1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 37 #include <linux/compat.h> 38 #include <linux/syscalls.h> 39 #include <linux/kprobes.h> 40 #include <linux/user_namespace.h> 41 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/unistd.h> 45 46 #ifndef SET_UNALIGN_CTL 47 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 48 #endif 49 #ifndef GET_UNALIGN_CTL 50 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 51 #endif 52 #ifndef SET_FPEMU_CTL 53 # define SET_FPEMU_CTL(a,b) (-EINVAL) 54 #endif 55 #ifndef GET_FPEMU_CTL 56 # define GET_FPEMU_CTL(a,b) (-EINVAL) 57 #endif 58 #ifndef SET_FPEXC_CTL 59 # define SET_FPEXC_CTL(a,b) (-EINVAL) 60 #endif 61 #ifndef GET_FPEXC_CTL 62 # define GET_FPEXC_CTL(a,b) (-EINVAL) 63 #endif 64 #ifndef GET_ENDIAN 65 # define GET_ENDIAN(a,b) (-EINVAL) 66 #endif 67 #ifndef SET_ENDIAN 68 # define SET_ENDIAN(a,b) (-EINVAL) 69 #endif 70 #ifndef GET_TSC_CTL 71 # define GET_TSC_CTL(a) (-EINVAL) 72 #endif 73 #ifndef SET_TSC_CTL 74 # define SET_TSC_CTL(a) (-EINVAL) 75 #endif 76 77 /* 78 * this is where the system-wide overflow UID and GID are defined, for 79 * architectures that now have 32-bit UID/GID but didn't in the past 80 */ 81 82 int overflowuid = DEFAULT_OVERFLOWUID; 83 int overflowgid = DEFAULT_OVERFLOWGID; 84 85 #ifdef CONFIG_UID16 86 EXPORT_SYMBOL(overflowuid); 87 EXPORT_SYMBOL(overflowgid); 88 #endif 89 90 /* 91 * the same as above, but for filesystems which can only store a 16-bit 92 * UID and GID. as such, this is needed on all architectures 93 */ 94 95 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 96 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 97 98 EXPORT_SYMBOL(fs_overflowuid); 99 EXPORT_SYMBOL(fs_overflowgid); 100 101 /* 102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 103 */ 104 105 int C_A_D = 1; 106 struct pid *cad_pid; 107 EXPORT_SYMBOL(cad_pid); 108 109 /* 110 * If set, this is used for preparing the system to power off. 111 */ 112 113 void (*pm_power_off_prepare)(void); 114 115 static int set_one_prio(struct task_struct *p, int niceval, int error) 116 { 117 int no_nice; 118 119 if (p->uid != current->euid && 120 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 121 error = -EPERM; 122 goto out; 123 } 124 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 125 error = -EACCES; 126 goto out; 127 } 128 no_nice = security_task_setnice(p, niceval); 129 if (no_nice) { 130 error = no_nice; 131 goto out; 132 } 133 if (error == -ESRCH) 134 error = 0; 135 set_user_nice(p, niceval); 136 out: 137 return error; 138 } 139 140 asmlinkage long sys_setpriority(int which, int who, int niceval) 141 { 142 struct task_struct *g, *p; 143 struct user_struct *user; 144 int error = -EINVAL; 145 struct pid *pgrp; 146 147 if (which > PRIO_USER || which < PRIO_PROCESS) 148 goto out; 149 150 /* normalize: avoid signed division (rounding problems) */ 151 error = -ESRCH; 152 if (niceval < -20) 153 niceval = -20; 154 if (niceval > 19) 155 niceval = 19; 156 157 read_lock(&tasklist_lock); 158 switch (which) { 159 case PRIO_PROCESS: 160 if (who) 161 p = find_task_by_vpid(who); 162 else 163 p = current; 164 if (p) 165 error = set_one_prio(p, niceval, error); 166 break; 167 case PRIO_PGRP: 168 if (who) 169 pgrp = find_vpid(who); 170 else 171 pgrp = task_pgrp(current); 172 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 173 error = set_one_prio(p, niceval, error); 174 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 175 break; 176 case PRIO_USER: 177 user = current->user; 178 if (!who) 179 who = current->uid; 180 else 181 if ((who != current->uid) && !(user = find_user(who))) 182 goto out_unlock; /* No processes for this user */ 183 184 do_each_thread(g, p) 185 if (p->uid == who) 186 error = set_one_prio(p, niceval, error); 187 while_each_thread(g, p); 188 if (who != current->uid) 189 free_uid(user); /* For find_user() */ 190 break; 191 } 192 out_unlock: 193 read_unlock(&tasklist_lock); 194 out: 195 return error; 196 } 197 198 /* 199 * Ugh. To avoid negative return values, "getpriority()" will 200 * not return the normal nice-value, but a negated value that 201 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 202 * to stay compatible. 203 */ 204 asmlinkage long sys_getpriority(int which, int who) 205 { 206 struct task_struct *g, *p; 207 struct user_struct *user; 208 long niceval, retval = -ESRCH; 209 struct pid *pgrp; 210 211 if (which > PRIO_USER || which < PRIO_PROCESS) 212 return -EINVAL; 213 214 read_lock(&tasklist_lock); 215 switch (which) { 216 case PRIO_PROCESS: 217 if (who) 218 p = find_task_by_vpid(who); 219 else 220 p = current; 221 if (p) { 222 niceval = 20 - task_nice(p); 223 if (niceval > retval) 224 retval = niceval; 225 } 226 break; 227 case PRIO_PGRP: 228 if (who) 229 pgrp = find_vpid(who); 230 else 231 pgrp = task_pgrp(current); 232 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 233 niceval = 20 - task_nice(p); 234 if (niceval > retval) 235 retval = niceval; 236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 237 break; 238 case PRIO_USER: 239 user = current->user; 240 if (!who) 241 who = current->uid; 242 else 243 if ((who != current->uid) && !(user = find_user(who))) 244 goto out_unlock; /* No processes for this user */ 245 246 do_each_thread(g, p) 247 if (p->uid == who) { 248 niceval = 20 - task_nice(p); 249 if (niceval > retval) 250 retval = niceval; 251 } 252 while_each_thread(g, p); 253 if (who != current->uid) 254 free_uid(user); /* for find_user() */ 255 break; 256 } 257 out_unlock: 258 read_unlock(&tasklist_lock); 259 260 return retval; 261 } 262 263 /** 264 * emergency_restart - reboot the system 265 * 266 * Without shutting down any hardware or taking any locks 267 * reboot the system. This is called when we know we are in 268 * trouble so this is our best effort to reboot. This is 269 * safe to call in interrupt context. 270 */ 271 void emergency_restart(void) 272 { 273 machine_emergency_restart(); 274 } 275 EXPORT_SYMBOL_GPL(emergency_restart); 276 277 static void kernel_restart_prepare(char *cmd) 278 { 279 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 280 system_state = SYSTEM_RESTART; 281 device_shutdown(); 282 sysdev_shutdown(); 283 } 284 285 /** 286 * kernel_restart - reboot the system 287 * @cmd: pointer to buffer containing command to execute for restart 288 * or %NULL 289 * 290 * Shutdown everything and perform a clean reboot. 291 * This is not safe to call in interrupt context. 292 */ 293 void kernel_restart(char *cmd) 294 { 295 kernel_restart_prepare(cmd); 296 if (!cmd) 297 printk(KERN_EMERG "Restarting system.\n"); 298 else 299 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 300 machine_restart(cmd); 301 } 302 EXPORT_SYMBOL_GPL(kernel_restart); 303 304 /** 305 * kernel_kexec - reboot the system 306 * 307 * Move into place and start executing a preloaded standalone 308 * executable. If nothing was preloaded return an error. 309 */ 310 static void kernel_kexec(void) 311 { 312 #ifdef CONFIG_KEXEC 313 struct kimage *image; 314 image = xchg(&kexec_image, NULL); 315 if (!image) 316 return; 317 kernel_restart_prepare(NULL); 318 printk(KERN_EMERG "Starting new kernel\n"); 319 machine_shutdown(); 320 machine_kexec(image); 321 #endif 322 } 323 324 static void kernel_shutdown_prepare(enum system_states state) 325 { 326 blocking_notifier_call_chain(&reboot_notifier_list, 327 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 328 system_state = state; 329 device_shutdown(); 330 } 331 /** 332 * kernel_halt - halt the system 333 * 334 * Shutdown everything and perform a clean system halt. 335 */ 336 void kernel_halt(void) 337 { 338 kernel_shutdown_prepare(SYSTEM_HALT); 339 sysdev_shutdown(); 340 printk(KERN_EMERG "System halted.\n"); 341 machine_halt(); 342 } 343 344 EXPORT_SYMBOL_GPL(kernel_halt); 345 346 /** 347 * kernel_power_off - power_off the system 348 * 349 * Shutdown everything and perform a clean system power_off. 350 */ 351 void kernel_power_off(void) 352 { 353 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 354 if (pm_power_off_prepare) 355 pm_power_off_prepare(); 356 disable_nonboot_cpus(); 357 sysdev_shutdown(); 358 printk(KERN_EMERG "Power down.\n"); 359 machine_power_off(); 360 } 361 EXPORT_SYMBOL_GPL(kernel_power_off); 362 /* 363 * Reboot system call: for obvious reasons only root may call it, 364 * and even root needs to set up some magic numbers in the registers 365 * so that some mistake won't make this reboot the whole machine. 366 * You can also set the meaning of the ctrl-alt-del-key here. 367 * 368 * reboot doesn't sync: do that yourself before calling this. 369 */ 370 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 371 { 372 char buffer[256]; 373 374 /* We only trust the superuser with rebooting the system. */ 375 if (!capable(CAP_SYS_BOOT)) 376 return -EPERM; 377 378 /* For safety, we require "magic" arguments. */ 379 if (magic1 != LINUX_REBOOT_MAGIC1 || 380 (magic2 != LINUX_REBOOT_MAGIC2 && 381 magic2 != LINUX_REBOOT_MAGIC2A && 382 magic2 != LINUX_REBOOT_MAGIC2B && 383 magic2 != LINUX_REBOOT_MAGIC2C)) 384 return -EINVAL; 385 386 /* Instead of trying to make the power_off code look like 387 * halt when pm_power_off is not set do it the easy way. 388 */ 389 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 390 cmd = LINUX_REBOOT_CMD_HALT; 391 392 lock_kernel(); 393 switch (cmd) { 394 case LINUX_REBOOT_CMD_RESTART: 395 kernel_restart(NULL); 396 break; 397 398 case LINUX_REBOOT_CMD_CAD_ON: 399 C_A_D = 1; 400 break; 401 402 case LINUX_REBOOT_CMD_CAD_OFF: 403 C_A_D = 0; 404 break; 405 406 case LINUX_REBOOT_CMD_HALT: 407 kernel_halt(); 408 unlock_kernel(); 409 do_exit(0); 410 break; 411 412 case LINUX_REBOOT_CMD_POWER_OFF: 413 kernel_power_off(); 414 unlock_kernel(); 415 do_exit(0); 416 break; 417 418 case LINUX_REBOOT_CMD_RESTART2: 419 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 420 unlock_kernel(); 421 return -EFAULT; 422 } 423 buffer[sizeof(buffer) - 1] = '\0'; 424 425 kernel_restart(buffer); 426 break; 427 428 case LINUX_REBOOT_CMD_KEXEC: 429 kernel_kexec(); 430 unlock_kernel(); 431 return -EINVAL; 432 433 #ifdef CONFIG_HIBERNATION 434 case LINUX_REBOOT_CMD_SW_SUSPEND: 435 { 436 int ret = hibernate(); 437 unlock_kernel(); 438 return ret; 439 } 440 #endif 441 442 default: 443 unlock_kernel(); 444 return -EINVAL; 445 } 446 unlock_kernel(); 447 return 0; 448 } 449 450 static void deferred_cad(struct work_struct *dummy) 451 { 452 kernel_restart(NULL); 453 } 454 455 /* 456 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 457 * As it's called within an interrupt, it may NOT sync: the only choice 458 * is whether to reboot at once, or just ignore the ctrl-alt-del. 459 */ 460 void ctrl_alt_del(void) 461 { 462 static DECLARE_WORK(cad_work, deferred_cad); 463 464 if (C_A_D) 465 schedule_work(&cad_work); 466 else 467 kill_cad_pid(SIGINT, 1); 468 } 469 470 /* 471 * Unprivileged users may change the real gid to the effective gid 472 * or vice versa. (BSD-style) 473 * 474 * If you set the real gid at all, or set the effective gid to a value not 475 * equal to the real gid, then the saved gid is set to the new effective gid. 476 * 477 * This makes it possible for a setgid program to completely drop its 478 * privileges, which is often a useful assertion to make when you are doing 479 * a security audit over a program. 480 * 481 * The general idea is that a program which uses just setregid() will be 482 * 100% compatible with BSD. A program which uses just setgid() will be 483 * 100% compatible with POSIX with saved IDs. 484 * 485 * SMP: There are not races, the GIDs are checked only by filesystem 486 * operations (as far as semantic preservation is concerned). 487 */ 488 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 489 { 490 int old_rgid = current->gid; 491 int old_egid = current->egid; 492 int new_rgid = old_rgid; 493 int new_egid = old_egid; 494 int retval; 495 496 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 497 if (retval) 498 return retval; 499 500 if (rgid != (gid_t) -1) { 501 if ((old_rgid == rgid) || 502 (current->egid==rgid) || 503 capable(CAP_SETGID)) 504 new_rgid = rgid; 505 else 506 return -EPERM; 507 } 508 if (egid != (gid_t) -1) { 509 if ((old_rgid == egid) || 510 (current->egid == egid) || 511 (current->sgid == egid) || 512 capable(CAP_SETGID)) 513 new_egid = egid; 514 else 515 return -EPERM; 516 } 517 if (new_egid != old_egid) { 518 set_dumpable(current->mm, suid_dumpable); 519 smp_wmb(); 520 } 521 if (rgid != (gid_t) -1 || 522 (egid != (gid_t) -1 && egid != old_rgid)) 523 current->sgid = new_egid; 524 current->fsgid = new_egid; 525 current->egid = new_egid; 526 current->gid = new_rgid; 527 key_fsgid_changed(current); 528 proc_id_connector(current, PROC_EVENT_GID); 529 return 0; 530 } 531 532 /* 533 * setgid() is implemented like SysV w/ SAVED_IDS 534 * 535 * SMP: Same implicit races as above. 536 */ 537 asmlinkage long sys_setgid(gid_t gid) 538 { 539 int old_egid = current->egid; 540 int retval; 541 542 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 543 if (retval) 544 return retval; 545 546 if (capable(CAP_SETGID)) { 547 if (old_egid != gid) { 548 set_dumpable(current->mm, suid_dumpable); 549 smp_wmb(); 550 } 551 current->gid = current->egid = current->sgid = current->fsgid = gid; 552 } else if ((gid == current->gid) || (gid == current->sgid)) { 553 if (old_egid != gid) { 554 set_dumpable(current->mm, suid_dumpable); 555 smp_wmb(); 556 } 557 current->egid = current->fsgid = gid; 558 } 559 else 560 return -EPERM; 561 562 key_fsgid_changed(current); 563 proc_id_connector(current, PROC_EVENT_GID); 564 return 0; 565 } 566 567 static int set_user(uid_t new_ruid, int dumpclear) 568 { 569 struct user_struct *new_user; 570 571 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid); 572 if (!new_user) 573 return -EAGAIN; 574 575 if (atomic_read(&new_user->processes) >= 576 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 577 new_user != current->nsproxy->user_ns->root_user) { 578 free_uid(new_user); 579 return -EAGAIN; 580 } 581 582 switch_uid(new_user); 583 584 if (dumpclear) { 585 set_dumpable(current->mm, suid_dumpable); 586 smp_wmb(); 587 } 588 current->uid = new_ruid; 589 return 0; 590 } 591 592 /* 593 * Unprivileged users may change the real uid to the effective uid 594 * or vice versa. (BSD-style) 595 * 596 * If you set the real uid at all, or set the effective uid to a value not 597 * equal to the real uid, then the saved uid is set to the new effective uid. 598 * 599 * This makes it possible for a setuid program to completely drop its 600 * privileges, which is often a useful assertion to make when you are doing 601 * a security audit over a program. 602 * 603 * The general idea is that a program which uses just setreuid() will be 604 * 100% compatible with BSD. A program which uses just setuid() will be 605 * 100% compatible with POSIX with saved IDs. 606 */ 607 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 608 { 609 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 610 int retval; 611 612 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 613 if (retval) 614 return retval; 615 616 new_ruid = old_ruid = current->uid; 617 new_euid = old_euid = current->euid; 618 old_suid = current->suid; 619 620 if (ruid != (uid_t) -1) { 621 new_ruid = ruid; 622 if ((old_ruid != ruid) && 623 (current->euid != ruid) && 624 !capable(CAP_SETUID)) 625 return -EPERM; 626 } 627 628 if (euid != (uid_t) -1) { 629 new_euid = euid; 630 if ((old_ruid != euid) && 631 (current->euid != euid) && 632 (current->suid != euid) && 633 !capable(CAP_SETUID)) 634 return -EPERM; 635 } 636 637 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 638 return -EAGAIN; 639 640 if (new_euid != old_euid) { 641 set_dumpable(current->mm, suid_dumpable); 642 smp_wmb(); 643 } 644 current->fsuid = current->euid = new_euid; 645 if (ruid != (uid_t) -1 || 646 (euid != (uid_t) -1 && euid != old_ruid)) 647 current->suid = current->euid; 648 current->fsuid = current->euid; 649 650 key_fsuid_changed(current); 651 proc_id_connector(current, PROC_EVENT_UID); 652 653 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 654 } 655 656 657 658 /* 659 * setuid() is implemented like SysV with SAVED_IDS 660 * 661 * Note that SAVED_ID's is deficient in that a setuid root program 662 * like sendmail, for example, cannot set its uid to be a normal 663 * user and then switch back, because if you're root, setuid() sets 664 * the saved uid too. If you don't like this, blame the bright people 665 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 666 * will allow a root program to temporarily drop privileges and be able to 667 * regain them by swapping the real and effective uid. 668 */ 669 asmlinkage long sys_setuid(uid_t uid) 670 { 671 int old_euid = current->euid; 672 int old_ruid, old_suid, new_suid; 673 int retval; 674 675 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 676 if (retval) 677 return retval; 678 679 old_ruid = current->uid; 680 old_suid = current->suid; 681 new_suid = old_suid; 682 683 if (capable(CAP_SETUID)) { 684 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 685 return -EAGAIN; 686 new_suid = uid; 687 } else if ((uid != current->uid) && (uid != new_suid)) 688 return -EPERM; 689 690 if (old_euid != uid) { 691 set_dumpable(current->mm, suid_dumpable); 692 smp_wmb(); 693 } 694 current->fsuid = current->euid = uid; 695 current->suid = new_suid; 696 697 key_fsuid_changed(current); 698 proc_id_connector(current, PROC_EVENT_UID); 699 700 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 701 } 702 703 704 /* 705 * This function implements a generic ability to update ruid, euid, 706 * and suid. This allows you to implement the 4.4 compatible seteuid(). 707 */ 708 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 709 { 710 int old_ruid = current->uid; 711 int old_euid = current->euid; 712 int old_suid = current->suid; 713 int retval; 714 715 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 716 if (retval) 717 return retval; 718 719 if (!capable(CAP_SETUID)) { 720 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 721 (ruid != current->euid) && (ruid != current->suid)) 722 return -EPERM; 723 if ((euid != (uid_t) -1) && (euid != current->uid) && 724 (euid != current->euid) && (euid != current->suid)) 725 return -EPERM; 726 if ((suid != (uid_t) -1) && (suid != current->uid) && 727 (suid != current->euid) && (suid != current->suid)) 728 return -EPERM; 729 } 730 if (ruid != (uid_t) -1) { 731 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 732 return -EAGAIN; 733 } 734 if (euid != (uid_t) -1) { 735 if (euid != current->euid) { 736 set_dumpable(current->mm, suid_dumpable); 737 smp_wmb(); 738 } 739 current->euid = euid; 740 } 741 current->fsuid = current->euid; 742 if (suid != (uid_t) -1) 743 current->suid = suid; 744 745 key_fsuid_changed(current); 746 proc_id_connector(current, PROC_EVENT_UID); 747 748 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 749 } 750 751 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 752 { 753 int retval; 754 755 if (!(retval = put_user(current->uid, ruid)) && 756 !(retval = put_user(current->euid, euid))) 757 retval = put_user(current->suid, suid); 758 759 return retval; 760 } 761 762 /* 763 * Same as above, but for rgid, egid, sgid. 764 */ 765 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 766 { 767 int retval; 768 769 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 770 if (retval) 771 return retval; 772 773 if (!capable(CAP_SETGID)) { 774 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 775 (rgid != current->egid) && (rgid != current->sgid)) 776 return -EPERM; 777 if ((egid != (gid_t) -1) && (egid != current->gid) && 778 (egid != current->egid) && (egid != current->sgid)) 779 return -EPERM; 780 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 781 (sgid != current->egid) && (sgid != current->sgid)) 782 return -EPERM; 783 } 784 if (egid != (gid_t) -1) { 785 if (egid != current->egid) { 786 set_dumpable(current->mm, suid_dumpable); 787 smp_wmb(); 788 } 789 current->egid = egid; 790 } 791 current->fsgid = current->egid; 792 if (rgid != (gid_t) -1) 793 current->gid = rgid; 794 if (sgid != (gid_t) -1) 795 current->sgid = sgid; 796 797 key_fsgid_changed(current); 798 proc_id_connector(current, PROC_EVENT_GID); 799 return 0; 800 } 801 802 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 803 { 804 int retval; 805 806 if (!(retval = put_user(current->gid, rgid)) && 807 !(retval = put_user(current->egid, egid))) 808 retval = put_user(current->sgid, sgid); 809 810 return retval; 811 } 812 813 814 /* 815 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 816 * is used for "access()" and for the NFS daemon (letting nfsd stay at 817 * whatever uid it wants to). It normally shadows "euid", except when 818 * explicitly set by setfsuid() or for access.. 819 */ 820 asmlinkage long sys_setfsuid(uid_t uid) 821 { 822 int old_fsuid; 823 824 old_fsuid = current->fsuid; 825 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 826 return old_fsuid; 827 828 if (uid == current->uid || uid == current->euid || 829 uid == current->suid || uid == current->fsuid || 830 capable(CAP_SETUID)) { 831 if (uid != old_fsuid) { 832 set_dumpable(current->mm, suid_dumpable); 833 smp_wmb(); 834 } 835 current->fsuid = uid; 836 } 837 838 key_fsuid_changed(current); 839 proc_id_connector(current, PROC_EVENT_UID); 840 841 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 842 843 return old_fsuid; 844 } 845 846 /* 847 * Samma på svenska.. 848 */ 849 asmlinkage long sys_setfsgid(gid_t gid) 850 { 851 int old_fsgid; 852 853 old_fsgid = current->fsgid; 854 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 855 return old_fsgid; 856 857 if (gid == current->gid || gid == current->egid || 858 gid == current->sgid || gid == current->fsgid || 859 capable(CAP_SETGID)) { 860 if (gid != old_fsgid) { 861 set_dumpable(current->mm, suid_dumpable); 862 smp_wmb(); 863 } 864 current->fsgid = gid; 865 key_fsgid_changed(current); 866 proc_id_connector(current, PROC_EVENT_GID); 867 } 868 return old_fsgid; 869 } 870 871 asmlinkage long sys_times(struct tms __user * tbuf) 872 { 873 /* 874 * In the SMP world we might just be unlucky and have one of 875 * the times increment as we use it. Since the value is an 876 * atomically safe type this is just fine. Conceptually its 877 * as if the syscall took an instant longer to occur. 878 */ 879 if (tbuf) { 880 struct tms tmp; 881 struct task_struct *tsk = current; 882 struct task_struct *t; 883 cputime_t utime, stime, cutime, cstime; 884 885 spin_lock_irq(&tsk->sighand->siglock); 886 utime = tsk->signal->utime; 887 stime = tsk->signal->stime; 888 t = tsk; 889 do { 890 utime = cputime_add(utime, t->utime); 891 stime = cputime_add(stime, t->stime); 892 t = next_thread(t); 893 } while (t != tsk); 894 895 cutime = tsk->signal->cutime; 896 cstime = tsk->signal->cstime; 897 spin_unlock_irq(&tsk->sighand->siglock); 898 899 tmp.tms_utime = cputime_to_clock_t(utime); 900 tmp.tms_stime = cputime_to_clock_t(stime); 901 tmp.tms_cutime = cputime_to_clock_t(cutime); 902 tmp.tms_cstime = cputime_to_clock_t(cstime); 903 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 904 return -EFAULT; 905 } 906 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 907 } 908 909 /* 910 * This needs some heavy checking ... 911 * I just haven't the stomach for it. I also don't fully 912 * understand sessions/pgrp etc. Let somebody who does explain it. 913 * 914 * OK, I think I have the protection semantics right.... this is really 915 * only important on a multi-user system anyway, to make sure one user 916 * can't send a signal to a process owned by another. -TYT, 12/12/91 917 * 918 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 919 * LBT 04.03.94 920 */ 921 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 922 { 923 struct task_struct *p; 924 struct task_struct *group_leader = current->group_leader; 925 struct pid *pgrp; 926 int err; 927 928 if (!pid) 929 pid = task_pid_vnr(group_leader); 930 if (!pgid) 931 pgid = pid; 932 if (pgid < 0) 933 return -EINVAL; 934 935 /* From this point forward we keep holding onto the tasklist lock 936 * so that our parent does not change from under us. -DaveM 937 */ 938 write_lock_irq(&tasklist_lock); 939 940 err = -ESRCH; 941 p = find_task_by_vpid(pid); 942 if (!p) 943 goto out; 944 945 err = -EINVAL; 946 if (!thread_group_leader(p)) 947 goto out; 948 949 if (same_thread_group(p->real_parent, group_leader)) { 950 err = -EPERM; 951 if (task_session(p) != task_session(group_leader)) 952 goto out; 953 err = -EACCES; 954 if (p->did_exec) 955 goto out; 956 } else { 957 err = -ESRCH; 958 if (p != group_leader) 959 goto out; 960 } 961 962 err = -EPERM; 963 if (p->signal->leader) 964 goto out; 965 966 pgrp = task_pid(p); 967 if (pgid != pid) { 968 struct task_struct *g; 969 970 pgrp = find_vpid(pgid); 971 g = pid_task(pgrp, PIDTYPE_PGID); 972 if (!g || task_session(g) != task_session(group_leader)) 973 goto out; 974 } 975 976 err = security_task_setpgid(p, pgid); 977 if (err) 978 goto out; 979 980 if (task_pgrp(p) != pgrp) { 981 change_pid(p, PIDTYPE_PGID, pgrp); 982 set_task_pgrp(p, pid_nr(pgrp)); 983 } 984 985 err = 0; 986 out: 987 /* All paths lead to here, thus we are safe. -DaveM */ 988 write_unlock_irq(&tasklist_lock); 989 return err; 990 } 991 992 asmlinkage long sys_getpgid(pid_t pid) 993 { 994 struct task_struct *p; 995 struct pid *grp; 996 int retval; 997 998 rcu_read_lock(); 999 if (!pid) 1000 grp = task_pgrp(current); 1001 else { 1002 retval = -ESRCH; 1003 p = find_task_by_vpid(pid); 1004 if (!p) 1005 goto out; 1006 grp = task_pgrp(p); 1007 if (!grp) 1008 goto out; 1009 1010 retval = security_task_getpgid(p); 1011 if (retval) 1012 goto out; 1013 } 1014 retval = pid_vnr(grp); 1015 out: 1016 rcu_read_unlock(); 1017 return retval; 1018 } 1019 1020 #ifdef __ARCH_WANT_SYS_GETPGRP 1021 1022 asmlinkage long sys_getpgrp(void) 1023 { 1024 return sys_getpgid(0); 1025 } 1026 1027 #endif 1028 1029 asmlinkage long sys_getsid(pid_t pid) 1030 { 1031 struct task_struct *p; 1032 struct pid *sid; 1033 int retval; 1034 1035 rcu_read_lock(); 1036 if (!pid) 1037 sid = task_session(current); 1038 else { 1039 retval = -ESRCH; 1040 p = find_task_by_vpid(pid); 1041 if (!p) 1042 goto out; 1043 sid = task_session(p); 1044 if (!sid) 1045 goto out; 1046 1047 retval = security_task_getsid(p); 1048 if (retval) 1049 goto out; 1050 } 1051 retval = pid_vnr(sid); 1052 out: 1053 rcu_read_unlock(); 1054 return retval; 1055 } 1056 1057 asmlinkage long sys_setsid(void) 1058 { 1059 struct task_struct *group_leader = current->group_leader; 1060 struct pid *sid = task_pid(group_leader); 1061 pid_t session = pid_vnr(sid); 1062 int err = -EPERM; 1063 1064 write_lock_irq(&tasklist_lock); 1065 /* Fail if I am already a session leader */ 1066 if (group_leader->signal->leader) 1067 goto out; 1068 1069 /* Fail if a process group id already exists that equals the 1070 * proposed session id. 1071 */ 1072 if (pid_task(sid, PIDTYPE_PGID)) 1073 goto out; 1074 1075 group_leader->signal->leader = 1; 1076 __set_special_pids(sid); 1077 1078 spin_lock(&group_leader->sighand->siglock); 1079 group_leader->signal->tty = NULL; 1080 spin_unlock(&group_leader->sighand->siglock); 1081 1082 err = session; 1083 out: 1084 write_unlock_irq(&tasklist_lock); 1085 return err; 1086 } 1087 1088 /* 1089 * Supplementary group IDs 1090 */ 1091 1092 /* init to 2 - one for init_task, one to ensure it is never freed */ 1093 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1094 1095 struct group_info *groups_alloc(int gidsetsize) 1096 { 1097 struct group_info *group_info; 1098 int nblocks; 1099 int i; 1100 1101 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1102 /* Make sure we always allocate at least one indirect block pointer */ 1103 nblocks = nblocks ? : 1; 1104 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1105 if (!group_info) 1106 return NULL; 1107 group_info->ngroups = gidsetsize; 1108 group_info->nblocks = nblocks; 1109 atomic_set(&group_info->usage, 1); 1110 1111 if (gidsetsize <= NGROUPS_SMALL) 1112 group_info->blocks[0] = group_info->small_block; 1113 else { 1114 for (i = 0; i < nblocks; i++) { 1115 gid_t *b; 1116 b = (void *)__get_free_page(GFP_USER); 1117 if (!b) 1118 goto out_undo_partial_alloc; 1119 group_info->blocks[i] = b; 1120 } 1121 } 1122 return group_info; 1123 1124 out_undo_partial_alloc: 1125 while (--i >= 0) { 1126 free_page((unsigned long)group_info->blocks[i]); 1127 } 1128 kfree(group_info); 1129 return NULL; 1130 } 1131 1132 EXPORT_SYMBOL(groups_alloc); 1133 1134 void groups_free(struct group_info *group_info) 1135 { 1136 if (group_info->blocks[0] != group_info->small_block) { 1137 int i; 1138 for (i = 0; i < group_info->nblocks; i++) 1139 free_page((unsigned long)group_info->blocks[i]); 1140 } 1141 kfree(group_info); 1142 } 1143 1144 EXPORT_SYMBOL(groups_free); 1145 1146 /* export the group_info to a user-space array */ 1147 static int groups_to_user(gid_t __user *grouplist, 1148 struct group_info *group_info) 1149 { 1150 int i; 1151 unsigned int count = group_info->ngroups; 1152 1153 for (i = 0; i < group_info->nblocks; i++) { 1154 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1155 unsigned int len = cp_count * sizeof(*grouplist); 1156 1157 if (copy_to_user(grouplist, group_info->blocks[i], len)) 1158 return -EFAULT; 1159 1160 grouplist += NGROUPS_PER_BLOCK; 1161 count -= cp_count; 1162 } 1163 return 0; 1164 } 1165 1166 /* fill a group_info from a user-space array - it must be allocated already */ 1167 static int groups_from_user(struct group_info *group_info, 1168 gid_t __user *grouplist) 1169 { 1170 int i; 1171 unsigned int count = group_info->ngroups; 1172 1173 for (i = 0; i < group_info->nblocks; i++) { 1174 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1175 unsigned int len = cp_count * sizeof(*grouplist); 1176 1177 if (copy_from_user(group_info->blocks[i], grouplist, len)) 1178 return -EFAULT; 1179 1180 grouplist += NGROUPS_PER_BLOCK; 1181 count -= cp_count; 1182 } 1183 return 0; 1184 } 1185 1186 /* a simple Shell sort */ 1187 static void groups_sort(struct group_info *group_info) 1188 { 1189 int base, max, stride; 1190 int gidsetsize = group_info->ngroups; 1191 1192 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1193 ; /* nothing */ 1194 stride /= 3; 1195 1196 while (stride) { 1197 max = gidsetsize - stride; 1198 for (base = 0; base < max; base++) { 1199 int left = base; 1200 int right = left + stride; 1201 gid_t tmp = GROUP_AT(group_info, right); 1202 1203 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1204 GROUP_AT(group_info, right) = 1205 GROUP_AT(group_info, left); 1206 right = left; 1207 left -= stride; 1208 } 1209 GROUP_AT(group_info, right) = tmp; 1210 } 1211 stride /= 3; 1212 } 1213 } 1214 1215 /* a simple bsearch */ 1216 int groups_search(struct group_info *group_info, gid_t grp) 1217 { 1218 unsigned int left, right; 1219 1220 if (!group_info) 1221 return 0; 1222 1223 left = 0; 1224 right = group_info->ngroups; 1225 while (left < right) { 1226 unsigned int mid = (left+right)/2; 1227 int cmp = grp - GROUP_AT(group_info, mid); 1228 if (cmp > 0) 1229 left = mid + 1; 1230 else if (cmp < 0) 1231 right = mid; 1232 else 1233 return 1; 1234 } 1235 return 0; 1236 } 1237 1238 /* validate and set current->group_info */ 1239 int set_current_groups(struct group_info *group_info) 1240 { 1241 int retval; 1242 struct group_info *old_info; 1243 1244 retval = security_task_setgroups(group_info); 1245 if (retval) 1246 return retval; 1247 1248 groups_sort(group_info); 1249 get_group_info(group_info); 1250 1251 task_lock(current); 1252 old_info = current->group_info; 1253 current->group_info = group_info; 1254 task_unlock(current); 1255 1256 put_group_info(old_info); 1257 1258 return 0; 1259 } 1260 1261 EXPORT_SYMBOL(set_current_groups); 1262 1263 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1264 { 1265 int i = 0; 1266 1267 /* 1268 * SMP: Nobody else can change our grouplist. Thus we are 1269 * safe. 1270 */ 1271 1272 if (gidsetsize < 0) 1273 return -EINVAL; 1274 1275 /* no need to grab task_lock here; it cannot change */ 1276 i = current->group_info->ngroups; 1277 if (gidsetsize) { 1278 if (i > gidsetsize) { 1279 i = -EINVAL; 1280 goto out; 1281 } 1282 if (groups_to_user(grouplist, current->group_info)) { 1283 i = -EFAULT; 1284 goto out; 1285 } 1286 } 1287 out: 1288 return i; 1289 } 1290 1291 /* 1292 * SMP: Our groups are copy-on-write. We can set them safely 1293 * without another task interfering. 1294 */ 1295 1296 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1297 { 1298 struct group_info *group_info; 1299 int retval; 1300 1301 if (!capable(CAP_SETGID)) 1302 return -EPERM; 1303 if ((unsigned)gidsetsize > NGROUPS_MAX) 1304 return -EINVAL; 1305 1306 group_info = groups_alloc(gidsetsize); 1307 if (!group_info) 1308 return -ENOMEM; 1309 retval = groups_from_user(group_info, grouplist); 1310 if (retval) { 1311 put_group_info(group_info); 1312 return retval; 1313 } 1314 1315 retval = set_current_groups(group_info); 1316 put_group_info(group_info); 1317 1318 return retval; 1319 } 1320 1321 /* 1322 * Check whether we're fsgid/egid or in the supplemental group.. 1323 */ 1324 int in_group_p(gid_t grp) 1325 { 1326 int retval = 1; 1327 if (grp != current->fsgid) 1328 retval = groups_search(current->group_info, grp); 1329 return retval; 1330 } 1331 1332 EXPORT_SYMBOL(in_group_p); 1333 1334 int in_egroup_p(gid_t grp) 1335 { 1336 int retval = 1; 1337 if (grp != current->egid) 1338 retval = groups_search(current->group_info, grp); 1339 return retval; 1340 } 1341 1342 EXPORT_SYMBOL(in_egroup_p); 1343 1344 DECLARE_RWSEM(uts_sem); 1345 1346 EXPORT_SYMBOL(uts_sem); 1347 1348 asmlinkage long sys_newuname(struct new_utsname __user * name) 1349 { 1350 int errno = 0; 1351 1352 down_read(&uts_sem); 1353 if (copy_to_user(name, utsname(), sizeof *name)) 1354 errno = -EFAULT; 1355 up_read(&uts_sem); 1356 return errno; 1357 } 1358 1359 asmlinkage long sys_sethostname(char __user *name, int len) 1360 { 1361 int errno; 1362 char tmp[__NEW_UTS_LEN]; 1363 1364 if (!capable(CAP_SYS_ADMIN)) 1365 return -EPERM; 1366 if (len < 0 || len > __NEW_UTS_LEN) 1367 return -EINVAL; 1368 down_write(&uts_sem); 1369 errno = -EFAULT; 1370 if (!copy_from_user(tmp, name, len)) { 1371 memcpy(utsname()->nodename, tmp, len); 1372 utsname()->nodename[len] = 0; 1373 errno = 0; 1374 } 1375 up_write(&uts_sem); 1376 return errno; 1377 } 1378 1379 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1380 1381 asmlinkage long sys_gethostname(char __user *name, int len) 1382 { 1383 int i, errno; 1384 1385 if (len < 0) 1386 return -EINVAL; 1387 down_read(&uts_sem); 1388 i = 1 + strlen(utsname()->nodename); 1389 if (i > len) 1390 i = len; 1391 errno = 0; 1392 if (copy_to_user(name, utsname()->nodename, i)) 1393 errno = -EFAULT; 1394 up_read(&uts_sem); 1395 return errno; 1396 } 1397 1398 #endif 1399 1400 /* 1401 * Only setdomainname; getdomainname can be implemented by calling 1402 * uname() 1403 */ 1404 asmlinkage long sys_setdomainname(char __user *name, int len) 1405 { 1406 int errno; 1407 char tmp[__NEW_UTS_LEN]; 1408 1409 if (!capable(CAP_SYS_ADMIN)) 1410 return -EPERM; 1411 if (len < 0 || len > __NEW_UTS_LEN) 1412 return -EINVAL; 1413 1414 down_write(&uts_sem); 1415 errno = -EFAULT; 1416 if (!copy_from_user(tmp, name, len)) { 1417 memcpy(utsname()->domainname, tmp, len); 1418 utsname()->domainname[len] = 0; 1419 errno = 0; 1420 } 1421 up_write(&uts_sem); 1422 return errno; 1423 } 1424 1425 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1426 { 1427 if (resource >= RLIM_NLIMITS) 1428 return -EINVAL; 1429 else { 1430 struct rlimit value; 1431 task_lock(current->group_leader); 1432 value = current->signal->rlim[resource]; 1433 task_unlock(current->group_leader); 1434 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1435 } 1436 } 1437 1438 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1439 1440 /* 1441 * Back compatibility for getrlimit. Needed for some apps. 1442 */ 1443 1444 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1445 { 1446 struct rlimit x; 1447 if (resource >= RLIM_NLIMITS) 1448 return -EINVAL; 1449 1450 task_lock(current->group_leader); 1451 x = current->signal->rlim[resource]; 1452 task_unlock(current->group_leader); 1453 if (x.rlim_cur > 0x7FFFFFFF) 1454 x.rlim_cur = 0x7FFFFFFF; 1455 if (x.rlim_max > 0x7FFFFFFF) 1456 x.rlim_max = 0x7FFFFFFF; 1457 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1458 } 1459 1460 #endif 1461 1462 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1463 { 1464 struct rlimit new_rlim, *old_rlim; 1465 unsigned long it_prof_secs; 1466 int retval; 1467 1468 if (resource >= RLIM_NLIMITS) 1469 return -EINVAL; 1470 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1471 return -EFAULT; 1472 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1473 return -EINVAL; 1474 old_rlim = current->signal->rlim + resource; 1475 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1476 !capable(CAP_SYS_RESOURCE)) 1477 return -EPERM; 1478 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open) 1479 return -EPERM; 1480 1481 retval = security_task_setrlimit(resource, &new_rlim); 1482 if (retval) 1483 return retval; 1484 1485 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) { 1486 /* 1487 * The caller is asking for an immediate RLIMIT_CPU 1488 * expiry. But we use the zero value to mean "it was 1489 * never set". So let's cheat and make it one second 1490 * instead 1491 */ 1492 new_rlim.rlim_cur = 1; 1493 } 1494 1495 task_lock(current->group_leader); 1496 *old_rlim = new_rlim; 1497 task_unlock(current->group_leader); 1498 1499 if (resource != RLIMIT_CPU) 1500 goto out; 1501 1502 /* 1503 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1504 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1505 * very long-standing error, and fixing it now risks breakage of 1506 * applications, so we live with it 1507 */ 1508 if (new_rlim.rlim_cur == RLIM_INFINITY) 1509 goto out; 1510 1511 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 1512 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { 1513 unsigned long rlim_cur = new_rlim.rlim_cur; 1514 cputime_t cputime; 1515 1516 cputime = secs_to_cputime(rlim_cur); 1517 read_lock(&tasklist_lock); 1518 spin_lock_irq(¤t->sighand->siglock); 1519 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 1520 spin_unlock_irq(¤t->sighand->siglock); 1521 read_unlock(&tasklist_lock); 1522 } 1523 out: 1524 return 0; 1525 } 1526 1527 /* 1528 * It would make sense to put struct rusage in the task_struct, 1529 * except that would make the task_struct be *really big*. After 1530 * task_struct gets moved into malloc'ed memory, it would 1531 * make sense to do this. It will make moving the rest of the information 1532 * a lot simpler! (Which we're not doing right now because we're not 1533 * measuring them yet). 1534 * 1535 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1536 * races with threads incrementing their own counters. But since word 1537 * reads are atomic, we either get new values or old values and we don't 1538 * care which for the sums. We always take the siglock to protect reading 1539 * the c* fields from p->signal from races with exit.c updating those 1540 * fields when reaping, so a sample either gets all the additions of a 1541 * given child after it's reaped, or none so this sample is before reaping. 1542 * 1543 * Locking: 1544 * We need to take the siglock for CHILDEREN, SELF and BOTH 1545 * for the cases current multithreaded, non-current single threaded 1546 * non-current multithreaded. Thread traversal is now safe with 1547 * the siglock held. 1548 * Strictly speaking, we donot need to take the siglock if we are current and 1549 * single threaded, as no one else can take our signal_struct away, no one 1550 * else can reap the children to update signal->c* counters, and no one else 1551 * can race with the signal-> fields. If we do not take any lock, the 1552 * signal-> fields could be read out of order while another thread was just 1553 * exiting. So we should place a read memory barrier when we avoid the lock. 1554 * On the writer side, write memory barrier is implied in __exit_signal 1555 * as __exit_signal releases the siglock spinlock after updating the signal-> 1556 * fields. But we don't do this yet to keep things simple. 1557 * 1558 */ 1559 1560 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r, 1561 cputime_t *utimep, cputime_t *stimep) 1562 { 1563 *utimep = cputime_add(*utimep, t->utime); 1564 *stimep = cputime_add(*stimep, t->stime); 1565 r->ru_nvcsw += t->nvcsw; 1566 r->ru_nivcsw += t->nivcsw; 1567 r->ru_minflt += t->min_flt; 1568 r->ru_majflt += t->maj_flt; 1569 r->ru_inblock += task_io_get_inblock(t); 1570 r->ru_oublock += task_io_get_oublock(t); 1571 } 1572 1573 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1574 { 1575 struct task_struct *t; 1576 unsigned long flags; 1577 cputime_t utime, stime; 1578 1579 memset((char *) r, 0, sizeof *r); 1580 utime = stime = cputime_zero; 1581 1582 if (who == RUSAGE_THREAD) { 1583 accumulate_thread_rusage(p, r, &utime, &stime); 1584 goto out; 1585 } 1586 1587 if (!lock_task_sighand(p, &flags)) 1588 return; 1589 1590 switch (who) { 1591 case RUSAGE_BOTH: 1592 case RUSAGE_CHILDREN: 1593 utime = p->signal->cutime; 1594 stime = p->signal->cstime; 1595 r->ru_nvcsw = p->signal->cnvcsw; 1596 r->ru_nivcsw = p->signal->cnivcsw; 1597 r->ru_minflt = p->signal->cmin_flt; 1598 r->ru_majflt = p->signal->cmaj_flt; 1599 r->ru_inblock = p->signal->cinblock; 1600 r->ru_oublock = p->signal->coublock; 1601 1602 if (who == RUSAGE_CHILDREN) 1603 break; 1604 1605 case RUSAGE_SELF: 1606 utime = cputime_add(utime, p->signal->utime); 1607 stime = cputime_add(stime, p->signal->stime); 1608 r->ru_nvcsw += p->signal->nvcsw; 1609 r->ru_nivcsw += p->signal->nivcsw; 1610 r->ru_minflt += p->signal->min_flt; 1611 r->ru_majflt += p->signal->maj_flt; 1612 r->ru_inblock += p->signal->inblock; 1613 r->ru_oublock += p->signal->oublock; 1614 t = p; 1615 do { 1616 accumulate_thread_rusage(t, r, &utime, &stime); 1617 t = next_thread(t); 1618 } while (t != p); 1619 break; 1620 1621 default: 1622 BUG(); 1623 } 1624 unlock_task_sighand(p, &flags); 1625 1626 out: 1627 cputime_to_timeval(utime, &r->ru_utime); 1628 cputime_to_timeval(stime, &r->ru_stime); 1629 } 1630 1631 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1632 { 1633 struct rusage r; 1634 k_getrusage(p, who, &r); 1635 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1636 } 1637 1638 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1639 { 1640 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1641 who != RUSAGE_THREAD) 1642 return -EINVAL; 1643 return getrusage(current, who, ru); 1644 } 1645 1646 asmlinkage long sys_umask(int mask) 1647 { 1648 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1649 return mask; 1650 } 1651 1652 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1653 unsigned long arg4, unsigned long arg5) 1654 { 1655 long error = 0; 1656 1657 if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error)) 1658 return error; 1659 1660 switch (option) { 1661 case PR_SET_PDEATHSIG: 1662 if (!valid_signal(arg2)) { 1663 error = -EINVAL; 1664 break; 1665 } 1666 current->pdeath_signal = arg2; 1667 break; 1668 case PR_GET_PDEATHSIG: 1669 error = put_user(current->pdeath_signal, (int __user *)arg2); 1670 break; 1671 case PR_GET_DUMPABLE: 1672 error = get_dumpable(current->mm); 1673 break; 1674 case PR_SET_DUMPABLE: 1675 if (arg2 < 0 || arg2 > 1) { 1676 error = -EINVAL; 1677 break; 1678 } 1679 set_dumpable(current->mm, arg2); 1680 break; 1681 1682 case PR_SET_UNALIGN: 1683 error = SET_UNALIGN_CTL(current, arg2); 1684 break; 1685 case PR_GET_UNALIGN: 1686 error = GET_UNALIGN_CTL(current, arg2); 1687 break; 1688 case PR_SET_FPEMU: 1689 error = SET_FPEMU_CTL(current, arg2); 1690 break; 1691 case PR_GET_FPEMU: 1692 error = GET_FPEMU_CTL(current, arg2); 1693 break; 1694 case PR_SET_FPEXC: 1695 error = SET_FPEXC_CTL(current, arg2); 1696 break; 1697 case PR_GET_FPEXC: 1698 error = GET_FPEXC_CTL(current, arg2); 1699 break; 1700 case PR_GET_TIMING: 1701 error = PR_TIMING_STATISTICAL; 1702 break; 1703 case PR_SET_TIMING: 1704 if (arg2 != PR_TIMING_STATISTICAL) 1705 error = -EINVAL; 1706 break; 1707 1708 case PR_SET_NAME: { 1709 struct task_struct *me = current; 1710 unsigned char ncomm[sizeof(me->comm)]; 1711 1712 ncomm[sizeof(me->comm)-1] = 0; 1713 if (strncpy_from_user(ncomm, (char __user *)arg2, 1714 sizeof(me->comm)-1) < 0) 1715 return -EFAULT; 1716 set_task_comm(me, ncomm); 1717 return 0; 1718 } 1719 case PR_GET_NAME: { 1720 struct task_struct *me = current; 1721 unsigned char tcomm[sizeof(me->comm)]; 1722 1723 get_task_comm(tcomm, me); 1724 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1725 return -EFAULT; 1726 return 0; 1727 } 1728 case PR_GET_ENDIAN: 1729 error = GET_ENDIAN(current, arg2); 1730 break; 1731 case PR_SET_ENDIAN: 1732 error = SET_ENDIAN(current, arg2); 1733 break; 1734 1735 case PR_GET_SECCOMP: 1736 error = prctl_get_seccomp(); 1737 break; 1738 case PR_SET_SECCOMP: 1739 error = prctl_set_seccomp(arg2); 1740 break; 1741 case PR_GET_TSC: 1742 error = GET_TSC_CTL(arg2); 1743 break; 1744 case PR_SET_TSC: 1745 error = SET_TSC_CTL(arg2); 1746 break; 1747 default: 1748 error = -EINVAL; 1749 break; 1750 } 1751 return error; 1752 } 1753 1754 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep, 1755 struct getcpu_cache __user *unused) 1756 { 1757 int err = 0; 1758 int cpu = raw_smp_processor_id(); 1759 if (cpup) 1760 err |= put_user(cpu, cpup); 1761 if (nodep) 1762 err |= put_user(cpu_to_node(cpu), nodep); 1763 return err ? -EFAULT : 0; 1764 } 1765 1766 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1767 1768 static void argv_cleanup(char **argv, char **envp) 1769 { 1770 argv_free(argv); 1771 } 1772 1773 /** 1774 * orderly_poweroff - Trigger an orderly system poweroff 1775 * @force: force poweroff if command execution fails 1776 * 1777 * This may be called from any context to trigger a system shutdown. 1778 * If the orderly shutdown fails, it will force an immediate shutdown. 1779 */ 1780 int orderly_poweroff(bool force) 1781 { 1782 int argc; 1783 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1784 static char *envp[] = { 1785 "HOME=/", 1786 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1787 NULL 1788 }; 1789 int ret = -ENOMEM; 1790 struct subprocess_info *info; 1791 1792 if (argv == NULL) { 1793 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1794 __func__, poweroff_cmd); 1795 goto out; 1796 } 1797 1798 info = call_usermodehelper_setup(argv[0], argv, envp); 1799 if (info == NULL) { 1800 argv_free(argv); 1801 goto out; 1802 } 1803 1804 call_usermodehelper_setcleanup(info, argv_cleanup); 1805 1806 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1807 1808 out: 1809 if (ret && force) { 1810 printk(KERN_WARNING "Failed to start orderly shutdown: " 1811 "forcing the issue\n"); 1812 1813 /* I guess this should try to kick off some daemon to 1814 sync and poweroff asap. Or not even bother syncing 1815 if we're doing an emergency shutdown? */ 1816 emergency_sync(); 1817 kernel_power_off(); 1818 } 1819 1820 return ret; 1821 } 1822 EXPORT_SYMBOL_GPL(orderly_poweroff); 1823