1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/sys.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/reboot.h> 13 #include <linux/prctl.h> 14 #include <linux/highuid.h> 15 #include <linux/fs.h> 16 #include <linux/kmod.h> 17 #include <linux/perf_event.h> 18 #include <linux/resource.h> 19 #include <linux/kernel.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/file.h> 40 #include <linux/mount.h> 41 #include <linux/gfp.h> 42 #include <linux/syscore_ops.h> 43 #include <linux/version.h> 44 #include <linux/ctype.h> 45 46 #include <linux/compat.h> 47 #include <linux/syscalls.h> 48 #include <linux/kprobes.h> 49 #include <linux/user_namespace.h> 50 #include <linux/binfmts.h> 51 52 #include <linux/sched.h> 53 #include <linux/sched/autogroup.h> 54 #include <linux/sched/loadavg.h> 55 #include <linux/sched/stat.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/coredump.h> 58 #include <linux/sched/task.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/rcupdate.h> 61 #include <linux/uidgid.h> 62 #include <linux/cred.h> 63 64 #include <linux/kmsg_dump.h> 65 /* Move somewhere else to avoid recompiling? */ 66 #include <generated/utsrelease.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/io.h> 70 #include <asm/unistd.h> 71 72 #include "uid16.h" 73 74 #ifndef SET_UNALIGN_CTL 75 # define SET_UNALIGN_CTL(a, b) (-EINVAL) 76 #endif 77 #ifndef GET_UNALIGN_CTL 78 # define GET_UNALIGN_CTL(a, b) (-EINVAL) 79 #endif 80 #ifndef SET_FPEMU_CTL 81 # define SET_FPEMU_CTL(a, b) (-EINVAL) 82 #endif 83 #ifndef GET_FPEMU_CTL 84 # define GET_FPEMU_CTL(a, b) (-EINVAL) 85 #endif 86 #ifndef SET_FPEXC_CTL 87 # define SET_FPEXC_CTL(a, b) (-EINVAL) 88 #endif 89 #ifndef GET_FPEXC_CTL 90 # define GET_FPEXC_CTL(a, b) (-EINVAL) 91 #endif 92 #ifndef GET_ENDIAN 93 # define GET_ENDIAN(a, b) (-EINVAL) 94 #endif 95 #ifndef SET_ENDIAN 96 # define SET_ENDIAN(a, b) (-EINVAL) 97 #endif 98 #ifndef GET_TSC_CTL 99 # define GET_TSC_CTL(a) (-EINVAL) 100 #endif 101 #ifndef SET_TSC_CTL 102 # define SET_TSC_CTL(a) (-EINVAL) 103 #endif 104 #ifndef MPX_ENABLE_MANAGEMENT 105 # define MPX_ENABLE_MANAGEMENT() (-EINVAL) 106 #endif 107 #ifndef MPX_DISABLE_MANAGEMENT 108 # define MPX_DISABLE_MANAGEMENT() (-EINVAL) 109 #endif 110 #ifndef GET_FP_MODE 111 # define GET_FP_MODE(a) (-EINVAL) 112 #endif 113 #ifndef SET_FP_MODE 114 # define SET_FP_MODE(a,b) (-EINVAL) 115 #endif 116 #ifndef SVE_SET_VL 117 # define SVE_SET_VL(a) (-EINVAL) 118 #endif 119 #ifndef SVE_GET_VL 120 # define SVE_GET_VL() (-EINVAL) 121 #endif 122 123 /* 124 * this is where the system-wide overflow UID and GID are defined, for 125 * architectures that now have 32-bit UID/GID but didn't in the past 126 */ 127 128 int overflowuid = DEFAULT_OVERFLOWUID; 129 int overflowgid = DEFAULT_OVERFLOWGID; 130 131 EXPORT_SYMBOL(overflowuid); 132 EXPORT_SYMBOL(overflowgid); 133 134 /* 135 * the same as above, but for filesystems which can only store a 16-bit 136 * UID and GID. as such, this is needed on all architectures 137 */ 138 139 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 140 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; 141 142 EXPORT_SYMBOL(fs_overflowuid); 143 EXPORT_SYMBOL(fs_overflowgid); 144 145 /* 146 * Returns true if current's euid is same as p's uid or euid, 147 * or has CAP_SYS_NICE to p's user_ns. 148 * 149 * Called with rcu_read_lock, creds are safe 150 */ 151 static bool set_one_prio_perm(struct task_struct *p) 152 { 153 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 154 155 if (uid_eq(pcred->uid, cred->euid) || 156 uid_eq(pcred->euid, cred->euid)) 157 return true; 158 if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) 159 return true; 160 return false; 161 } 162 163 /* 164 * set the priority of a task 165 * - the caller must hold the RCU read lock 166 */ 167 static int set_one_prio(struct task_struct *p, int niceval, int error) 168 { 169 int no_nice; 170 171 if (!set_one_prio_perm(p)) { 172 error = -EPERM; 173 goto out; 174 } 175 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 176 error = -EACCES; 177 goto out; 178 } 179 no_nice = security_task_setnice(p, niceval); 180 if (no_nice) { 181 error = no_nice; 182 goto out; 183 } 184 if (error == -ESRCH) 185 error = 0; 186 set_user_nice(p, niceval); 187 out: 188 return error; 189 } 190 191 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 192 { 193 struct task_struct *g, *p; 194 struct user_struct *user; 195 const struct cred *cred = current_cred(); 196 int error = -EINVAL; 197 struct pid *pgrp; 198 kuid_t uid; 199 200 if (which > PRIO_USER || which < PRIO_PROCESS) 201 goto out; 202 203 /* normalize: avoid signed division (rounding problems) */ 204 error = -ESRCH; 205 if (niceval < MIN_NICE) 206 niceval = MIN_NICE; 207 if (niceval > MAX_NICE) 208 niceval = MAX_NICE; 209 210 rcu_read_lock(); 211 read_lock(&tasklist_lock); 212 switch (which) { 213 case PRIO_PROCESS: 214 if (who) 215 p = find_task_by_vpid(who); 216 else 217 p = current; 218 if (p) 219 error = set_one_prio(p, niceval, error); 220 break; 221 case PRIO_PGRP: 222 if (who) 223 pgrp = find_vpid(who); 224 else 225 pgrp = task_pgrp(current); 226 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 227 error = set_one_prio(p, niceval, error); 228 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 229 break; 230 case PRIO_USER: 231 uid = make_kuid(cred->user_ns, who); 232 user = cred->user; 233 if (!who) 234 uid = cred->uid; 235 else if (!uid_eq(uid, cred->uid)) { 236 user = find_user(uid); 237 if (!user) 238 goto out_unlock; /* No processes for this user */ 239 } 240 do_each_thread(g, p) { 241 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) 242 error = set_one_prio(p, niceval, error); 243 } while_each_thread(g, p); 244 if (!uid_eq(uid, cred->uid)) 245 free_uid(user); /* For find_user() */ 246 break; 247 } 248 out_unlock: 249 read_unlock(&tasklist_lock); 250 rcu_read_unlock(); 251 out: 252 return error; 253 } 254 255 /* 256 * Ugh. To avoid negative return values, "getpriority()" will 257 * not return the normal nice-value, but a negated value that 258 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 259 * to stay compatible. 260 */ 261 SYSCALL_DEFINE2(getpriority, int, which, int, who) 262 { 263 struct task_struct *g, *p; 264 struct user_struct *user; 265 const struct cred *cred = current_cred(); 266 long niceval, retval = -ESRCH; 267 struct pid *pgrp; 268 kuid_t uid; 269 270 if (which > PRIO_USER || which < PRIO_PROCESS) 271 return -EINVAL; 272 273 rcu_read_lock(); 274 read_lock(&tasklist_lock); 275 switch (which) { 276 case PRIO_PROCESS: 277 if (who) 278 p = find_task_by_vpid(who); 279 else 280 p = current; 281 if (p) { 282 niceval = nice_to_rlimit(task_nice(p)); 283 if (niceval > retval) 284 retval = niceval; 285 } 286 break; 287 case PRIO_PGRP: 288 if (who) 289 pgrp = find_vpid(who); 290 else 291 pgrp = task_pgrp(current); 292 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 293 niceval = nice_to_rlimit(task_nice(p)); 294 if (niceval > retval) 295 retval = niceval; 296 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 297 break; 298 case PRIO_USER: 299 uid = make_kuid(cred->user_ns, who); 300 user = cred->user; 301 if (!who) 302 uid = cred->uid; 303 else if (!uid_eq(uid, cred->uid)) { 304 user = find_user(uid); 305 if (!user) 306 goto out_unlock; /* No processes for this user */ 307 } 308 do_each_thread(g, p) { 309 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { 310 niceval = nice_to_rlimit(task_nice(p)); 311 if (niceval > retval) 312 retval = niceval; 313 } 314 } while_each_thread(g, p); 315 if (!uid_eq(uid, cred->uid)) 316 free_uid(user); /* for find_user() */ 317 break; 318 } 319 out_unlock: 320 read_unlock(&tasklist_lock); 321 rcu_read_unlock(); 322 323 return retval; 324 } 325 326 /* 327 * Unprivileged users may change the real gid to the effective gid 328 * or vice versa. (BSD-style) 329 * 330 * If you set the real gid at all, or set the effective gid to a value not 331 * equal to the real gid, then the saved gid is set to the new effective gid. 332 * 333 * This makes it possible for a setgid program to completely drop its 334 * privileges, which is often a useful assertion to make when you are doing 335 * a security audit over a program. 336 * 337 * The general idea is that a program which uses just setregid() will be 338 * 100% compatible with BSD. A program which uses just setgid() will be 339 * 100% compatible with POSIX with saved IDs. 340 * 341 * SMP: There are not races, the GIDs are checked only by filesystem 342 * operations (as far as semantic preservation is concerned). 343 */ 344 #ifdef CONFIG_MULTIUSER 345 long __sys_setregid(gid_t rgid, gid_t egid) 346 { 347 struct user_namespace *ns = current_user_ns(); 348 const struct cred *old; 349 struct cred *new; 350 int retval; 351 kgid_t krgid, kegid; 352 353 krgid = make_kgid(ns, rgid); 354 kegid = make_kgid(ns, egid); 355 356 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 357 return -EINVAL; 358 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 359 return -EINVAL; 360 361 new = prepare_creds(); 362 if (!new) 363 return -ENOMEM; 364 old = current_cred(); 365 366 retval = -EPERM; 367 if (rgid != (gid_t) -1) { 368 if (gid_eq(old->gid, krgid) || 369 gid_eq(old->egid, krgid) || 370 ns_capable(old->user_ns, CAP_SETGID)) 371 new->gid = krgid; 372 else 373 goto error; 374 } 375 if (egid != (gid_t) -1) { 376 if (gid_eq(old->gid, kegid) || 377 gid_eq(old->egid, kegid) || 378 gid_eq(old->sgid, kegid) || 379 ns_capable(old->user_ns, CAP_SETGID)) 380 new->egid = kegid; 381 else 382 goto error; 383 } 384 385 if (rgid != (gid_t) -1 || 386 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) 387 new->sgid = new->egid; 388 new->fsgid = new->egid; 389 390 return commit_creds(new); 391 392 error: 393 abort_creds(new); 394 return retval; 395 } 396 397 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 398 { 399 return __sys_setregid(rgid, egid); 400 } 401 402 /* 403 * setgid() is implemented like SysV w/ SAVED_IDS 404 * 405 * SMP: Same implicit races as above. 406 */ 407 long __sys_setgid(gid_t gid) 408 { 409 struct user_namespace *ns = current_user_ns(); 410 const struct cred *old; 411 struct cred *new; 412 int retval; 413 kgid_t kgid; 414 415 kgid = make_kgid(ns, gid); 416 if (!gid_valid(kgid)) 417 return -EINVAL; 418 419 new = prepare_creds(); 420 if (!new) 421 return -ENOMEM; 422 old = current_cred(); 423 424 retval = -EPERM; 425 if (ns_capable(old->user_ns, CAP_SETGID)) 426 new->gid = new->egid = new->sgid = new->fsgid = kgid; 427 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) 428 new->egid = new->fsgid = kgid; 429 else 430 goto error; 431 432 return commit_creds(new); 433 434 error: 435 abort_creds(new); 436 return retval; 437 } 438 439 SYSCALL_DEFINE1(setgid, gid_t, gid) 440 { 441 return __sys_setgid(gid); 442 } 443 444 /* 445 * change the user struct in a credentials set to match the new UID 446 */ 447 static int set_user(struct cred *new) 448 { 449 struct user_struct *new_user; 450 451 new_user = alloc_uid(new->uid); 452 if (!new_user) 453 return -EAGAIN; 454 455 /* 456 * We don't fail in case of NPROC limit excess here because too many 457 * poorly written programs don't check set*uid() return code, assuming 458 * it never fails if called by root. We may still enforce NPROC limit 459 * for programs doing set*uid()+execve() by harmlessly deferring the 460 * failure to the execve() stage. 461 */ 462 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 463 new_user != INIT_USER) 464 current->flags |= PF_NPROC_EXCEEDED; 465 else 466 current->flags &= ~PF_NPROC_EXCEEDED; 467 468 free_uid(new->user); 469 new->user = new_user; 470 return 0; 471 } 472 473 /* 474 * Unprivileged users may change the real uid to the effective uid 475 * or vice versa. (BSD-style) 476 * 477 * If you set the real uid at all, or set the effective uid to a value not 478 * equal to the real uid, then the saved uid is set to the new effective uid. 479 * 480 * This makes it possible for a setuid program to completely drop its 481 * privileges, which is often a useful assertion to make when you are doing 482 * a security audit over a program. 483 * 484 * The general idea is that a program which uses just setreuid() will be 485 * 100% compatible with BSD. A program which uses just setuid() will be 486 * 100% compatible with POSIX with saved IDs. 487 */ 488 long __sys_setreuid(uid_t ruid, uid_t euid) 489 { 490 struct user_namespace *ns = current_user_ns(); 491 const struct cred *old; 492 struct cred *new; 493 int retval; 494 kuid_t kruid, keuid; 495 496 kruid = make_kuid(ns, ruid); 497 keuid = make_kuid(ns, euid); 498 499 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 500 return -EINVAL; 501 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 502 return -EINVAL; 503 504 new = prepare_creds(); 505 if (!new) 506 return -ENOMEM; 507 old = current_cred(); 508 509 retval = -EPERM; 510 if (ruid != (uid_t) -1) { 511 new->uid = kruid; 512 if (!uid_eq(old->uid, kruid) && 513 !uid_eq(old->euid, kruid) && 514 !ns_capable(old->user_ns, CAP_SETUID)) 515 goto error; 516 } 517 518 if (euid != (uid_t) -1) { 519 new->euid = keuid; 520 if (!uid_eq(old->uid, keuid) && 521 !uid_eq(old->euid, keuid) && 522 !uid_eq(old->suid, keuid) && 523 !ns_capable(old->user_ns, CAP_SETUID)) 524 goto error; 525 } 526 527 if (!uid_eq(new->uid, old->uid)) { 528 retval = set_user(new); 529 if (retval < 0) 530 goto error; 531 } 532 if (ruid != (uid_t) -1 || 533 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) 534 new->suid = new->euid; 535 new->fsuid = new->euid; 536 537 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 538 if (retval < 0) 539 goto error; 540 541 return commit_creds(new); 542 543 error: 544 abort_creds(new); 545 return retval; 546 } 547 548 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 549 { 550 return __sys_setreuid(ruid, euid); 551 } 552 553 /* 554 * setuid() is implemented like SysV with SAVED_IDS 555 * 556 * Note that SAVED_ID's is deficient in that a setuid root program 557 * like sendmail, for example, cannot set its uid to be a normal 558 * user and then switch back, because if you're root, setuid() sets 559 * the saved uid too. If you don't like this, blame the bright people 560 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 561 * will allow a root program to temporarily drop privileges and be able to 562 * regain them by swapping the real and effective uid. 563 */ 564 long __sys_setuid(uid_t uid) 565 { 566 struct user_namespace *ns = current_user_ns(); 567 const struct cred *old; 568 struct cred *new; 569 int retval; 570 kuid_t kuid; 571 572 kuid = make_kuid(ns, uid); 573 if (!uid_valid(kuid)) 574 return -EINVAL; 575 576 new = prepare_creds(); 577 if (!new) 578 return -ENOMEM; 579 old = current_cred(); 580 581 retval = -EPERM; 582 if (ns_capable(old->user_ns, CAP_SETUID)) { 583 new->suid = new->uid = kuid; 584 if (!uid_eq(kuid, old->uid)) { 585 retval = set_user(new); 586 if (retval < 0) 587 goto error; 588 } 589 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { 590 goto error; 591 } 592 593 new->fsuid = new->euid = kuid; 594 595 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 596 if (retval < 0) 597 goto error; 598 599 return commit_creds(new); 600 601 error: 602 abort_creds(new); 603 return retval; 604 } 605 606 SYSCALL_DEFINE1(setuid, uid_t, uid) 607 { 608 return __sys_setuid(uid); 609 } 610 611 612 /* 613 * This function implements a generic ability to update ruid, euid, 614 * and suid. This allows you to implement the 4.4 compatible seteuid(). 615 */ 616 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 617 { 618 struct user_namespace *ns = current_user_ns(); 619 const struct cred *old; 620 struct cred *new; 621 int retval; 622 kuid_t kruid, keuid, ksuid; 623 624 kruid = make_kuid(ns, ruid); 625 keuid = make_kuid(ns, euid); 626 ksuid = make_kuid(ns, suid); 627 628 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 629 return -EINVAL; 630 631 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 632 return -EINVAL; 633 634 if ((suid != (uid_t) -1) && !uid_valid(ksuid)) 635 return -EINVAL; 636 637 new = prepare_creds(); 638 if (!new) 639 return -ENOMEM; 640 641 old = current_cred(); 642 643 retval = -EPERM; 644 if (!ns_capable(old->user_ns, CAP_SETUID)) { 645 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && 646 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) 647 goto error; 648 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && 649 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) 650 goto error; 651 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && 652 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) 653 goto error; 654 } 655 656 if (ruid != (uid_t) -1) { 657 new->uid = kruid; 658 if (!uid_eq(kruid, old->uid)) { 659 retval = set_user(new); 660 if (retval < 0) 661 goto error; 662 } 663 } 664 if (euid != (uid_t) -1) 665 new->euid = keuid; 666 if (suid != (uid_t) -1) 667 new->suid = ksuid; 668 new->fsuid = new->euid; 669 670 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 671 if (retval < 0) 672 goto error; 673 674 return commit_creds(new); 675 676 error: 677 abort_creds(new); 678 return retval; 679 } 680 681 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 682 { 683 return __sys_setresuid(ruid, euid, suid); 684 } 685 686 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) 687 { 688 const struct cred *cred = current_cred(); 689 int retval; 690 uid_t ruid, euid, suid; 691 692 ruid = from_kuid_munged(cred->user_ns, cred->uid); 693 euid = from_kuid_munged(cred->user_ns, cred->euid); 694 suid = from_kuid_munged(cred->user_ns, cred->suid); 695 696 retval = put_user(ruid, ruidp); 697 if (!retval) { 698 retval = put_user(euid, euidp); 699 if (!retval) 700 return put_user(suid, suidp); 701 } 702 return retval; 703 } 704 705 /* 706 * Same as above, but for rgid, egid, sgid. 707 */ 708 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 709 { 710 struct user_namespace *ns = current_user_ns(); 711 const struct cred *old; 712 struct cred *new; 713 int retval; 714 kgid_t krgid, kegid, ksgid; 715 716 krgid = make_kgid(ns, rgid); 717 kegid = make_kgid(ns, egid); 718 ksgid = make_kgid(ns, sgid); 719 720 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 721 return -EINVAL; 722 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 723 return -EINVAL; 724 if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) 725 return -EINVAL; 726 727 new = prepare_creds(); 728 if (!new) 729 return -ENOMEM; 730 old = current_cred(); 731 732 retval = -EPERM; 733 if (!ns_capable(old->user_ns, CAP_SETGID)) { 734 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && 735 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) 736 goto error; 737 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && 738 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) 739 goto error; 740 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && 741 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) 742 goto error; 743 } 744 745 if (rgid != (gid_t) -1) 746 new->gid = krgid; 747 if (egid != (gid_t) -1) 748 new->egid = kegid; 749 if (sgid != (gid_t) -1) 750 new->sgid = ksgid; 751 new->fsgid = new->egid; 752 753 return commit_creds(new); 754 755 error: 756 abort_creds(new); 757 return retval; 758 } 759 760 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 761 { 762 return __sys_setresgid(rgid, egid, sgid); 763 } 764 765 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) 766 { 767 const struct cred *cred = current_cred(); 768 int retval; 769 gid_t rgid, egid, sgid; 770 771 rgid = from_kgid_munged(cred->user_ns, cred->gid); 772 egid = from_kgid_munged(cred->user_ns, cred->egid); 773 sgid = from_kgid_munged(cred->user_ns, cred->sgid); 774 775 retval = put_user(rgid, rgidp); 776 if (!retval) { 777 retval = put_user(egid, egidp); 778 if (!retval) 779 retval = put_user(sgid, sgidp); 780 } 781 782 return retval; 783 } 784 785 786 /* 787 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 788 * is used for "access()" and for the NFS daemon (letting nfsd stay at 789 * whatever uid it wants to). It normally shadows "euid", except when 790 * explicitly set by setfsuid() or for access.. 791 */ 792 long __sys_setfsuid(uid_t uid) 793 { 794 const struct cred *old; 795 struct cred *new; 796 uid_t old_fsuid; 797 kuid_t kuid; 798 799 old = current_cred(); 800 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); 801 802 kuid = make_kuid(old->user_ns, uid); 803 if (!uid_valid(kuid)) 804 return old_fsuid; 805 806 new = prepare_creds(); 807 if (!new) 808 return old_fsuid; 809 810 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || 811 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || 812 ns_capable(old->user_ns, CAP_SETUID)) { 813 if (!uid_eq(kuid, old->fsuid)) { 814 new->fsuid = kuid; 815 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 816 goto change_okay; 817 } 818 } 819 820 abort_creds(new); 821 return old_fsuid; 822 823 change_okay: 824 commit_creds(new); 825 return old_fsuid; 826 } 827 828 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 829 { 830 return __sys_setfsuid(uid); 831 } 832 833 /* 834 * Samma på svenska.. 835 */ 836 long __sys_setfsgid(gid_t gid) 837 { 838 const struct cred *old; 839 struct cred *new; 840 gid_t old_fsgid; 841 kgid_t kgid; 842 843 old = current_cred(); 844 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); 845 846 kgid = make_kgid(old->user_ns, gid); 847 if (!gid_valid(kgid)) 848 return old_fsgid; 849 850 new = prepare_creds(); 851 if (!new) 852 return old_fsgid; 853 854 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || 855 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || 856 ns_capable(old->user_ns, CAP_SETGID)) { 857 if (!gid_eq(kgid, old->fsgid)) { 858 new->fsgid = kgid; 859 goto change_okay; 860 } 861 } 862 863 abort_creds(new); 864 return old_fsgid; 865 866 change_okay: 867 commit_creds(new); 868 return old_fsgid; 869 } 870 871 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 872 { 873 return __sys_setfsgid(gid); 874 } 875 #endif /* CONFIG_MULTIUSER */ 876 877 /** 878 * sys_getpid - return the thread group id of the current process 879 * 880 * Note, despite the name, this returns the tgid not the pid. The tgid and 881 * the pid are identical unless CLONE_THREAD was specified on clone() in 882 * which case the tgid is the same in all threads of the same group. 883 * 884 * This is SMP safe as current->tgid does not change. 885 */ 886 SYSCALL_DEFINE0(getpid) 887 { 888 return task_tgid_vnr(current); 889 } 890 891 /* Thread ID - the internal kernel "pid" */ 892 SYSCALL_DEFINE0(gettid) 893 { 894 return task_pid_vnr(current); 895 } 896 897 /* 898 * Accessing ->real_parent is not SMP-safe, it could 899 * change from under us. However, we can use a stale 900 * value of ->real_parent under rcu_read_lock(), see 901 * release_task()->call_rcu(delayed_put_task_struct). 902 */ 903 SYSCALL_DEFINE0(getppid) 904 { 905 int pid; 906 907 rcu_read_lock(); 908 pid = task_tgid_vnr(rcu_dereference(current->real_parent)); 909 rcu_read_unlock(); 910 911 return pid; 912 } 913 914 SYSCALL_DEFINE0(getuid) 915 { 916 /* Only we change this so SMP safe */ 917 return from_kuid_munged(current_user_ns(), current_uid()); 918 } 919 920 SYSCALL_DEFINE0(geteuid) 921 { 922 /* Only we change this so SMP safe */ 923 return from_kuid_munged(current_user_ns(), current_euid()); 924 } 925 926 SYSCALL_DEFINE0(getgid) 927 { 928 /* Only we change this so SMP safe */ 929 return from_kgid_munged(current_user_ns(), current_gid()); 930 } 931 932 SYSCALL_DEFINE0(getegid) 933 { 934 /* Only we change this so SMP safe */ 935 return from_kgid_munged(current_user_ns(), current_egid()); 936 } 937 938 static void do_sys_times(struct tms *tms) 939 { 940 u64 tgutime, tgstime, cutime, cstime; 941 942 thread_group_cputime_adjusted(current, &tgutime, &tgstime); 943 cutime = current->signal->cutime; 944 cstime = current->signal->cstime; 945 tms->tms_utime = nsec_to_clock_t(tgutime); 946 tms->tms_stime = nsec_to_clock_t(tgstime); 947 tms->tms_cutime = nsec_to_clock_t(cutime); 948 tms->tms_cstime = nsec_to_clock_t(cstime); 949 } 950 951 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 952 { 953 if (tbuf) { 954 struct tms tmp; 955 956 do_sys_times(&tmp); 957 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 958 return -EFAULT; 959 } 960 force_successful_syscall_return(); 961 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 962 } 963 964 #ifdef CONFIG_COMPAT 965 static compat_clock_t clock_t_to_compat_clock_t(clock_t x) 966 { 967 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); 968 } 969 970 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) 971 { 972 if (tbuf) { 973 struct tms tms; 974 struct compat_tms tmp; 975 976 do_sys_times(&tms); 977 /* Convert our struct tms to the compat version. */ 978 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); 979 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); 980 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); 981 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); 982 if (copy_to_user(tbuf, &tmp, sizeof(tmp))) 983 return -EFAULT; 984 } 985 force_successful_syscall_return(); 986 return compat_jiffies_to_clock_t(jiffies); 987 } 988 #endif 989 990 /* 991 * This needs some heavy checking ... 992 * I just haven't the stomach for it. I also don't fully 993 * understand sessions/pgrp etc. Let somebody who does explain it. 994 * 995 * OK, I think I have the protection semantics right.... this is really 996 * only important on a multi-user system anyway, to make sure one user 997 * can't send a signal to a process owned by another. -TYT, 12/12/91 998 * 999 * !PF_FORKNOEXEC check to conform completely to POSIX. 1000 */ 1001 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 1002 { 1003 struct task_struct *p; 1004 struct task_struct *group_leader = current->group_leader; 1005 struct pid *pgrp; 1006 int err; 1007 1008 if (!pid) 1009 pid = task_pid_vnr(group_leader); 1010 if (!pgid) 1011 pgid = pid; 1012 if (pgid < 0) 1013 return -EINVAL; 1014 rcu_read_lock(); 1015 1016 /* From this point forward we keep holding onto the tasklist lock 1017 * so that our parent does not change from under us. -DaveM 1018 */ 1019 write_lock_irq(&tasklist_lock); 1020 1021 err = -ESRCH; 1022 p = find_task_by_vpid(pid); 1023 if (!p) 1024 goto out; 1025 1026 err = -EINVAL; 1027 if (!thread_group_leader(p)) 1028 goto out; 1029 1030 if (same_thread_group(p->real_parent, group_leader)) { 1031 err = -EPERM; 1032 if (task_session(p) != task_session(group_leader)) 1033 goto out; 1034 err = -EACCES; 1035 if (!(p->flags & PF_FORKNOEXEC)) 1036 goto out; 1037 } else { 1038 err = -ESRCH; 1039 if (p != group_leader) 1040 goto out; 1041 } 1042 1043 err = -EPERM; 1044 if (p->signal->leader) 1045 goto out; 1046 1047 pgrp = task_pid(p); 1048 if (pgid != pid) { 1049 struct task_struct *g; 1050 1051 pgrp = find_vpid(pgid); 1052 g = pid_task(pgrp, PIDTYPE_PGID); 1053 if (!g || task_session(g) != task_session(group_leader)) 1054 goto out; 1055 } 1056 1057 err = security_task_setpgid(p, pgid); 1058 if (err) 1059 goto out; 1060 1061 if (task_pgrp(p) != pgrp) 1062 change_pid(p, PIDTYPE_PGID, pgrp); 1063 1064 err = 0; 1065 out: 1066 /* All paths lead to here, thus we are safe. -DaveM */ 1067 write_unlock_irq(&tasklist_lock); 1068 rcu_read_unlock(); 1069 return err; 1070 } 1071 1072 static int do_getpgid(pid_t pid) 1073 { 1074 struct task_struct *p; 1075 struct pid *grp; 1076 int retval; 1077 1078 rcu_read_lock(); 1079 if (!pid) 1080 grp = task_pgrp(current); 1081 else { 1082 retval = -ESRCH; 1083 p = find_task_by_vpid(pid); 1084 if (!p) 1085 goto out; 1086 grp = task_pgrp(p); 1087 if (!grp) 1088 goto out; 1089 1090 retval = security_task_getpgid(p); 1091 if (retval) 1092 goto out; 1093 } 1094 retval = pid_vnr(grp); 1095 out: 1096 rcu_read_unlock(); 1097 return retval; 1098 } 1099 1100 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1101 { 1102 return do_getpgid(pid); 1103 } 1104 1105 #ifdef __ARCH_WANT_SYS_GETPGRP 1106 1107 SYSCALL_DEFINE0(getpgrp) 1108 { 1109 return do_getpgid(0); 1110 } 1111 1112 #endif 1113 1114 SYSCALL_DEFINE1(getsid, pid_t, pid) 1115 { 1116 struct task_struct *p; 1117 struct pid *sid; 1118 int retval; 1119 1120 rcu_read_lock(); 1121 if (!pid) 1122 sid = task_session(current); 1123 else { 1124 retval = -ESRCH; 1125 p = find_task_by_vpid(pid); 1126 if (!p) 1127 goto out; 1128 sid = task_session(p); 1129 if (!sid) 1130 goto out; 1131 1132 retval = security_task_getsid(p); 1133 if (retval) 1134 goto out; 1135 } 1136 retval = pid_vnr(sid); 1137 out: 1138 rcu_read_unlock(); 1139 return retval; 1140 } 1141 1142 static void set_special_pids(struct pid *pid) 1143 { 1144 struct task_struct *curr = current->group_leader; 1145 1146 if (task_session(curr) != pid) 1147 change_pid(curr, PIDTYPE_SID, pid); 1148 1149 if (task_pgrp(curr) != pid) 1150 change_pid(curr, PIDTYPE_PGID, pid); 1151 } 1152 1153 int ksys_setsid(void) 1154 { 1155 struct task_struct *group_leader = current->group_leader; 1156 struct pid *sid = task_pid(group_leader); 1157 pid_t session = pid_vnr(sid); 1158 int err = -EPERM; 1159 1160 write_lock_irq(&tasklist_lock); 1161 /* Fail if I am already a session leader */ 1162 if (group_leader->signal->leader) 1163 goto out; 1164 1165 /* Fail if a process group id already exists that equals the 1166 * proposed session id. 1167 */ 1168 if (pid_task(sid, PIDTYPE_PGID)) 1169 goto out; 1170 1171 group_leader->signal->leader = 1; 1172 set_special_pids(sid); 1173 1174 proc_clear_tty(group_leader); 1175 1176 err = session; 1177 out: 1178 write_unlock_irq(&tasklist_lock); 1179 if (err > 0) { 1180 proc_sid_connector(group_leader); 1181 sched_autogroup_create_attach(group_leader); 1182 } 1183 return err; 1184 } 1185 1186 SYSCALL_DEFINE0(setsid) 1187 { 1188 return ksys_setsid(); 1189 } 1190 1191 DECLARE_RWSEM(uts_sem); 1192 1193 #ifdef COMPAT_UTS_MACHINE 1194 #define override_architecture(name) \ 1195 (personality(current->personality) == PER_LINUX32 && \ 1196 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1197 sizeof(COMPAT_UTS_MACHINE))) 1198 #else 1199 #define override_architecture(name) 0 1200 #endif 1201 1202 /* 1203 * Work around broken programs that cannot handle "Linux 3.0". 1204 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1205 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60. 1206 */ 1207 static int override_release(char __user *release, size_t len) 1208 { 1209 int ret = 0; 1210 1211 if (current->personality & UNAME26) { 1212 const char *rest = UTS_RELEASE; 1213 char buf[65] = { 0 }; 1214 int ndots = 0; 1215 unsigned v; 1216 size_t copy; 1217 1218 while (*rest) { 1219 if (*rest == '.' && ++ndots >= 3) 1220 break; 1221 if (!isdigit(*rest) && *rest != '.') 1222 break; 1223 rest++; 1224 } 1225 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60; 1226 copy = clamp_t(size_t, len, 1, sizeof(buf)); 1227 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); 1228 ret = copy_to_user(release, buf, copy + 1); 1229 } 1230 return ret; 1231 } 1232 1233 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1234 { 1235 int errno = 0; 1236 1237 down_read(&uts_sem); 1238 if (copy_to_user(name, utsname(), sizeof *name)) 1239 errno = -EFAULT; 1240 up_read(&uts_sem); 1241 1242 if (!errno && override_release(name->release, sizeof(name->release))) 1243 errno = -EFAULT; 1244 if (!errno && override_architecture(name)) 1245 errno = -EFAULT; 1246 return errno; 1247 } 1248 1249 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1250 /* 1251 * Old cruft 1252 */ 1253 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1254 { 1255 int error = 0; 1256 1257 if (!name) 1258 return -EFAULT; 1259 1260 down_read(&uts_sem); 1261 if (copy_to_user(name, utsname(), sizeof(*name))) 1262 error = -EFAULT; 1263 up_read(&uts_sem); 1264 1265 if (!error && override_release(name->release, sizeof(name->release))) 1266 error = -EFAULT; 1267 if (!error && override_architecture(name)) 1268 error = -EFAULT; 1269 return error; 1270 } 1271 1272 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1273 { 1274 int error; 1275 1276 if (!name) 1277 return -EFAULT; 1278 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) 1279 return -EFAULT; 1280 1281 down_read(&uts_sem); 1282 error = __copy_to_user(&name->sysname, &utsname()->sysname, 1283 __OLD_UTS_LEN); 1284 error |= __put_user(0, name->sysname + __OLD_UTS_LEN); 1285 error |= __copy_to_user(&name->nodename, &utsname()->nodename, 1286 __OLD_UTS_LEN); 1287 error |= __put_user(0, name->nodename + __OLD_UTS_LEN); 1288 error |= __copy_to_user(&name->release, &utsname()->release, 1289 __OLD_UTS_LEN); 1290 error |= __put_user(0, name->release + __OLD_UTS_LEN); 1291 error |= __copy_to_user(&name->version, &utsname()->version, 1292 __OLD_UTS_LEN); 1293 error |= __put_user(0, name->version + __OLD_UTS_LEN); 1294 error |= __copy_to_user(&name->machine, &utsname()->machine, 1295 __OLD_UTS_LEN); 1296 error |= __put_user(0, name->machine + __OLD_UTS_LEN); 1297 up_read(&uts_sem); 1298 1299 if (!error && override_architecture(name)) 1300 error = -EFAULT; 1301 if (!error && override_release(name->release, sizeof(name->release))) 1302 error = -EFAULT; 1303 return error ? -EFAULT : 0; 1304 } 1305 #endif 1306 1307 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1308 { 1309 int errno; 1310 char tmp[__NEW_UTS_LEN]; 1311 1312 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1313 return -EPERM; 1314 1315 if (len < 0 || len > __NEW_UTS_LEN) 1316 return -EINVAL; 1317 down_write(&uts_sem); 1318 errno = -EFAULT; 1319 if (!copy_from_user(tmp, name, len)) { 1320 struct new_utsname *u = utsname(); 1321 1322 memcpy(u->nodename, tmp, len); 1323 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1324 errno = 0; 1325 uts_proc_notify(UTS_PROC_HOSTNAME); 1326 } 1327 up_write(&uts_sem); 1328 return errno; 1329 } 1330 1331 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1332 1333 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1334 { 1335 int i, errno; 1336 struct new_utsname *u; 1337 1338 if (len < 0) 1339 return -EINVAL; 1340 down_read(&uts_sem); 1341 u = utsname(); 1342 i = 1 + strlen(u->nodename); 1343 if (i > len) 1344 i = len; 1345 errno = 0; 1346 if (copy_to_user(name, u->nodename, i)) 1347 errno = -EFAULT; 1348 up_read(&uts_sem); 1349 return errno; 1350 } 1351 1352 #endif 1353 1354 /* 1355 * Only setdomainname; getdomainname can be implemented by calling 1356 * uname() 1357 */ 1358 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1359 { 1360 int errno; 1361 char tmp[__NEW_UTS_LEN]; 1362 1363 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1364 return -EPERM; 1365 if (len < 0 || len > __NEW_UTS_LEN) 1366 return -EINVAL; 1367 1368 down_write(&uts_sem); 1369 errno = -EFAULT; 1370 if (!copy_from_user(tmp, name, len)) { 1371 struct new_utsname *u = utsname(); 1372 1373 memcpy(u->domainname, tmp, len); 1374 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1375 errno = 0; 1376 uts_proc_notify(UTS_PROC_DOMAINNAME); 1377 } 1378 up_write(&uts_sem); 1379 return errno; 1380 } 1381 1382 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1383 { 1384 struct rlimit value; 1385 int ret; 1386 1387 ret = do_prlimit(current, resource, NULL, &value); 1388 if (!ret) 1389 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1390 1391 return ret; 1392 } 1393 1394 #ifdef CONFIG_COMPAT 1395 1396 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, 1397 struct compat_rlimit __user *, rlim) 1398 { 1399 struct rlimit r; 1400 struct compat_rlimit r32; 1401 1402 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) 1403 return -EFAULT; 1404 1405 if (r32.rlim_cur == COMPAT_RLIM_INFINITY) 1406 r.rlim_cur = RLIM_INFINITY; 1407 else 1408 r.rlim_cur = r32.rlim_cur; 1409 if (r32.rlim_max == COMPAT_RLIM_INFINITY) 1410 r.rlim_max = RLIM_INFINITY; 1411 else 1412 r.rlim_max = r32.rlim_max; 1413 return do_prlimit(current, resource, &r, NULL); 1414 } 1415 1416 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, 1417 struct compat_rlimit __user *, rlim) 1418 { 1419 struct rlimit r; 1420 int ret; 1421 1422 ret = do_prlimit(current, resource, NULL, &r); 1423 if (!ret) { 1424 struct compat_rlimit r32; 1425 if (r.rlim_cur > COMPAT_RLIM_INFINITY) 1426 r32.rlim_cur = COMPAT_RLIM_INFINITY; 1427 else 1428 r32.rlim_cur = r.rlim_cur; 1429 if (r.rlim_max > COMPAT_RLIM_INFINITY) 1430 r32.rlim_max = COMPAT_RLIM_INFINITY; 1431 else 1432 r32.rlim_max = r.rlim_max; 1433 1434 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) 1435 return -EFAULT; 1436 } 1437 return ret; 1438 } 1439 1440 #endif 1441 1442 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1443 1444 /* 1445 * Back compatibility for getrlimit. Needed for some apps. 1446 */ 1447 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1448 struct rlimit __user *, rlim) 1449 { 1450 struct rlimit x; 1451 if (resource >= RLIM_NLIMITS) 1452 return -EINVAL; 1453 1454 task_lock(current->group_leader); 1455 x = current->signal->rlim[resource]; 1456 task_unlock(current->group_leader); 1457 if (x.rlim_cur > 0x7FFFFFFF) 1458 x.rlim_cur = 0x7FFFFFFF; 1459 if (x.rlim_max > 0x7FFFFFFF) 1460 x.rlim_max = 0x7FFFFFFF; 1461 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; 1462 } 1463 1464 #ifdef CONFIG_COMPAT 1465 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1466 struct compat_rlimit __user *, rlim) 1467 { 1468 struct rlimit r; 1469 1470 if (resource >= RLIM_NLIMITS) 1471 return -EINVAL; 1472 1473 task_lock(current->group_leader); 1474 r = current->signal->rlim[resource]; 1475 task_unlock(current->group_leader); 1476 if (r.rlim_cur > 0x7FFFFFFF) 1477 r.rlim_cur = 0x7FFFFFFF; 1478 if (r.rlim_max > 0x7FFFFFFF) 1479 r.rlim_max = 0x7FFFFFFF; 1480 1481 if (put_user(r.rlim_cur, &rlim->rlim_cur) || 1482 put_user(r.rlim_max, &rlim->rlim_max)) 1483 return -EFAULT; 1484 return 0; 1485 } 1486 #endif 1487 1488 #endif 1489 1490 static inline bool rlim64_is_infinity(__u64 rlim64) 1491 { 1492 #if BITS_PER_LONG < 64 1493 return rlim64 >= ULONG_MAX; 1494 #else 1495 return rlim64 == RLIM64_INFINITY; 1496 #endif 1497 } 1498 1499 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1500 { 1501 if (rlim->rlim_cur == RLIM_INFINITY) 1502 rlim64->rlim_cur = RLIM64_INFINITY; 1503 else 1504 rlim64->rlim_cur = rlim->rlim_cur; 1505 if (rlim->rlim_max == RLIM_INFINITY) 1506 rlim64->rlim_max = RLIM64_INFINITY; 1507 else 1508 rlim64->rlim_max = rlim->rlim_max; 1509 } 1510 1511 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1512 { 1513 if (rlim64_is_infinity(rlim64->rlim_cur)) 1514 rlim->rlim_cur = RLIM_INFINITY; 1515 else 1516 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1517 if (rlim64_is_infinity(rlim64->rlim_max)) 1518 rlim->rlim_max = RLIM_INFINITY; 1519 else 1520 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1521 } 1522 1523 /* make sure you are allowed to change @tsk limits before calling this */ 1524 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1525 struct rlimit *new_rlim, struct rlimit *old_rlim) 1526 { 1527 struct rlimit *rlim; 1528 int retval = 0; 1529 1530 if (resource >= RLIM_NLIMITS) 1531 return -EINVAL; 1532 if (new_rlim) { 1533 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1534 return -EINVAL; 1535 if (resource == RLIMIT_NOFILE && 1536 new_rlim->rlim_max > sysctl_nr_open) 1537 return -EPERM; 1538 } 1539 1540 /* protect tsk->signal and tsk->sighand from disappearing */ 1541 read_lock(&tasklist_lock); 1542 if (!tsk->sighand) { 1543 retval = -ESRCH; 1544 goto out; 1545 } 1546 1547 rlim = tsk->signal->rlim + resource; 1548 task_lock(tsk->group_leader); 1549 if (new_rlim) { 1550 /* Keep the capable check against init_user_ns until 1551 cgroups can contain all limits */ 1552 if (new_rlim->rlim_max > rlim->rlim_max && 1553 !capable(CAP_SYS_RESOURCE)) 1554 retval = -EPERM; 1555 if (!retval) 1556 retval = security_task_setrlimit(tsk, resource, new_rlim); 1557 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { 1558 /* 1559 * The caller is asking for an immediate RLIMIT_CPU 1560 * expiry. But we use the zero value to mean "it was 1561 * never set". So let's cheat and make it one second 1562 * instead 1563 */ 1564 new_rlim->rlim_cur = 1; 1565 } 1566 } 1567 if (!retval) { 1568 if (old_rlim) 1569 *old_rlim = *rlim; 1570 if (new_rlim) 1571 *rlim = *new_rlim; 1572 } 1573 task_unlock(tsk->group_leader); 1574 1575 /* 1576 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1577 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1578 * very long-standing error, and fixing it now risks breakage of 1579 * applications, so we live with it 1580 */ 1581 if (!retval && new_rlim && resource == RLIMIT_CPU && 1582 new_rlim->rlim_cur != RLIM_INFINITY && 1583 IS_ENABLED(CONFIG_POSIX_TIMERS)) 1584 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1585 out: 1586 read_unlock(&tasklist_lock); 1587 return retval; 1588 } 1589 1590 /* rcu lock must be held */ 1591 static int check_prlimit_permission(struct task_struct *task, 1592 unsigned int flags) 1593 { 1594 const struct cred *cred = current_cred(), *tcred; 1595 bool id_match; 1596 1597 if (current == task) 1598 return 0; 1599 1600 tcred = __task_cred(task); 1601 id_match = (uid_eq(cred->uid, tcred->euid) && 1602 uid_eq(cred->uid, tcred->suid) && 1603 uid_eq(cred->uid, tcred->uid) && 1604 gid_eq(cred->gid, tcred->egid) && 1605 gid_eq(cred->gid, tcred->sgid) && 1606 gid_eq(cred->gid, tcred->gid)); 1607 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) 1608 return -EPERM; 1609 1610 return security_task_prlimit(cred, tcred, flags); 1611 } 1612 1613 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1614 const struct rlimit64 __user *, new_rlim, 1615 struct rlimit64 __user *, old_rlim) 1616 { 1617 struct rlimit64 old64, new64; 1618 struct rlimit old, new; 1619 struct task_struct *tsk; 1620 unsigned int checkflags = 0; 1621 int ret; 1622 1623 if (old_rlim) 1624 checkflags |= LSM_PRLIMIT_READ; 1625 1626 if (new_rlim) { 1627 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1628 return -EFAULT; 1629 rlim64_to_rlim(&new64, &new); 1630 checkflags |= LSM_PRLIMIT_WRITE; 1631 } 1632 1633 rcu_read_lock(); 1634 tsk = pid ? find_task_by_vpid(pid) : current; 1635 if (!tsk) { 1636 rcu_read_unlock(); 1637 return -ESRCH; 1638 } 1639 ret = check_prlimit_permission(tsk, checkflags); 1640 if (ret) { 1641 rcu_read_unlock(); 1642 return ret; 1643 } 1644 get_task_struct(tsk); 1645 rcu_read_unlock(); 1646 1647 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1648 old_rlim ? &old : NULL); 1649 1650 if (!ret && old_rlim) { 1651 rlim_to_rlim64(&old, &old64); 1652 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1653 ret = -EFAULT; 1654 } 1655 1656 put_task_struct(tsk); 1657 return ret; 1658 } 1659 1660 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1661 { 1662 struct rlimit new_rlim; 1663 1664 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1665 return -EFAULT; 1666 return do_prlimit(current, resource, &new_rlim, NULL); 1667 } 1668 1669 /* 1670 * It would make sense to put struct rusage in the task_struct, 1671 * except that would make the task_struct be *really big*. After 1672 * task_struct gets moved into malloc'ed memory, it would 1673 * make sense to do this. It will make moving the rest of the information 1674 * a lot simpler! (Which we're not doing right now because we're not 1675 * measuring them yet). 1676 * 1677 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1678 * races with threads incrementing their own counters. But since word 1679 * reads are atomic, we either get new values or old values and we don't 1680 * care which for the sums. We always take the siglock to protect reading 1681 * the c* fields from p->signal from races with exit.c updating those 1682 * fields when reaping, so a sample either gets all the additions of a 1683 * given child after it's reaped, or none so this sample is before reaping. 1684 * 1685 * Locking: 1686 * We need to take the siglock for CHILDEREN, SELF and BOTH 1687 * for the cases current multithreaded, non-current single threaded 1688 * non-current multithreaded. Thread traversal is now safe with 1689 * the siglock held. 1690 * Strictly speaking, we donot need to take the siglock if we are current and 1691 * single threaded, as no one else can take our signal_struct away, no one 1692 * else can reap the children to update signal->c* counters, and no one else 1693 * can race with the signal-> fields. If we do not take any lock, the 1694 * signal-> fields could be read out of order while another thread was just 1695 * exiting. So we should place a read memory barrier when we avoid the lock. 1696 * On the writer side, write memory barrier is implied in __exit_signal 1697 * as __exit_signal releases the siglock spinlock after updating the signal-> 1698 * fields. But we don't do this yet to keep things simple. 1699 * 1700 */ 1701 1702 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1703 { 1704 r->ru_nvcsw += t->nvcsw; 1705 r->ru_nivcsw += t->nivcsw; 1706 r->ru_minflt += t->min_flt; 1707 r->ru_majflt += t->maj_flt; 1708 r->ru_inblock += task_io_get_inblock(t); 1709 r->ru_oublock += task_io_get_oublock(t); 1710 } 1711 1712 void getrusage(struct task_struct *p, int who, struct rusage *r) 1713 { 1714 struct task_struct *t; 1715 unsigned long flags; 1716 u64 tgutime, tgstime, utime, stime; 1717 unsigned long maxrss = 0; 1718 1719 memset((char *)r, 0, sizeof (*r)); 1720 utime = stime = 0; 1721 1722 if (who == RUSAGE_THREAD) { 1723 task_cputime_adjusted(current, &utime, &stime); 1724 accumulate_thread_rusage(p, r); 1725 maxrss = p->signal->maxrss; 1726 goto out; 1727 } 1728 1729 if (!lock_task_sighand(p, &flags)) 1730 return; 1731 1732 switch (who) { 1733 case RUSAGE_BOTH: 1734 case RUSAGE_CHILDREN: 1735 utime = p->signal->cutime; 1736 stime = p->signal->cstime; 1737 r->ru_nvcsw = p->signal->cnvcsw; 1738 r->ru_nivcsw = p->signal->cnivcsw; 1739 r->ru_minflt = p->signal->cmin_flt; 1740 r->ru_majflt = p->signal->cmaj_flt; 1741 r->ru_inblock = p->signal->cinblock; 1742 r->ru_oublock = p->signal->coublock; 1743 maxrss = p->signal->cmaxrss; 1744 1745 if (who == RUSAGE_CHILDREN) 1746 break; 1747 1748 case RUSAGE_SELF: 1749 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1750 utime += tgutime; 1751 stime += tgstime; 1752 r->ru_nvcsw += p->signal->nvcsw; 1753 r->ru_nivcsw += p->signal->nivcsw; 1754 r->ru_minflt += p->signal->min_flt; 1755 r->ru_majflt += p->signal->maj_flt; 1756 r->ru_inblock += p->signal->inblock; 1757 r->ru_oublock += p->signal->oublock; 1758 if (maxrss < p->signal->maxrss) 1759 maxrss = p->signal->maxrss; 1760 t = p; 1761 do { 1762 accumulate_thread_rusage(t, r); 1763 } while_each_thread(p, t); 1764 break; 1765 1766 default: 1767 BUG(); 1768 } 1769 unlock_task_sighand(p, &flags); 1770 1771 out: 1772 r->ru_utime = ns_to_timeval(utime); 1773 r->ru_stime = ns_to_timeval(stime); 1774 1775 if (who != RUSAGE_CHILDREN) { 1776 struct mm_struct *mm = get_task_mm(p); 1777 1778 if (mm) { 1779 setmax_mm_hiwater_rss(&maxrss, mm); 1780 mmput(mm); 1781 } 1782 } 1783 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1784 } 1785 1786 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1787 { 1788 struct rusage r; 1789 1790 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1791 who != RUSAGE_THREAD) 1792 return -EINVAL; 1793 1794 getrusage(current, who, &r); 1795 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1796 } 1797 1798 #ifdef CONFIG_COMPAT 1799 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) 1800 { 1801 struct rusage r; 1802 1803 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1804 who != RUSAGE_THREAD) 1805 return -EINVAL; 1806 1807 getrusage(current, who, &r); 1808 return put_compat_rusage(&r, ru); 1809 } 1810 #endif 1811 1812 SYSCALL_DEFINE1(umask, int, mask) 1813 { 1814 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1815 return mask; 1816 } 1817 1818 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) 1819 { 1820 struct fd exe; 1821 struct file *old_exe, *exe_file; 1822 struct inode *inode; 1823 int err; 1824 1825 exe = fdget(fd); 1826 if (!exe.file) 1827 return -EBADF; 1828 1829 inode = file_inode(exe.file); 1830 1831 /* 1832 * Because the original mm->exe_file points to executable file, make 1833 * sure that this one is executable as well, to avoid breaking an 1834 * overall picture. 1835 */ 1836 err = -EACCES; 1837 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) 1838 goto exit; 1839 1840 err = inode_permission(inode, MAY_EXEC); 1841 if (err) 1842 goto exit; 1843 1844 /* 1845 * Forbid mm->exe_file change if old file still mapped. 1846 */ 1847 exe_file = get_mm_exe_file(mm); 1848 err = -EBUSY; 1849 if (exe_file) { 1850 struct vm_area_struct *vma; 1851 1852 down_read(&mm->mmap_sem); 1853 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1854 if (!vma->vm_file) 1855 continue; 1856 if (path_equal(&vma->vm_file->f_path, 1857 &exe_file->f_path)) 1858 goto exit_err; 1859 } 1860 1861 up_read(&mm->mmap_sem); 1862 fput(exe_file); 1863 } 1864 1865 err = 0; 1866 /* set the new file, lockless */ 1867 get_file(exe.file); 1868 old_exe = xchg(&mm->exe_file, exe.file); 1869 if (old_exe) 1870 fput(old_exe); 1871 exit: 1872 fdput(exe); 1873 return err; 1874 exit_err: 1875 up_read(&mm->mmap_sem); 1876 fput(exe_file); 1877 goto exit; 1878 } 1879 1880 /* 1881 * WARNING: we don't require any capability here so be very careful 1882 * in what is allowed for modification from userspace. 1883 */ 1884 static int validate_prctl_map(struct prctl_mm_map *prctl_map) 1885 { 1886 unsigned long mmap_max_addr = TASK_SIZE; 1887 struct mm_struct *mm = current->mm; 1888 int error = -EINVAL, i; 1889 1890 static const unsigned char offsets[] = { 1891 offsetof(struct prctl_mm_map, start_code), 1892 offsetof(struct prctl_mm_map, end_code), 1893 offsetof(struct prctl_mm_map, start_data), 1894 offsetof(struct prctl_mm_map, end_data), 1895 offsetof(struct prctl_mm_map, start_brk), 1896 offsetof(struct prctl_mm_map, brk), 1897 offsetof(struct prctl_mm_map, start_stack), 1898 offsetof(struct prctl_mm_map, arg_start), 1899 offsetof(struct prctl_mm_map, arg_end), 1900 offsetof(struct prctl_mm_map, env_start), 1901 offsetof(struct prctl_mm_map, env_end), 1902 }; 1903 1904 /* 1905 * Make sure the members are not somewhere outside 1906 * of allowed address space. 1907 */ 1908 for (i = 0; i < ARRAY_SIZE(offsets); i++) { 1909 u64 val = *(u64 *)((char *)prctl_map + offsets[i]); 1910 1911 if ((unsigned long)val >= mmap_max_addr || 1912 (unsigned long)val < mmap_min_addr) 1913 goto out; 1914 } 1915 1916 /* 1917 * Make sure the pairs are ordered. 1918 */ 1919 #define __prctl_check_order(__m1, __op, __m2) \ 1920 ((unsigned long)prctl_map->__m1 __op \ 1921 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL 1922 error = __prctl_check_order(start_code, <, end_code); 1923 error |= __prctl_check_order(start_data, <, end_data); 1924 error |= __prctl_check_order(start_brk, <=, brk); 1925 error |= __prctl_check_order(arg_start, <=, arg_end); 1926 error |= __prctl_check_order(env_start, <=, env_end); 1927 if (error) 1928 goto out; 1929 #undef __prctl_check_order 1930 1931 error = -EINVAL; 1932 1933 /* 1934 * @brk should be after @end_data in traditional maps. 1935 */ 1936 if (prctl_map->start_brk <= prctl_map->end_data || 1937 prctl_map->brk <= prctl_map->end_data) 1938 goto out; 1939 1940 /* 1941 * Neither we should allow to override limits if they set. 1942 */ 1943 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, 1944 prctl_map->start_brk, prctl_map->end_data, 1945 prctl_map->start_data)) 1946 goto out; 1947 1948 /* 1949 * Someone is trying to cheat the auxv vector. 1950 */ 1951 if (prctl_map->auxv_size) { 1952 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv)) 1953 goto out; 1954 } 1955 1956 /* 1957 * Finally, make sure the caller has the rights to 1958 * change /proc/pid/exe link: only local sys admin should 1959 * be allowed to. 1960 */ 1961 if (prctl_map->exe_fd != (u32)-1) { 1962 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1963 goto out; 1964 } 1965 1966 error = 0; 1967 out: 1968 return error; 1969 } 1970 1971 #ifdef CONFIG_CHECKPOINT_RESTORE 1972 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) 1973 { 1974 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; 1975 unsigned long user_auxv[AT_VECTOR_SIZE]; 1976 struct mm_struct *mm = current->mm; 1977 int error; 1978 1979 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 1980 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); 1981 1982 if (opt == PR_SET_MM_MAP_SIZE) 1983 return put_user((unsigned int)sizeof(prctl_map), 1984 (unsigned int __user *)addr); 1985 1986 if (data_size != sizeof(prctl_map)) 1987 return -EINVAL; 1988 1989 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) 1990 return -EFAULT; 1991 1992 error = validate_prctl_map(&prctl_map); 1993 if (error) 1994 return error; 1995 1996 if (prctl_map.auxv_size) { 1997 memset(user_auxv, 0, sizeof(user_auxv)); 1998 if (copy_from_user(user_auxv, 1999 (const void __user *)prctl_map.auxv, 2000 prctl_map.auxv_size)) 2001 return -EFAULT; 2002 2003 /* Last entry must be AT_NULL as specification requires */ 2004 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; 2005 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; 2006 } 2007 2008 if (prctl_map.exe_fd != (u32)-1) { 2009 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); 2010 if (error) 2011 return error; 2012 } 2013 2014 down_write(&mm->mmap_sem); 2015 2016 /* 2017 * We don't validate if these members are pointing to 2018 * real present VMAs because application may have correspond 2019 * VMAs already unmapped and kernel uses these members for statistics 2020 * output in procfs mostly, except 2021 * 2022 * - @start_brk/@brk which are used in do_brk but kernel lookups 2023 * for VMAs when updating these memvers so anything wrong written 2024 * here cause kernel to swear at userspace program but won't lead 2025 * to any problem in kernel itself 2026 */ 2027 2028 mm->start_code = prctl_map.start_code; 2029 mm->end_code = prctl_map.end_code; 2030 mm->start_data = prctl_map.start_data; 2031 mm->end_data = prctl_map.end_data; 2032 mm->start_brk = prctl_map.start_brk; 2033 mm->brk = prctl_map.brk; 2034 mm->start_stack = prctl_map.start_stack; 2035 mm->arg_start = prctl_map.arg_start; 2036 mm->arg_end = prctl_map.arg_end; 2037 mm->env_start = prctl_map.env_start; 2038 mm->env_end = prctl_map.env_end; 2039 2040 /* 2041 * Note this update of @saved_auxv is lockless thus 2042 * if someone reads this member in procfs while we're 2043 * updating -- it may get partly updated results. It's 2044 * known and acceptable trade off: we leave it as is to 2045 * not introduce additional locks here making the kernel 2046 * more complex. 2047 */ 2048 if (prctl_map.auxv_size) 2049 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); 2050 2051 up_write(&mm->mmap_sem); 2052 return 0; 2053 } 2054 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2055 2056 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, 2057 unsigned long len) 2058 { 2059 /* 2060 * This doesn't move the auxiliary vector itself since it's pinned to 2061 * mm_struct, but it permits filling the vector with new values. It's 2062 * up to the caller to provide sane values here, otherwise userspace 2063 * tools which use this vector might be unhappy. 2064 */ 2065 unsigned long user_auxv[AT_VECTOR_SIZE]; 2066 2067 if (len > sizeof(user_auxv)) 2068 return -EINVAL; 2069 2070 if (copy_from_user(user_auxv, (const void __user *)addr, len)) 2071 return -EFAULT; 2072 2073 /* Make sure the last entry is always AT_NULL */ 2074 user_auxv[AT_VECTOR_SIZE - 2] = 0; 2075 user_auxv[AT_VECTOR_SIZE - 1] = 0; 2076 2077 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2078 2079 task_lock(current); 2080 memcpy(mm->saved_auxv, user_auxv, len); 2081 task_unlock(current); 2082 2083 return 0; 2084 } 2085 2086 static int prctl_set_mm(int opt, unsigned long addr, 2087 unsigned long arg4, unsigned long arg5) 2088 { 2089 struct mm_struct *mm = current->mm; 2090 struct prctl_mm_map prctl_map; 2091 struct vm_area_struct *vma; 2092 int error; 2093 2094 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && 2095 opt != PR_SET_MM_MAP && 2096 opt != PR_SET_MM_MAP_SIZE))) 2097 return -EINVAL; 2098 2099 #ifdef CONFIG_CHECKPOINT_RESTORE 2100 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) 2101 return prctl_set_mm_map(opt, (const void __user *)addr, arg4); 2102 #endif 2103 2104 if (!capable(CAP_SYS_RESOURCE)) 2105 return -EPERM; 2106 2107 if (opt == PR_SET_MM_EXE_FILE) 2108 return prctl_set_mm_exe_file(mm, (unsigned int)addr); 2109 2110 if (opt == PR_SET_MM_AUXV) 2111 return prctl_set_auxv(mm, addr, arg4); 2112 2113 if (addr >= TASK_SIZE || addr < mmap_min_addr) 2114 return -EINVAL; 2115 2116 error = -EINVAL; 2117 2118 down_write(&mm->mmap_sem); 2119 vma = find_vma(mm, addr); 2120 2121 prctl_map.start_code = mm->start_code; 2122 prctl_map.end_code = mm->end_code; 2123 prctl_map.start_data = mm->start_data; 2124 prctl_map.end_data = mm->end_data; 2125 prctl_map.start_brk = mm->start_brk; 2126 prctl_map.brk = mm->brk; 2127 prctl_map.start_stack = mm->start_stack; 2128 prctl_map.arg_start = mm->arg_start; 2129 prctl_map.arg_end = mm->arg_end; 2130 prctl_map.env_start = mm->env_start; 2131 prctl_map.env_end = mm->env_end; 2132 prctl_map.auxv = NULL; 2133 prctl_map.auxv_size = 0; 2134 prctl_map.exe_fd = -1; 2135 2136 switch (opt) { 2137 case PR_SET_MM_START_CODE: 2138 prctl_map.start_code = addr; 2139 break; 2140 case PR_SET_MM_END_CODE: 2141 prctl_map.end_code = addr; 2142 break; 2143 case PR_SET_MM_START_DATA: 2144 prctl_map.start_data = addr; 2145 break; 2146 case PR_SET_MM_END_DATA: 2147 prctl_map.end_data = addr; 2148 break; 2149 case PR_SET_MM_START_STACK: 2150 prctl_map.start_stack = addr; 2151 break; 2152 case PR_SET_MM_START_BRK: 2153 prctl_map.start_brk = addr; 2154 break; 2155 case PR_SET_MM_BRK: 2156 prctl_map.brk = addr; 2157 break; 2158 case PR_SET_MM_ARG_START: 2159 prctl_map.arg_start = addr; 2160 break; 2161 case PR_SET_MM_ARG_END: 2162 prctl_map.arg_end = addr; 2163 break; 2164 case PR_SET_MM_ENV_START: 2165 prctl_map.env_start = addr; 2166 break; 2167 case PR_SET_MM_ENV_END: 2168 prctl_map.env_end = addr; 2169 break; 2170 default: 2171 goto out; 2172 } 2173 2174 error = validate_prctl_map(&prctl_map); 2175 if (error) 2176 goto out; 2177 2178 switch (opt) { 2179 /* 2180 * If command line arguments and environment 2181 * are placed somewhere else on stack, we can 2182 * set them up here, ARG_START/END to setup 2183 * command line argumets and ENV_START/END 2184 * for environment. 2185 */ 2186 case PR_SET_MM_START_STACK: 2187 case PR_SET_MM_ARG_START: 2188 case PR_SET_MM_ARG_END: 2189 case PR_SET_MM_ENV_START: 2190 case PR_SET_MM_ENV_END: 2191 if (!vma) { 2192 error = -EFAULT; 2193 goto out; 2194 } 2195 } 2196 2197 mm->start_code = prctl_map.start_code; 2198 mm->end_code = prctl_map.end_code; 2199 mm->start_data = prctl_map.start_data; 2200 mm->end_data = prctl_map.end_data; 2201 mm->start_brk = prctl_map.start_brk; 2202 mm->brk = prctl_map.brk; 2203 mm->start_stack = prctl_map.start_stack; 2204 mm->arg_start = prctl_map.arg_start; 2205 mm->arg_end = prctl_map.arg_end; 2206 mm->env_start = prctl_map.env_start; 2207 mm->env_end = prctl_map.env_end; 2208 2209 error = 0; 2210 out: 2211 up_write(&mm->mmap_sem); 2212 return error; 2213 } 2214 2215 #ifdef CONFIG_CHECKPOINT_RESTORE 2216 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) 2217 { 2218 return put_user(me->clear_child_tid, tid_addr); 2219 } 2220 #else 2221 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) 2222 { 2223 return -EINVAL; 2224 } 2225 #endif 2226 2227 static int propagate_has_child_subreaper(struct task_struct *p, void *data) 2228 { 2229 /* 2230 * If task has has_child_subreaper - all its decendants 2231 * already have these flag too and new decendants will 2232 * inherit it on fork, skip them. 2233 * 2234 * If we've found child_reaper - skip descendants in 2235 * it's subtree as they will never get out pidns. 2236 */ 2237 if (p->signal->has_child_subreaper || 2238 is_child_reaper(task_pid(p))) 2239 return 0; 2240 2241 p->signal->has_child_subreaper = 1; 2242 return 1; 2243 } 2244 2245 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 2246 unsigned long, arg4, unsigned long, arg5) 2247 { 2248 struct task_struct *me = current; 2249 unsigned char comm[sizeof(me->comm)]; 2250 long error; 2251 2252 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 2253 if (error != -ENOSYS) 2254 return error; 2255 2256 error = 0; 2257 switch (option) { 2258 case PR_SET_PDEATHSIG: 2259 if (!valid_signal(arg2)) { 2260 error = -EINVAL; 2261 break; 2262 } 2263 me->pdeath_signal = arg2; 2264 break; 2265 case PR_GET_PDEATHSIG: 2266 error = put_user(me->pdeath_signal, (int __user *)arg2); 2267 break; 2268 case PR_GET_DUMPABLE: 2269 error = get_dumpable(me->mm); 2270 break; 2271 case PR_SET_DUMPABLE: 2272 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { 2273 error = -EINVAL; 2274 break; 2275 } 2276 set_dumpable(me->mm, arg2); 2277 break; 2278 2279 case PR_SET_UNALIGN: 2280 error = SET_UNALIGN_CTL(me, arg2); 2281 break; 2282 case PR_GET_UNALIGN: 2283 error = GET_UNALIGN_CTL(me, arg2); 2284 break; 2285 case PR_SET_FPEMU: 2286 error = SET_FPEMU_CTL(me, arg2); 2287 break; 2288 case PR_GET_FPEMU: 2289 error = GET_FPEMU_CTL(me, arg2); 2290 break; 2291 case PR_SET_FPEXC: 2292 error = SET_FPEXC_CTL(me, arg2); 2293 break; 2294 case PR_GET_FPEXC: 2295 error = GET_FPEXC_CTL(me, arg2); 2296 break; 2297 case PR_GET_TIMING: 2298 error = PR_TIMING_STATISTICAL; 2299 break; 2300 case PR_SET_TIMING: 2301 if (arg2 != PR_TIMING_STATISTICAL) 2302 error = -EINVAL; 2303 break; 2304 case PR_SET_NAME: 2305 comm[sizeof(me->comm) - 1] = 0; 2306 if (strncpy_from_user(comm, (char __user *)arg2, 2307 sizeof(me->comm) - 1) < 0) 2308 return -EFAULT; 2309 set_task_comm(me, comm); 2310 proc_comm_connector(me); 2311 break; 2312 case PR_GET_NAME: 2313 get_task_comm(comm, me); 2314 if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) 2315 return -EFAULT; 2316 break; 2317 case PR_GET_ENDIAN: 2318 error = GET_ENDIAN(me, arg2); 2319 break; 2320 case PR_SET_ENDIAN: 2321 error = SET_ENDIAN(me, arg2); 2322 break; 2323 case PR_GET_SECCOMP: 2324 error = prctl_get_seccomp(); 2325 break; 2326 case PR_SET_SECCOMP: 2327 error = prctl_set_seccomp(arg2, (char __user *)arg3); 2328 break; 2329 case PR_GET_TSC: 2330 error = GET_TSC_CTL(arg2); 2331 break; 2332 case PR_SET_TSC: 2333 error = SET_TSC_CTL(arg2); 2334 break; 2335 case PR_TASK_PERF_EVENTS_DISABLE: 2336 error = perf_event_task_disable(); 2337 break; 2338 case PR_TASK_PERF_EVENTS_ENABLE: 2339 error = perf_event_task_enable(); 2340 break; 2341 case PR_GET_TIMERSLACK: 2342 if (current->timer_slack_ns > ULONG_MAX) 2343 error = ULONG_MAX; 2344 else 2345 error = current->timer_slack_ns; 2346 break; 2347 case PR_SET_TIMERSLACK: 2348 if (arg2 <= 0) 2349 current->timer_slack_ns = 2350 current->default_timer_slack_ns; 2351 else 2352 current->timer_slack_ns = arg2; 2353 break; 2354 case PR_MCE_KILL: 2355 if (arg4 | arg5) 2356 return -EINVAL; 2357 switch (arg2) { 2358 case PR_MCE_KILL_CLEAR: 2359 if (arg3 != 0) 2360 return -EINVAL; 2361 current->flags &= ~PF_MCE_PROCESS; 2362 break; 2363 case PR_MCE_KILL_SET: 2364 current->flags |= PF_MCE_PROCESS; 2365 if (arg3 == PR_MCE_KILL_EARLY) 2366 current->flags |= PF_MCE_EARLY; 2367 else if (arg3 == PR_MCE_KILL_LATE) 2368 current->flags &= ~PF_MCE_EARLY; 2369 else if (arg3 == PR_MCE_KILL_DEFAULT) 2370 current->flags &= 2371 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 2372 else 2373 return -EINVAL; 2374 break; 2375 default: 2376 return -EINVAL; 2377 } 2378 break; 2379 case PR_MCE_KILL_GET: 2380 if (arg2 | arg3 | arg4 | arg5) 2381 return -EINVAL; 2382 if (current->flags & PF_MCE_PROCESS) 2383 error = (current->flags & PF_MCE_EARLY) ? 2384 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 2385 else 2386 error = PR_MCE_KILL_DEFAULT; 2387 break; 2388 case PR_SET_MM: 2389 error = prctl_set_mm(arg2, arg3, arg4, arg5); 2390 break; 2391 case PR_GET_TID_ADDRESS: 2392 error = prctl_get_tid_address(me, (int __user **)arg2); 2393 break; 2394 case PR_SET_CHILD_SUBREAPER: 2395 me->signal->is_child_subreaper = !!arg2; 2396 if (!arg2) 2397 break; 2398 2399 walk_process_tree(me, propagate_has_child_subreaper, NULL); 2400 break; 2401 case PR_GET_CHILD_SUBREAPER: 2402 error = put_user(me->signal->is_child_subreaper, 2403 (int __user *)arg2); 2404 break; 2405 case PR_SET_NO_NEW_PRIVS: 2406 if (arg2 != 1 || arg3 || arg4 || arg5) 2407 return -EINVAL; 2408 2409 task_set_no_new_privs(current); 2410 break; 2411 case PR_GET_NO_NEW_PRIVS: 2412 if (arg2 || arg3 || arg4 || arg5) 2413 return -EINVAL; 2414 return task_no_new_privs(current) ? 1 : 0; 2415 case PR_GET_THP_DISABLE: 2416 if (arg2 || arg3 || arg4 || arg5) 2417 return -EINVAL; 2418 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); 2419 break; 2420 case PR_SET_THP_DISABLE: 2421 if (arg3 || arg4 || arg5) 2422 return -EINVAL; 2423 if (down_write_killable(&me->mm->mmap_sem)) 2424 return -EINTR; 2425 if (arg2) 2426 set_bit(MMF_DISABLE_THP, &me->mm->flags); 2427 else 2428 clear_bit(MMF_DISABLE_THP, &me->mm->flags); 2429 up_write(&me->mm->mmap_sem); 2430 break; 2431 case PR_MPX_ENABLE_MANAGEMENT: 2432 if (arg2 || arg3 || arg4 || arg5) 2433 return -EINVAL; 2434 error = MPX_ENABLE_MANAGEMENT(); 2435 break; 2436 case PR_MPX_DISABLE_MANAGEMENT: 2437 if (arg2 || arg3 || arg4 || arg5) 2438 return -EINVAL; 2439 error = MPX_DISABLE_MANAGEMENT(); 2440 break; 2441 case PR_SET_FP_MODE: 2442 error = SET_FP_MODE(me, arg2); 2443 break; 2444 case PR_GET_FP_MODE: 2445 error = GET_FP_MODE(me); 2446 break; 2447 case PR_SVE_SET_VL: 2448 error = SVE_SET_VL(arg2); 2449 break; 2450 case PR_SVE_GET_VL: 2451 error = SVE_GET_VL(); 2452 break; 2453 default: 2454 error = -EINVAL; 2455 break; 2456 } 2457 return error; 2458 } 2459 2460 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 2461 struct getcpu_cache __user *, unused) 2462 { 2463 int err = 0; 2464 int cpu = raw_smp_processor_id(); 2465 2466 if (cpup) 2467 err |= put_user(cpu, cpup); 2468 if (nodep) 2469 err |= put_user(cpu_to_node(cpu), nodep); 2470 return err ? -EFAULT : 0; 2471 } 2472 2473 /** 2474 * do_sysinfo - fill in sysinfo struct 2475 * @info: pointer to buffer to fill 2476 */ 2477 static int do_sysinfo(struct sysinfo *info) 2478 { 2479 unsigned long mem_total, sav_total; 2480 unsigned int mem_unit, bitcount; 2481 struct timespec tp; 2482 2483 memset(info, 0, sizeof(struct sysinfo)); 2484 2485 get_monotonic_boottime(&tp); 2486 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 2487 2488 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); 2489 2490 info->procs = nr_threads; 2491 2492 si_meminfo(info); 2493 si_swapinfo(info); 2494 2495 /* 2496 * If the sum of all the available memory (i.e. ram + swap) 2497 * is less than can be stored in a 32 bit unsigned long then 2498 * we can be binary compatible with 2.2.x kernels. If not, 2499 * well, in that case 2.2.x was broken anyways... 2500 * 2501 * -Erik Andersen <andersee@debian.org> 2502 */ 2503 2504 mem_total = info->totalram + info->totalswap; 2505 if (mem_total < info->totalram || mem_total < info->totalswap) 2506 goto out; 2507 bitcount = 0; 2508 mem_unit = info->mem_unit; 2509 while (mem_unit > 1) { 2510 bitcount++; 2511 mem_unit >>= 1; 2512 sav_total = mem_total; 2513 mem_total <<= 1; 2514 if (mem_total < sav_total) 2515 goto out; 2516 } 2517 2518 /* 2519 * If mem_total did not overflow, multiply all memory values by 2520 * info->mem_unit and set it to 1. This leaves things compatible 2521 * with 2.2.x, and also retains compatibility with earlier 2.4.x 2522 * kernels... 2523 */ 2524 2525 info->mem_unit = 1; 2526 info->totalram <<= bitcount; 2527 info->freeram <<= bitcount; 2528 info->sharedram <<= bitcount; 2529 info->bufferram <<= bitcount; 2530 info->totalswap <<= bitcount; 2531 info->freeswap <<= bitcount; 2532 info->totalhigh <<= bitcount; 2533 info->freehigh <<= bitcount; 2534 2535 out: 2536 return 0; 2537 } 2538 2539 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) 2540 { 2541 struct sysinfo val; 2542 2543 do_sysinfo(&val); 2544 2545 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 2546 return -EFAULT; 2547 2548 return 0; 2549 } 2550 2551 #ifdef CONFIG_COMPAT 2552 struct compat_sysinfo { 2553 s32 uptime; 2554 u32 loads[3]; 2555 u32 totalram; 2556 u32 freeram; 2557 u32 sharedram; 2558 u32 bufferram; 2559 u32 totalswap; 2560 u32 freeswap; 2561 u16 procs; 2562 u16 pad; 2563 u32 totalhigh; 2564 u32 freehigh; 2565 u32 mem_unit; 2566 char _f[20-2*sizeof(u32)-sizeof(int)]; 2567 }; 2568 2569 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) 2570 { 2571 struct sysinfo s; 2572 2573 do_sysinfo(&s); 2574 2575 /* Check to see if any memory value is too large for 32-bit and scale 2576 * down if needed 2577 */ 2578 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { 2579 int bitcount = 0; 2580 2581 while (s.mem_unit < PAGE_SIZE) { 2582 s.mem_unit <<= 1; 2583 bitcount++; 2584 } 2585 2586 s.totalram >>= bitcount; 2587 s.freeram >>= bitcount; 2588 s.sharedram >>= bitcount; 2589 s.bufferram >>= bitcount; 2590 s.totalswap >>= bitcount; 2591 s.freeswap >>= bitcount; 2592 s.totalhigh >>= bitcount; 2593 s.freehigh >>= bitcount; 2594 } 2595 2596 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) || 2597 __put_user(s.uptime, &info->uptime) || 2598 __put_user(s.loads[0], &info->loads[0]) || 2599 __put_user(s.loads[1], &info->loads[1]) || 2600 __put_user(s.loads[2], &info->loads[2]) || 2601 __put_user(s.totalram, &info->totalram) || 2602 __put_user(s.freeram, &info->freeram) || 2603 __put_user(s.sharedram, &info->sharedram) || 2604 __put_user(s.bufferram, &info->bufferram) || 2605 __put_user(s.totalswap, &info->totalswap) || 2606 __put_user(s.freeswap, &info->freeswap) || 2607 __put_user(s.procs, &info->procs) || 2608 __put_user(s.totalhigh, &info->totalhigh) || 2609 __put_user(s.freehigh, &info->freehigh) || 2610 __put_user(s.mem_unit, &info->mem_unit)) 2611 return -EFAULT; 2612 2613 return 0; 2614 } 2615 #endif /* CONFIG_COMPAT */ 2616