1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/notifier.h> 12 #include <linux/reboot.h> 13 #include <linux/prctl.h> 14 #include <linux/highuid.h> 15 #include <linux/fs.h> 16 #include <linux/perf_event.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/gfp.h> 40 41 #include <linux/compat.h> 42 #include <linux/syscalls.h> 43 #include <linux/kprobes.h> 44 #include <linux/user_namespace.h> 45 46 #include <linux/kmsg_dump.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/io.h> 50 #include <asm/unistd.h> 51 52 #ifndef SET_UNALIGN_CTL 53 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 54 #endif 55 #ifndef GET_UNALIGN_CTL 56 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 57 #endif 58 #ifndef SET_FPEMU_CTL 59 # define SET_FPEMU_CTL(a,b) (-EINVAL) 60 #endif 61 #ifndef GET_FPEMU_CTL 62 # define GET_FPEMU_CTL(a,b) (-EINVAL) 63 #endif 64 #ifndef SET_FPEXC_CTL 65 # define SET_FPEXC_CTL(a,b) (-EINVAL) 66 #endif 67 #ifndef GET_FPEXC_CTL 68 # define GET_FPEXC_CTL(a,b) (-EINVAL) 69 #endif 70 #ifndef GET_ENDIAN 71 # define GET_ENDIAN(a,b) (-EINVAL) 72 #endif 73 #ifndef SET_ENDIAN 74 # define SET_ENDIAN(a,b) (-EINVAL) 75 #endif 76 #ifndef GET_TSC_CTL 77 # define GET_TSC_CTL(a) (-EINVAL) 78 #endif 79 #ifndef SET_TSC_CTL 80 # define SET_TSC_CTL(a) (-EINVAL) 81 #endif 82 83 /* 84 * this is where the system-wide overflow UID and GID are defined, for 85 * architectures that now have 32-bit UID/GID but didn't in the past 86 */ 87 88 int overflowuid = DEFAULT_OVERFLOWUID; 89 int overflowgid = DEFAULT_OVERFLOWGID; 90 91 #ifdef CONFIG_UID16 92 EXPORT_SYMBOL(overflowuid); 93 EXPORT_SYMBOL(overflowgid); 94 #endif 95 96 /* 97 * the same as above, but for filesystems which can only store a 16-bit 98 * UID and GID. as such, this is needed on all architectures 99 */ 100 101 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 102 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 103 104 EXPORT_SYMBOL(fs_overflowuid); 105 EXPORT_SYMBOL(fs_overflowgid); 106 107 /* 108 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 109 */ 110 111 int C_A_D = 1; 112 struct pid *cad_pid; 113 EXPORT_SYMBOL(cad_pid); 114 115 /* 116 * If set, this is used for preparing the system to power off. 117 */ 118 119 void (*pm_power_off_prepare)(void); 120 121 /* 122 * set the priority of a task 123 * - the caller must hold the RCU read lock 124 */ 125 static int set_one_prio(struct task_struct *p, int niceval, int error) 126 { 127 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 128 int no_nice; 129 130 if (pcred->uid != cred->euid && 131 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) { 132 error = -EPERM; 133 goto out; 134 } 135 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 136 error = -EACCES; 137 goto out; 138 } 139 no_nice = security_task_setnice(p, niceval); 140 if (no_nice) { 141 error = no_nice; 142 goto out; 143 } 144 if (error == -ESRCH) 145 error = 0; 146 set_user_nice(p, niceval); 147 out: 148 return error; 149 } 150 151 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 152 { 153 struct task_struct *g, *p; 154 struct user_struct *user; 155 const struct cred *cred = current_cred(); 156 int error = -EINVAL; 157 struct pid *pgrp; 158 159 if (which > PRIO_USER || which < PRIO_PROCESS) 160 goto out; 161 162 /* normalize: avoid signed division (rounding problems) */ 163 error = -ESRCH; 164 if (niceval < -20) 165 niceval = -20; 166 if (niceval > 19) 167 niceval = 19; 168 169 rcu_read_lock(); 170 read_lock(&tasklist_lock); 171 switch (which) { 172 case PRIO_PROCESS: 173 if (who) 174 p = find_task_by_vpid(who); 175 else 176 p = current; 177 if (p) 178 error = set_one_prio(p, niceval, error); 179 break; 180 case PRIO_PGRP: 181 if (who) 182 pgrp = find_vpid(who); 183 else 184 pgrp = task_pgrp(current); 185 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 186 error = set_one_prio(p, niceval, error); 187 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 188 break; 189 case PRIO_USER: 190 user = (struct user_struct *) cred->user; 191 if (!who) 192 who = cred->uid; 193 else if ((who != cred->uid) && 194 !(user = find_user(who))) 195 goto out_unlock; /* No processes for this user */ 196 197 do_each_thread(g, p) { 198 if (__task_cred(p)->uid == who) 199 error = set_one_prio(p, niceval, error); 200 } while_each_thread(g, p); 201 if (who != cred->uid) 202 free_uid(user); /* For find_user() */ 203 break; 204 } 205 out_unlock: 206 read_unlock(&tasklist_lock); 207 rcu_read_unlock(); 208 out: 209 return error; 210 } 211 212 /* 213 * Ugh. To avoid negative return values, "getpriority()" will 214 * not return the normal nice-value, but a negated value that 215 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 216 * to stay compatible. 217 */ 218 SYSCALL_DEFINE2(getpriority, int, which, int, who) 219 { 220 struct task_struct *g, *p; 221 struct user_struct *user; 222 const struct cred *cred = current_cred(); 223 long niceval, retval = -ESRCH; 224 struct pid *pgrp; 225 226 if (which > PRIO_USER || which < PRIO_PROCESS) 227 return -EINVAL; 228 229 rcu_read_lock(); 230 read_lock(&tasklist_lock); 231 switch (which) { 232 case PRIO_PROCESS: 233 if (who) 234 p = find_task_by_vpid(who); 235 else 236 p = current; 237 if (p) { 238 niceval = 20 - task_nice(p); 239 if (niceval > retval) 240 retval = niceval; 241 } 242 break; 243 case PRIO_PGRP: 244 if (who) 245 pgrp = find_vpid(who); 246 else 247 pgrp = task_pgrp(current); 248 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 249 niceval = 20 - task_nice(p); 250 if (niceval > retval) 251 retval = niceval; 252 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 253 break; 254 case PRIO_USER: 255 user = (struct user_struct *) cred->user; 256 if (!who) 257 who = cred->uid; 258 else if ((who != cred->uid) && 259 !(user = find_user(who))) 260 goto out_unlock; /* No processes for this user */ 261 262 do_each_thread(g, p) { 263 if (__task_cred(p)->uid == who) { 264 niceval = 20 - task_nice(p); 265 if (niceval > retval) 266 retval = niceval; 267 } 268 } while_each_thread(g, p); 269 if (who != cred->uid) 270 free_uid(user); /* for find_user() */ 271 break; 272 } 273 out_unlock: 274 read_unlock(&tasklist_lock); 275 rcu_read_unlock(); 276 277 return retval; 278 } 279 280 /** 281 * emergency_restart - reboot the system 282 * 283 * Without shutting down any hardware or taking any locks 284 * reboot the system. This is called when we know we are in 285 * trouble so this is our best effort to reboot. This is 286 * safe to call in interrupt context. 287 */ 288 void emergency_restart(void) 289 { 290 kmsg_dump(KMSG_DUMP_EMERG); 291 machine_emergency_restart(); 292 } 293 EXPORT_SYMBOL_GPL(emergency_restart); 294 295 void kernel_restart_prepare(char *cmd) 296 { 297 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 298 system_state = SYSTEM_RESTART; 299 device_shutdown(); 300 sysdev_shutdown(); 301 } 302 303 /** 304 * kernel_restart - reboot the system 305 * @cmd: pointer to buffer containing command to execute for restart 306 * or %NULL 307 * 308 * Shutdown everything and perform a clean reboot. 309 * This is not safe to call in interrupt context. 310 */ 311 void kernel_restart(char *cmd) 312 { 313 kernel_restart_prepare(cmd); 314 if (!cmd) 315 printk(KERN_EMERG "Restarting system.\n"); 316 else 317 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 318 kmsg_dump(KMSG_DUMP_RESTART); 319 machine_restart(cmd); 320 } 321 EXPORT_SYMBOL_GPL(kernel_restart); 322 323 static void kernel_shutdown_prepare(enum system_states state) 324 { 325 blocking_notifier_call_chain(&reboot_notifier_list, 326 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 327 system_state = state; 328 device_shutdown(); 329 } 330 /** 331 * kernel_halt - halt the system 332 * 333 * Shutdown everything and perform a clean system halt. 334 */ 335 void kernel_halt(void) 336 { 337 kernel_shutdown_prepare(SYSTEM_HALT); 338 sysdev_shutdown(); 339 printk(KERN_EMERG "System halted.\n"); 340 kmsg_dump(KMSG_DUMP_HALT); 341 machine_halt(); 342 } 343 344 EXPORT_SYMBOL_GPL(kernel_halt); 345 346 /** 347 * kernel_power_off - power_off the system 348 * 349 * Shutdown everything and perform a clean system power_off. 350 */ 351 void kernel_power_off(void) 352 { 353 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 354 if (pm_power_off_prepare) 355 pm_power_off_prepare(); 356 disable_nonboot_cpus(); 357 sysdev_shutdown(); 358 printk(KERN_EMERG "Power down.\n"); 359 kmsg_dump(KMSG_DUMP_POWEROFF); 360 machine_power_off(); 361 } 362 EXPORT_SYMBOL_GPL(kernel_power_off); 363 364 static DEFINE_MUTEX(reboot_mutex); 365 366 /* 367 * Reboot system call: for obvious reasons only root may call it, 368 * and even root needs to set up some magic numbers in the registers 369 * so that some mistake won't make this reboot the whole machine. 370 * You can also set the meaning of the ctrl-alt-del-key here. 371 * 372 * reboot doesn't sync: do that yourself before calling this. 373 */ 374 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, 375 void __user *, arg) 376 { 377 char buffer[256]; 378 int ret = 0; 379 380 /* We only trust the superuser with rebooting the system. */ 381 if (!capable(CAP_SYS_BOOT)) 382 return -EPERM; 383 384 /* For safety, we require "magic" arguments. */ 385 if (magic1 != LINUX_REBOOT_MAGIC1 || 386 (magic2 != LINUX_REBOOT_MAGIC2 && 387 magic2 != LINUX_REBOOT_MAGIC2A && 388 magic2 != LINUX_REBOOT_MAGIC2B && 389 magic2 != LINUX_REBOOT_MAGIC2C)) 390 return -EINVAL; 391 392 /* Instead of trying to make the power_off code look like 393 * halt when pm_power_off is not set do it the easy way. 394 */ 395 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 396 cmd = LINUX_REBOOT_CMD_HALT; 397 398 mutex_lock(&reboot_mutex); 399 switch (cmd) { 400 case LINUX_REBOOT_CMD_RESTART: 401 kernel_restart(NULL); 402 break; 403 404 case LINUX_REBOOT_CMD_CAD_ON: 405 C_A_D = 1; 406 break; 407 408 case LINUX_REBOOT_CMD_CAD_OFF: 409 C_A_D = 0; 410 break; 411 412 case LINUX_REBOOT_CMD_HALT: 413 kernel_halt(); 414 do_exit(0); 415 panic("cannot halt"); 416 417 case LINUX_REBOOT_CMD_POWER_OFF: 418 kernel_power_off(); 419 do_exit(0); 420 break; 421 422 case LINUX_REBOOT_CMD_RESTART2: 423 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 424 ret = -EFAULT; 425 break; 426 } 427 buffer[sizeof(buffer) - 1] = '\0'; 428 429 kernel_restart(buffer); 430 break; 431 432 #ifdef CONFIG_KEXEC 433 case LINUX_REBOOT_CMD_KEXEC: 434 ret = kernel_kexec(); 435 break; 436 #endif 437 438 #ifdef CONFIG_HIBERNATION 439 case LINUX_REBOOT_CMD_SW_SUSPEND: 440 ret = hibernate(); 441 break; 442 #endif 443 444 default: 445 ret = -EINVAL; 446 break; 447 } 448 mutex_unlock(&reboot_mutex); 449 return ret; 450 } 451 452 static void deferred_cad(struct work_struct *dummy) 453 { 454 kernel_restart(NULL); 455 } 456 457 /* 458 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 459 * As it's called within an interrupt, it may NOT sync: the only choice 460 * is whether to reboot at once, or just ignore the ctrl-alt-del. 461 */ 462 void ctrl_alt_del(void) 463 { 464 static DECLARE_WORK(cad_work, deferred_cad); 465 466 if (C_A_D) 467 schedule_work(&cad_work); 468 else 469 kill_cad_pid(SIGINT, 1); 470 } 471 472 /* 473 * Unprivileged users may change the real gid to the effective gid 474 * or vice versa. (BSD-style) 475 * 476 * If you set the real gid at all, or set the effective gid to a value not 477 * equal to the real gid, then the saved gid is set to the new effective gid. 478 * 479 * This makes it possible for a setgid program to completely drop its 480 * privileges, which is often a useful assertion to make when you are doing 481 * a security audit over a program. 482 * 483 * The general idea is that a program which uses just setregid() will be 484 * 100% compatible with BSD. A program which uses just setgid() will be 485 * 100% compatible with POSIX with saved IDs. 486 * 487 * SMP: There are not races, the GIDs are checked only by filesystem 488 * operations (as far as semantic preservation is concerned). 489 */ 490 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 491 { 492 const struct cred *old; 493 struct cred *new; 494 int retval; 495 496 new = prepare_creds(); 497 if (!new) 498 return -ENOMEM; 499 old = current_cred(); 500 501 retval = -EPERM; 502 if (rgid != (gid_t) -1) { 503 if (old->gid == rgid || 504 old->egid == rgid || 505 capable(CAP_SETGID)) 506 new->gid = rgid; 507 else 508 goto error; 509 } 510 if (egid != (gid_t) -1) { 511 if (old->gid == egid || 512 old->egid == egid || 513 old->sgid == egid || 514 capable(CAP_SETGID)) 515 new->egid = egid; 516 else 517 goto error; 518 } 519 520 if (rgid != (gid_t) -1 || 521 (egid != (gid_t) -1 && egid != old->gid)) 522 new->sgid = new->egid; 523 new->fsgid = new->egid; 524 525 return commit_creds(new); 526 527 error: 528 abort_creds(new); 529 return retval; 530 } 531 532 /* 533 * setgid() is implemented like SysV w/ SAVED_IDS 534 * 535 * SMP: Same implicit races as above. 536 */ 537 SYSCALL_DEFINE1(setgid, gid_t, gid) 538 { 539 const struct cred *old; 540 struct cred *new; 541 int retval; 542 543 new = prepare_creds(); 544 if (!new) 545 return -ENOMEM; 546 old = current_cred(); 547 548 retval = -EPERM; 549 if (capable(CAP_SETGID)) 550 new->gid = new->egid = new->sgid = new->fsgid = gid; 551 else if (gid == old->gid || gid == old->sgid) 552 new->egid = new->fsgid = gid; 553 else 554 goto error; 555 556 return commit_creds(new); 557 558 error: 559 abort_creds(new); 560 return retval; 561 } 562 563 /* 564 * change the user struct in a credentials set to match the new UID 565 */ 566 static int set_user(struct cred *new) 567 { 568 struct user_struct *new_user; 569 570 new_user = alloc_uid(current_user_ns(), new->uid); 571 if (!new_user) 572 return -EAGAIN; 573 574 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 575 new_user != INIT_USER) { 576 free_uid(new_user); 577 return -EAGAIN; 578 } 579 580 free_uid(new->user); 581 new->user = new_user; 582 return 0; 583 } 584 585 /* 586 * Unprivileged users may change the real uid to the effective uid 587 * or vice versa. (BSD-style) 588 * 589 * If you set the real uid at all, or set the effective uid to a value not 590 * equal to the real uid, then the saved uid is set to the new effective uid. 591 * 592 * This makes it possible for a setuid program to completely drop its 593 * privileges, which is often a useful assertion to make when you are doing 594 * a security audit over a program. 595 * 596 * The general idea is that a program which uses just setreuid() will be 597 * 100% compatible with BSD. A program which uses just setuid() will be 598 * 100% compatible with POSIX with saved IDs. 599 */ 600 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 601 { 602 const struct cred *old; 603 struct cred *new; 604 int retval; 605 606 new = prepare_creds(); 607 if (!new) 608 return -ENOMEM; 609 old = current_cred(); 610 611 retval = -EPERM; 612 if (ruid != (uid_t) -1) { 613 new->uid = ruid; 614 if (old->uid != ruid && 615 old->euid != ruid && 616 !capable(CAP_SETUID)) 617 goto error; 618 } 619 620 if (euid != (uid_t) -1) { 621 new->euid = euid; 622 if (old->uid != euid && 623 old->euid != euid && 624 old->suid != euid && 625 !capable(CAP_SETUID)) 626 goto error; 627 } 628 629 if (new->uid != old->uid) { 630 retval = set_user(new); 631 if (retval < 0) 632 goto error; 633 } 634 if (ruid != (uid_t) -1 || 635 (euid != (uid_t) -1 && euid != old->uid)) 636 new->suid = new->euid; 637 new->fsuid = new->euid; 638 639 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 640 if (retval < 0) 641 goto error; 642 643 return commit_creds(new); 644 645 error: 646 abort_creds(new); 647 return retval; 648 } 649 650 /* 651 * setuid() is implemented like SysV with SAVED_IDS 652 * 653 * Note that SAVED_ID's is deficient in that a setuid root program 654 * like sendmail, for example, cannot set its uid to be a normal 655 * user and then switch back, because if you're root, setuid() sets 656 * the saved uid too. If you don't like this, blame the bright people 657 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 658 * will allow a root program to temporarily drop privileges and be able to 659 * regain them by swapping the real and effective uid. 660 */ 661 SYSCALL_DEFINE1(setuid, uid_t, uid) 662 { 663 const struct cred *old; 664 struct cred *new; 665 int retval; 666 667 new = prepare_creds(); 668 if (!new) 669 return -ENOMEM; 670 old = current_cred(); 671 672 retval = -EPERM; 673 if (capable(CAP_SETUID)) { 674 new->suid = new->uid = uid; 675 if (uid != old->uid) { 676 retval = set_user(new); 677 if (retval < 0) 678 goto error; 679 } 680 } else if (uid != old->uid && uid != new->suid) { 681 goto error; 682 } 683 684 new->fsuid = new->euid = uid; 685 686 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 687 if (retval < 0) 688 goto error; 689 690 return commit_creds(new); 691 692 error: 693 abort_creds(new); 694 return retval; 695 } 696 697 698 /* 699 * This function implements a generic ability to update ruid, euid, 700 * and suid. This allows you to implement the 4.4 compatible seteuid(). 701 */ 702 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 703 { 704 const struct cred *old; 705 struct cred *new; 706 int retval; 707 708 new = prepare_creds(); 709 if (!new) 710 return -ENOMEM; 711 712 old = current_cred(); 713 714 retval = -EPERM; 715 if (!capable(CAP_SETUID)) { 716 if (ruid != (uid_t) -1 && ruid != old->uid && 717 ruid != old->euid && ruid != old->suid) 718 goto error; 719 if (euid != (uid_t) -1 && euid != old->uid && 720 euid != old->euid && euid != old->suid) 721 goto error; 722 if (suid != (uid_t) -1 && suid != old->uid && 723 suid != old->euid && suid != old->suid) 724 goto error; 725 } 726 727 if (ruid != (uid_t) -1) { 728 new->uid = ruid; 729 if (ruid != old->uid) { 730 retval = set_user(new); 731 if (retval < 0) 732 goto error; 733 } 734 } 735 if (euid != (uid_t) -1) 736 new->euid = euid; 737 if (suid != (uid_t) -1) 738 new->suid = suid; 739 new->fsuid = new->euid; 740 741 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 742 if (retval < 0) 743 goto error; 744 745 return commit_creds(new); 746 747 error: 748 abort_creds(new); 749 return retval; 750 } 751 752 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) 753 { 754 const struct cred *cred = current_cred(); 755 int retval; 756 757 if (!(retval = put_user(cred->uid, ruid)) && 758 !(retval = put_user(cred->euid, euid))) 759 retval = put_user(cred->suid, suid); 760 761 return retval; 762 } 763 764 /* 765 * Same as above, but for rgid, egid, sgid. 766 */ 767 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 768 { 769 const struct cred *old; 770 struct cred *new; 771 int retval; 772 773 new = prepare_creds(); 774 if (!new) 775 return -ENOMEM; 776 old = current_cred(); 777 778 retval = -EPERM; 779 if (!capable(CAP_SETGID)) { 780 if (rgid != (gid_t) -1 && rgid != old->gid && 781 rgid != old->egid && rgid != old->sgid) 782 goto error; 783 if (egid != (gid_t) -1 && egid != old->gid && 784 egid != old->egid && egid != old->sgid) 785 goto error; 786 if (sgid != (gid_t) -1 && sgid != old->gid && 787 sgid != old->egid && sgid != old->sgid) 788 goto error; 789 } 790 791 if (rgid != (gid_t) -1) 792 new->gid = rgid; 793 if (egid != (gid_t) -1) 794 new->egid = egid; 795 if (sgid != (gid_t) -1) 796 new->sgid = sgid; 797 new->fsgid = new->egid; 798 799 return commit_creds(new); 800 801 error: 802 abort_creds(new); 803 return retval; 804 } 805 806 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) 807 { 808 const struct cred *cred = current_cred(); 809 int retval; 810 811 if (!(retval = put_user(cred->gid, rgid)) && 812 !(retval = put_user(cred->egid, egid))) 813 retval = put_user(cred->sgid, sgid); 814 815 return retval; 816 } 817 818 819 /* 820 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 821 * is used for "access()" and for the NFS daemon (letting nfsd stay at 822 * whatever uid it wants to). It normally shadows "euid", except when 823 * explicitly set by setfsuid() or for access.. 824 */ 825 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 826 { 827 const struct cred *old; 828 struct cred *new; 829 uid_t old_fsuid; 830 831 new = prepare_creds(); 832 if (!new) 833 return current_fsuid(); 834 old = current_cred(); 835 old_fsuid = old->fsuid; 836 837 if (uid == old->uid || uid == old->euid || 838 uid == old->suid || uid == old->fsuid || 839 capable(CAP_SETUID)) { 840 if (uid != old_fsuid) { 841 new->fsuid = uid; 842 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 843 goto change_okay; 844 } 845 } 846 847 abort_creds(new); 848 return old_fsuid; 849 850 change_okay: 851 commit_creds(new); 852 return old_fsuid; 853 } 854 855 /* 856 * Samma på svenska.. 857 */ 858 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 859 { 860 const struct cred *old; 861 struct cred *new; 862 gid_t old_fsgid; 863 864 new = prepare_creds(); 865 if (!new) 866 return current_fsgid(); 867 old = current_cred(); 868 old_fsgid = old->fsgid; 869 870 if (gid == old->gid || gid == old->egid || 871 gid == old->sgid || gid == old->fsgid || 872 capable(CAP_SETGID)) { 873 if (gid != old_fsgid) { 874 new->fsgid = gid; 875 goto change_okay; 876 } 877 } 878 879 abort_creds(new); 880 return old_fsgid; 881 882 change_okay: 883 commit_creds(new); 884 return old_fsgid; 885 } 886 887 void do_sys_times(struct tms *tms) 888 { 889 cputime_t tgutime, tgstime, cutime, cstime; 890 891 spin_lock_irq(¤t->sighand->siglock); 892 thread_group_times(current, &tgutime, &tgstime); 893 cutime = current->signal->cutime; 894 cstime = current->signal->cstime; 895 spin_unlock_irq(¤t->sighand->siglock); 896 tms->tms_utime = cputime_to_clock_t(tgutime); 897 tms->tms_stime = cputime_to_clock_t(tgstime); 898 tms->tms_cutime = cputime_to_clock_t(cutime); 899 tms->tms_cstime = cputime_to_clock_t(cstime); 900 } 901 902 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 903 { 904 if (tbuf) { 905 struct tms tmp; 906 907 do_sys_times(&tmp); 908 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 909 return -EFAULT; 910 } 911 force_successful_syscall_return(); 912 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 913 } 914 915 /* 916 * This needs some heavy checking ... 917 * I just haven't the stomach for it. I also don't fully 918 * understand sessions/pgrp etc. Let somebody who does explain it. 919 * 920 * OK, I think I have the protection semantics right.... this is really 921 * only important on a multi-user system anyway, to make sure one user 922 * can't send a signal to a process owned by another. -TYT, 12/12/91 923 * 924 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 925 * LBT 04.03.94 926 */ 927 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 928 { 929 struct task_struct *p; 930 struct task_struct *group_leader = current->group_leader; 931 struct pid *pgrp; 932 int err; 933 934 if (!pid) 935 pid = task_pid_vnr(group_leader); 936 if (!pgid) 937 pgid = pid; 938 if (pgid < 0) 939 return -EINVAL; 940 rcu_read_lock(); 941 942 /* From this point forward we keep holding onto the tasklist lock 943 * so that our parent does not change from under us. -DaveM 944 */ 945 write_lock_irq(&tasklist_lock); 946 947 err = -ESRCH; 948 p = find_task_by_vpid(pid); 949 if (!p) 950 goto out; 951 952 err = -EINVAL; 953 if (!thread_group_leader(p)) 954 goto out; 955 956 if (same_thread_group(p->real_parent, group_leader)) { 957 err = -EPERM; 958 if (task_session(p) != task_session(group_leader)) 959 goto out; 960 err = -EACCES; 961 if (p->did_exec) 962 goto out; 963 } else { 964 err = -ESRCH; 965 if (p != group_leader) 966 goto out; 967 } 968 969 err = -EPERM; 970 if (p->signal->leader) 971 goto out; 972 973 pgrp = task_pid(p); 974 if (pgid != pid) { 975 struct task_struct *g; 976 977 pgrp = find_vpid(pgid); 978 g = pid_task(pgrp, PIDTYPE_PGID); 979 if (!g || task_session(g) != task_session(group_leader)) 980 goto out; 981 } 982 983 err = security_task_setpgid(p, pgid); 984 if (err) 985 goto out; 986 987 if (task_pgrp(p) != pgrp) 988 change_pid(p, PIDTYPE_PGID, pgrp); 989 990 err = 0; 991 out: 992 /* All paths lead to here, thus we are safe. -DaveM */ 993 write_unlock_irq(&tasklist_lock); 994 rcu_read_unlock(); 995 return err; 996 } 997 998 SYSCALL_DEFINE1(getpgid, pid_t, pid) 999 { 1000 struct task_struct *p; 1001 struct pid *grp; 1002 int retval; 1003 1004 rcu_read_lock(); 1005 if (!pid) 1006 grp = task_pgrp(current); 1007 else { 1008 retval = -ESRCH; 1009 p = find_task_by_vpid(pid); 1010 if (!p) 1011 goto out; 1012 grp = task_pgrp(p); 1013 if (!grp) 1014 goto out; 1015 1016 retval = security_task_getpgid(p); 1017 if (retval) 1018 goto out; 1019 } 1020 retval = pid_vnr(grp); 1021 out: 1022 rcu_read_unlock(); 1023 return retval; 1024 } 1025 1026 #ifdef __ARCH_WANT_SYS_GETPGRP 1027 1028 SYSCALL_DEFINE0(getpgrp) 1029 { 1030 return sys_getpgid(0); 1031 } 1032 1033 #endif 1034 1035 SYSCALL_DEFINE1(getsid, pid_t, pid) 1036 { 1037 struct task_struct *p; 1038 struct pid *sid; 1039 int retval; 1040 1041 rcu_read_lock(); 1042 if (!pid) 1043 sid = task_session(current); 1044 else { 1045 retval = -ESRCH; 1046 p = find_task_by_vpid(pid); 1047 if (!p) 1048 goto out; 1049 sid = task_session(p); 1050 if (!sid) 1051 goto out; 1052 1053 retval = security_task_getsid(p); 1054 if (retval) 1055 goto out; 1056 } 1057 retval = pid_vnr(sid); 1058 out: 1059 rcu_read_unlock(); 1060 return retval; 1061 } 1062 1063 SYSCALL_DEFINE0(setsid) 1064 { 1065 struct task_struct *group_leader = current->group_leader; 1066 struct pid *sid = task_pid(group_leader); 1067 pid_t session = pid_vnr(sid); 1068 int err = -EPERM; 1069 1070 write_lock_irq(&tasklist_lock); 1071 /* Fail if I am already a session leader */ 1072 if (group_leader->signal->leader) 1073 goto out; 1074 1075 /* Fail if a process group id already exists that equals the 1076 * proposed session id. 1077 */ 1078 if (pid_task(sid, PIDTYPE_PGID)) 1079 goto out; 1080 1081 group_leader->signal->leader = 1; 1082 __set_special_pids(sid); 1083 1084 proc_clear_tty(group_leader); 1085 1086 err = session; 1087 out: 1088 write_unlock_irq(&tasklist_lock); 1089 if (err > 0) { 1090 proc_sid_connector(group_leader); 1091 sched_autogroup_create_attach(group_leader); 1092 } 1093 return err; 1094 } 1095 1096 DECLARE_RWSEM(uts_sem); 1097 1098 #ifdef COMPAT_UTS_MACHINE 1099 #define override_architecture(name) \ 1100 (personality(current->personality) == PER_LINUX32 && \ 1101 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1102 sizeof(COMPAT_UTS_MACHINE))) 1103 #else 1104 #define override_architecture(name) 0 1105 #endif 1106 1107 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1108 { 1109 int errno = 0; 1110 1111 down_read(&uts_sem); 1112 if (copy_to_user(name, utsname(), sizeof *name)) 1113 errno = -EFAULT; 1114 up_read(&uts_sem); 1115 1116 if (!errno && override_architecture(name)) 1117 errno = -EFAULT; 1118 return errno; 1119 } 1120 1121 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1122 /* 1123 * Old cruft 1124 */ 1125 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1126 { 1127 int error = 0; 1128 1129 if (!name) 1130 return -EFAULT; 1131 1132 down_read(&uts_sem); 1133 if (copy_to_user(name, utsname(), sizeof(*name))) 1134 error = -EFAULT; 1135 up_read(&uts_sem); 1136 1137 if (!error && override_architecture(name)) 1138 error = -EFAULT; 1139 return error; 1140 } 1141 1142 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1143 { 1144 int error; 1145 1146 if (!name) 1147 return -EFAULT; 1148 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) 1149 return -EFAULT; 1150 1151 down_read(&uts_sem); 1152 error = __copy_to_user(&name->sysname, &utsname()->sysname, 1153 __OLD_UTS_LEN); 1154 error |= __put_user(0, name->sysname + __OLD_UTS_LEN); 1155 error |= __copy_to_user(&name->nodename, &utsname()->nodename, 1156 __OLD_UTS_LEN); 1157 error |= __put_user(0, name->nodename + __OLD_UTS_LEN); 1158 error |= __copy_to_user(&name->release, &utsname()->release, 1159 __OLD_UTS_LEN); 1160 error |= __put_user(0, name->release + __OLD_UTS_LEN); 1161 error |= __copy_to_user(&name->version, &utsname()->version, 1162 __OLD_UTS_LEN); 1163 error |= __put_user(0, name->version + __OLD_UTS_LEN); 1164 error |= __copy_to_user(&name->machine, &utsname()->machine, 1165 __OLD_UTS_LEN); 1166 error |= __put_user(0, name->machine + __OLD_UTS_LEN); 1167 up_read(&uts_sem); 1168 1169 if (!error && override_architecture(name)) 1170 error = -EFAULT; 1171 return error ? -EFAULT : 0; 1172 } 1173 #endif 1174 1175 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1176 { 1177 int errno; 1178 char tmp[__NEW_UTS_LEN]; 1179 1180 if (!capable(CAP_SYS_ADMIN)) 1181 return -EPERM; 1182 if (len < 0 || len > __NEW_UTS_LEN) 1183 return -EINVAL; 1184 down_write(&uts_sem); 1185 errno = -EFAULT; 1186 if (!copy_from_user(tmp, name, len)) { 1187 struct new_utsname *u = utsname(); 1188 1189 memcpy(u->nodename, tmp, len); 1190 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1191 errno = 0; 1192 } 1193 up_write(&uts_sem); 1194 return errno; 1195 } 1196 1197 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1198 1199 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1200 { 1201 int i, errno; 1202 struct new_utsname *u; 1203 1204 if (len < 0) 1205 return -EINVAL; 1206 down_read(&uts_sem); 1207 u = utsname(); 1208 i = 1 + strlen(u->nodename); 1209 if (i > len) 1210 i = len; 1211 errno = 0; 1212 if (copy_to_user(name, u->nodename, i)) 1213 errno = -EFAULT; 1214 up_read(&uts_sem); 1215 return errno; 1216 } 1217 1218 #endif 1219 1220 /* 1221 * Only setdomainname; getdomainname can be implemented by calling 1222 * uname() 1223 */ 1224 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1225 { 1226 int errno; 1227 char tmp[__NEW_UTS_LEN]; 1228 1229 if (!capable(CAP_SYS_ADMIN)) 1230 return -EPERM; 1231 if (len < 0 || len > __NEW_UTS_LEN) 1232 return -EINVAL; 1233 1234 down_write(&uts_sem); 1235 errno = -EFAULT; 1236 if (!copy_from_user(tmp, name, len)) { 1237 struct new_utsname *u = utsname(); 1238 1239 memcpy(u->domainname, tmp, len); 1240 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1241 errno = 0; 1242 } 1243 up_write(&uts_sem); 1244 return errno; 1245 } 1246 1247 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1248 { 1249 struct rlimit value; 1250 int ret; 1251 1252 ret = do_prlimit(current, resource, NULL, &value); 1253 if (!ret) 1254 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1255 1256 return ret; 1257 } 1258 1259 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1260 1261 /* 1262 * Back compatibility for getrlimit. Needed for some apps. 1263 */ 1264 1265 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1266 struct rlimit __user *, rlim) 1267 { 1268 struct rlimit x; 1269 if (resource >= RLIM_NLIMITS) 1270 return -EINVAL; 1271 1272 task_lock(current->group_leader); 1273 x = current->signal->rlim[resource]; 1274 task_unlock(current->group_leader); 1275 if (x.rlim_cur > 0x7FFFFFFF) 1276 x.rlim_cur = 0x7FFFFFFF; 1277 if (x.rlim_max > 0x7FFFFFFF) 1278 x.rlim_max = 0x7FFFFFFF; 1279 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1280 } 1281 1282 #endif 1283 1284 static inline bool rlim64_is_infinity(__u64 rlim64) 1285 { 1286 #if BITS_PER_LONG < 64 1287 return rlim64 >= ULONG_MAX; 1288 #else 1289 return rlim64 == RLIM64_INFINITY; 1290 #endif 1291 } 1292 1293 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1294 { 1295 if (rlim->rlim_cur == RLIM_INFINITY) 1296 rlim64->rlim_cur = RLIM64_INFINITY; 1297 else 1298 rlim64->rlim_cur = rlim->rlim_cur; 1299 if (rlim->rlim_max == RLIM_INFINITY) 1300 rlim64->rlim_max = RLIM64_INFINITY; 1301 else 1302 rlim64->rlim_max = rlim->rlim_max; 1303 } 1304 1305 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1306 { 1307 if (rlim64_is_infinity(rlim64->rlim_cur)) 1308 rlim->rlim_cur = RLIM_INFINITY; 1309 else 1310 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1311 if (rlim64_is_infinity(rlim64->rlim_max)) 1312 rlim->rlim_max = RLIM_INFINITY; 1313 else 1314 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1315 } 1316 1317 /* make sure you are allowed to change @tsk limits before calling this */ 1318 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1319 struct rlimit *new_rlim, struct rlimit *old_rlim) 1320 { 1321 struct rlimit *rlim; 1322 int retval = 0; 1323 1324 if (resource >= RLIM_NLIMITS) 1325 return -EINVAL; 1326 if (new_rlim) { 1327 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1328 return -EINVAL; 1329 if (resource == RLIMIT_NOFILE && 1330 new_rlim->rlim_max > sysctl_nr_open) 1331 return -EPERM; 1332 } 1333 1334 /* protect tsk->signal and tsk->sighand from disappearing */ 1335 read_lock(&tasklist_lock); 1336 if (!tsk->sighand) { 1337 retval = -ESRCH; 1338 goto out; 1339 } 1340 1341 rlim = tsk->signal->rlim + resource; 1342 task_lock(tsk->group_leader); 1343 if (new_rlim) { 1344 if (new_rlim->rlim_max > rlim->rlim_max && 1345 !capable(CAP_SYS_RESOURCE)) 1346 retval = -EPERM; 1347 if (!retval) 1348 retval = security_task_setrlimit(tsk->group_leader, 1349 resource, new_rlim); 1350 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { 1351 /* 1352 * The caller is asking for an immediate RLIMIT_CPU 1353 * expiry. But we use the zero value to mean "it was 1354 * never set". So let's cheat and make it one second 1355 * instead 1356 */ 1357 new_rlim->rlim_cur = 1; 1358 } 1359 } 1360 if (!retval) { 1361 if (old_rlim) 1362 *old_rlim = *rlim; 1363 if (new_rlim) 1364 *rlim = *new_rlim; 1365 } 1366 task_unlock(tsk->group_leader); 1367 1368 /* 1369 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1370 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1371 * very long-standing error, and fixing it now risks breakage of 1372 * applications, so we live with it 1373 */ 1374 if (!retval && new_rlim && resource == RLIMIT_CPU && 1375 new_rlim->rlim_cur != RLIM_INFINITY) 1376 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1377 out: 1378 read_unlock(&tasklist_lock); 1379 return retval; 1380 } 1381 1382 /* rcu lock must be held */ 1383 static int check_prlimit_permission(struct task_struct *task) 1384 { 1385 const struct cred *cred = current_cred(), *tcred; 1386 1387 tcred = __task_cred(task); 1388 if (current != task && 1389 (cred->uid != tcred->euid || 1390 cred->uid != tcred->suid || 1391 cred->uid != tcred->uid || 1392 cred->gid != tcred->egid || 1393 cred->gid != tcred->sgid || 1394 cred->gid != tcred->gid) && 1395 !capable(CAP_SYS_RESOURCE)) { 1396 return -EPERM; 1397 } 1398 1399 return 0; 1400 } 1401 1402 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1403 const struct rlimit64 __user *, new_rlim, 1404 struct rlimit64 __user *, old_rlim) 1405 { 1406 struct rlimit64 old64, new64; 1407 struct rlimit old, new; 1408 struct task_struct *tsk; 1409 int ret; 1410 1411 if (new_rlim) { 1412 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1413 return -EFAULT; 1414 rlim64_to_rlim(&new64, &new); 1415 } 1416 1417 rcu_read_lock(); 1418 tsk = pid ? find_task_by_vpid(pid) : current; 1419 if (!tsk) { 1420 rcu_read_unlock(); 1421 return -ESRCH; 1422 } 1423 ret = check_prlimit_permission(tsk); 1424 if (ret) { 1425 rcu_read_unlock(); 1426 return ret; 1427 } 1428 get_task_struct(tsk); 1429 rcu_read_unlock(); 1430 1431 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1432 old_rlim ? &old : NULL); 1433 1434 if (!ret && old_rlim) { 1435 rlim_to_rlim64(&old, &old64); 1436 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1437 ret = -EFAULT; 1438 } 1439 1440 put_task_struct(tsk); 1441 return ret; 1442 } 1443 1444 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1445 { 1446 struct rlimit new_rlim; 1447 1448 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1449 return -EFAULT; 1450 return do_prlimit(current, resource, &new_rlim, NULL); 1451 } 1452 1453 /* 1454 * It would make sense to put struct rusage in the task_struct, 1455 * except that would make the task_struct be *really big*. After 1456 * task_struct gets moved into malloc'ed memory, it would 1457 * make sense to do this. It will make moving the rest of the information 1458 * a lot simpler! (Which we're not doing right now because we're not 1459 * measuring them yet). 1460 * 1461 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1462 * races with threads incrementing their own counters. But since word 1463 * reads are atomic, we either get new values or old values and we don't 1464 * care which for the sums. We always take the siglock to protect reading 1465 * the c* fields from p->signal from races with exit.c updating those 1466 * fields when reaping, so a sample either gets all the additions of a 1467 * given child after it's reaped, or none so this sample is before reaping. 1468 * 1469 * Locking: 1470 * We need to take the siglock for CHILDEREN, SELF and BOTH 1471 * for the cases current multithreaded, non-current single threaded 1472 * non-current multithreaded. Thread traversal is now safe with 1473 * the siglock held. 1474 * Strictly speaking, we donot need to take the siglock if we are current and 1475 * single threaded, as no one else can take our signal_struct away, no one 1476 * else can reap the children to update signal->c* counters, and no one else 1477 * can race with the signal-> fields. If we do not take any lock, the 1478 * signal-> fields could be read out of order while another thread was just 1479 * exiting. So we should place a read memory barrier when we avoid the lock. 1480 * On the writer side, write memory barrier is implied in __exit_signal 1481 * as __exit_signal releases the siglock spinlock after updating the signal-> 1482 * fields. But we don't do this yet to keep things simple. 1483 * 1484 */ 1485 1486 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1487 { 1488 r->ru_nvcsw += t->nvcsw; 1489 r->ru_nivcsw += t->nivcsw; 1490 r->ru_minflt += t->min_flt; 1491 r->ru_majflt += t->maj_flt; 1492 r->ru_inblock += task_io_get_inblock(t); 1493 r->ru_oublock += task_io_get_oublock(t); 1494 } 1495 1496 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1497 { 1498 struct task_struct *t; 1499 unsigned long flags; 1500 cputime_t tgutime, tgstime, utime, stime; 1501 unsigned long maxrss = 0; 1502 1503 memset((char *) r, 0, sizeof *r); 1504 utime = stime = cputime_zero; 1505 1506 if (who == RUSAGE_THREAD) { 1507 task_times(current, &utime, &stime); 1508 accumulate_thread_rusage(p, r); 1509 maxrss = p->signal->maxrss; 1510 goto out; 1511 } 1512 1513 if (!lock_task_sighand(p, &flags)) 1514 return; 1515 1516 switch (who) { 1517 case RUSAGE_BOTH: 1518 case RUSAGE_CHILDREN: 1519 utime = p->signal->cutime; 1520 stime = p->signal->cstime; 1521 r->ru_nvcsw = p->signal->cnvcsw; 1522 r->ru_nivcsw = p->signal->cnivcsw; 1523 r->ru_minflt = p->signal->cmin_flt; 1524 r->ru_majflt = p->signal->cmaj_flt; 1525 r->ru_inblock = p->signal->cinblock; 1526 r->ru_oublock = p->signal->coublock; 1527 maxrss = p->signal->cmaxrss; 1528 1529 if (who == RUSAGE_CHILDREN) 1530 break; 1531 1532 case RUSAGE_SELF: 1533 thread_group_times(p, &tgutime, &tgstime); 1534 utime = cputime_add(utime, tgutime); 1535 stime = cputime_add(stime, tgstime); 1536 r->ru_nvcsw += p->signal->nvcsw; 1537 r->ru_nivcsw += p->signal->nivcsw; 1538 r->ru_minflt += p->signal->min_flt; 1539 r->ru_majflt += p->signal->maj_flt; 1540 r->ru_inblock += p->signal->inblock; 1541 r->ru_oublock += p->signal->oublock; 1542 if (maxrss < p->signal->maxrss) 1543 maxrss = p->signal->maxrss; 1544 t = p; 1545 do { 1546 accumulate_thread_rusage(t, r); 1547 t = next_thread(t); 1548 } while (t != p); 1549 break; 1550 1551 default: 1552 BUG(); 1553 } 1554 unlock_task_sighand(p, &flags); 1555 1556 out: 1557 cputime_to_timeval(utime, &r->ru_utime); 1558 cputime_to_timeval(stime, &r->ru_stime); 1559 1560 if (who != RUSAGE_CHILDREN) { 1561 struct mm_struct *mm = get_task_mm(p); 1562 if (mm) { 1563 setmax_mm_hiwater_rss(&maxrss, mm); 1564 mmput(mm); 1565 } 1566 } 1567 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1568 } 1569 1570 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1571 { 1572 struct rusage r; 1573 k_getrusage(p, who, &r); 1574 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1575 } 1576 1577 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1578 { 1579 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1580 who != RUSAGE_THREAD) 1581 return -EINVAL; 1582 return getrusage(current, who, ru); 1583 } 1584 1585 SYSCALL_DEFINE1(umask, int, mask) 1586 { 1587 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1588 return mask; 1589 } 1590 1591 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 1592 unsigned long, arg4, unsigned long, arg5) 1593 { 1594 struct task_struct *me = current; 1595 unsigned char comm[sizeof(me->comm)]; 1596 long error; 1597 1598 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1599 if (error != -ENOSYS) 1600 return error; 1601 1602 error = 0; 1603 switch (option) { 1604 case PR_SET_PDEATHSIG: 1605 if (!valid_signal(arg2)) { 1606 error = -EINVAL; 1607 break; 1608 } 1609 me->pdeath_signal = arg2; 1610 error = 0; 1611 break; 1612 case PR_GET_PDEATHSIG: 1613 error = put_user(me->pdeath_signal, (int __user *)arg2); 1614 break; 1615 case PR_GET_DUMPABLE: 1616 error = get_dumpable(me->mm); 1617 break; 1618 case PR_SET_DUMPABLE: 1619 if (arg2 < 0 || arg2 > 1) { 1620 error = -EINVAL; 1621 break; 1622 } 1623 set_dumpable(me->mm, arg2); 1624 error = 0; 1625 break; 1626 1627 case PR_SET_UNALIGN: 1628 error = SET_UNALIGN_CTL(me, arg2); 1629 break; 1630 case PR_GET_UNALIGN: 1631 error = GET_UNALIGN_CTL(me, arg2); 1632 break; 1633 case PR_SET_FPEMU: 1634 error = SET_FPEMU_CTL(me, arg2); 1635 break; 1636 case PR_GET_FPEMU: 1637 error = GET_FPEMU_CTL(me, arg2); 1638 break; 1639 case PR_SET_FPEXC: 1640 error = SET_FPEXC_CTL(me, arg2); 1641 break; 1642 case PR_GET_FPEXC: 1643 error = GET_FPEXC_CTL(me, arg2); 1644 break; 1645 case PR_GET_TIMING: 1646 error = PR_TIMING_STATISTICAL; 1647 break; 1648 case PR_SET_TIMING: 1649 if (arg2 != PR_TIMING_STATISTICAL) 1650 error = -EINVAL; 1651 else 1652 error = 0; 1653 break; 1654 1655 case PR_SET_NAME: 1656 comm[sizeof(me->comm)-1] = 0; 1657 if (strncpy_from_user(comm, (char __user *)arg2, 1658 sizeof(me->comm) - 1) < 0) 1659 return -EFAULT; 1660 set_task_comm(me, comm); 1661 return 0; 1662 case PR_GET_NAME: 1663 get_task_comm(comm, me); 1664 if (copy_to_user((char __user *)arg2, comm, 1665 sizeof(comm))) 1666 return -EFAULT; 1667 return 0; 1668 case PR_GET_ENDIAN: 1669 error = GET_ENDIAN(me, arg2); 1670 break; 1671 case PR_SET_ENDIAN: 1672 error = SET_ENDIAN(me, arg2); 1673 break; 1674 1675 case PR_GET_SECCOMP: 1676 error = prctl_get_seccomp(); 1677 break; 1678 case PR_SET_SECCOMP: 1679 error = prctl_set_seccomp(arg2); 1680 break; 1681 case PR_GET_TSC: 1682 error = GET_TSC_CTL(arg2); 1683 break; 1684 case PR_SET_TSC: 1685 error = SET_TSC_CTL(arg2); 1686 break; 1687 case PR_TASK_PERF_EVENTS_DISABLE: 1688 error = perf_event_task_disable(); 1689 break; 1690 case PR_TASK_PERF_EVENTS_ENABLE: 1691 error = perf_event_task_enable(); 1692 break; 1693 case PR_GET_TIMERSLACK: 1694 error = current->timer_slack_ns; 1695 break; 1696 case PR_SET_TIMERSLACK: 1697 if (arg2 <= 0) 1698 current->timer_slack_ns = 1699 current->default_timer_slack_ns; 1700 else 1701 current->timer_slack_ns = arg2; 1702 error = 0; 1703 break; 1704 case PR_MCE_KILL: 1705 if (arg4 | arg5) 1706 return -EINVAL; 1707 switch (arg2) { 1708 case PR_MCE_KILL_CLEAR: 1709 if (arg3 != 0) 1710 return -EINVAL; 1711 current->flags &= ~PF_MCE_PROCESS; 1712 break; 1713 case PR_MCE_KILL_SET: 1714 current->flags |= PF_MCE_PROCESS; 1715 if (arg3 == PR_MCE_KILL_EARLY) 1716 current->flags |= PF_MCE_EARLY; 1717 else if (arg3 == PR_MCE_KILL_LATE) 1718 current->flags &= ~PF_MCE_EARLY; 1719 else if (arg3 == PR_MCE_KILL_DEFAULT) 1720 current->flags &= 1721 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 1722 else 1723 return -EINVAL; 1724 break; 1725 default: 1726 return -EINVAL; 1727 } 1728 error = 0; 1729 break; 1730 case PR_MCE_KILL_GET: 1731 if (arg2 | arg3 | arg4 | arg5) 1732 return -EINVAL; 1733 if (current->flags & PF_MCE_PROCESS) 1734 error = (current->flags & PF_MCE_EARLY) ? 1735 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 1736 else 1737 error = PR_MCE_KILL_DEFAULT; 1738 break; 1739 default: 1740 error = -EINVAL; 1741 break; 1742 } 1743 return error; 1744 } 1745 1746 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 1747 struct getcpu_cache __user *, unused) 1748 { 1749 int err = 0; 1750 int cpu = raw_smp_processor_id(); 1751 if (cpup) 1752 err |= put_user(cpu, cpup); 1753 if (nodep) 1754 err |= put_user(cpu_to_node(cpu), nodep); 1755 return err ? -EFAULT : 0; 1756 } 1757 1758 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1759 1760 static void argv_cleanup(struct subprocess_info *info) 1761 { 1762 argv_free(info->argv); 1763 } 1764 1765 /** 1766 * orderly_poweroff - Trigger an orderly system poweroff 1767 * @force: force poweroff if command execution fails 1768 * 1769 * This may be called from any context to trigger a system shutdown. 1770 * If the orderly shutdown fails, it will force an immediate shutdown. 1771 */ 1772 int orderly_poweroff(bool force) 1773 { 1774 int argc; 1775 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1776 static char *envp[] = { 1777 "HOME=/", 1778 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1779 NULL 1780 }; 1781 int ret = -ENOMEM; 1782 struct subprocess_info *info; 1783 1784 if (argv == NULL) { 1785 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1786 __func__, poweroff_cmd); 1787 goto out; 1788 } 1789 1790 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 1791 if (info == NULL) { 1792 argv_free(argv); 1793 goto out; 1794 } 1795 1796 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); 1797 1798 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1799 1800 out: 1801 if (ret && force) { 1802 printk(KERN_WARNING "Failed to start orderly shutdown: " 1803 "forcing the issue\n"); 1804 1805 /* I guess this should try to kick off some daemon to 1806 sync and poweroff asap. Or not even bother syncing 1807 if we're doing an emergency shutdown? */ 1808 emergency_sync(); 1809 kernel_power_off(); 1810 } 1811 1812 return ret; 1813 } 1814 EXPORT_SYMBOL_GPL(orderly_poweroff); 1815