh: Pointer to head of the blocking notifier chain
246  *	@n: New entry in notifier chain
247  *
248  *	Adds a notifier to a blocking notifier chain.
249  *	Must be called in process context.
250  *
251  *	Currently always returns zero.
252  */
253 
254 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
255 		struct notifier_block *n)
256 {
257 	int ret;
258 
259 	/*
260 	 * This code gets used during boot-up, when task switching is
261 	 * not yet working and interrupts must remain disabled.  At
262 	 * such times we must not call down_write().
263 	 */
264 	if (unlikely(system_state == SYSTEM_BOOTING))
265 		return notifier_chain_register(&nh->head, n);
266 
267 	down_write(&nh->rwsem);
268 	ret = notifier_chain_register(&nh->head, n);
269 	up_write(&nh->rwsem);
270 	return ret;
271 }
272 
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
274 
275 /**
276  *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277  *	@nh: Pointer to head of the blocking notifier chain
278  *	@n: Entry to remove from notifier chain
279  *
280  *	Removes a notifier from a blocking notifier chain.
281  *	Must be called from process context.
282  *
283  *	Returns zero on success or %-ENOENT on failure.
284  */
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
286 		struct notifier_block *n)
287 {
288 	int ret;
289 
290 	/*
291 	 * This code gets used during boot-up, when task switching is
292 	 * not yet working and interrupts must remain disabled.  At
293 	 * such times we must not call down_write().
294 	 */
295 	if (unlikely(system_state == SYSTEM_BOOTING))
296 		return notifier_chain_unregister(&nh->head, n);
297 
298 	down_write(&nh->rwsem);
299 	ret = notifier_chain_unregister(&nh->head, n);
300 	up_write(&nh->rwsem);
301 	return ret;
302 }
303 
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
305 
306 /**
307  *	blocking_notifier_call_chain - Call functions in a blocking notifier chain
308  *	@nh: Pointer to head of the blocking notifier chain
309  *	@val: Value passed unmodified to notifier function
310  *	@v: Pointer passed unmodified to notifier function
311  *
312  *	Calls each function in a notifier chain in turn.  The functions
313  *	run in a process context, so they are allowed to block.
314  *
315  *	If the return value of the notifier can be and'ed
316  *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
317  *	will return immediately, with the return value of
318  *	the notifier function which halted execution.
319  *	Otherwise the return value is the return value
320  *	of the last notifier function called.
321  */
322 
323 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
324 		unsigned long val, void *v)
325 {
326 	int ret;
327 
328 	down_read(&nh->rwsem);
329 	ret = notifier_call_chain(&nh->head, val, v);
330 	up_read(&nh->rwsem);
331 	return ret;
332 }
333 
334 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
335 
336 /*
337  *	Raw notifier chain routines.  There is no protection;
338  *	the caller must provide it.  Use at your own risk!
339  */
340 
341 /**
342  *	raw_notifier_chain_register - Add notifier to a raw notifier chain
343  *	@nh: Pointer to head of the raw notifier chain
344  *	@n: New entry in notifier chain
345  *
346  *	Adds a notifier to a raw notifier chain.
347  *	All locking must be provided by the caller.
348  *
349  *	Currently always returns zero.
350  */
351 
352 int raw_notifier_chain_register(struct raw_notifier_head *nh,
353 		struct notifier_block *n)
354 {
355 	return notifier_chain_register(&nh->head, n);
356 }
357 
358 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
359 
360 /**
361  *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
362  *	@nh: Pointer to head of the raw notifier chain
363  *	@n: Entry to remove from notifier chain
364  *
365  *	Removes a notifier from a raw notifier chain.
366  *	All locking must be provided by the caller.
367  *
368  *	Returns zero on success or %-ENOENT on failure.
369  */
370 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
371 		struct notifier_block *n)
372 {
373 	return notifier_chain_unregister(&nh->head, n);
374 }
375 
376 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
377 
378 /**
379  *	raw_notifier_call_chain - Call functions in a raw notifier chain
380  *	@nh: Pointer to head of the raw notifier chain
381  *	@val: Value passed unmodified to notifier function
382  *	@v: Pointer passed unmodified to notifier function
383  *
384  *	Calls each function in a notifier chain in turn.  The functions
385  *	run in an undefined context.
386  *	All locking must be provided by the caller.
387  *
388  *	If the return value of the notifier can be and'ed
389  *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain
390  *	will return immediately, with the return value of
391  *	the notifier function which halted execution.
392  *	Otherwise the return value is the return value
393  *	of the last notifier function called.
394  */
395 
396 int raw_notifier_call_chain(struct raw_notifier_head *nh,
397 		unsigned long val, void *v)
398 {
399 	return notifier_call_chain(&nh->head, val, v);
400 }
401 
402 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
403 
404 /*
405  *	SRCU notifier chain routines.    Registration and unregistration
406  *	use a mutex, and call_chain is synchronized by SRCU (no locks).
407  */
408 
409 /**
410  *	srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
411  *	@nh: Pointer to head of the SRCU notifier chain
412  *	@n: New entry in notifier chain
413  *
414  *	Adds a notifier to an SRCU notifier chain.
415  *	Must be called in process context.
416  *
417  *	Currently always returns zero.
418  */
419 
420 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
421 		struct notifier_block *n)
422 {
423 	int ret;
424 
425 	/*
426 	 * This code gets used during boot-up, when task switching is
427 	 * not yet working and interrupts must remain disabled.  At
428 	 * such times we must not call mutex_lock().
429 	 */
430 	if (unlikely(system_state == SYSTEM_BOOTING))
431 		return notifier_chain_register(&nh->head, n);
432 
433 	mutex_lock(&nh->mutex);
434 	ret = notifier_chain_register(&nh->head, n);
435 	mutex_unlock(&nh->mutex);
436 	return ret;
437 }
438 
439 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
440 
441 /**
442  *	srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
443  *	@nh: Pointer to head of the SRCU notifier chain
444  *	@n: Entry to remove from notifier chain
445  *
446  *	Removes a notifier from an SRCU notifier chain.
447  *	Must be called from process context.
448  *
449  *	Returns zero on success or %-ENOENT on failure.
450  */
451 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
452 		struct notifier_block *n)
453 {
454 	int ret;
455 
456 	/*
457 	 * This code gets used during boot-up, when task switching is
458 	 * not yet working and interrupts must remain disabled.  At
459 	 * such times we must not call mutex_lock().
460 	 */
461 	if (unlikely(system_state == SYSTEM_BOOTING))
462 		return notifier_chain_unregister(&nh->head, n);
463 
464 	mutex_lock(&nh->mutex);
465 	ret = notifier_chain_unregister(&nh->head, n);
466 	mutex_unlock(&nh->mutex);
467 	synchronize_srcu(&nh->srcu);
468 	return ret;
469 }
470 
471 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
472 
473 /**
474  *	srcu_notifier_call_chain - Call functions in an SRCU notifier chain
475  *	@nh: Pointer to head of the SRCU notifier chain
476  *	@val: Value passed unmodified to notifier function
477  *	@v: Pointer passed unmodified to notifier function
478  *
479  *	Calls each function in a notifier chain in turn.  The functions
480  *	run in a process context, so they are allowed to block.
481  *
482  *	If the return value of the notifier can be and'ed
483  *	with %NOTIFY_STOP_MASK then srcu_notifier_call_chain
484  *	will return immediately, with the return value of
485  *	the notifier function which halted execution.
486  *	Otherwise the return value is the return value
487  *	of the last notifier function called.
488  */
489 
490 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
491 		unsigned long val, void *v)
492 {
493 	int ret;
494 	int idx;
495 
496 	idx = srcu_read_lock(&nh->srcu);
497 	ret = notifier_call_chain(&nh->head, val, v);
498 	srcu_read_unlock(&nh->srcu, idx);
499 	return ret;
500 }
501 
502 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
503 
504 /**
505  *	srcu_init_notifier_head - Initialize an SRCU notifier head
506  *	@nh: Pointer to head of the srcu notifier chain
507  *
508  *	Unlike other sorts of notifier heads, SRCU notifier heads require
509  *	dynamic initialization.  Be sure to call this routine before
510  *	calling any of the other SRCU notifier routines for this head.
511  *
512  *	If an SRCU notifier head is deallocated, it must first be cleaned
513  *	up by calling srcu_cleanup_notifier_head().  Otherwise the head's
514  *	per-cpu data (used by the SRCU mechanism) will leak.
515  */
516 
517 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
518 {
519 	mutex_init(&nh->mutex);
520 	if (init_srcu_struct(&nh->srcu) < 0)
521 		BUG();
522 	nh->head = NULL;
523 }
524 
525 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
526 
527 /**
528  *	register_reboot_notifier - Register function to be called at reboot time
529  *	@nb: Info about notifier function to be called
530  *
531  *	Registers a function with the list of functions
532  *	to be called at reboot time.
533  *
534  *	Currently always returns zero, as blocking_notifier_chain_register
535  *	always returns zero.
536  */
537 
538 int register_reboot_notifier(struct notifier_block * nb)
539 {
540 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
541 }
542 
543 EXPORT_SYMBOL(register_reboot_notifier);
544 
545 /**
546  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
547  *	@nb: Hook to be unregistered
548  *
549  *	Unregisters a previously registered reboot
550  *	notifier function.
551  *
552  *	Returns zero on success, or %-ENOENT on failure.
553  */
554 
555 int unregister_reboot_notifier(struct notifier_block * nb)
556 {
557 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
558 }
559 
560 EXPORT_SYMBOL(unregister_reboot_notifier);
561 
562 static int set_one_prio(struct task_struct *p, int niceval, int error)
563 {
564 	int no_nice;
565 
566 	if (p->uid != current->euid &&
567 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
568 		error = -EPERM;
569 		goto out;
570 	}
571 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
572 		error = -EACCES;
573 		goto out;
574 	}
575 	no_nice = security_task_setnice(p, niceval);
576 	if (no_nice) {
577 		error = no_nice;
578 		goto out;
579 	}
580 	if (error == -ESRCH)
581 		error = 0;
582 	set_user_nice(p, niceval);
583 out:
584 	return error;
585 }
586 
587 asmlinkage long sys_setpriority(int which, int who, int niceval)
588 {
589 	struct task_struct *g, *p;
590 	struct user_struct *user;
591 	int error = -EINVAL;
592 
593 	if (which > 2 || which < 0)
594 		goto out;
595 
596 	/* normalize: avoid signed division (rounding problems) */
597 	error = -ESRCH;
598 	if (niceval < -20)
599 		niceval = -20;
600 	if (niceval > 19)
601 		niceval = 19;
602 
603 	read_lock(&tasklist_lock);
604 	switch (which) {
605 		case PRIO_PROCESS:
606 			if (!who)
607 				who = current->pid;
608 			p = find_task_by_pid(who);
609 			if (p)
610 				error = set_one_prio(p, niceval, error);
611 			break;
612 		case PRIO_PGRP:
613 			if (!who)
614 				who = process_group(current);
615 			do_each_task_pid(who, PIDTYPE_PGID, p) {
616 				error = set_one_prio(p, niceval, error);
617 			} while_each_task_pid(who, PIDTYPE_PGID, p);
618 			break;
619 		case PRIO_USER:
620 			user = current->user;
621 			if (!who)
622 				who = current->uid;
623 			else
624 				if ((who != current->uid) && !(user = find_user(who)))
625 					goto out_unlock;	/* No processes for this user */
626 
627 			do_each_thread(g, p)
628 				if (p->uid == who)
629 					error = set_one_prio(p, niceval, error);
630 			while_each_thread(g, p);
631 			if (who != current->uid)
632 				free_uid(user);		/* For find_user() */
633 			break;
634 	}
635 out_unlock:
636 	read_unlock(&tasklist_lock);
637 out:
638 	return error;
639 }
640 
641 /*
642  * Ugh. To avoid negative return values, "getpriority()" will
643  * not return the normal nice-value, but a negated value that
644  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
645  * to stay compatible.
646  */
647 asmlinkage long sys_getpriority(int which, int who)
648 {
649 	struct task_struct *g, *p;
650 	struct user_struct *user;
651 	long niceval, retval = -ESRCH;
652 
653 	if (which > 2 || which < 0)
654 		return -EINVAL;
655 
656 	read_lock(&tasklist_lock);
657 	switch (which) {
658 		case PRIO_PROCESS:
659 			if (!who)
660 				who = current->pid;
661 			p = find_task_by_pid(who);
662 			if (p) {
663 				niceval = 20 - task_nice(p);
664 				if (niceval > retval)
665 					retval = niceval;
666 			}
667 			break;
668 		case PRIO_PGRP:
669 			if (!who)
670 				who = process_group(current);
671 			do_each_task_pid(who, PIDTYPE_PGID, p) {
672 				niceval = 20 - task_nice(p);
673 				if (niceval > retval)
674 					retval = niceval;
675 			} while_each_task_pid(who, PIDTYPE_PGID, p);
676 			break;
677 		case PRIO_USER:
678 			user = current->user;
679 			if (!who)
680 				who = current->uid;
681 			else
682 				if ((who != current->uid) && !(user = find_user(who)))
683 					goto out_unlock;	/* No processes for this user */
684 
685 			do_each_thread(g, p)
686 				if (p->uid == who) {
687 					niceval = 20 - task_nice(p);
688 					if (niceval > retval)
689 						retval = niceval;
690 				}
691 			while_each_thread(g, p);
692 			if (who != current->uid)
693 				free_uid(user);		/* for find_user() */
694 			break;
695 	}
696 out_unlock:
697 	read_unlock(&tasklist_lock);
698 
699 	return retval;
700 }
701 
702 /**
703  *	emergency_restart - reboot the system
704  *
705  *	Without shutting down any hardware or taking any locks
706  *	reboot the system.  This is called when we know we are in
707  *	trouble so this is our best effort to reboot.  This is
708  *	safe to call in interrupt context.
709  */
710 void emergency_restart(void)
711 {
712 	machine_emergency_restart();
713 }
714 EXPORT_SYMBOL_GPL(emergency_restart);
715 
716 static void kernel_restart_prepare(char *cmd)
717 {
718 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
719 	system_state = SYSTEM_RESTART;
720 	device_shutdown();
721 }
722 
723 /**
724  *	kernel_restart - reboot the system
725  *	@cmd: pointer to buffer containing command to execute for restart
726  *		or %NULL
727  *
728  *	Shutdown everything and perform a clean reboot.
729  *	This is not safe to call in interrupt context.
730  */
731 void kernel_restart(char *cmd)
732 {
733 	kernel_restart_prepare(cmd);
734 	if (!cmd)
735 		printk(KERN_EMERG "Restarting system.\n");
736 	else
737 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
738 	machine_restart(cmd);
739 }
740 EXPORT_SYMBOL_GPL(kernel_restart);
741 
742 /**
743  *	kernel_kexec - reboot the system
744  *
745  *	Move into place and start executing a preloaded standalone
746  *	executable.  If nothing was preloaded return an error.
747  */
748 static void kernel_kexec(void)
749 {
750 #ifdef CONFIG_KEXEC
751 	struct kimage *image;
752 	image = xchg(&kexec_image, NULL);
753 	if (!image)
754 		return;
755 	kernel_restart_prepare(NULL);
756 	printk(KERN_EMERG "Starting new kernel\n");
757 	machine_shutdown();
758 	machine_kexec(image);
759 #endif
760 }
761 
762 void kernel_shutdown_prepare(enum system_states state)
763 {
764 	blocking_notifier_call_chain(&reboot_notifier_list,
765 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
766 	system_state = state;
767 	device_shutdown();
768 }
769 /**
770  *	kernel_halt - halt the system
771  *
772  *	Shutdown everything and perform a clean system halt.
773  */
774 void kernel_halt(void)
775 {
776 	kernel_shutdown_prepare(SYSTEM_HALT);
777 	printk(KERN_EMERG "System halted.\n");
778 	machine_halt();
779 }
780 
781 EXPORT_SYMBOL_GPL(kernel_halt);
782 
783 /**
784  *	kernel_power_off - power_off the system
785  *
786  *	Shutdown everything and perform a clean system power_off.
787  */
788 void kernel_power_off(void)
789 {
790 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
791 	printk(KERN_EMERG "Power down.\n");
792 	machine_power_off();
793 }
794 EXPORT_SYMBOL_GPL(kernel_power_off);
795 /*
796  * Reboot system call: for obvious reasons only root may call it,
797  * and even root needs to set up some magic numbers in the registers
798  * so that some mistake won't make this reboot the whole machine.
799  * You can also set the meaning of the ctrl-alt-del-key here.
800  *
801  * reboot doesn't sync: do that yourself before calling this.
802  */
803 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
804 {
805 	char buffer[256];
806 
807 	/* We only trust the superuser with rebooting the system. */
808 	if (!capable(CAP_SYS_BOOT))
809 		return -EPERM;
810 
811 	/* For safety, we require "magic" arguments. */
812 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
813 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
814 	                magic2 != LINUX_REBOOT_MAGIC2A &&
815 			magic2 != LINUX_REBOOT_MAGIC2B &&
816 	                magic2 != LINUX_REBOOT_MAGIC2C))
817 		return -EINVAL;
818 
819 	/* Instead of trying to make the power_off code look like
820 	 * halt when pm_power_off is not set do it the easy way.
821 	 */
822 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
823 		cmd = LINUX_REBOOT_CMD_HALT;
824 
825 	lock_kernel();
826 	switch (cmd) {
827 	case LINUX_REBOOT_CMD_RESTART:
828 		kernel_restart(NULL);
829 		break;
830 
831 	case LINUX_REBOOT_CMD_CAD_ON:
832 		C_A_D = 1;
833 		break;
834 
835 	case LINUX_REBOOT_CMD_CAD_OFF:
836 		C_A_D = 0;
837 		break;
838 
839 	case LINUX_REBOOT_CMD_HALT:
840 		kernel_halt();
841 		unlock_kernel();
842 		do_exit(0);
843 		break;
844 
845 	case LINUX_REBOOT_CMD_POWER_OFF:
846 		kernel_power_off();
847 		unlock_kernel();
848 		do_exit(0);
849 		break;
850 
851 	case LINUX_REBOOT_CMD_RESTART2:
852 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
853 			unlock_kernel();
854 			return -EFAULT;
855 		}
856 		buffer[sizeof(buffer) - 1] = '\0';
857 
858 		kernel_restart(buffer);
859 		break;
860 
861 	case LINUX_REBOOT_CMD_KEXEC:
862 		kernel_kexec();
863 		unlock_kernel();
864 		return -EINVAL;
865 
866 #ifdef CONFIG_SOFTWARE_SUSPEND
867 	case LINUX_REBOOT_CMD_SW_SUSPEND:
868 		{
869 			int ret = software_suspend();
870 			unlock_kernel();
871 			return ret;
872 		}
873 #endif
874 
875 	default:
876 		unlock_kernel();
877 		return -EINVAL;
878 	}
879 	unlock_kernel();
880 	return 0;
881 }
882 
883 static void deferred_cad(struct work_struct *dummy)
884 {
885 	kernel_restart(NULL);
886 }
887 
888 /*
889  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
890  * As it's called within an interrupt, it may NOT sync: the only choice
891  * is whether to reboot at once, or just ignore the ctrl-alt-del.
892  */
893 void ctrl_alt_del(void)
894 {
895 	static DECLARE_WORK(cad_work, deferred_cad);
896 
897 	if (C_A_D)
898 		schedule_work(&cad_work);
899 	else
900 		kill_cad_pid(SIGINT, 1);
901 }
902 
903 /*
904  * Unprivileged users may change the real gid to the effective gid
905  * or vice versa.  (BSD-style)
906  *
907  * If you set the real gid at all, or set the effective gid to a value not
908  * equal to the real gid, then the saved gid is set to the new effective gid.
909  *
910  * This makes it possible for a setgid program to completely drop its
911  * privileges, which is often a useful assertion to make when you are doing
912  * a security audit over a program.
913  *
914  * The general idea is that a program which uses just setregid() will be
915  * 100% compatible with BSD.  A program which uses just setgid() will be
916  * 100% compatible with POSIX with saved IDs.
917  *
918  * SMP: There are not races, the GIDs are checked only by filesystem
919  *      operations (as far as semantic preservation is concerned).
920  */
921 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
922 {
923 	int old_rgid = current->gid;
924 	int old_egid = current->egid;
925 	int new_rgid = old_rgid;
926 	int new_egid = old_egid;
927 	int retval;
928 
929 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
930 	if (retval)
931 		return retval;
932 
933 	if (rgid != (gid_t) -1) {
934 		if ((old_rgid == rgid) ||
935 		    (current->egid==rgid) ||
936 		    capable(CAP_SETGID))
937 			new_rgid = rgid;
938 		else
939 			return -EPERM;
940 	}
941 	if (egid != (gid_t) -1) {
942 		if ((old_rgid == egid) ||
943 		    (current->egid == egid) ||
944 		    (current->sgid == egid) ||
945 		    capable(CAP_SETGID))
946 			new_egid = egid;
947 		else
948 			return -EPERM;
949 	}
950 	if (new_egid != old_egid) {
951 		current->mm->dumpable = suid_dumpable;
952 		smp_wmb();
953 	}
954 	if (rgid != (gid_t) -1 ||
955 	    (egid != (gid_t) -1 && egid != old_rgid))
956 		current->sgid = new_egid;
957 	current->fsgid = new_egid;
958 	current->egid = new_egid;
959 	current->gid = new_rgid;
960 	key_fsgid_changed(current);
961 	proc_id_connector(current, PROC_EVENT_GID);
962 	return 0;
963 }
964 
965 /*
966  * setgid() is implemented like SysV w/ SAVED_IDS
967  *
968  * SMP: Same implicit races as above.
969  */
970 asmlinkage long sys_setgid(gid_t gid)
971 {
972 	int old_egid = current->egid;
973 	int retval;
974 
975 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
976 	if (retval)
977 		return retval;
978 
979 	if (capable(CAP_SETGID)) {
980 		if (old_egid != gid) {
981 			current->mm->dumpable = suid_dumpable;
982 			smp_wmb();
983 		}
984 		current->gid = current->egid = current->sgid = current->fsgid = gid;
985 	} else if ((gid == current->gid) || (gid == current->sgid)) {
986 		if (old_egid != gid) {
987 			current->mm->dumpable = suid_dumpable;
988 			smp_wmb();
989 		}
990 		current->egid = current->fsgid = gid;
991 	}
992 	else
993 		return -EPERM;
994 
995 	key_fsgid_changed(current);
996 	proc_id_connector(current, PROC_EVENT_GID);
997 	return 0;
998 }
999 
1000 static int set_user(uid_t new_ruid, int dumpclear)
1001 {
1002 	struct user_struct *new_user;
1003 
1004 	new_user = alloc_uid(new_ruid);
1005 	if (!new_user)
1006 		return -EAGAIN;
1007 
1008 	if (atomic_read(&new_user->processes) >=
1009 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1010 			new_user != &root_user) {
1011 		free_uid(new_user);
1012 		return -EAGAIN;
1013 	}
1014 
1015 	switch_uid(new_user);
1016 
1017 	if (dumpclear) {
1018 		current->mm->dumpable = suid_dumpable;
1019 		smp_wmb();
1020 	}
1021 	current->uid = new_ruid;
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Unprivileged users may change the real uid to the effective uid
1027  * or vice versa.  (BSD-style)
1028  *
1029  * If you set the real uid at all, or set the effective uid to a value not
1030  * equal to the real uid, then the saved uid is set to the new effective uid.
1031  *
1032  * This makes it possible for a setuid program to completely drop its
1033  * privileges, which is often a useful assertion to make when you are doing
1034  * a security audit over a program.
1035  *
1036  * The general idea is that a program which uses just setreuid() will be
1037  * 100% compatible with BSD.  A program which uses just setuid() will be
1038  * 100% compatible with POSIX with saved IDs.
1039  */
1040 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1041 {
1042 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1043 	int retval;
1044 
1045 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1046 	if (retval)
1047 		return retval;
1048 
1049 	new_ruid = old_ruid = current->uid;
1050 	new_euid = old_euid = current->euid;
1051 	old_suid = current->suid;
1052 
1053 	if (ruid != (uid_t) -1) {
1054 		new_ruid = ruid;
1055 		if ((old_ruid != ruid) &&
1056 		    (current->euid != ruid) &&
1057 		    !capable(CAP_SETUID))
1058 			return -EPERM;
1059 	}
1060 
1061 	if (euid != (uid_t) -1) {
1062 		new_euid = euid;
1063 		if ((old_ruid != euid) &&
1064 		    (current->euid != euid) &&
1065 		    (current->suid != euid) &&
1066 		    !capable(CAP_SETUID))
1067 			return -EPERM;
1068 	}
1069 
1070 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1071 		return -EAGAIN;
1072 
1073 	if (new_euid != old_euid) {
1074 		current->mm->dumpable = suid_dumpable;
1075 		smp_wmb();
1076 	}
1077 	current->fsuid = current->euid = new_euid;
1078 	if (ruid != (uid_t) -1 ||
1079 	    (euid != (uid_t) -1 && euid != old_ruid))
1080 		current->suid = current->euid;
1081 	current->fsuid = current->euid;
1082 
1083 	key_fsuid_changed(current);
1084 	proc_id_connector(current, PROC_EVENT_UID);
1085 
1086 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1087 }
1088 
1089 
1090 
1091 /*
1092  * setuid() is implemented like SysV with SAVED_IDS
1093  *
1094  * Note that SAVED_ID's is deficient in that a setuid root program
1095  * like sendmail, for example, cannot set its uid to be a normal
1096  * user and then switch back, because if you're root, setuid() sets
1097  * the saved uid too.  If you don't like this, blame the bright people
1098  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
1099  * will allow a root program to temporarily drop privileges and be able to
1100  * regain them by swapping the real and effective uid.
1101  */
1102 asmlinkage long sys_setuid(uid_t uid)
1103 {
1104 	int old_euid = current->euid;
1105 	int old_ruid, old_suid, new_suid;
1106 	int retval;
1107 
1108 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1109 	if (retval)
1110 		return retval;
1111 
1112 	old_ruid = current->uid;
1113 	old_suid = current->suid;
1114 	new_suid = old_suid;
1115 
1116 	if (capable(CAP_SETUID)) {
1117 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1118 			return -EAGAIN;
1119 		new_suid = uid;
1120 	} else if ((uid != current->uid) && (uid != new_suid))
1121 		return -EPERM;
1122 
1123 	if (old_euid != uid) {
1124 		current->mm->dumpable = suid_dumpable;
1125 		smp_wmb();
1126 	}
1127 	current->fsuid = current->euid = uid;
1128 	current->suid = new_suid;
1129 
1130 	key_fsuid_changed(current);
1131 	proc_id_connector(current, PROC_EVENT_UID);
1132 
1133 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1134 }
1135 
1136 
1137 /*
1138  * This function implements a generic ability to update ruid, euid,
1139  * and suid.  This allows you to implement the 4.4 compatible seteuid().
1140  */
1141 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1142 {
1143 	int old_ruid = current->uid;
1144 	int old_euid = current->euid;
1145 	int old_suid = current->suid;
1146 	int retval;
1147 
1148 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1149 	if (retval)
1150 		return retval;
1151 
1152 	if (!capable(CAP_SETUID)) {
1153 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1154 		    (ruid != current->euid) && (ruid != current->suid))
1155 			return -EPERM;
1156 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
1157 		    (euid != current->euid) && (euid != current->suid))
1158 			return -EPERM;
1159 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
1160 		    (suid != current->euid) && (suid != current->suid))
1161 			return -EPERM;
1162 	}
1163 	if (ruid != (uid_t) -1) {
1164 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1165 			return -EAGAIN;
1166 	}
1167 	if (euid != (uid_t) -1) {
1168 		if (euid != current->euid) {
1169 			current->mm->dumpable = suid_dumpable;
1170 			smp_wmb();
1171 		}
1172 		current->euid = euid;
1173 	}
1174 	current->fsuid = current->euid;
1175 	if (suid != (uid_t) -1)
1176 		current->suid = suid;
1177 
1178 	key_fsuid_changed(current);
1179 	proc_id_connector(current, PROC_EVENT_UID);
1180 
1181 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1182 }
1183 
1184 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1185 {
1186 	int retval;
1187 
1188 	if (!(retval = put_user(current->uid, ruid)) &&
1189 	    !(retval = put_user(current->euid, euid)))
1190 		retval = put_user(current->suid, suid);
1191 
1192 	return retval;
1193 }
1194 
1195 /*
1196  * Same as above, but for rgid, egid, sgid.
1197  */
1198 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1199 {
1200 	int retval;
1201 
1202 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1203 	if (retval)
1204 		return retval;
1205 
1206 	if (!capable(CAP_SETGID)) {
1207 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1208 		    (rgid != current->egid) && (rgid != current->sgid))
1209 			return -EPERM;
1210 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
1211 		    (egid != current->egid) && (egid != current->sgid))
1212 			return -EPERM;
1213 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1214 		    (sgid != current->egid) && (sgid != current->sgid))
1215 			return -EPERM;
1216 	}
1217 	if (egid != (gid_t) -1) {
1218 		if (egid != current->egid) {
1219 			current->mm->dumpable = suid_dumpable;
1220 			smp_wmb();
1221 		}
1222 		current->egid = egid;
1223 	}
1224 	current->fsgid = current->egid;
1225 	if (rgid != (gid_t) -1)
1226 		current->gid = rgid;
1227 	if (sgid != (gid_t) -1)
1228 		current->sgid = sgid;
1229 
1230 	key_fsgid_changed(current);
1231 	proc_id_connector(current, PROC_EVENT_GID);
1232 	return 0;
1233 }
1234 
1235 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1236 {
1237 	int retval;
1238 
1239 	if (!(retval = put_user(current->gid, rgid)) &&
1240 	    !(retval = put_user(current->egid, egid)))
1241 		retval = put_user(current->sgid, sgid);
1242 
1243 	return retval;
1244 }
1245 
1246 
1247 /*
1248  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1249  * is used for "access()" and for the NFS daemon (letting nfsd stay at
1250  * whatever uid it wants to). It normally shadows "euid", except when
1251  * explicitly set by setfsuid() or for access..
1252  */
1253 asmlinkage long sys_setfsuid(uid_t uid)
1254 {
1255 	int old_fsuid;
1256 
1257 	old_fsuid = current->fsuid;
1258 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1259 		return old_fsuid;
1260 
1261 	if (uid == current->uid || uid == current->euid ||
1262 	    uid == current->suid || uid == current->fsuid ||
1263 	    capable(CAP_SETUID)) {
1264 		if (uid != old_fsuid) {
1265 			current->mm->dumpable = suid_dumpable;
1266 			smp_wmb();
1267 		}
1268 		current->fsuid = uid;
1269 	}
1270 
1271 	key_fsuid_changed(current);
1272 	proc_id_connector(current, PROC_EVENT_UID);
1273 
1274 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1275 
1276 	return old_fsuid;
1277 }
1278 
1279 /*
1280  * Samma p� svenska..
1281  */
1282 asmlinkage long sys_setfsgid(gid_t gid)
1283 {
1284 	int old_fsgid;
1285 
1286 	old_fsgid = current->fsgid;
1287 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1288 		return old_fsgid;
1289 
1290 	if (gid == current->gid || gid == current->egid ||
1291 	    gid == current->sgid || gid == current->fsgid ||
1292 	    capable(CAP_SETGID)) {
1293 		if (gid != old_fsgid) {
1294 			current->mm->dumpable = suid_dumpable;
1295 			smp_wmb();
1296 		}
1297 		current->fsgid = gid;
1298 		key_fsgid_changed(current);
1299 		proc_id_connector(current, PROC_EVENT_GID);
1300 	}
1301 	return old_fsgid;
1302 }
1303 
1304 asmlinkage long sys_times(struct tms __user * tbuf)
1305 {
1306 	/*
1307 	 *	In the SMP world we might just be unlucky and have one of
1308 	 *	the times increment as we use it. Since the value is an
1309 	 *	atomically safe type this is just fine. Conceptually its
1310 	 *	as if the syscall took an instant longer to occur.
1311 	 */
1312 	if (tbuf) {
1313 		struct tms tmp;
1314 		struct task_struct *tsk = current;
1315 		struct task_struct *t;
1316 		cputime_t utime, stime, cutime, cstime;
1317 
1318 		spin_lock_irq(&tsk->sighand->siglock);
1319 		utime = tsk->signal->utime;
1320 		stime = tsk->signal->stime;
1321 		t = tsk;
1322 		do {
1323 			utime = cputime_add(utime, t->utime);
1324 			stime = cputime_add(stime, t->stime);
1325 			t = next_thread(t);
1326 		} while (t != tsk);
1327 
1328 		cutime = tsk->signal->cutime;
1329 		cstime = tsk->signal->cstime;
1330 		spin_unlock_irq(&tsk->sighand->siglock);
1331 
1332 		tmp.tms_utime = cputime_to_clock_t(utime);
1333 		tmp.tms_stime = cputime_to_clock_t(stime);
1334 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1335 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1336 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1337 			return -EFAULT;
1338 	}
1339 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1340 }
1341 
1342 /*
1343  * This needs some heavy checking ...
1344  * I just haven't the stomach for it. I also don't fully
1345  * understand sessions/pgrp etc. Let somebody who does explain it.
1346  *
1347  * OK, I think I have the protection semantics right.... this is really
1348  * only important on a multi-user system anyway, to make sure one user
1349  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1350  *
1351  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1352  * LBT 04.03.94
1353  */
1354 
1355 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1356 {
1357 	struct task_struct *p;
1358 	struct task_struct *group_leader = current->group_leader;
1359 	int err = -EINVAL;
1360 
1361 	if (!pid)
1362 		pid = group_leader->pid;
1363 	if (!pgid)
1364 		pgid = pid;
1365 	if (pgid < 0)
1366 		return -EINVAL;
1367 
1368 	/* From this point forward we keep holding onto the tasklist lock
1369 	 * so that our parent does not change from under us. -DaveM
1370 	 */
1371 	write_lock_irq(&tasklist_lock);
1372 
1373 	err = -ESRCH;
1374 	p = find_task_by_pid(pid);
1375 	if (!p)
1376 		goto out;
1377 
1378 	err = -EINVAL;
1379 	if (!thread_group_leader(p))
1380 		goto out;
1381 
1382 	if (p->real_parent == group_leader) {
1383 		err = -EPERM;
1384 		if (process_session(p) != process_session(group_leader))
1385 			goto out;
1386 		err = -EACCES;
1387 		if (p->did_exec)
1388 			goto out;
1389 	} else {
1390 		err = -ESRCH;
1391 		if (p != group_leader)
1392 			goto out;
1393 	}
1394 
1395 	err = -EPERM;
1396 	if (p->signal->leader)
1397 		goto out;
1398 
1399 	if (pgid != pid) {
1400 		struct task_struct *g =
1401 			find_task_by_pid_type(PIDTYPE_PGID, pgid);
1402 
1403 		if (!g || process_session(g) != process_session(group_leader))
1404 			goto out;
1405 	}
1406 
1407 	err = security_task_setpgid(p, pgid);
1408 	if (err)
1409 		goto out;
1410 
1411 	if (process_group(p) != pgid) {
1412 		detach_pid(p, PIDTYPE_PGID);
1413 		p->signal->pgrp = pgid;
1414 		attach_pid(p, PIDTYPE_PGID, pgid);
1415 	}
1416 
1417 	err = 0;
1418 out:
1419 	/* All paths lead to here, thus we are safe. -DaveM */
1420 	write_unlock_irq(&tasklist_lock);
1421 	return err;
1422 }
1423 
1424 asmlinkage long sys_getpgid(pid_t pid)
1425 {
1426 	if (!pid)
1427 		return process_group(current);
1428 	else {
1429 		int retval;
1430 		struct task_struct *p;
1431 
1432 		read_lock(&tasklist_lock);
1433 		p = find_task_by_pid(pid);
1434 
1435 		retval = -ESRCH;
1436 		if (p) {
1437 			retval = security_task_getpgid(p);
1438 			if (!retval)
1439 				retval = process_group(p);
1440 		}
1441 		read_unlock(&tasklist_lock);
1442 		return retval;
1443 	}
1444 }
1445 
1446 #ifdef __ARCH_WANT_SYS_GETPGRP
1447 
1448 asmlinkage long sys_getpgrp(void)
1449 {
1450 	/* SMP - assuming writes are word atomic this is fine */
1451 	return process_group(current);
1452 }
1453 
1454 #endif
1455 
1456 asmlinkage long sys_getsid(pid_t pid)
1457 {
1458 	if (!pid)
1459 		return process_session(current);
1460 	else {
1461 		int retval;
1462 		struct task_struct *p;
1463 
1464 		read_lock(&tasklist_lock);
1465 		p = find_task_by_pid(pid);
1466 
1467 		retval = -ESRCH;
1468 		if (p) {
1469 			retval = security_task_getsid(p);
1470 			if (!retval)
1471 				retval = process_session(p);
1472 		}
1473 		read_unlock(&tasklist_lock);
1474 		return retval;
1475 	}
1476 }
1477 
1478 asmlinkage long sys_setsid(void)
1479 {
1480 	struct task_struct *group_leader = current->group_leader;
1481 	pid_t session;
1482 	int err = -EPERM;
1483 
1484 	write_lock_irq(&tasklist_lock);
1485 
1486 	/* Fail if I am already a session leader */
1487 	if (group_leader->signal->leader)
1488 		goto out;
1489 
1490 	session = group_leader->pid;
1491 	/* Fail if a process group id already exists that equals the
1492 	 * proposed session id.
1493 	 *
1494 	 * Don't check if session id == 1 because kernel threads use this
1495 	 * session id and so the check will always fail and make it so
1496 	 * init cannot successfully call setsid.
1497 	 */
1498 	if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1499 		goto out;
1500 
1501 	group_leader->signal->leader = 1;
1502 	__set_special_pids(session, session);
1503 
1504 	spin_lock(&group_leader->sighand->siglock);
1505 	group_leader->signal->tty = NULL;
1506 	group_leader->signal->tty_old_pgrp = 0;
1507 	spin_unlock(&group_leader->sighand->siglock);
1508 
1509 	err = process_group(group_leader);
1510 out:
1511 	write_unlock_irq(&tasklist_lock);
1512 	return err;
1513 }
1514 
1515 /*
1516  * Supplementary group IDs
1517  */
1518 
1519 /* init to 2 - one for init_task, one to ensure it is never freed */
1520 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1521 
1522 struct group_info *groups_alloc(int gidsetsize)
1523 {
1524 	struct group_info *group_info;
1525 	int nblocks;
1526 	int i;
1527 
1528 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1529 	/* Make sure we always allocate at least one indirect block pointer */
1530 	nblocks = nblocks ? : 1;
1531 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1532 	if (!group_info)
1533 		return NULL;
1534 	group_info->ngroups = gidsetsize;
1535 	group_info->nblocks = nblocks;
1536 	atomic_set(&group_info->usage, 1);
1537 
1538 	if (gidsetsize <= NGROUPS_SMALL)
1539 		group_info->blocks[0] = group_info->small_block;
1540 	else {
1541 		for (i = 0; i < nblocks; i++) {
1542 			gid_t *b;
1543 			b = (void *)__get_free_page(GFP_USER);
1544 			if (!b)
1545 				goto out_undo_partial_alloc;
1546 			group_info->blocks[i] = b;
1547 		}
1548 	}
1549 	return group_info;
1550 
1551 out_undo_partial_alloc:
1552 	while (--i >= 0) {
1553 		free_page((unsigned long)group_info->blocks[i]);
1554 	}
1555 	kfree(group_info);
1556 	return NULL;
1557 }
1558 
1559 EXPORT_SYMBOL(groups_alloc);
1560 
1561 void groups_free(struct group_info *group_info)
1562 {
1563 	if (group_info->blocks[0] != group_info->small_block) {
1564 		int i;
1565 		for (i = 0; i < group_info->nblocks; i++)
1566 			free_page((unsigned long)group_info->blocks[i]);
1567 	}
1568 	kfree(group_info);
1569 }
1570 
1571 EXPORT_SYMBOL(groups_free);
1572 
1573 /* export the group_info to a user-space array */
1574 static int groups_to_user(gid_t __user *grouplist,
1575     struct group_info *group_info)
1576 {
1577 	int i;
1578 	int count = group_info->ngroups;
1579 
1580 	for (i = 0; i < group_info->nblocks; i++) {
1581 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1582 		int off = i * NGROUPS_PER_BLOCK;
1583 		int len = cp_count * sizeof(*grouplist);
1584 
1585 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1586 			return -EFAULT;
1587 
1588 		count -= cp_count;
1589 	}
1590 	return 0;
1591 }
1592 
1593 /* fill a group_info from a user-space array - it must be allocated already */
1594 static int groups_from_user(struct group_info *group_info,
1595     gid_t __user *grouplist)
1596 {
1597 	int i;
1598 	int count = group_info->ngroups;
1599 
1600 	for (i = 0; i < group_info->nblocks; i++) {
1601 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1602 		int off = i * NGROUPS_PER_BLOCK;
1603 		int len = cp_count * sizeof(*grouplist);
1604 
1605 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1606 			return -EFAULT;
1607 
1608 		count -= cp_count;
1609 	}
1610 	return 0;
1611 }
1612 
1613 /* a simple Shell sort */
1614 static void groups_sort(struct group_info *group_info)
1615 {
1616 	int base, max, stride;
1617 	int gidsetsize = group_info->ngroups;
1618 
1619 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1620 		; /* nothing */
1621 	stride /= 3;
1622 
1623 	while (stride) {
1624 		max = gidsetsize - stride;
1625 		for (base = 0; base < max; base++) {
1626 			int left = base;
1627 			int right = left + stride;
1628 			gid_t tmp = GROUP_AT(group_info, right);
1629 
1630 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1631 				GROUP_AT(group_info, right) =
1632 				    GROUP_AT(group_info, left);
1633 				right = left;
1634 				left -= stride;
1635 			}
1636 			GROUP_AT(group_info, right) = tmp;
1637 		}
1638 		stride /= 3;
1639 	}
1640 }
1641 
1642 /* a simple bsearch */
1643 int groups_search(struct group_info *group_info, gid_t grp)
1644 {
1645 	unsigned int left, right;
1646 
1647 	if (!group_info)
1648 		return 0;
1649 
1650 	left = 0;
1651 	right = group_info->ngroups;
1652 	while (left < right) {
1653 		unsigned int mid = (left+right)/2;
1654 		int cmp = grp - GROUP_AT(group_info, mid);
1655 		if (cmp > 0)
1656 			left = mid + 1;
1657 		else if (cmp < 0)
1658 			right = mid;
1659 		else
1660 			return 1;
1661 	}
1662 	return 0;
1663 }
1664 
1665 /* validate and set current->group_info */
1666 int set_current_groups(struct group_info *group_info)
1667 {
1668 	int retval;
1669 	struct group_info *old_info;
1670 
1671 	retval = security_task_setgroups(group_info);
1672 	if (retval)
1673 		return retval;
1674 
1675 	groups_sort(group_info);
1676 	get_group_info(group_info);
1677 
1678 	task_lock(current);
1679 	old_info = current->group_info;
1680 	current->group_info = group_info;
1681 	task_unlock(current);
1682 
1683 	put_group_info(old_info);
1684 
1685 	return 0;
1686 }
1687 
1688 EXPORT_SYMBOL(set_current_groups);
1689 
1690 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1691 {
1692 	int i = 0;
1693 
1694 	/*
1695 	 *	SMP: Nobody else can change our grouplist. Thus we are
1696 	 *	safe.
1697 	 */
1698 
1699 	if (gidsetsize < 0)
1700 		return -EINVAL;
1701 
1702 	/* no need to grab task_lock here; it cannot change */
1703 	i = current->group_info->ngroups;
1704 	if (gidsetsize) {
1705 		if (i > gidsetsize) {
1706 			i = -EINVAL;
1707 			goto out;
1708 		}
1709 		if (groups_to_user(grouplist, current->group_info)) {
1710 			i = -EFAULT;
1711 			goto out;
1712 		}
1713 	}
1714 out:
1715 	return i;
1716 }
1717 
1718 /*
1719  *	SMP: Our groups are copy-on-write. We can set them safely
1720  *	without another task interfering.
1721  */
1722 
1723 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1724 {
1725 	struct group_info *group_info;
1726 	int retval;
1727 
1728 	if (!capable(CAP_SETGID))
1729 		return -EPERM;
1730 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1731 		return -EINVAL;
1732 
1733 	group_info = groups_alloc(gidsetsize);
1734 	if (!group_info)
1735 		return -ENOMEM;
1736 	retval = groups_from_user(group_info, grouplist);
1737 	if (retval) {
1738 		put_group_info(group_info);
1739 		return retval;
1740 	}
1741 
1742 	retval = set_current_groups(group_info);
1743 	put_group_info(group_info);
1744 
1745 	return retval;
1746 }
1747 
1748 /*
1749  * Check whether we're fsgid/egid or in the supplemental group..
1750  */
1751 int in_group_p(gid_t grp)
1752 {
1753 	int retval = 1;
1754 	if (grp != current->fsgid)
1755 		retval = groups_search(current->group_info, grp);
1756 	return retval;
1757 }
1758 
1759 EXPORT_SYMBOL(in_group_p);
1760 
1761 int in_egroup_p(gid_t grp)
1762 {
1763 	int retval = 1;
1764 	if (grp != current->egid)
1765 		retval = groups_search(current->group_info, grp);
1766 	return retval;
1767 }
1768 
1769 EXPORT_SYMBOL(in_egroup_p);
1770 
1771 DECLARE_RWSEM(uts_sem);
1772 
1773 EXPORT_SYMBOL(uts_sem);
1774 
1775 asmlinkage long sys_newuname(struct new_utsname __user * name)
1776 {
1777 	int errno = 0;
1778 
1779 	down_read(&uts_sem);
1780 	if (copy_to_user(name, utsname(), sizeof *name))
1781 		errno = -EFAULT;
1782 	up_read(&uts_sem);
1783 	return errno;
1784 }
1785 
1786 asmlinkage long sys_sethostname(char __user *name, int len)
1787 {
1788 	int errno;
1789 	char tmp[__NEW_UTS_LEN];
1790 
1791 	if (!capable(CAP_SYS_ADMIN))
1792 		return -EPERM;
1793 	if (len < 0 || len > __NEW_UTS_LEN)
1794 		return -EINVAL;
1795 	down_write(&uts_sem);
1796 	errno = -EFAULT;
1797 	if (!copy_from_user(tmp, name, len)) {
1798 		memcpy(utsname()->nodename, tmp, len);
1799 		utsname()->nodename[len] = 0;
1800 		errno = 0;
1801 	}
1802 	up_write(&uts_sem);
1803 	return errno;
1804 }
1805 
1806 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1807 
1808 asmlinkage long sys_gethostname(char __user *name, int len)
1809 {
1810 	int i, errno;
1811 
1812 	if (len < 0)
1813 		return -EINVAL;
1814 	down_read(&uts_sem);
1815 	i = 1 + strlen(utsname()->nodename);
1816 	if (i > len)
1817 		i = len;
1818 	errno = 0;
1819 	if (copy_to_user(name, utsname()->nodename, i))
1820 		errno = -EFAULT;
1821 	up_read(&uts_sem);
1822 	return errno;
1823 }
1824 
1825 #endif
1826 
1827 /*
1828  * Only setdomainname; getdomainname can be implemented by calling
1829  * uname()
1830  */
1831 asmlinkage long sys_setdomainname(char __user *name, int len)
1832 {
1833 	int errno;
1834 	char tmp[__NEW_UTS_LEN];
1835 
1836 	if (!capable(CAP_SYS_ADMIN))
1837 		return -EPERM;
1838 	if (len < 0 || len > __NEW_UTS_LEN)
1839 		return -EINVAL;
1840 
1841 	down_write(&uts_sem);
1842 	errno = -EFAULT;
1843 	if (!copy_from_user(tmp, name, len)) {
1844 		memcpy(utsname()->domainname, tmp, len);
1845 		utsname()->domainname[len] = 0;
1846 		errno = 0;
1847 	}
1848 	up_write(&uts_sem);
1849 	return errno;
1850 }
1851 
1852 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1853 {
1854 	if (resource >= RLIM_NLIMITS)
1855 		return -EINVAL;
1856 	else {
1857 		struct rlimit value;
1858 		task_lock(current->group_leader);
1859 		value = current->signal->rlim[resource];
1860 		task_unlock(current->group_leader);
1861 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1862 	}
1863 }
1864 
1865 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1866 
1867 /*
1868  *	Back compatibility for getrlimit. Needed for some apps.
1869  */
1870 
1871 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1872 {
1873 	struct rlimit x;
1874 	if (resource >= RLIM_NLIMITS)
1875 		return -EINVAL;
1876 
1877 	task_lock(current->group_leader);
1878 	x = current->signal->rlim[resource];
1879 	task_unlock(current->group_leader);
1880 	if (x.rlim_cur > 0x7FFFFFFF)
1881 		x.rlim_cur = 0x7FFFFFFF;
1882 	if (x.rlim_max > 0x7FFFFFFF)
1883 		x.rlim_max = 0x7FFFFFFF;
1884 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1885 }
1886 
1887 #endif
1888 
1889 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1890 {
1891 	struct rlimit new_rlim, *old_rlim;
1892 	unsigned long it_prof_secs;
1893 	int retval;
1894 
1895 	if (resource >= RLIM_NLIMITS)
1896 		return -EINVAL;
1897 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1898 		return -EFAULT;
1899 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1900 		return -EINVAL;
1901 	old_rlim = current->signal->rlim + resource;
1902 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1903 	    !capable(CAP_SYS_RESOURCE))
1904 		return -EPERM;
1905 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1906 		return -EPERM;
1907 
1908 	retval = security_task_setrlimit(resource, &new_rlim);
1909 	if (retval)
1910 		return retval;
1911 
1912 	task_lock(current->group_leader);
1913 	*old_rlim = new_rlim;
1914 	task_unlock(current->group_leader);
1915 
1916 	if (resource != RLIMIT_CPU)
1917 		goto out;
1918 
1919 	/*
1920 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1921 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1922 	 * very long-standing error, and fixing it now risks breakage of
1923 	 * applications, so we live with it
1924 	 */
1925 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1926 		goto out;
1927 
1928 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1929 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1930 		unsigned long rlim_cur = new_rlim.rlim_cur;
1931 		cputime_t cputime;
1932 
1933 		if (rlim_cur == 0) {
1934 			/*
1935 			 * The caller is asking for an immediate RLIMIT_CPU
1936 			 * expiry.  But we use the zero value to mean "it was
1937 			 * never set".  So let's cheat and make it one second
1938 			 * instead
1939 			 */
1940 			rlim_cur = 1;
1941 		}
1942 		cputime = secs_to_cputime(rlim_cur);
1943 		read_lock(&tasklist_lock);
1944 		spin_lock_irq(&current->sighand->siglock);
1945 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1946 		spin_unlock_irq(&current->sighand->siglock);
1947 		read_unlock(&tasklist_lock);
1948 	}
1949 out:
1950 	return 0;
1951 }
1952 
1953 /*
1954  * It would make sense to put struct rusage in the task_struct,
1955  * except that would make the task_struct be *really big*.  After
1956  * task_struct gets moved into malloc'ed memory, it would
1957  * make sense to do this.  It will make moving the rest of the information
1958  * a lot simpler!  (Which we're not doing right now because we're not
1959  * measuring them yet).
1960  *
1961  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1962  * races with threads incrementing their own counters.  But since word
1963  * reads are atomic, we either get new values or old values and we don't
1964  * care which for the sums.  We always take the siglock to protect reading
1965  * the c* fields from p->signal from races with exit.c updating those
1966  * fields when reaping, so a sample either gets all the additions of a
1967  * given child after it's reaped, or none so this sample is before reaping.
1968  *
1969  * Locking:
1970  * We need to take the siglock for CHILDEREN, SELF and BOTH
1971  * for  the cases current multithreaded, non-current single threaded
1972  * non-current multithreaded.  Thread traversal is now safe with
1973  * the siglock held.
1974  * Strictly speaking, we donot need to take the siglock if we are current and
1975  * single threaded,  as no one else can take our signal_struct away, no one
1976  * else can  reap the  children to update signal->c* counters, and no one else
1977  * can race with the signal-> fields. If we do not take any lock, the
1978  * signal-> fields could be read out of order while another thread was just
1979  * exiting. So we should  place a read memory barrier when we avoid the lock.
1980  * On the writer side,  write memory barrier is implied in  __exit_signal
1981  * as __exit_signal releases  the siglock spinlock after updating the signal->
1982  * fields. But we don't do this yet to keep things simple.
1983  *
1984  */
1985 
1986 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1987 {
1988 	struct task_struct *t;
1989 	unsigned long flags;
1990 	cputime_t utime, stime;
1991 
1992 	memset((char *) r, 0, sizeof *r);
1993 	utime = stime = cputime_zero;
1994 
1995 	rcu_read_lock();
1996 	if (!lock_task_sighand(p, &flags)) {
1997 		rcu_read_unlock();
1998 		return;
1999 	}
2000 
2001 	switch (who) {
2002 		case RUSAGE_BOTH:
2003 		case RUSAGE_CHILDREN:
2004 			utime = p->signal->cutime;
2005 			stime = p->signal->cstime;
2006 			r->ru_nvcsw = p->signal->cnvcsw;
2007 			r->ru_nivcsw = p->signal->cnivcsw;
2008 			r->ru_minflt = p->signal->cmin_flt;
2009 			r->ru_majflt = p->signal->cmaj_flt;
2010 
2011 			if (who == RUSAGE_CHILDREN)
2012 				break;
2013 
2014 		case RUSAGE_SELF:
2015 			utime = cputime_add(utime, p->signal->utime);
2016 			stime = cputime_add(stime, p->signal->stime);
2017 			r->ru_nvcsw += p->signal->nvcsw;
2018 			r->ru_nivcsw += p->signal->nivcsw;
2019 			r->ru_minflt += p->signal->min_flt;
2020 			r->ru_majflt += p->signal->maj_flt;
2021 			t = p;
2022 			do {
2023 				utime = cputime_add(utime, t->utime);
2024 				stime = cputime_add(stime, t->stime);
2025 				r->ru_nvcsw += t->nvcsw;
2026 				r->ru_nivcsw += t->nivcsw;
2027 				r->ru_minflt += t->min_flt;
2028 				r->ru_majflt += t->maj_flt;
2029 				t = next_thread(t);
2030 			} while (t != p);
2031 			break;
2032 
2033 		default:
2034 			BUG();
2035 	}
2036 
2037 	unlock_task_sighand(p, &flags);
2038 	rcu_read_unlock();
2039 
2040 	cputime_to_timeval(utime, &r->ru_utime);
2041 	cputime_to_timeval(stime, &r->ru_stime);
2042 }
2043 
2044 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2045 {
2046 	struct rusage r;
2047 	k_getrusage(p, who, &r);
2048 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2049 }
2050 
2051 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2052 {
2053 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2054 		return -EINVAL;
2055 	return getrusage(current, who, ru);
2056 }
2057 
2058 asmlinkage long sys_umask(int mask)
2059 {
2060 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2061 	return mask;
2062 }
2063 
2064 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2065 			  unsigned long arg4, unsigned long arg5)
2066 {
2067 	long error;
2068 
2069 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2070 	if (error)
2071 		return error;
2072 
2073 	switch (option) {
2074 		case PR_SET_PDEATHSIG:
2075 			if (!valid_signal(arg2)) {
2076 				error = -EINVAL;
2077 				break;
2078 			}
2079 			current->pdeath_signal = arg2;
2080 			break;
2081 		case PR_GET_PDEATHSIG:
2082 			error = put_user(current->pdeath_signal, (int __user *)arg2);
2083 			break;
2084 		case PR_GET_DUMPABLE:
2085 			error = current->mm->dumpable;
2086 			break;
2087 		case PR_SET_DUMPABLE:
2088 			if (arg2 < 0 || arg2 > 1) {
2089 				error = -EINVAL;
2090 				break;
2091 			}
2092 			current->mm->dumpable = arg2;
2093 			break;
2094 
2095 		case PR_SET_UNALIGN:
2096 			error = SET_UNALIGN_CTL(current, arg2);
2097 			break;
2098 		case PR_GET_UNALIGN:
2099 			error = GET_UNALIGN_CTL(current, arg2);
2100 			break;
2101 		case PR_SET_FPEMU:
2102 			error = SET_FPEMU_CTL(current, arg2);
2103 			break;
2104 		case PR_GET_FPEMU:
2105 			error = GET_FPEMU_CTL(current, arg2);
2106 			break;
2107 		case PR_SET_FPEXC:
2108 			error = SET_FPEXC_CTL(current, arg2);
2109 			break;
2110 		case PR_GET_FPEXC:
2111 			error = GET_FPEXC_CTL(current, arg2);
2112 			break;
2113 		case PR_GET_TIMING:
2114 			error = PR_TIMING_STATISTICAL;
2115 			break;
2116 		case PR_SET_TIMING:
2117 			if (arg2 == PR_TIMING_STATISTICAL)
2118 				error = 0;
2119 			else
2120 				error = -EINVAL;
2121 			break;
2122 
2123 		case PR_GET_KEEPCAPS:
2124 			if (current->keep_capabilities)
2125 				error = 1;
2126 			break;
2127 		case PR_SET_KEEPCAPS:
2128 			if (arg2 != 0 && arg2 != 1) {
2129 				error = -EINVAL;
2130 				break;
2131 			}
2132 			current->keep_capabilities = arg2;
2133 			break;
2134 		case PR_SET_NAME: {
2135 			struct task_struct *me = current;
2136 			unsigned char ncomm[sizeof(me->comm)];
2137 
2138 			ncomm[sizeof(me->comm)-1] = 0;
2139 			if (strncpy_from_user(ncomm, (char __user *)arg2,
2140 						sizeof(me->comm)-1) < 0)
2141 				return -EFAULT;
2142 			set_task_comm(me, ncomm);
2143 			return 0;
2144 		}
2145 		case PR_GET_NAME: {
2146 			struct task_struct *me = current;
2147 			unsigned char tcomm[sizeof(me->comm)];
2148 
2149 			get_task_comm(tcomm, me);
2150 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2151 				return -EFAULT;
2152 			return 0;
2153 		}
2154 		case PR_GET_ENDIAN:
2155 			error = GET_ENDIAN(current, arg2);
2156 			break;
2157 		case PR_SET_ENDIAN:
2158 			error = SET_ENDIAN(current, arg2);
2159 			break;
2160 
2161 		default:
2162 			error = -EINVAL;
2163 			break;
2164 	}
2165 	return error;
2166 }
2167 
2168 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2169 	   		   struct getcpu_cache __user *cache)
2170 {
2171 	int err = 0;
2172 	int cpu = raw_smp_processor_id();
2173 	if (cpup)
2174 		err |= put_user(cpu, cpup);
2175 	if (nodep)
2176 		err |= put_user(cpu_to_node(cpu), nodep);
2177 	if (cache) {
2178 		/*
2179 		 * The cache is not needed for this implementation,
2180 		 * but make sure user programs pass something
2181 		 * valid. vsyscall implementations can instead make
2182 		 * good use of the cache. Only use t0 and t1 because
2183 		 * these are available in both 32bit and 64bit ABI (no
2184 		 * need for a compat_getcpu). 32bit has enough
2185 		 * padding
2186 		 */
2187 		unsigned long t0, t1;
2188 		get_user(t0, &cache->blob[0]);
2189 		get_user(t1, &cache->blob[1]);
2190 		t0++;
2191 		t1++;
2192 		put_user(t0, &cache->blob[0]);
2193 		put_user(t1, &cache->blob[1]);
2194 	}
2195 	return err ? -EFAULT : 0;
2196 }
2197