xref: /openbmc/linux/kernel/sys.c (revision 545e4006)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/unistd.h>
45 
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef SET_FPEMU_CTL
53 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef GET_FPEMU_CTL
56 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
57 #endif
58 #ifndef SET_FPEXC_CTL
59 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
60 #endif
61 #ifndef GET_FPEXC_CTL
62 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
63 #endif
64 #ifndef GET_ENDIAN
65 # define GET_ENDIAN(a,b)	(-EINVAL)
66 #endif
67 #ifndef SET_ENDIAN
68 # define SET_ENDIAN(a,b)	(-EINVAL)
69 #endif
70 #ifndef GET_TSC_CTL
71 # define GET_TSC_CTL(a)		(-EINVAL)
72 #endif
73 #ifndef SET_TSC_CTL
74 # define SET_TSC_CTL(a)		(-EINVAL)
75 #endif
76 
77 /*
78  * this is where the system-wide overflow UID and GID are defined, for
79  * architectures that now have 32-bit UID/GID but didn't in the past
80  */
81 
82 int overflowuid = DEFAULT_OVERFLOWUID;
83 int overflowgid = DEFAULT_OVERFLOWGID;
84 
85 #ifdef CONFIG_UID16
86 EXPORT_SYMBOL(overflowuid);
87 EXPORT_SYMBOL(overflowgid);
88 #endif
89 
90 /*
91  * the same as above, but for filesystems which can only store a 16-bit
92  * UID and GID. as such, this is needed on all architectures
93  */
94 
95 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
96 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
97 
98 EXPORT_SYMBOL(fs_overflowuid);
99 EXPORT_SYMBOL(fs_overflowgid);
100 
101 /*
102  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
103  */
104 
105 int C_A_D = 1;
106 struct pid *cad_pid;
107 EXPORT_SYMBOL(cad_pid);
108 
109 /*
110  * If set, this is used for preparing the system to power off.
111  */
112 
113 void (*pm_power_off_prepare)(void);
114 
115 static int set_one_prio(struct task_struct *p, int niceval, int error)
116 {
117 	int no_nice;
118 
119 	if (p->uid != current->euid &&
120 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
121 		error = -EPERM;
122 		goto out;
123 	}
124 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
125 		error = -EACCES;
126 		goto out;
127 	}
128 	no_nice = security_task_setnice(p, niceval);
129 	if (no_nice) {
130 		error = no_nice;
131 		goto out;
132 	}
133 	if (error == -ESRCH)
134 		error = 0;
135 	set_user_nice(p, niceval);
136 out:
137 	return error;
138 }
139 
140 asmlinkage long sys_setpriority(int which, int who, int niceval)
141 {
142 	struct task_struct *g, *p;
143 	struct user_struct *user;
144 	int error = -EINVAL;
145 	struct pid *pgrp;
146 
147 	if (which > PRIO_USER || which < PRIO_PROCESS)
148 		goto out;
149 
150 	/* normalize: avoid signed division (rounding problems) */
151 	error = -ESRCH;
152 	if (niceval < -20)
153 		niceval = -20;
154 	if (niceval > 19)
155 		niceval = 19;
156 
157 	read_lock(&tasklist_lock);
158 	switch (which) {
159 		case PRIO_PROCESS:
160 			if (who)
161 				p = find_task_by_vpid(who);
162 			else
163 				p = current;
164 			if (p)
165 				error = set_one_prio(p, niceval, error);
166 			break;
167 		case PRIO_PGRP:
168 			if (who)
169 				pgrp = find_vpid(who);
170 			else
171 				pgrp = task_pgrp(current);
172 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
173 				error = set_one_prio(p, niceval, error);
174 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
175 			break;
176 		case PRIO_USER:
177 			user = current->user;
178 			if (!who)
179 				who = current->uid;
180 			else
181 				if ((who != current->uid) && !(user = find_user(who)))
182 					goto out_unlock;	/* No processes for this user */
183 
184 			do_each_thread(g, p)
185 				if (p->uid == who)
186 					error = set_one_prio(p, niceval, error);
187 			while_each_thread(g, p);
188 			if (who != current->uid)
189 				free_uid(user);		/* For find_user() */
190 			break;
191 	}
192 out_unlock:
193 	read_unlock(&tasklist_lock);
194 out:
195 	return error;
196 }
197 
198 /*
199  * Ugh. To avoid negative return values, "getpriority()" will
200  * not return the normal nice-value, but a negated value that
201  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
202  * to stay compatible.
203  */
204 asmlinkage long sys_getpriority(int which, int who)
205 {
206 	struct task_struct *g, *p;
207 	struct user_struct *user;
208 	long niceval, retval = -ESRCH;
209 	struct pid *pgrp;
210 
211 	if (which > PRIO_USER || which < PRIO_PROCESS)
212 		return -EINVAL;
213 
214 	read_lock(&tasklist_lock);
215 	switch (which) {
216 		case PRIO_PROCESS:
217 			if (who)
218 				p = find_task_by_vpid(who);
219 			else
220 				p = current;
221 			if (p) {
222 				niceval = 20 - task_nice(p);
223 				if (niceval > retval)
224 					retval = niceval;
225 			}
226 			break;
227 		case PRIO_PGRP:
228 			if (who)
229 				pgrp = find_vpid(who);
230 			else
231 				pgrp = task_pgrp(current);
232 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
233 				niceval = 20 - task_nice(p);
234 				if (niceval > retval)
235 					retval = niceval;
236 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
237 			break;
238 		case PRIO_USER:
239 			user = current->user;
240 			if (!who)
241 				who = current->uid;
242 			else
243 				if ((who != current->uid) && !(user = find_user(who)))
244 					goto out_unlock;	/* No processes for this user */
245 
246 			do_each_thread(g, p)
247 				if (p->uid == who) {
248 					niceval = 20 - task_nice(p);
249 					if (niceval > retval)
250 						retval = niceval;
251 				}
252 			while_each_thread(g, p);
253 			if (who != current->uid)
254 				free_uid(user);		/* for find_user() */
255 			break;
256 	}
257 out_unlock:
258 	read_unlock(&tasklist_lock);
259 
260 	return retval;
261 }
262 
263 /**
264  *	emergency_restart - reboot the system
265  *
266  *	Without shutting down any hardware or taking any locks
267  *	reboot the system.  This is called when we know we are in
268  *	trouble so this is our best effort to reboot.  This is
269  *	safe to call in interrupt context.
270  */
271 void emergency_restart(void)
272 {
273 	machine_emergency_restart();
274 }
275 EXPORT_SYMBOL_GPL(emergency_restart);
276 
277 static void kernel_restart_prepare(char *cmd)
278 {
279 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
280 	system_state = SYSTEM_RESTART;
281 	device_shutdown();
282 	sysdev_shutdown();
283 }
284 
285 /**
286  *	kernel_restart - reboot the system
287  *	@cmd: pointer to buffer containing command to execute for restart
288  *		or %NULL
289  *
290  *	Shutdown everything and perform a clean reboot.
291  *	This is not safe to call in interrupt context.
292  */
293 void kernel_restart(char *cmd)
294 {
295 	kernel_restart_prepare(cmd);
296 	if (!cmd)
297 		printk(KERN_EMERG "Restarting system.\n");
298 	else
299 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
300 	machine_restart(cmd);
301 }
302 EXPORT_SYMBOL_GPL(kernel_restart);
303 
304 /**
305  *	kernel_kexec - reboot the system
306  *
307  *	Move into place and start executing a preloaded standalone
308  *	executable.  If nothing was preloaded return an error.
309  */
310 static void kernel_kexec(void)
311 {
312 #ifdef CONFIG_KEXEC
313 	struct kimage *image;
314 	image = xchg(&kexec_image, NULL);
315 	if (!image)
316 		return;
317 	kernel_restart_prepare(NULL);
318 	printk(KERN_EMERG "Starting new kernel\n");
319 	machine_shutdown();
320 	machine_kexec(image);
321 #endif
322 }
323 
324 static void kernel_shutdown_prepare(enum system_states state)
325 {
326 	blocking_notifier_call_chain(&reboot_notifier_list,
327 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
328 	system_state = state;
329 	device_shutdown();
330 }
331 /**
332  *	kernel_halt - halt the system
333  *
334  *	Shutdown everything and perform a clean system halt.
335  */
336 void kernel_halt(void)
337 {
338 	kernel_shutdown_prepare(SYSTEM_HALT);
339 	sysdev_shutdown();
340 	printk(KERN_EMERG "System halted.\n");
341 	machine_halt();
342 }
343 
344 EXPORT_SYMBOL_GPL(kernel_halt);
345 
346 /**
347  *	kernel_power_off - power_off the system
348  *
349  *	Shutdown everything and perform a clean system power_off.
350  */
351 void kernel_power_off(void)
352 {
353 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
354 	if (pm_power_off_prepare)
355 		pm_power_off_prepare();
356 	disable_nonboot_cpus();
357 	sysdev_shutdown();
358 	printk(KERN_EMERG "Power down.\n");
359 	machine_power_off();
360 }
361 EXPORT_SYMBOL_GPL(kernel_power_off);
362 /*
363  * Reboot system call: for obvious reasons only root may call it,
364  * and even root needs to set up some magic numbers in the registers
365  * so that some mistake won't make this reboot the whole machine.
366  * You can also set the meaning of the ctrl-alt-del-key here.
367  *
368  * reboot doesn't sync: do that yourself before calling this.
369  */
370 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
371 {
372 	char buffer[256];
373 
374 	/* We only trust the superuser with rebooting the system. */
375 	if (!capable(CAP_SYS_BOOT))
376 		return -EPERM;
377 
378 	/* For safety, we require "magic" arguments. */
379 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
380 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
381 	                magic2 != LINUX_REBOOT_MAGIC2A &&
382 			magic2 != LINUX_REBOOT_MAGIC2B &&
383 	                magic2 != LINUX_REBOOT_MAGIC2C))
384 		return -EINVAL;
385 
386 	/* Instead of trying to make the power_off code look like
387 	 * halt when pm_power_off is not set do it the easy way.
388 	 */
389 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
390 		cmd = LINUX_REBOOT_CMD_HALT;
391 
392 	lock_kernel();
393 	switch (cmd) {
394 	case LINUX_REBOOT_CMD_RESTART:
395 		kernel_restart(NULL);
396 		break;
397 
398 	case LINUX_REBOOT_CMD_CAD_ON:
399 		C_A_D = 1;
400 		break;
401 
402 	case LINUX_REBOOT_CMD_CAD_OFF:
403 		C_A_D = 0;
404 		break;
405 
406 	case LINUX_REBOOT_CMD_HALT:
407 		kernel_halt();
408 		unlock_kernel();
409 		do_exit(0);
410 		break;
411 
412 	case LINUX_REBOOT_CMD_POWER_OFF:
413 		kernel_power_off();
414 		unlock_kernel();
415 		do_exit(0);
416 		break;
417 
418 	case LINUX_REBOOT_CMD_RESTART2:
419 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
420 			unlock_kernel();
421 			return -EFAULT;
422 		}
423 		buffer[sizeof(buffer) - 1] = '\0';
424 
425 		kernel_restart(buffer);
426 		break;
427 
428 	case LINUX_REBOOT_CMD_KEXEC:
429 		kernel_kexec();
430 		unlock_kernel();
431 		return -EINVAL;
432 
433 #ifdef CONFIG_HIBERNATION
434 	case LINUX_REBOOT_CMD_SW_SUSPEND:
435 		{
436 			int ret = hibernate();
437 			unlock_kernel();
438 			return ret;
439 		}
440 #endif
441 
442 	default:
443 		unlock_kernel();
444 		return -EINVAL;
445 	}
446 	unlock_kernel();
447 	return 0;
448 }
449 
450 static void deferred_cad(struct work_struct *dummy)
451 {
452 	kernel_restart(NULL);
453 }
454 
455 /*
456  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
457  * As it's called within an interrupt, it may NOT sync: the only choice
458  * is whether to reboot at once, or just ignore the ctrl-alt-del.
459  */
460 void ctrl_alt_del(void)
461 {
462 	static DECLARE_WORK(cad_work, deferred_cad);
463 
464 	if (C_A_D)
465 		schedule_work(&cad_work);
466 	else
467 		kill_cad_pid(SIGINT, 1);
468 }
469 
470 /*
471  * Unprivileged users may change the real gid to the effective gid
472  * or vice versa.  (BSD-style)
473  *
474  * If you set the real gid at all, or set the effective gid to a value not
475  * equal to the real gid, then the saved gid is set to the new effective gid.
476  *
477  * This makes it possible for a setgid program to completely drop its
478  * privileges, which is often a useful assertion to make when you are doing
479  * a security audit over a program.
480  *
481  * The general idea is that a program which uses just setregid() will be
482  * 100% compatible with BSD.  A program which uses just setgid() will be
483  * 100% compatible with POSIX with saved IDs.
484  *
485  * SMP: There are not races, the GIDs are checked only by filesystem
486  *      operations (as far as semantic preservation is concerned).
487  */
488 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
489 {
490 	int old_rgid = current->gid;
491 	int old_egid = current->egid;
492 	int new_rgid = old_rgid;
493 	int new_egid = old_egid;
494 	int retval;
495 
496 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
497 	if (retval)
498 		return retval;
499 
500 	if (rgid != (gid_t) -1) {
501 		if ((old_rgid == rgid) ||
502 		    (current->egid==rgid) ||
503 		    capable(CAP_SETGID))
504 			new_rgid = rgid;
505 		else
506 			return -EPERM;
507 	}
508 	if (egid != (gid_t) -1) {
509 		if ((old_rgid == egid) ||
510 		    (current->egid == egid) ||
511 		    (current->sgid == egid) ||
512 		    capable(CAP_SETGID))
513 			new_egid = egid;
514 		else
515 			return -EPERM;
516 	}
517 	if (new_egid != old_egid) {
518 		set_dumpable(current->mm, suid_dumpable);
519 		smp_wmb();
520 	}
521 	if (rgid != (gid_t) -1 ||
522 	    (egid != (gid_t) -1 && egid != old_rgid))
523 		current->sgid = new_egid;
524 	current->fsgid = new_egid;
525 	current->egid = new_egid;
526 	current->gid = new_rgid;
527 	key_fsgid_changed(current);
528 	proc_id_connector(current, PROC_EVENT_GID);
529 	return 0;
530 }
531 
532 /*
533  * setgid() is implemented like SysV w/ SAVED_IDS
534  *
535  * SMP: Same implicit races as above.
536  */
537 asmlinkage long sys_setgid(gid_t gid)
538 {
539 	int old_egid = current->egid;
540 	int retval;
541 
542 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
543 	if (retval)
544 		return retval;
545 
546 	if (capable(CAP_SETGID)) {
547 		if (old_egid != gid) {
548 			set_dumpable(current->mm, suid_dumpable);
549 			smp_wmb();
550 		}
551 		current->gid = current->egid = current->sgid = current->fsgid = gid;
552 	} else if ((gid == current->gid) || (gid == current->sgid)) {
553 		if (old_egid != gid) {
554 			set_dumpable(current->mm, suid_dumpable);
555 			smp_wmb();
556 		}
557 		current->egid = current->fsgid = gid;
558 	}
559 	else
560 		return -EPERM;
561 
562 	key_fsgid_changed(current);
563 	proc_id_connector(current, PROC_EVENT_GID);
564 	return 0;
565 }
566 
567 static int set_user(uid_t new_ruid, int dumpclear)
568 {
569 	struct user_struct *new_user;
570 
571 	new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
572 	if (!new_user)
573 		return -EAGAIN;
574 
575 	if (atomic_read(&new_user->processes) >=
576 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
577 			new_user != current->nsproxy->user_ns->root_user) {
578 		free_uid(new_user);
579 		return -EAGAIN;
580 	}
581 
582 	switch_uid(new_user);
583 
584 	if (dumpclear) {
585 		set_dumpable(current->mm, suid_dumpable);
586 		smp_wmb();
587 	}
588 	current->uid = new_ruid;
589 	return 0;
590 }
591 
592 /*
593  * Unprivileged users may change the real uid to the effective uid
594  * or vice versa.  (BSD-style)
595  *
596  * If you set the real uid at all, or set the effective uid to a value not
597  * equal to the real uid, then the saved uid is set to the new effective uid.
598  *
599  * This makes it possible for a setuid program to completely drop its
600  * privileges, which is often a useful assertion to make when you are doing
601  * a security audit over a program.
602  *
603  * The general idea is that a program which uses just setreuid() will be
604  * 100% compatible with BSD.  A program which uses just setuid() will be
605  * 100% compatible with POSIX with saved IDs.
606  */
607 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
608 {
609 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
610 	int retval;
611 
612 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 	if (retval)
614 		return retval;
615 
616 	new_ruid = old_ruid = current->uid;
617 	new_euid = old_euid = current->euid;
618 	old_suid = current->suid;
619 
620 	if (ruid != (uid_t) -1) {
621 		new_ruid = ruid;
622 		if ((old_ruid != ruid) &&
623 		    (current->euid != ruid) &&
624 		    !capable(CAP_SETUID))
625 			return -EPERM;
626 	}
627 
628 	if (euid != (uid_t) -1) {
629 		new_euid = euid;
630 		if ((old_ruid != euid) &&
631 		    (current->euid != euid) &&
632 		    (current->suid != euid) &&
633 		    !capable(CAP_SETUID))
634 			return -EPERM;
635 	}
636 
637 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
638 		return -EAGAIN;
639 
640 	if (new_euid != old_euid) {
641 		set_dumpable(current->mm, suid_dumpable);
642 		smp_wmb();
643 	}
644 	current->fsuid = current->euid = new_euid;
645 	if (ruid != (uid_t) -1 ||
646 	    (euid != (uid_t) -1 && euid != old_ruid))
647 		current->suid = current->euid;
648 	current->fsuid = current->euid;
649 
650 	key_fsuid_changed(current);
651 	proc_id_connector(current, PROC_EVENT_UID);
652 
653 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
654 }
655 
656 
657 
658 /*
659  * setuid() is implemented like SysV with SAVED_IDS
660  *
661  * Note that SAVED_ID's is deficient in that a setuid root program
662  * like sendmail, for example, cannot set its uid to be a normal
663  * user and then switch back, because if you're root, setuid() sets
664  * the saved uid too.  If you don't like this, blame the bright people
665  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
666  * will allow a root program to temporarily drop privileges and be able to
667  * regain them by swapping the real and effective uid.
668  */
669 asmlinkage long sys_setuid(uid_t uid)
670 {
671 	int old_euid = current->euid;
672 	int old_ruid, old_suid, new_suid;
673 	int retval;
674 
675 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
676 	if (retval)
677 		return retval;
678 
679 	old_ruid = current->uid;
680 	old_suid = current->suid;
681 	new_suid = old_suid;
682 
683 	if (capable(CAP_SETUID)) {
684 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
685 			return -EAGAIN;
686 		new_suid = uid;
687 	} else if ((uid != current->uid) && (uid != new_suid))
688 		return -EPERM;
689 
690 	if (old_euid != uid) {
691 		set_dumpable(current->mm, suid_dumpable);
692 		smp_wmb();
693 	}
694 	current->fsuid = current->euid = uid;
695 	current->suid = new_suid;
696 
697 	key_fsuid_changed(current);
698 	proc_id_connector(current, PROC_EVENT_UID);
699 
700 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
701 }
702 
703 
704 /*
705  * This function implements a generic ability to update ruid, euid,
706  * and suid.  This allows you to implement the 4.4 compatible seteuid().
707  */
708 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
709 {
710 	int old_ruid = current->uid;
711 	int old_euid = current->euid;
712 	int old_suid = current->suid;
713 	int retval;
714 
715 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
716 	if (retval)
717 		return retval;
718 
719 	if (!capable(CAP_SETUID)) {
720 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
721 		    (ruid != current->euid) && (ruid != current->suid))
722 			return -EPERM;
723 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
724 		    (euid != current->euid) && (euid != current->suid))
725 			return -EPERM;
726 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
727 		    (suid != current->euid) && (suid != current->suid))
728 			return -EPERM;
729 	}
730 	if (ruid != (uid_t) -1) {
731 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
732 			return -EAGAIN;
733 	}
734 	if (euid != (uid_t) -1) {
735 		if (euid != current->euid) {
736 			set_dumpable(current->mm, suid_dumpable);
737 			smp_wmb();
738 		}
739 		current->euid = euid;
740 	}
741 	current->fsuid = current->euid;
742 	if (suid != (uid_t) -1)
743 		current->suid = suid;
744 
745 	key_fsuid_changed(current);
746 	proc_id_connector(current, PROC_EVENT_UID);
747 
748 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
749 }
750 
751 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
752 {
753 	int retval;
754 
755 	if (!(retval = put_user(current->uid, ruid)) &&
756 	    !(retval = put_user(current->euid, euid)))
757 		retval = put_user(current->suid, suid);
758 
759 	return retval;
760 }
761 
762 /*
763  * Same as above, but for rgid, egid, sgid.
764  */
765 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
766 {
767 	int retval;
768 
769 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
770 	if (retval)
771 		return retval;
772 
773 	if (!capable(CAP_SETGID)) {
774 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
775 		    (rgid != current->egid) && (rgid != current->sgid))
776 			return -EPERM;
777 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
778 		    (egid != current->egid) && (egid != current->sgid))
779 			return -EPERM;
780 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
781 		    (sgid != current->egid) && (sgid != current->sgid))
782 			return -EPERM;
783 	}
784 	if (egid != (gid_t) -1) {
785 		if (egid != current->egid) {
786 			set_dumpable(current->mm, suid_dumpable);
787 			smp_wmb();
788 		}
789 		current->egid = egid;
790 	}
791 	current->fsgid = current->egid;
792 	if (rgid != (gid_t) -1)
793 		current->gid = rgid;
794 	if (sgid != (gid_t) -1)
795 		current->sgid = sgid;
796 
797 	key_fsgid_changed(current);
798 	proc_id_connector(current, PROC_EVENT_GID);
799 	return 0;
800 }
801 
802 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
803 {
804 	int retval;
805 
806 	if (!(retval = put_user(current->gid, rgid)) &&
807 	    !(retval = put_user(current->egid, egid)))
808 		retval = put_user(current->sgid, sgid);
809 
810 	return retval;
811 }
812 
813 
814 /*
815  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
816  * is used for "access()" and for the NFS daemon (letting nfsd stay at
817  * whatever uid it wants to). It normally shadows "euid", except when
818  * explicitly set by setfsuid() or for access..
819  */
820 asmlinkage long sys_setfsuid(uid_t uid)
821 {
822 	int old_fsuid;
823 
824 	old_fsuid = current->fsuid;
825 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
826 		return old_fsuid;
827 
828 	if (uid == current->uid || uid == current->euid ||
829 	    uid == current->suid || uid == current->fsuid ||
830 	    capable(CAP_SETUID)) {
831 		if (uid != old_fsuid) {
832 			set_dumpable(current->mm, suid_dumpable);
833 			smp_wmb();
834 		}
835 		current->fsuid = uid;
836 	}
837 
838 	key_fsuid_changed(current);
839 	proc_id_connector(current, PROC_EVENT_UID);
840 
841 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
842 
843 	return old_fsuid;
844 }
845 
846 /*
847  * Samma på svenska..
848  */
849 asmlinkage long sys_setfsgid(gid_t gid)
850 {
851 	int old_fsgid;
852 
853 	old_fsgid = current->fsgid;
854 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
855 		return old_fsgid;
856 
857 	if (gid == current->gid || gid == current->egid ||
858 	    gid == current->sgid || gid == current->fsgid ||
859 	    capable(CAP_SETGID)) {
860 		if (gid != old_fsgid) {
861 			set_dumpable(current->mm, suid_dumpable);
862 			smp_wmb();
863 		}
864 		current->fsgid = gid;
865 		key_fsgid_changed(current);
866 		proc_id_connector(current, PROC_EVENT_GID);
867 	}
868 	return old_fsgid;
869 }
870 
871 asmlinkage long sys_times(struct tms __user * tbuf)
872 {
873 	/*
874 	 *	In the SMP world we might just be unlucky and have one of
875 	 *	the times increment as we use it. Since the value is an
876 	 *	atomically safe type this is just fine. Conceptually its
877 	 *	as if the syscall took an instant longer to occur.
878 	 */
879 	if (tbuf) {
880 		struct tms tmp;
881 		struct task_struct *tsk = current;
882 		struct task_struct *t;
883 		cputime_t utime, stime, cutime, cstime;
884 
885 		spin_lock_irq(&tsk->sighand->siglock);
886 		utime = tsk->signal->utime;
887 		stime = tsk->signal->stime;
888 		t = tsk;
889 		do {
890 			utime = cputime_add(utime, t->utime);
891 			stime = cputime_add(stime, t->stime);
892 			t = next_thread(t);
893 		} while (t != tsk);
894 
895 		cutime = tsk->signal->cutime;
896 		cstime = tsk->signal->cstime;
897 		spin_unlock_irq(&tsk->sighand->siglock);
898 
899 		tmp.tms_utime = cputime_to_clock_t(utime);
900 		tmp.tms_stime = cputime_to_clock_t(stime);
901 		tmp.tms_cutime = cputime_to_clock_t(cutime);
902 		tmp.tms_cstime = cputime_to_clock_t(cstime);
903 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
904 			return -EFAULT;
905 	}
906 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
907 }
908 
909 /*
910  * This needs some heavy checking ...
911  * I just haven't the stomach for it. I also don't fully
912  * understand sessions/pgrp etc. Let somebody who does explain it.
913  *
914  * OK, I think I have the protection semantics right.... this is really
915  * only important on a multi-user system anyway, to make sure one user
916  * can't send a signal to a process owned by another.  -TYT, 12/12/91
917  *
918  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
919  * LBT 04.03.94
920  */
921 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
922 {
923 	struct task_struct *p;
924 	struct task_struct *group_leader = current->group_leader;
925 	struct pid *pgrp;
926 	int err;
927 
928 	if (!pid)
929 		pid = task_pid_vnr(group_leader);
930 	if (!pgid)
931 		pgid = pid;
932 	if (pgid < 0)
933 		return -EINVAL;
934 
935 	/* From this point forward we keep holding onto the tasklist lock
936 	 * so that our parent does not change from under us. -DaveM
937 	 */
938 	write_lock_irq(&tasklist_lock);
939 
940 	err = -ESRCH;
941 	p = find_task_by_vpid(pid);
942 	if (!p)
943 		goto out;
944 
945 	err = -EINVAL;
946 	if (!thread_group_leader(p))
947 		goto out;
948 
949 	if (same_thread_group(p->real_parent, group_leader)) {
950 		err = -EPERM;
951 		if (task_session(p) != task_session(group_leader))
952 			goto out;
953 		err = -EACCES;
954 		if (p->did_exec)
955 			goto out;
956 	} else {
957 		err = -ESRCH;
958 		if (p != group_leader)
959 			goto out;
960 	}
961 
962 	err = -EPERM;
963 	if (p->signal->leader)
964 		goto out;
965 
966 	pgrp = task_pid(p);
967 	if (pgid != pid) {
968 		struct task_struct *g;
969 
970 		pgrp = find_vpid(pgid);
971 		g = pid_task(pgrp, PIDTYPE_PGID);
972 		if (!g || task_session(g) != task_session(group_leader))
973 			goto out;
974 	}
975 
976 	err = security_task_setpgid(p, pgid);
977 	if (err)
978 		goto out;
979 
980 	if (task_pgrp(p) != pgrp) {
981 		change_pid(p, PIDTYPE_PGID, pgrp);
982 		set_task_pgrp(p, pid_nr(pgrp));
983 	}
984 
985 	err = 0;
986 out:
987 	/* All paths lead to here, thus we are safe. -DaveM */
988 	write_unlock_irq(&tasklist_lock);
989 	return err;
990 }
991 
992 asmlinkage long sys_getpgid(pid_t pid)
993 {
994 	struct task_struct *p;
995 	struct pid *grp;
996 	int retval;
997 
998 	rcu_read_lock();
999 	if (!pid)
1000 		grp = task_pgrp(current);
1001 	else {
1002 		retval = -ESRCH;
1003 		p = find_task_by_vpid(pid);
1004 		if (!p)
1005 			goto out;
1006 		grp = task_pgrp(p);
1007 		if (!grp)
1008 			goto out;
1009 
1010 		retval = security_task_getpgid(p);
1011 		if (retval)
1012 			goto out;
1013 	}
1014 	retval = pid_vnr(grp);
1015 out:
1016 	rcu_read_unlock();
1017 	return retval;
1018 }
1019 
1020 #ifdef __ARCH_WANT_SYS_GETPGRP
1021 
1022 asmlinkage long sys_getpgrp(void)
1023 {
1024 	return sys_getpgid(0);
1025 }
1026 
1027 #endif
1028 
1029 asmlinkage long sys_getsid(pid_t pid)
1030 {
1031 	struct task_struct *p;
1032 	struct pid *sid;
1033 	int retval;
1034 
1035 	rcu_read_lock();
1036 	if (!pid)
1037 		sid = task_session(current);
1038 	else {
1039 		retval = -ESRCH;
1040 		p = find_task_by_vpid(pid);
1041 		if (!p)
1042 			goto out;
1043 		sid = task_session(p);
1044 		if (!sid)
1045 			goto out;
1046 
1047 		retval = security_task_getsid(p);
1048 		if (retval)
1049 			goto out;
1050 	}
1051 	retval = pid_vnr(sid);
1052 out:
1053 	rcu_read_unlock();
1054 	return retval;
1055 }
1056 
1057 asmlinkage long sys_setsid(void)
1058 {
1059 	struct task_struct *group_leader = current->group_leader;
1060 	struct pid *sid = task_pid(group_leader);
1061 	pid_t session = pid_vnr(sid);
1062 	int err = -EPERM;
1063 
1064 	write_lock_irq(&tasklist_lock);
1065 	/* Fail if I am already a session leader */
1066 	if (group_leader->signal->leader)
1067 		goto out;
1068 
1069 	/* Fail if a process group id already exists that equals the
1070 	 * proposed session id.
1071 	 */
1072 	if (pid_task(sid, PIDTYPE_PGID))
1073 		goto out;
1074 
1075 	group_leader->signal->leader = 1;
1076 	__set_special_pids(sid);
1077 
1078 	spin_lock(&group_leader->sighand->siglock);
1079 	group_leader->signal->tty = NULL;
1080 	spin_unlock(&group_leader->sighand->siglock);
1081 
1082 	err = session;
1083 out:
1084 	write_unlock_irq(&tasklist_lock);
1085 	return err;
1086 }
1087 
1088 /*
1089  * Supplementary group IDs
1090  */
1091 
1092 /* init to 2 - one for init_task, one to ensure it is never freed */
1093 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1094 
1095 struct group_info *groups_alloc(int gidsetsize)
1096 {
1097 	struct group_info *group_info;
1098 	int nblocks;
1099 	int i;
1100 
1101 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1102 	/* Make sure we always allocate at least one indirect block pointer */
1103 	nblocks = nblocks ? : 1;
1104 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1105 	if (!group_info)
1106 		return NULL;
1107 	group_info->ngroups = gidsetsize;
1108 	group_info->nblocks = nblocks;
1109 	atomic_set(&group_info->usage, 1);
1110 
1111 	if (gidsetsize <= NGROUPS_SMALL)
1112 		group_info->blocks[0] = group_info->small_block;
1113 	else {
1114 		for (i = 0; i < nblocks; i++) {
1115 			gid_t *b;
1116 			b = (void *)__get_free_page(GFP_USER);
1117 			if (!b)
1118 				goto out_undo_partial_alloc;
1119 			group_info->blocks[i] = b;
1120 		}
1121 	}
1122 	return group_info;
1123 
1124 out_undo_partial_alloc:
1125 	while (--i >= 0) {
1126 		free_page((unsigned long)group_info->blocks[i]);
1127 	}
1128 	kfree(group_info);
1129 	return NULL;
1130 }
1131 
1132 EXPORT_SYMBOL(groups_alloc);
1133 
1134 void groups_free(struct group_info *group_info)
1135 {
1136 	if (group_info->blocks[0] != group_info->small_block) {
1137 		int i;
1138 		for (i = 0; i < group_info->nblocks; i++)
1139 			free_page((unsigned long)group_info->blocks[i]);
1140 	}
1141 	kfree(group_info);
1142 }
1143 
1144 EXPORT_SYMBOL(groups_free);
1145 
1146 /* export the group_info to a user-space array */
1147 static int groups_to_user(gid_t __user *grouplist,
1148     struct group_info *group_info)
1149 {
1150 	int i;
1151 	unsigned int count = group_info->ngroups;
1152 
1153 	for (i = 0; i < group_info->nblocks; i++) {
1154 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1155 		unsigned int len = cp_count * sizeof(*grouplist);
1156 
1157 		if (copy_to_user(grouplist, group_info->blocks[i], len))
1158 			return -EFAULT;
1159 
1160 		grouplist += NGROUPS_PER_BLOCK;
1161 		count -= cp_count;
1162 	}
1163 	return 0;
1164 }
1165 
1166 /* fill a group_info from a user-space array - it must be allocated already */
1167 static int groups_from_user(struct group_info *group_info,
1168     gid_t __user *grouplist)
1169 {
1170 	int i;
1171 	unsigned int count = group_info->ngroups;
1172 
1173 	for (i = 0; i < group_info->nblocks; i++) {
1174 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1175 		unsigned int len = cp_count * sizeof(*grouplist);
1176 
1177 		if (copy_from_user(group_info->blocks[i], grouplist, len))
1178 			return -EFAULT;
1179 
1180 		grouplist += NGROUPS_PER_BLOCK;
1181 		count -= cp_count;
1182 	}
1183 	return 0;
1184 }
1185 
1186 /* a simple Shell sort */
1187 static void groups_sort(struct group_info *group_info)
1188 {
1189 	int base, max, stride;
1190 	int gidsetsize = group_info->ngroups;
1191 
1192 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1193 		; /* nothing */
1194 	stride /= 3;
1195 
1196 	while (stride) {
1197 		max = gidsetsize - stride;
1198 		for (base = 0; base < max; base++) {
1199 			int left = base;
1200 			int right = left + stride;
1201 			gid_t tmp = GROUP_AT(group_info, right);
1202 
1203 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1204 				GROUP_AT(group_info, right) =
1205 				    GROUP_AT(group_info, left);
1206 				right = left;
1207 				left -= stride;
1208 			}
1209 			GROUP_AT(group_info, right) = tmp;
1210 		}
1211 		stride /= 3;
1212 	}
1213 }
1214 
1215 /* a simple bsearch */
1216 int groups_search(struct group_info *group_info, gid_t grp)
1217 {
1218 	unsigned int left, right;
1219 
1220 	if (!group_info)
1221 		return 0;
1222 
1223 	left = 0;
1224 	right = group_info->ngroups;
1225 	while (left < right) {
1226 		unsigned int mid = (left+right)/2;
1227 		int cmp = grp - GROUP_AT(group_info, mid);
1228 		if (cmp > 0)
1229 			left = mid + 1;
1230 		else if (cmp < 0)
1231 			right = mid;
1232 		else
1233 			return 1;
1234 	}
1235 	return 0;
1236 }
1237 
1238 /* validate and set current->group_info */
1239 int set_current_groups(struct group_info *group_info)
1240 {
1241 	int retval;
1242 	struct group_info *old_info;
1243 
1244 	retval = security_task_setgroups(group_info);
1245 	if (retval)
1246 		return retval;
1247 
1248 	groups_sort(group_info);
1249 	get_group_info(group_info);
1250 
1251 	task_lock(current);
1252 	old_info = current->group_info;
1253 	current->group_info = group_info;
1254 	task_unlock(current);
1255 
1256 	put_group_info(old_info);
1257 
1258 	return 0;
1259 }
1260 
1261 EXPORT_SYMBOL(set_current_groups);
1262 
1263 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1264 {
1265 	int i = 0;
1266 
1267 	/*
1268 	 *	SMP: Nobody else can change our grouplist. Thus we are
1269 	 *	safe.
1270 	 */
1271 
1272 	if (gidsetsize < 0)
1273 		return -EINVAL;
1274 
1275 	/* no need to grab task_lock here; it cannot change */
1276 	i = current->group_info->ngroups;
1277 	if (gidsetsize) {
1278 		if (i > gidsetsize) {
1279 			i = -EINVAL;
1280 			goto out;
1281 		}
1282 		if (groups_to_user(grouplist, current->group_info)) {
1283 			i = -EFAULT;
1284 			goto out;
1285 		}
1286 	}
1287 out:
1288 	return i;
1289 }
1290 
1291 /*
1292  *	SMP: Our groups are copy-on-write. We can set them safely
1293  *	without another task interfering.
1294  */
1295 
1296 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1297 {
1298 	struct group_info *group_info;
1299 	int retval;
1300 
1301 	if (!capable(CAP_SETGID))
1302 		return -EPERM;
1303 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1304 		return -EINVAL;
1305 
1306 	group_info = groups_alloc(gidsetsize);
1307 	if (!group_info)
1308 		return -ENOMEM;
1309 	retval = groups_from_user(group_info, grouplist);
1310 	if (retval) {
1311 		put_group_info(group_info);
1312 		return retval;
1313 	}
1314 
1315 	retval = set_current_groups(group_info);
1316 	put_group_info(group_info);
1317 
1318 	return retval;
1319 }
1320 
1321 /*
1322  * Check whether we're fsgid/egid or in the supplemental group..
1323  */
1324 int in_group_p(gid_t grp)
1325 {
1326 	int retval = 1;
1327 	if (grp != current->fsgid)
1328 		retval = groups_search(current->group_info, grp);
1329 	return retval;
1330 }
1331 
1332 EXPORT_SYMBOL(in_group_p);
1333 
1334 int in_egroup_p(gid_t grp)
1335 {
1336 	int retval = 1;
1337 	if (grp != current->egid)
1338 		retval = groups_search(current->group_info, grp);
1339 	return retval;
1340 }
1341 
1342 EXPORT_SYMBOL(in_egroup_p);
1343 
1344 DECLARE_RWSEM(uts_sem);
1345 
1346 EXPORT_SYMBOL(uts_sem);
1347 
1348 asmlinkage long sys_newuname(struct new_utsname __user * name)
1349 {
1350 	int errno = 0;
1351 
1352 	down_read(&uts_sem);
1353 	if (copy_to_user(name, utsname(), sizeof *name))
1354 		errno = -EFAULT;
1355 	up_read(&uts_sem);
1356 	return errno;
1357 }
1358 
1359 asmlinkage long sys_sethostname(char __user *name, int len)
1360 {
1361 	int errno;
1362 	char tmp[__NEW_UTS_LEN];
1363 
1364 	if (!capable(CAP_SYS_ADMIN))
1365 		return -EPERM;
1366 	if (len < 0 || len > __NEW_UTS_LEN)
1367 		return -EINVAL;
1368 	down_write(&uts_sem);
1369 	errno = -EFAULT;
1370 	if (!copy_from_user(tmp, name, len)) {
1371 		memcpy(utsname()->nodename, tmp, len);
1372 		utsname()->nodename[len] = 0;
1373 		errno = 0;
1374 	}
1375 	up_write(&uts_sem);
1376 	return errno;
1377 }
1378 
1379 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1380 
1381 asmlinkage long sys_gethostname(char __user *name, int len)
1382 {
1383 	int i, errno;
1384 
1385 	if (len < 0)
1386 		return -EINVAL;
1387 	down_read(&uts_sem);
1388 	i = 1 + strlen(utsname()->nodename);
1389 	if (i > len)
1390 		i = len;
1391 	errno = 0;
1392 	if (copy_to_user(name, utsname()->nodename, i))
1393 		errno = -EFAULT;
1394 	up_read(&uts_sem);
1395 	return errno;
1396 }
1397 
1398 #endif
1399 
1400 /*
1401  * Only setdomainname; getdomainname can be implemented by calling
1402  * uname()
1403  */
1404 asmlinkage long sys_setdomainname(char __user *name, int len)
1405 {
1406 	int errno;
1407 	char tmp[__NEW_UTS_LEN];
1408 
1409 	if (!capable(CAP_SYS_ADMIN))
1410 		return -EPERM;
1411 	if (len < 0 || len > __NEW_UTS_LEN)
1412 		return -EINVAL;
1413 
1414 	down_write(&uts_sem);
1415 	errno = -EFAULT;
1416 	if (!copy_from_user(tmp, name, len)) {
1417 		memcpy(utsname()->domainname, tmp, len);
1418 		utsname()->domainname[len] = 0;
1419 		errno = 0;
1420 	}
1421 	up_write(&uts_sem);
1422 	return errno;
1423 }
1424 
1425 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1426 {
1427 	if (resource >= RLIM_NLIMITS)
1428 		return -EINVAL;
1429 	else {
1430 		struct rlimit value;
1431 		task_lock(current->group_leader);
1432 		value = current->signal->rlim[resource];
1433 		task_unlock(current->group_leader);
1434 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1435 	}
1436 }
1437 
1438 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1439 
1440 /*
1441  *	Back compatibility for getrlimit. Needed for some apps.
1442  */
1443 
1444 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1445 {
1446 	struct rlimit x;
1447 	if (resource >= RLIM_NLIMITS)
1448 		return -EINVAL;
1449 
1450 	task_lock(current->group_leader);
1451 	x = current->signal->rlim[resource];
1452 	task_unlock(current->group_leader);
1453 	if (x.rlim_cur > 0x7FFFFFFF)
1454 		x.rlim_cur = 0x7FFFFFFF;
1455 	if (x.rlim_max > 0x7FFFFFFF)
1456 		x.rlim_max = 0x7FFFFFFF;
1457 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1458 }
1459 
1460 #endif
1461 
1462 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1463 {
1464 	struct rlimit new_rlim, *old_rlim;
1465 	unsigned long it_prof_secs;
1466 	int retval;
1467 
1468 	if (resource >= RLIM_NLIMITS)
1469 		return -EINVAL;
1470 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1471 		return -EFAULT;
1472 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1473 		return -EINVAL;
1474 	old_rlim = current->signal->rlim + resource;
1475 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1476 	    !capable(CAP_SYS_RESOURCE))
1477 		return -EPERM;
1478 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1479 		return -EPERM;
1480 
1481 	retval = security_task_setrlimit(resource, &new_rlim);
1482 	if (retval)
1483 		return retval;
1484 
1485 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1486 		/*
1487 		 * The caller is asking for an immediate RLIMIT_CPU
1488 		 * expiry.  But we use the zero value to mean "it was
1489 		 * never set".  So let's cheat and make it one second
1490 		 * instead
1491 		 */
1492 		new_rlim.rlim_cur = 1;
1493 	}
1494 
1495 	task_lock(current->group_leader);
1496 	*old_rlim = new_rlim;
1497 	task_unlock(current->group_leader);
1498 
1499 	if (resource != RLIMIT_CPU)
1500 		goto out;
1501 
1502 	/*
1503 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1504 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1505 	 * very long-standing error, and fixing it now risks breakage of
1506 	 * applications, so we live with it
1507 	 */
1508 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1509 		goto out;
1510 
1511 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1512 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1513 		unsigned long rlim_cur = new_rlim.rlim_cur;
1514 		cputime_t cputime;
1515 
1516 		cputime = secs_to_cputime(rlim_cur);
1517 		read_lock(&tasklist_lock);
1518 		spin_lock_irq(&current->sighand->siglock);
1519 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1520 		spin_unlock_irq(&current->sighand->siglock);
1521 		read_unlock(&tasklist_lock);
1522 	}
1523 out:
1524 	return 0;
1525 }
1526 
1527 /*
1528  * It would make sense to put struct rusage in the task_struct,
1529  * except that would make the task_struct be *really big*.  After
1530  * task_struct gets moved into malloc'ed memory, it would
1531  * make sense to do this.  It will make moving the rest of the information
1532  * a lot simpler!  (Which we're not doing right now because we're not
1533  * measuring them yet).
1534  *
1535  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1536  * races with threads incrementing their own counters.  But since word
1537  * reads are atomic, we either get new values or old values and we don't
1538  * care which for the sums.  We always take the siglock to protect reading
1539  * the c* fields from p->signal from races with exit.c updating those
1540  * fields when reaping, so a sample either gets all the additions of a
1541  * given child after it's reaped, or none so this sample is before reaping.
1542  *
1543  * Locking:
1544  * We need to take the siglock for CHILDEREN, SELF and BOTH
1545  * for  the cases current multithreaded, non-current single threaded
1546  * non-current multithreaded.  Thread traversal is now safe with
1547  * the siglock held.
1548  * Strictly speaking, we donot need to take the siglock if we are current and
1549  * single threaded,  as no one else can take our signal_struct away, no one
1550  * else can  reap the  children to update signal->c* counters, and no one else
1551  * can race with the signal-> fields. If we do not take any lock, the
1552  * signal-> fields could be read out of order while another thread was just
1553  * exiting. So we should  place a read memory barrier when we avoid the lock.
1554  * On the writer side,  write memory barrier is implied in  __exit_signal
1555  * as __exit_signal releases  the siglock spinlock after updating the signal->
1556  * fields. But we don't do this yet to keep things simple.
1557  *
1558  */
1559 
1560 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r,
1561 				     cputime_t *utimep, cputime_t *stimep)
1562 {
1563 	*utimep = cputime_add(*utimep, t->utime);
1564 	*stimep = cputime_add(*stimep, t->stime);
1565 	r->ru_nvcsw += t->nvcsw;
1566 	r->ru_nivcsw += t->nivcsw;
1567 	r->ru_minflt += t->min_flt;
1568 	r->ru_majflt += t->maj_flt;
1569 	r->ru_inblock += task_io_get_inblock(t);
1570 	r->ru_oublock += task_io_get_oublock(t);
1571 }
1572 
1573 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1574 {
1575 	struct task_struct *t;
1576 	unsigned long flags;
1577 	cputime_t utime, stime;
1578 
1579 	memset((char *) r, 0, sizeof *r);
1580 	utime = stime = cputime_zero;
1581 
1582 	if (who == RUSAGE_THREAD) {
1583 		accumulate_thread_rusage(p, r, &utime, &stime);
1584 		goto out;
1585 	}
1586 
1587 	if (!lock_task_sighand(p, &flags))
1588 		return;
1589 
1590 	switch (who) {
1591 		case RUSAGE_BOTH:
1592 		case RUSAGE_CHILDREN:
1593 			utime = p->signal->cutime;
1594 			stime = p->signal->cstime;
1595 			r->ru_nvcsw = p->signal->cnvcsw;
1596 			r->ru_nivcsw = p->signal->cnivcsw;
1597 			r->ru_minflt = p->signal->cmin_flt;
1598 			r->ru_majflt = p->signal->cmaj_flt;
1599 			r->ru_inblock = p->signal->cinblock;
1600 			r->ru_oublock = p->signal->coublock;
1601 
1602 			if (who == RUSAGE_CHILDREN)
1603 				break;
1604 
1605 		case RUSAGE_SELF:
1606 			utime = cputime_add(utime, p->signal->utime);
1607 			stime = cputime_add(stime, p->signal->stime);
1608 			r->ru_nvcsw += p->signal->nvcsw;
1609 			r->ru_nivcsw += p->signal->nivcsw;
1610 			r->ru_minflt += p->signal->min_flt;
1611 			r->ru_majflt += p->signal->maj_flt;
1612 			r->ru_inblock += p->signal->inblock;
1613 			r->ru_oublock += p->signal->oublock;
1614 			t = p;
1615 			do {
1616 				accumulate_thread_rusage(t, r, &utime, &stime);
1617 				t = next_thread(t);
1618 			} while (t != p);
1619 			break;
1620 
1621 		default:
1622 			BUG();
1623 	}
1624 	unlock_task_sighand(p, &flags);
1625 
1626 out:
1627 	cputime_to_timeval(utime, &r->ru_utime);
1628 	cputime_to_timeval(stime, &r->ru_stime);
1629 }
1630 
1631 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1632 {
1633 	struct rusage r;
1634 	k_getrusage(p, who, &r);
1635 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1636 }
1637 
1638 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1639 {
1640 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1641 	    who != RUSAGE_THREAD)
1642 		return -EINVAL;
1643 	return getrusage(current, who, ru);
1644 }
1645 
1646 asmlinkage long sys_umask(int mask)
1647 {
1648 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1649 	return mask;
1650 }
1651 
1652 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1653 			  unsigned long arg4, unsigned long arg5)
1654 {
1655 	long error = 0;
1656 
1657 	if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
1658 		return error;
1659 
1660 	switch (option) {
1661 		case PR_SET_PDEATHSIG:
1662 			if (!valid_signal(arg2)) {
1663 				error = -EINVAL;
1664 				break;
1665 			}
1666 			current->pdeath_signal = arg2;
1667 			break;
1668 		case PR_GET_PDEATHSIG:
1669 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1670 			break;
1671 		case PR_GET_DUMPABLE:
1672 			error = get_dumpable(current->mm);
1673 			break;
1674 		case PR_SET_DUMPABLE:
1675 			if (arg2 < 0 || arg2 > 1) {
1676 				error = -EINVAL;
1677 				break;
1678 			}
1679 			set_dumpable(current->mm, arg2);
1680 			break;
1681 
1682 		case PR_SET_UNALIGN:
1683 			error = SET_UNALIGN_CTL(current, arg2);
1684 			break;
1685 		case PR_GET_UNALIGN:
1686 			error = GET_UNALIGN_CTL(current, arg2);
1687 			break;
1688 		case PR_SET_FPEMU:
1689 			error = SET_FPEMU_CTL(current, arg2);
1690 			break;
1691 		case PR_GET_FPEMU:
1692 			error = GET_FPEMU_CTL(current, arg2);
1693 			break;
1694 		case PR_SET_FPEXC:
1695 			error = SET_FPEXC_CTL(current, arg2);
1696 			break;
1697 		case PR_GET_FPEXC:
1698 			error = GET_FPEXC_CTL(current, arg2);
1699 			break;
1700 		case PR_GET_TIMING:
1701 			error = PR_TIMING_STATISTICAL;
1702 			break;
1703 		case PR_SET_TIMING:
1704 			if (arg2 != PR_TIMING_STATISTICAL)
1705 				error = -EINVAL;
1706 			break;
1707 
1708 		case PR_SET_NAME: {
1709 			struct task_struct *me = current;
1710 			unsigned char ncomm[sizeof(me->comm)];
1711 
1712 			ncomm[sizeof(me->comm)-1] = 0;
1713 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1714 						sizeof(me->comm)-1) < 0)
1715 				return -EFAULT;
1716 			set_task_comm(me, ncomm);
1717 			return 0;
1718 		}
1719 		case PR_GET_NAME: {
1720 			struct task_struct *me = current;
1721 			unsigned char tcomm[sizeof(me->comm)];
1722 
1723 			get_task_comm(tcomm, me);
1724 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1725 				return -EFAULT;
1726 			return 0;
1727 		}
1728 		case PR_GET_ENDIAN:
1729 			error = GET_ENDIAN(current, arg2);
1730 			break;
1731 		case PR_SET_ENDIAN:
1732 			error = SET_ENDIAN(current, arg2);
1733 			break;
1734 
1735 		case PR_GET_SECCOMP:
1736 			error = prctl_get_seccomp();
1737 			break;
1738 		case PR_SET_SECCOMP:
1739 			error = prctl_set_seccomp(arg2);
1740 			break;
1741 		case PR_GET_TSC:
1742 			error = GET_TSC_CTL(arg2);
1743 			break;
1744 		case PR_SET_TSC:
1745 			error = SET_TSC_CTL(arg2);
1746 			break;
1747 		default:
1748 			error = -EINVAL;
1749 			break;
1750 	}
1751 	return error;
1752 }
1753 
1754 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1755 			   struct getcpu_cache __user *unused)
1756 {
1757 	int err = 0;
1758 	int cpu = raw_smp_processor_id();
1759 	if (cpup)
1760 		err |= put_user(cpu, cpup);
1761 	if (nodep)
1762 		err |= put_user(cpu_to_node(cpu), nodep);
1763 	return err ? -EFAULT : 0;
1764 }
1765 
1766 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1767 
1768 static void argv_cleanup(char **argv, char **envp)
1769 {
1770 	argv_free(argv);
1771 }
1772 
1773 /**
1774  * orderly_poweroff - Trigger an orderly system poweroff
1775  * @force: force poweroff if command execution fails
1776  *
1777  * This may be called from any context to trigger a system shutdown.
1778  * If the orderly shutdown fails, it will force an immediate shutdown.
1779  */
1780 int orderly_poweroff(bool force)
1781 {
1782 	int argc;
1783 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1784 	static char *envp[] = {
1785 		"HOME=/",
1786 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1787 		NULL
1788 	};
1789 	int ret = -ENOMEM;
1790 	struct subprocess_info *info;
1791 
1792 	if (argv == NULL) {
1793 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1794 		       __func__, poweroff_cmd);
1795 		goto out;
1796 	}
1797 
1798 	info = call_usermodehelper_setup(argv[0], argv, envp);
1799 	if (info == NULL) {
1800 		argv_free(argv);
1801 		goto out;
1802 	}
1803 
1804 	call_usermodehelper_setcleanup(info, argv_cleanup);
1805 
1806 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1807 
1808   out:
1809 	if (ret && force) {
1810 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1811 		       "forcing the issue\n");
1812 
1813 		/* I guess this should try to kick off some daemon to
1814 		   sync and poweroff asap.  Or not even bother syncing
1815 		   if we're doing an emergency shutdown? */
1816 		emergency_sync();
1817 		kernel_power_off();
1818 	}
1819 
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(orderly_poweroff);
1823