xref: /openbmc/linux/kernel/sys.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
52 
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
64 
65 #include <linux/nospec.h>
66 
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/unistd.h>
74 
75 #include "uid16.h"
76 
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
79 #endif
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef SET_FPEMU_CTL
84 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef GET_FPEMU_CTL
87 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef SET_FPEXC_CTL
90 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_FPEXC_CTL
93 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_ENDIAN
96 # define GET_ENDIAN(a, b)	(-EINVAL)
97 #endif
98 #ifndef SET_ENDIAN
99 # define SET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef GET_TSC_CTL
102 # define GET_TSC_CTL(a)		(-EINVAL)
103 #endif
104 #ifndef SET_TSC_CTL
105 # define SET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a)		(-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b)	(-EINVAL)
112 #endif
113 #ifndef SVE_SET_VL
114 # define SVE_SET_VL(a)		(-EINVAL)
115 #endif
116 #ifndef SVE_GET_VL
117 # define SVE_GET_VL()		(-EINVAL)
118 #endif
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
121 #endif
122 #ifndef SET_TAGGED_ADDR_CTRL
123 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
124 #endif
125 #ifndef GET_TAGGED_ADDR_CTRL
126 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
127 #endif
128 
129 /*
130  * this is where the system-wide overflow UID and GID are defined, for
131  * architectures that now have 32-bit UID/GID but didn't in the past
132  */
133 
134 int overflowuid = DEFAULT_OVERFLOWUID;
135 int overflowgid = DEFAULT_OVERFLOWGID;
136 
137 EXPORT_SYMBOL(overflowuid);
138 EXPORT_SYMBOL(overflowgid);
139 
140 /*
141  * the same as above, but for filesystems which can only store a 16-bit
142  * UID and GID. as such, this is needed on all architectures
143  */
144 
145 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
146 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
147 
148 EXPORT_SYMBOL(fs_overflowuid);
149 EXPORT_SYMBOL(fs_overflowgid);
150 
151 /*
152  * Returns true if current's euid is same as p's uid or euid,
153  * or has CAP_SYS_NICE to p's user_ns.
154  *
155  * Called with rcu_read_lock, creds are safe
156  */
157 static bool set_one_prio_perm(struct task_struct *p)
158 {
159 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
160 
161 	if (uid_eq(pcred->uid,  cred->euid) ||
162 	    uid_eq(pcred->euid, cred->euid))
163 		return true;
164 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
165 		return true;
166 	return false;
167 }
168 
169 /*
170  * set the priority of a task
171  * - the caller must hold the RCU read lock
172  */
173 static int set_one_prio(struct task_struct *p, int niceval, int error)
174 {
175 	int no_nice;
176 
177 	if (!set_one_prio_perm(p)) {
178 		error = -EPERM;
179 		goto out;
180 	}
181 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
182 		error = -EACCES;
183 		goto out;
184 	}
185 	no_nice = security_task_setnice(p, niceval);
186 	if (no_nice) {
187 		error = no_nice;
188 		goto out;
189 	}
190 	if (error == -ESRCH)
191 		error = 0;
192 	set_user_nice(p, niceval);
193 out:
194 	return error;
195 }
196 
197 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
198 {
199 	struct task_struct *g, *p;
200 	struct user_struct *user;
201 	const struct cred *cred = current_cred();
202 	int error = -EINVAL;
203 	struct pid *pgrp;
204 	kuid_t uid;
205 
206 	if (which > PRIO_USER || which < PRIO_PROCESS)
207 		goto out;
208 
209 	/* normalize: avoid signed division (rounding problems) */
210 	error = -ESRCH;
211 	if (niceval < MIN_NICE)
212 		niceval = MIN_NICE;
213 	if (niceval > MAX_NICE)
214 		niceval = MAX_NICE;
215 
216 	rcu_read_lock();
217 	read_lock(&tasklist_lock);
218 	switch (which) {
219 	case PRIO_PROCESS:
220 		if (who)
221 			p = find_task_by_vpid(who);
222 		else
223 			p = current;
224 		if (p)
225 			error = set_one_prio(p, niceval, error);
226 		break;
227 	case PRIO_PGRP:
228 		if (who)
229 			pgrp = find_vpid(who);
230 		else
231 			pgrp = task_pgrp(current);
232 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
233 			error = set_one_prio(p, niceval, error);
234 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
235 		break;
236 	case PRIO_USER:
237 		uid = make_kuid(cred->user_ns, who);
238 		user = cred->user;
239 		if (!who)
240 			uid = cred->uid;
241 		else if (!uid_eq(uid, cred->uid)) {
242 			user = find_user(uid);
243 			if (!user)
244 				goto out_unlock;	/* No processes for this user */
245 		}
246 		do_each_thread(g, p) {
247 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
248 				error = set_one_prio(p, niceval, error);
249 		} while_each_thread(g, p);
250 		if (!uid_eq(uid, cred->uid))
251 			free_uid(user);		/* For find_user() */
252 		break;
253 	}
254 out_unlock:
255 	read_unlock(&tasklist_lock);
256 	rcu_read_unlock();
257 out:
258 	return error;
259 }
260 
261 /*
262  * Ugh. To avoid negative return values, "getpriority()" will
263  * not return the normal nice-value, but a negated value that
264  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
265  * to stay compatible.
266  */
267 SYSCALL_DEFINE2(getpriority, int, which, int, who)
268 {
269 	struct task_struct *g, *p;
270 	struct user_struct *user;
271 	const struct cred *cred = current_cred();
272 	long niceval, retval = -ESRCH;
273 	struct pid *pgrp;
274 	kuid_t uid;
275 
276 	if (which > PRIO_USER || which < PRIO_PROCESS)
277 		return -EINVAL;
278 
279 	rcu_read_lock();
280 	read_lock(&tasklist_lock);
281 	switch (which) {
282 	case PRIO_PROCESS:
283 		if (who)
284 			p = find_task_by_vpid(who);
285 		else
286 			p = current;
287 		if (p) {
288 			niceval = nice_to_rlimit(task_nice(p));
289 			if (niceval > retval)
290 				retval = niceval;
291 		}
292 		break;
293 	case PRIO_PGRP:
294 		if (who)
295 			pgrp = find_vpid(who);
296 		else
297 			pgrp = task_pgrp(current);
298 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
299 			niceval = nice_to_rlimit(task_nice(p));
300 			if (niceval > retval)
301 				retval = niceval;
302 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
303 		break;
304 	case PRIO_USER:
305 		uid = make_kuid(cred->user_ns, who);
306 		user = cred->user;
307 		if (!who)
308 			uid = cred->uid;
309 		else if (!uid_eq(uid, cred->uid)) {
310 			user = find_user(uid);
311 			if (!user)
312 				goto out_unlock;	/* No processes for this user */
313 		}
314 		do_each_thread(g, p) {
315 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
316 				niceval = nice_to_rlimit(task_nice(p));
317 				if (niceval > retval)
318 					retval = niceval;
319 			}
320 		} while_each_thread(g, p);
321 		if (!uid_eq(uid, cred->uid))
322 			free_uid(user);		/* for find_user() */
323 		break;
324 	}
325 out_unlock:
326 	read_unlock(&tasklist_lock);
327 	rcu_read_unlock();
328 
329 	return retval;
330 }
331 
332 /*
333  * Unprivileged users may change the real gid to the effective gid
334  * or vice versa.  (BSD-style)
335  *
336  * If you set the real gid at all, or set the effective gid to a value not
337  * equal to the real gid, then the saved gid is set to the new effective gid.
338  *
339  * This makes it possible for a setgid program to completely drop its
340  * privileges, which is often a useful assertion to make when you are doing
341  * a security audit over a program.
342  *
343  * The general idea is that a program which uses just setregid() will be
344  * 100% compatible with BSD.  A program which uses just setgid() will be
345  * 100% compatible with POSIX with saved IDs.
346  *
347  * SMP: There are not races, the GIDs are checked only by filesystem
348  *      operations (as far as semantic preservation is concerned).
349  */
350 #ifdef CONFIG_MULTIUSER
351 long __sys_setregid(gid_t rgid, gid_t egid)
352 {
353 	struct user_namespace *ns = current_user_ns();
354 	const struct cred *old;
355 	struct cred *new;
356 	int retval;
357 	kgid_t krgid, kegid;
358 
359 	krgid = make_kgid(ns, rgid);
360 	kegid = make_kgid(ns, egid);
361 
362 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
363 		return -EINVAL;
364 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
365 		return -EINVAL;
366 
367 	new = prepare_creds();
368 	if (!new)
369 		return -ENOMEM;
370 	old = current_cred();
371 
372 	retval = -EPERM;
373 	if (rgid != (gid_t) -1) {
374 		if (gid_eq(old->gid, krgid) ||
375 		    gid_eq(old->egid, krgid) ||
376 		    ns_capable(old->user_ns, CAP_SETGID))
377 			new->gid = krgid;
378 		else
379 			goto error;
380 	}
381 	if (egid != (gid_t) -1) {
382 		if (gid_eq(old->gid, kegid) ||
383 		    gid_eq(old->egid, kegid) ||
384 		    gid_eq(old->sgid, kegid) ||
385 		    ns_capable(old->user_ns, CAP_SETGID))
386 			new->egid = kegid;
387 		else
388 			goto error;
389 	}
390 
391 	if (rgid != (gid_t) -1 ||
392 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
393 		new->sgid = new->egid;
394 	new->fsgid = new->egid;
395 
396 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
397 	if (retval < 0)
398 		goto error;
399 
400 	return commit_creds(new);
401 
402 error:
403 	abort_creds(new);
404 	return retval;
405 }
406 
407 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
408 {
409 	return __sys_setregid(rgid, egid);
410 }
411 
412 /*
413  * setgid() is implemented like SysV w/ SAVED_IDS
414  *
415  * SMP: Same implicit races as above.
416  */
417 long __sys_setgid(gid_t gid)
418 {
419 	struct user_namespace *ns = current_user_ns();
420 	const struct cred *old;
421 	struct cred *new;
422 	int retval;
423 	kgid_t kgid;
424 
425 	kgid = make_kgid(ns, gid);
426 	if (!gid_valid(kgid))
427 		return -EINVAL;
428 
429 	new = prepare_creds();
430 	if (!new)
431 		return -ENOMEM;
432 	old = current_cred();
433 
434 	retval = -EPERM;
435 	if (ns_capable(old->user_ns, CAP_SETGID))
436 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
437 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
438 		new->egid = new->fsgid = kgid;
439 	else
440 		goto error;
441 
442 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
443 	if (retval < 0)
444 		goto error;
445 
446 	return commit_creds(new);
447 
448 error:
449 	abort_creds(new);
450 	return retval;
451 }
452 
453 SYSCALL_DEFINE1(setgid, gid_t, gid)
454 {
455 	return __sys_setgid(gid);
456 }
457 
458 /*
459  * change the user struct in a credentials set to match the new UID
460  */
461 static int set_user(struct cred *new)
462 {
463 	struct user_struct *new_user;
464 
465 	new_user = alloc_uid(new->uid);
466 	if (!new_user)
467 		return -EAGAIN;
468 
469 	/*
470 	 * We don't fail in case of NPROC limit excess here because too many
471 	 * poorly written programs don't check set*uid() return code, assuming
472 	 * it never fails if called by root.  We may still enforce NPROC limit
473 	 * for programs doing set*uid()+execve() by harmlessly deferring the
474 	 * failure to the execve() stage.
475 	 */
476 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
477 			new_user != INIT_USER)
478 		current->flags |= PF_NPROC_EXCEEDED;
479 	else
480 		current->flags &= ~PF_NPROC_EXCEEDED;
481 
482 	free_uid(new->user);
483 	new->user = new_user;
484 	return 0;
485 }
486 
487 /*
488  * Unprivileged users may change the real uid to the effective uid
489  * or vice versa.  (BSD-style)
490  *
491  * If you set the real uid at all, or set the effective uid to a value not
492  * equal to the real uid, then the saved uid is set to the new effective uid.
493  *
494  * This makes it possible for a setuid program to completely drop its
495  * privileges, which is often a useful assertion to make when you are doing
496  * a security audit over a program.
497  *
498  * The general idea is that a program which uses just setreuid() will be
499  * 100% compatible with BSD.  A program which uses just setuid() will be
500  * 100% compatible with POSIX with saved IDs.
501  */
502 long __sys_setreuid(uid_t ruid, uid_t euid)
503 {
504 	struct user_namespace *ns = current_user_ns();
505 	const struct cred *old;
506 	struct cred *new;
507 	int retval;
508 	kuid_t kruid, keuid;
509 
510 	kruid = make_kuid(ns, ruid);
511 	keuid = make_kuid(ns, euid);
512 
513 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
514 		return -EINVAL;
515 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
516 		return -EINVAL;
517 
518 	new = prepare_creds();
519 	if (!new)
520 		return -ENOMEM;
521 	old = current_cred();
522 
523 	retval = -EPERM;
524 	if (ruid != (uid_t) -1) {
525 		new->uid = kruid;
526 		if (!uid_eq(old->uid, kruid) &&
527 		    !uid_eq(old->euid, kruid) &&
528 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
529 			goto error;
530 	}
531 
532 	if (euid != (uid_t) -1) {
533 		new->euid = keuid;
534 		if (!uid_eq(old->uid, keuid) &&
535 		    !uid_eq(old->euid, keuid) &&
536 		    !uid_eq(old->suid, keuid) &&
537 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
538 			goto error;
539 	}
540 
541 	if (!uid_eq(new->uid, old->uid)) {
542 		retval = set_user(new);
543 		if (retval < 0)
544 			goto error;
545 	}
546 	if (ruid != (uid_t) -1 ||
547 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
548 		new->suid = new->euid;
549 	new->fsuid = new->euid;
550 
551 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
552 	if (retval < 0)
553 		goto error;
554 
555 	return commit_creds(new);
556 
557 error:
558 	abort_creds(new);
559 	return retval;
560 }
561 
562 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
563 {
564 	return __sys_setreuid(ruid, euid);
565 }
566 
567 /*
568  * setuid() is implemented like SysV with SAVED_IDS
569  *
570  * Note that SAVED_ID's is deficient in that a setuid root program
571  * like sendmail, for example, cannot set its uid to be a normal
572  * user and then switch back, because if you're root, setuid() sets
573  * the saved uid too.  If you don't like this, blame the bright people
574  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
575  * will allow a root program to temporarily drop privileges and be able to
576  * regain them by swapping the real and effective uid.
577  */
578 long __sys_setuid(uid_t uid)
579 {
580 	struct user_namespace *ns = current_user_ns();
581 	const struct cred *old;
582 	struct cred *new;
583 	int retval;
584 	kuid_t kuid;
585 
586 	kuid = make_kuid(ns, uid);
587 	if (!uid_valid(kuid))
588 		return -EINVAL;
589 
590 	new = prepare_creds();
591 	if (!new)
592 		return -ENOMEM;
593 	old = current_cred();
594 
595 	retval = -EPERM;
596 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
597 		new->suid = new->uid = kuid;
598 		if (!uid_eq(kuid, old->uid)) {
599 			retval = set_user(new);
600 			if (retval < 0)
601 				goto error;
602 		}
603 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
604 		goto error;
605 	}
606 
607 	new->fsuid = new->euid = kuid;
608 
609 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
610 	if (retval < 0)
611 		goto error;
612 
613 	return commit_creds(new);
614 
615 error:
616 	abort_creds(new);
617 	return retval;
618 }
619 
620 SYSCALL_DEFINE1(setuid, uid_t, uid)
621 {
622 	return __sys_setuid(uid);
623 }
624 
625 
626 /*
627  * This function implements a generic ability to update ruid, euid,
628  * and suid.  This allows you to implement the 4.4 compatible seteuid().
629  */
630 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
631 {
632 	struct user_namespace *ns = current_user_ns();
633 	const struct cred *old;
634 	struct cred *new;
635 	int retval;
636 	kuid_t kruid, keuid, ksuid;
637 
638 	kruid = make_kuid(ns, ruid);
639 	keuid = make_kuid(ns, euid);
640 	ksuid = make_kuid(ns, suid);
641 
642 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
643 		return -EINVAL;
644 
645 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
646 		return -EINVAL;
647 
648 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
649 		return -EINVAL;
650 
651 	new = prepare_creds();
652 	if (!new)
653 		return -ENOMEM;
654 
655 	old = current_cred();
656 
657 	retval = -EPERM;
658 	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
659 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
660 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
661 			goto error;
662 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
663 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
664 			goto error;
665 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
666 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
667 			goto error;
668 	}
669 
670 	if (ruid != (uid_t) -1) {
671 		new->uid = kruid;
672 		if (!uid_eq(kruid, old->uid)) {
673 			retval = set_user(new);
674 			if (retval < 0)
675 				goto error;
676 		}
677 	}
678 	if (euid != (uid_t) -1)
679 		new->euid = keuid;
680 	if (suid != (uid_t) -1)
681 		new->suid = ksuid;
682 	new->fsuid = new->euid;
683 
684 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
685 	if (retval < 0)
686 		goto error;
687 
688 	return commit_creds(new);
689 
690 error:
691 	abort_creds(new);
692 	return retval;
693 }
694 
695 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
696 {
697 	return __sys_setresuid(ruid, euid, suid);
698 }
699 
700 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
701 {
702 	const struct cred *cred = current_cred();
703 	int retval;
704 	uid_t ruid, euid, suid;
705 
706 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
707 	euid = from_kuid_munged(cred->user_ns, cred->euid);
708 	suid = from_kuid_munged(cred->user_ns, cred->suid);
709 
710 	retval = put_user(ruid, ruidp);
711 	if (!retval) {
712 		retval = put_user(euid, euidp);
713 		if (!retval)
714 			return put_user(suid, suidp);
715 	}
716 	return retval;
717 }
718 
719 /*
720  * Same as above, but for rgid, egid, sgid.
721  */
722 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
723 {
724 	struct user_namespace *ns = current_user_ns();
725 	const struct cred *old;
726 	struct cred *new;
727 	int retval;
728 	kgid_t krgid, kegid, ksgid;
729 
730 	krgid = make_kgid(ns, rgid);
731 	kegid = make_kgid(ns, egid);
732 	ksgid = make_kgid(ns, sgid);
733 
734 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
735 		return -EINVAL;
736 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
737 		return -EINVAL;
738 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
739 		return -EINVAL;
740 
741 	new = prepare_creds();
742 	if (!new)
743 		return -ENOMEM;
744 	old = current_cred();
745 
746 	retval = -EPERM;
747 	if (!ns_capable(old->user_ns, CAP_SETGID)) {
748 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
749 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
750 			goto error;
751 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
752 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
753 			goto error;
754 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
755 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
756 			goto error;
757 	}
758 
759 	if (rgid != (gid_t) -1)
760 		new->gid = krgid;
761 	if (egid != (gid_t) -1)
762 		new->egid = kegid;
763 	if (sgid != (gid_t) -1)
764 		new->sgid = ksgid;
765 	new->fsgid = new->egid;
766 
767 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
768 	if (retval < 0)
769 		goto error;
770 
771 	return commit_creds(new);
772 
773 error:
774 	abort_creds(new);
775 	return retval;
776 }
777 
778 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
779 {
780 	return __sys_setresgid(rgid, egid, sgid);
781 }
782 
783 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
784 {
785 	const struct cred *cred = current_cred();
786 	int retval;
787 	gid_t rgid, egid, sgid;
788 
789 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
790 	egid = from_kgid_munged(cred->user_ns, cred->egid);
791 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
792 
793 	retval = put_user(rgid, rgidp);
794 	if (!retval) {
795 		retval = put_user(egid, egidp);
796 		if (!retval)
797 			retval = put_user(sgid, sgidp);
798 	}
799 
800 	return retval;
801 }
802 
803 
804 /*
805  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
806  * is used for "access()" and for the NFS daemon (letting nfsd stay at
807  * whatever uid it wants to). It normally shadows "euid", except when
808  * explicitly set by setfsuid() or for access..
809  */
810 long __sys_setfsuid(uid_t uid)
811 {
812 	const struct cred *old;
813 	struct cred *new;
814 	uid_t old_fsuid;
815 	kuid_t kuid;
816 
817 	old = current_cred();
818 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
819 
820 	kuid = make_kuid(old->user_ns, uid);
821 	if (!uid_valid(kuid))
822 		return old_fsuid;
823 
824 	new = prepare_creds();
825 	if (!new)
826 		return old_fsuid;
827 
828 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
829 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
830 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
831 		if (!uid_eq(kuid, old->fsuid)) {
832 			new->fsuid = kuid;
833 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
834 				goto change_okay;
835 		}
836 	}
837 
838 	abort_creds(new);
839 	return old_fsuid;
840 
841 change_okay:
842 	commit_creds(new);
843 	return old_fsuid;
844 }
845 
846 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
847 {
848 	return __sys_setfsuid(uid);
849 }
850 
851 /*
852  * Samma på svenska..
853  */
854 long __sys_setfsgid(gid_t gid)
855 {
856 	const struct cred *old;
857 	struct cred *new;
858 	gid_t old_fsgid;
859 	kgid_t kgid;
860 
861 	old = current_cred();
862 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
863 
864 	kgid = make_kgid(old->user_ns, gid);
865 	if (!gid_valid(kgid))
866 		return old_fsgid;
867 
868 	new = prepare_creds();
869 	if (!new)
870 		return old_fsgid;
871 
872 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
873 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
874 	    ns_capable(old->user_ns, CAP_SETGID)) {
875 		if (!gid_eq(kgid, old->fsgid)) {
876 			new->fsgid = kgid;
877 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
878 				goto change_okay;
879 		}
880 	}
881 
882 	abort_creds(new);
883 	return old_fsgid;
884 
885 change_okay:
886 	commit_creds(new);
887 	return old_fsgid;
888 }
889 
890 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
891 {
892 	return __sys_setfsgid(gid);
893 }
894 #endif /* CONFIG_MULTIUSER */
895 
896 /**
897  * sys_getpid - return the thread group id of the current process
898  *
899  * Note, despite the name, this returns the tgid not the pid.  The tgid and
900  * the pid are identical unless CLONE_THREAD was specified on clone() in
901  * which case the tgid is the same in all threads of the same group.
902  *
903  * This is SMP safe as current->tgid does not change.
904  */
905 SYSCALL_DEFINE0(getpid)
906 {
907 	return task_tgid_vnr(current);
908 }
909 
910 /* Thread ID - the internal kernel "pid" */
911 SYSCALL_DEFINE0(gettid)
912 {
913 	return task_pid_vnr(current);
914 }
915 
916 /*
917  * Accessing ->real_parent is not SMP-safe, it could
918  * change from under us. However, we can use a stale
919  * value of ->real_parent under rcu_read_lock(), see
920  * release_task()->call_rcu(delayed_put_task_struct).
921  */
922 SYSCALL_DEFINE0(getppid)
923 {
924 	int pid;
925 
926 	rcu_read_lock();
927 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
928 	rcu_read_unlock();
929 
930 	return pid;
931 }
932 
933 SYSCALL_DEFINE0(getuid)
934 {
935 	/* Only we change this so SMP safe */
936 	return from_kuid_munged(current_user_ns(), current_uid());
937 }
938 
939 SYSCALL_DEFINE0(geteuid)
940 {
941 	/* Only we change this so SMP safe */
942 	return from_kuid_munged(current_user_ns(), current_euid());
943 }
944 
945 SYSCALL_DEFINE0(getgid)
946 {
947 	/* Only we change this so SMP safe */
948 	return from_kgid_munged(current_user_ns(), current_gid());
949 }
950 
951 SYSCALL_DEFINE0(getegid)
952 {
953 	/* Only we change this so SMP safe */
954 	return from_kgid_munged(current_user_ns(), current_egid());
955 }
956 
957 static void do_sys_times(struct tms *tms)
958 {
959 	u64 tgutime, tgstime, cutime, cstime;
960 
961 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
962 	cutime = current->signal->cutime;
963 	cstime = current->signal->cstime;
964 	tms->tms_utime = nsec_to_clock_t(tgutime);
965 	tms->tms_stime = nsec_to_clock_t(tgstime);
966 	tms->tms_cutime = nsec_to_clock_t(cutime);
967 	tms->tms_cstime = nsec_to_clock_t(cstime);
968 }
969 
970 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
971 {
972 	if (tbuf) {
973 		struct tms tmp;
974 
975 		do_sys_times(&tmp);
976 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
977 			return -EFAULT;
978 	}
979 	force_successful_syscall_return();
980 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
981 }
982 
983 #ifdef CONFIG_COMPAT
984 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
985 {
986 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
987 }
988 
989 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
990 {
991 	if (tbuf) {
992 		struct tms tms;
993 		struct compat_tms tmp;
994 
995 		do_sys_times(&tms);
996 		/* Convert our struct tms to the compat version. */
997 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
998 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
999 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1000 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1001 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1002 			return -EFAULT;
1003 	}
1004 	force_successful_syscall_return();
1005 	return compat_jiffies_to_clock_t(jiffies);
1006 }
1007 #endif
1008 
1009 /*
1010  * This needs some heavy checking ...
1011  * I just haven't the stomach for it. I also don't fully
1012  * understand sessions/pgrp etc. Let somebody who does explain it.
1013  *
1014  * OK, I think I have the protection semantics right.... this is really
1015  * only important on a multi-user system anyway, to make sure one user
1016  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1017  *
1018  * !PF_FORKNOEXEC check to conform completely to POSIX.
1019  */
1020 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1021 {
1022 	struct task_struct *p;
1023 	struct task_struct *group_leader = current->group_leader;
1024 	struct pid *pgrp;
1025 	int err;
1026 
1027 	if (!pid)
1028 		pid = task_pid_vnr(group_leader);
1029 	if (!pgid)
1030 		pgid = pid;
1031 	if (pgid < 0)
1032 		return -EINVAL;
1033 	rcu_read_lock();
1034 
1035 	/* From this point forward we keep holding onto the tasklist lock
1036 	 * so that our parent does not change from under us. -DaveM
1037 	 */
1038 	write_lock_irq(&tasklist_lock);
1039 
1040 	err = -ESRCH;
1041 	p = find_task_by_vpid(pid);
1042 	if (!p)
1043 		goto out;
1044 
1045 	err = -EINVAL;
1046 	if (!thread_group_leader(p))
1047 		goto out;
1048 
1049 	if (same_thread_group(p->real_parent, group_leader)) {
1050 		err = -EPERM;
1051 		if (task_session(p) != task_session(group_leader))
1052 			goto out;
1053 		err = -EACCES;
1054 		if (!(p->flags & PF_FORKNOEXEC))
1055 			goto out;
1056 	} else {
1057 		err = -ESRCH;
1058 		if (p != group_leader)
1059 			goto out;
1060 	}
1061 
1062 	err = -EPERM;
1063 	if (p->signal->leader)
1064 		goto out;
1065 
1066 	pgrp = task_pid(p);
1067 	if (pgid != pid) {
1068 		struct task_struct *g;
1069 
1070 		pgrp = find_vpid(pgid);
1071 		g = pid_task(pgrp, PIDTYPE_PGID);
1072 		if (!g || task_session(g) != task_session(group_leader))
1073 			goto out;
1074 	}
1075 
1076 	err = security_task_setpgid(p, pgid);
1077 	if (err)
1078 		goto out;
1079 
1080 	if (task_pgrp(p) != pgrp)
1081 		change_pid(p, PIDTYPE_PGID, pgrp);
1082 
1083 	err = 0;
1084 out:
1085 	/* All paths lead to here, thus we are safe. -DaveM */
1086 	write_unlock_irq(&tasklist_lock);
1087 	rcu_read_unlock();
1088 	return err;
1089 }
1090 
1091 static int do_getpgid(pid_t pid)
1092 {
1093 	struct task_struct *p;
1094 	struct pid *grp;
1095 	int retval;
1096 
1097 	rcu_read_lock();
1098 	if (!pid)
1099 		grp = task_pgrp(current);
1100 	else {
1101 		retval = -ESRCH;
1102 		p = find_task_by_vpid(pid);
1103 		if (!p)
1104 			goto out;
1105 		grp = task_pgrp(p);
1106 		if (!grp)
1107 			goto out;
1108 
1109 		retval = security_task_getpgid(p);
1110 		if (retval)
1111 			goto out;
1112 	}
1113 	retval = pid_vnr(grp);
1114 out:
1115 	rcu_read_unlock();
1116 	return retval;
1117 }
1118 
1119 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1120 {
1121 	return do_getpgid(pid);
1122 }
1123 
1124 #ifdef __ARCH_WANT_SYS_GETPGRP
1125 
1126 SYSCALL_DEFINE0(getpgrp)
1127 {
1128 	return do_getpgid(0);
1129 }
1130 
1131 #endif
1132 
1133 SYSCALL_DEFINE1(getsid, pid_t, pid)
1134 {
1135 	struct task_struct *p;
1136 	struct pid *sid;
1137 	int retval;
1138 
1139 	rcu_read_lock();
1140 	if (!pid)
1141 		sid = task_session(current);
1142 	else {
1143 		retval = -ESRCH;
1144 		p = find_task_by_vpid(pid);
1145 		if (!p)
1146 			goto out;
1147 		sid = task_session(p);
1148 		if (!sid)
1149 			goto out;
1150 
1151 		retval = security_task_getsid(p);
1152 		if (retval)
1153 			goto out;
1154 	}
1155 	retval = pid_vnr(sid);
1156 out:
1157 	rcu_read_unlock();
1158 	return retval;
1159 }
1160 
1161 static void set_special_pids(struct pid *pid)
1162 {
1163 	struct task_struct *curr = current->group_leader;
1164 
1165 	if (task_session(curr) != pid)
1166 		change_pid(curr, PIDTYPE_SID, pid);
1167 
1168 	if (task_pgrp(curr) != pid)
1169 		change_pid(curr, PIDTYPE_PGID, pid);
1170 }
1171 
1172 int ksys_setsid(void)
1173 {
1174 	struct task_struct *group_leader = current->group_leader;
1175 	struct pid *sid = task_pid(group_leader);
1176 	pid_t session = pid_vnr(sid);
1177 	int err = -EPERM;
1178 
1179 	write_lock_irq(&tasklist_lock);
1180 	/* Fail if I am already a session leader */
1181 	if (group_leader->signal->leader)
1182 		goto out;
1183 
1184 	/* Fail if a process group id already exists that equals the
1185 	 * proposed session id.
1186 	 */
1187 	if (pid_task(sid, PIDTYPE_PGID))
1188 		goto out;
1189 
1190 	group_leader->signal->leader = 1;
1191 	set_special_pids(sid);
1192 
1193 	proc_clear_tty(group_leader);
1194 
1195 	err = session;
1196 out:
1197 	write_unlock_irq(&tasklist_lock);
1198 	if (err > 0) {
1199 		proc_sid_connector(group_leader);
1200 		sched_autogroup_create_attach(group_leader);
1201 	}
1202 	return err;
1203 }
1204 
1205 SYSCALL_DEFINE0(setsid)
1206 {
1207 	return ksys_setsid();
1208 }
1209 
1210 DECLARE_RWSEM(uts_sem);
1211 
1212 #ifdef COMPAT_UTS_MACHINE
1213 #define override_architecture(name) \
1214 	(personality(current->personality) == PER_LINUX32 && \
1215 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1216 		      sizeof(COMPAT_UTS_MACHINE)))
1217 #else
1218 #define override_architecture(name)	0
1219 #endif
1220 
1221 /*
1222  * Work around broken programs that cannot handle "Linux 3.0".
1223  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1224  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1225  * 2.6.60.
1226  */
1227 static int override_release(char __user *release, size_t len)
1228 {
1229 	int ret = 0;
1230 
1231 	if (current->personality & UNAME26) {
1232 		const char *rest = UTS_RELEASE;
1233 		char buf[65] = { 0 };
1234 		int ndots = 0;
1235 		unsigned v;
1236 		size_t copy;
1237 
1238 		while (*rest) {
1239 			if (*rest == '.' && ++ndots >= 3)
1240 				break;
1241 			if (!isdigit(*rest) && *rest != '.')
1242 				break;
1243 			rest++;
1244 		}
1245 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1246 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1247 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1248 		ret = copy_to_user(release, buf, copy + 1);
1249 	}
1250 	return ret;
1251 }
1252 
1253 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1254 {
1255 	struct new_utsname tmp;
1256 
1257 	down_read(&uts_sem);
1258 	memcpy(&tmp, utsname(), sizeof(tmp));
1259 	up_read(&uts_sem);
1260 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1261 		return -EFAULT;
1262 
1263 	if (override_release(name->release, sizeof(name->release)))
1264 		return -EFAULT;
1265 	if (override_architecture(name))
1266 		return -EFAULT;
1267 	return 0;
1268 }
1269 
1270 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1271 /*
1272  * Old cruft
1273  */
1274 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1275 {
1276 	struct old_utsname tmp;
1277 
1278 	if (!name)
1279 		return -EFAULT;
1280 
1281 	down_read(&uts_sem);
1282 	memcpy(&tmp, utsname(), sizeof(tmp));
1283 	up_read(&uts_sem);
1284 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1285 		return -EFAULT;
1286 
1287 	if (override_release(name->release, sizeof(name->release)))
1288 		return -EFAULT;
1289 	if (override_architecture(name))
1290 		return -EFAULT;
1291 	return 0;
1292 }
1293 
1294 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1295 {
1296 	struct oldold_utsname tmp;
1297 
1298 	if (!name)
1299 		return -EFAULT;
1300 
1301 	memset(&tmp, 0, sizeof(tmp));
1302 
1303 	down_read(&uts_sem);
1304 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1305 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1306 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1307 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1308 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1309 	up_read(&uts_sem);
1310 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1311 		return -EFAULT;
1312 
1313 	if (override_architecture(name))
1314 		return -EFAULT;
1315 	if (override_release(name->release, sizeof(name->release)))
1316 		return -EFAULT;
1317 	return 0;
1318 }
1319 #endif
1320 
1321 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1322 {
1323 	int errno;
1324 	char tmp[__NEW_UTS_LEN];
1325 
1326 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1327 		return -EPERM;
1328 
1329 	if (len < 0 || len > __NEW_UTS_LEN)
1330 		return -EINVAL;
1331 	errno = -EFAULT;
1332 	if (!copy_from_user(tmp, name, len)) {
1333 		struct new_utsname *u;
1334 
1335 		down_write(&uts_sem);
1336 		u = utsname();
1337 		memcpy(u->nodename, tmp, len);
1338 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1339 		errno = 0;
1340 		uts_proc_notify(UTS_PROC_HOSTNAME);
1341 		up_write(&uts_sem);
1342 	}
1343 	return errno;
1344 }
1345 
1346 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1347 
1348 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1349 {
1350 	int i;
1351 	struct new_utsname *u;
1352 	char tmp[__NEW_UTS_LEN + 1];
1353 
1354 	if (len < 0)
1355 		return -EINVAL;
1356 	down_read(&uts_sem);
1357 	u = utsname();
1358 	i = 1 + strlen(u->nodename);
1359 	if (i > len)
1360 		i = len;
1361 	memcpy(tmp, u->nodename, i);
1362 	up_read(&uts_sem);
1363 	if (copy_to_user(name, tmp, i))
1364 		return -EFAULT;
1365 	return 0;
1366 }
1367 
1368 #endif
1369 
1370 /*
1371  * Only setdomainname; getdomainname can be implemented by calling
1372  * uname()
1373  */
1374 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1375 {
1376 	int errno;
1377 	char tmp[__NEW_UTS_LEN];
1378 
1379 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380 		return -EPERM;
1381 	if (len < 0 || len > __NEW_UTS_LEN)
1382 		return -EINVAL;
1383 
1384 	errno = -EFAULT;
1385 	if (!copy_from_user(tmp, name, len)) {
1386 		struct new_utsname *u;
1387 
1388 		down_write(&uts_sem);
1389 		u = utsname();
1390 		memcpy(u->domainname, tmp, len);
1391 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1392 		errno = 0;
1393 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1394 		up_write(&uts_sem);
1395 	}
1396 	return errno;
1397 }
1398 
1399 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1400 {
1401 	struct rlimit value;
1402 	int ret;
1403 
1404 	ret = do_prlimit(current, resource, NULL, &value);
1405 	if (!ret)
1406 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1407 
1408 	return ret;
1409 }
1410 
1411 #ifdef CONFIG_COMPAT
1412 
1413 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1414 		       struct compat_rlimit __user *, rlim)
1415 {
1416 	struct rlimit r;
1417 	struct compat_rlimit r32;
1418 
1419 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1420 		return -EFAULT;
1421 
1422 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1423 		r.rlim_cur = RLIM_INFINITY;
1424 	else
1425 		r.rlim_cur = r32.rlim_cur;
1426 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1427 		r.rlim_max = RLIM_INFINITY;
1428 	else
1429 		r.rlim_max = r32.rlim_max;
1430 	return do_prlimit(current, resource, &r, NULL);
1431 }
1432 
1433 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1434 		       struct compat_rlimit __user *, rlim)
1435 {
1436 	struct rlimit r;
1437 	int ret;
1438 
1439 	ret = do_prlimit(current, resource, NULL, &r);
1440 	if (!ret) {
1441 		struct compat_rlimit r32;
1442 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1443 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1444 		else
1445 			r32.rlim_cur = r.rlim_cur;
1446 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1447 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1448 		else
1449 			r32.rlim_max = r.rlim_max;
1450 
1451 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1452 			return -EFAULT;
1453 	}
1454 	return ret;
1455 }
1456 
1457 #endif
1458 
1459 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1460 
1461 /*
1462  *	Back compatibility for getrlimit. Needed for some apps.
1463  */
1464 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1465 		struct rlimit __user *, rlim)
1466 {
1467 	struct rlimit x;
1468 	if (resource >= RLIM_NLIMITS)
1469 		return -EINVAL;
1470 
1471 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1472 	task_lock(current->group_leader);
1473 	x = current->signal->rlim[resource];
1474 	task_unlock(current->group_leader);
1475 	if (x.rlim_cur > 0x7FFFFFFF)
1476 		x.rlim_cur = 0x7FFFFFFF;
1477 	if (x.rlim_max > 0x7FFFFFFF)
1478 		x.rlim_max = 0x7FFFFFFF;
1479 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1480 }
1481 
1482 #ifdef CONFIG_COMPAT
1483 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1484 		       struct compat_rlimit __user *, rlim)
1485 {
1486 	struct rlimit r;
1487 
1488 	if (resource >= RLIM_NLIMITS)
1489 		return -EINVAL;
1490 
1491 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1492 	task_lock(current->group_leader);
1493 	r = current->signal->rlim[resource];
1494 	task_unlock(current->group_leader);
1495 	if (r.rlim_cur > 0x7FFFFFFF)
1496 		r.rlim_cur = 0x7FFFFFFF;
1497 	if (r.rlim_max > 0x7FFFFFFF)
1498 		r.rlim_max = 0x7FFFFFFF;
1499 
1500 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1501 	    put_user(r.rlim_max, &rlim->rlim_max))
1502 		return -EFAULT;
1503 	return 0;
1504 }
1505 #endif
1506 
1507 #endif
1508 
1509 static inline bool rlim64_is_infinity(__u64 rlim64)
1510 {
1511 #if BITS_PER_LONG < 64
1512 	return rlim64 >= ULONG_MAX;
1513 #else
1514 	return rlim64 == RLIM64_INFINITY;
1515 #endif
1516 }
1517 
1518 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1519 {
1520 	if (rlim->rlim_cur == RLIM_INFINITY)
1521 		rlim64->rlim_cur = RLIM64_INFINITY;
1522 	else
1523 		rlim64->rlim_cur = rlim->rlim_cur;
1524 	if (rlim->rlim_max == RLIM_INFINITY)
1525 		rlim64->rlim_max = RLIM64_INFINITY;
1526 	else
1527 		rlim64->rlim_max = rlim->rlim_max;
1528 }
1529 
1530 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1531 {
1532 	if (rlim64_is_infinity(rlim64->rlim_cur))
1533 		rlim->rlim_cur = RLIM_INFINITY;
1534 	else
1535 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1536 	if (rlim64_is_infinity(rlim64->rlim_max))
1537 		rlim->rlim_max = RLIM_INFINITY;
1538 	else
1539 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1540 }
1541 
1542 /* make sure you are allowed to change @tsk limits before calling this */
1543 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1544 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1545 {
1546 	struct rlimit *rlim;
1547 	int retval = 0;
1548 
1549 	if (resource >= RLIM_NLIMITS)
1550 		return -EINVAL;
1551 	if (new_rlim) {
1552 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1553 			return -EINVAL;
1554 		if (resource == RLIMIT_NOFILE &&
1555 				new_rlim->rlim_max > sysctl_nr_open)
1556 			return -EPERM;
1557 	}
1558 
1559 	/* protect tsk->signal and tsk->sighand from disappearing */
1560 	read_lock(&tasklist_lock);
1561 	if (!tsk->sighand) {
1562 		retval = -ESRCH;
1563 		goto out;
1564 	}
1565 
1566 	rlim = tsk->signal->rlim + resource;
1567 	task_lock(tsk->group_leader);
1568 	if (new_rlim) {
1569 		/* Keep the capable check against init_user_ns until
1570 		   cgroups can contain all limits */
1571 		if (new_rlim->rlim_max > rlim->rlim_max &&
1572 				!capable(CAP_SYS_RESOURCE))
1573 			retval = -EPERM;
1574 		if (!retval)
1575 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1576 	}
1577 	if (!retval) {
1578 		if (old_rlim)
1579 			*old_rlim = *rlim;
1580 		if (new_rlim)
1581 			*rlim = *new_rlim;
1582 	}
1583 	task_unlock(tsk->group_leader);
1584 
1585 	/*
1586 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1587 	 * infite. In case of RLIM_INFINITY the posix CPU timer code
1588 	 * ignores the rlimit.
1589 	 */
1590 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1591 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1592 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1593 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1594 out:
1595 	read_unlock(&tasklist_lock);
1596 	return retval;
1597 }
1598 
1599 /* rcu lock must be held */
1600 static int check_prlimit_permission(struct task_struct *task,
1601 				    unsigned int flags)
1602 {
1603 	const struct cred *cred = current_cred(), *tcred;
1604 	bool id_match;
1605 
1606 	if (current == task)
1607 		return 0;
1608 
1609 	tcred = __task_cred(task);
1610 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1611 		    uid_eq(cred->uid, tcred->suid) &&
1612 		    uid_eq(cred->uid, tcred->uid)  &&
1613 		    gid_eq(cred->gid, tcred->egid) &&
1614 		    gid_eq(cred->gid, tcred->sgid) &&
1615 		    gid_eq(cred->gid, tcred->gid));
1616 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1617 		return -EPERM;
1618 
1619 	return security_task_prlimit(cred, tcred, flags);
1620 }
1621 
1622 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1623 		const struct rlimit64 __user *, new_rlim,
1624 		struct rlimit64 __user *, old_rlim)
1625 {
1626 	struct rlimit64 old64, new64;
1627 	struct rlimit old, new;
1628 	struct task_struct *tsk;
1629 	unsigned int checkflags = 0;
1630 	int ret;
1631 
1632 	if (old_rlim)
1633 		checkflags |= LSM_PRLIMIT_READ;
1634 
1635 	if (new_rlim) {
1636 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1637 			return -EFAULT;
1638 		rlim64_to_rlim(&new64, &new);
1639 		checkflags |= LSM_PRLIMIT_WRITE;
1640 	}
1641 
1642 	rcu_read_lock();
1643 	tsk = pid ? find_task_by_vpid(pid) : current;
1644 	if (!tsk) {
1645 		rcu_read_unlock();
1646 		return -ESRCH;
1647 	}
1648 	ret = check_prlimit_permission(tsk, checkflags);
1649 	if (ret) {
1650 		rcu_read_unlock();
1651 		return ret;
1652 	}
1653 	get_task_struct(tsk);
1654 	rcu_read_unlock();
1655 
1656 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1657 			old_rlim ? &old : NULL);
1658 
1659 	if (!ret && old_rlim) {
1660 		rlim_to_rlim64(&old, &old64);
1661 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1662 			ret = -EFAULT;
1663 	}
1664 
1665 	put_task_struct(tsk);
1666 	return ret;
1667 }
1668 
1669 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1670 {
1671 	struct rlimit new_rlim;
1672 
1673 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1674 		return -EFAULT;
1675 	return do_prlimit(current, resource, &new_rlim, NULL);
1676 }
1677 
1678 /*
1679  * It would make sense to put struct rusage in the task_struct,
1680  * except that would make the task_struct be *really big*.  After
1681  * task_struct gets moved into malloc'ed memory, it would
1682  * make sense to do this.  It will make moving the rest of the information
1683  * a lot simpler!  (Which we're not doing right now because we're not
1684  * measuring them yet).
1685  *
1686  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1687  * races with threads incrementing their own counters.  But since word
1688  * reads are atomic, we either get new values or old values and we don't
1689  * care which for the sums.  We always take the siglock to protect reading
1690  * the c* fields from p->signal from races with exit.c updating those
1691  * fields when reaping, so a sample either gets all the additions of a
1692  * given child after it's reaped, or none so this sample is before reaping.
1693  *
1694  * Locking:
1695  * We need to take the siglock for CHILDEREN, SELF and BOTH
1696  * for  the cases current multithreaded, non-current single threaded
1697  * non-current multithreaded.  Thread traversal is now safe with
1698  * the siglock held.
1699  * Strictly speaking, we donot need to take the siglock if we are current and
1700  * single threaded,  as no one else can take our signal_struct away, no one
1701  * else can  reap the  children to update signal->c* counters, and no one else
1702  * can race with the signal-> fields. If we do not take any lock, the
1703  * signal-> fields could be read out of order while another thread was just
1704  * exiting. So we should  place a read memory barrier when we avoid the lock.
1705  * On the writer side,  write memory barrier is implied in  __exit_signal
1706  * as __exit_signal releases  the siglock spinlock after updating the signal->
1707  * fields. But we don't do this yet to keep things simple.
1708  *
1709  */
1710 
1711 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1712 {
1713 	r->ru_nvcsw += t->nvcsw;
1714 	r->ru_nivcsw += t->nivcsw;
1715 	r->ru_minflt += t->min_flt;
1716 	r->ru_majflt += t->maj_flt;
1717 	r->ru_inblock += task_io_get_inblock(t);
1718 	r->ru_oublock += task_io_get_oublock(t);
1719 }
1720 
1721 void getrusage(struct task_struct *p, int who, struct rusage *r)
1722 {
1723 	struct task_struct *t;
1724 	unsigned long flags;
1725 	u64 tgutime, tgstime, utime, stime;
1726 	unsigned long maxrss = 0;
1727 
1728 	memset((char *)r, 0, sizeof (*r));
1729 	utime = stime = 0;
1730 
1731 	if (who == RUSAGE_THREAD) {
1732 		task_cputime_adjusted(current, &utime, &stime);
1733 		accumulate_thread_rusage(p, r);
1734 		maxrss = p->signal->maxrss;
1735 		goto out;
1736 	}
1737 
1738 	if (!lock_task_sighand(p, &flags))
1739 		return;
1740 
1741 	switch (who) {
1742 	case RUSAGE_BOTH:
1743 	case RUSAGE_CHILDREN:
1744 		utime = p->signal->cutime;
1745 		stime = p->signal->cstime;
1746 		r->ru_nvcsw = p->signal->cnvcsw;
1747 		r->ru_nivcsw = p->signal->cnivcsw;
1748 		r->ru_minflt = p->signal->cmin_flt;
1749 		r->ru_majflt = p->signal->cmaj_flt;
1750 		r->ru_inblock = p->signal->cinblock;
1751 		r->ru_oublock = p->signal->coublock;
1752 		maxrss = p->signal->cmaxrss;
1753 
1754 		if (who == RUSAGE_CHILDREN)
1755 			break;
1756 		fallthrough;
1757 
1758 	case RUSAGE_SELF:
1759 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1760 		utime += tgutime;
1761 		stime += tgstime;
1762 		r->ru_nvcsw += p->signal->nvcsw;
1763 		r->ru_nivcsw += p->signal->nivcsw;
1764 		r->ru_minflt += p->signal->min_flt;
1765 		r->ru_majflt += p->signal->maj_flt;
1766 		r->ru_inblock += p->signal->inblock;
1767 		r->ru_oublock += p->signal->oublock;
1768 		if (maxrss < p->signal->maxrss)
1769 			maxrss = p->signal->maxrss;
1770 		t = p;
1771 		do {
1772 			accumulate_thread_rusage(t, r);
1773 		} while_each_thread(p, t);
1774 		break;
1775 
1776 	default:
1777 		BUG();
1778 	}
1779 	unlock_task_sighand(p, &flags);
1780 
1781 out:
1782 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1783 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1784 
1785 	if (who != RUSAGE_CHILDREN) {
1786 		struct mm_struct *mm = get_task_mm(p);
1787 
1788 		if (mm) {
1789 			setmax_mm_hiwater_rss(&maxrss, mm);
1790 			mmput(mm);
1791 		}
1792 	}
1793 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1794 }
1795 
1796 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1797 {
1798 	struct rusage r;
1799 
1800 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1801 	    who != RUSAGE_THREAD)
1802 		return -EINVAL;
1803 
1804 	getrusage(current, who, &r);
1805 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1806 }
1807 
1808 #ifdef CONFIG_COMPAT
1809 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1810 {
1811 	struct rusage r;
1812 
1813 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1814 	    who != RUSAGE_THREAD)
1815 		return -EINVAL;
1816 
1817 	getrusage(current, who, &r);
1818 	return put_compat_rusage(&r, ru);
1819 }
1820 #endif
1821 
1822 SYSCALL_DEFINE1(umask, int, mask)
1823 {
1824 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1825 	return mask;
1826 }
1827 
1828 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1829 {
1830 	struct fd exe;
1831 	struct file *old_exe, *exe_file;
1832 	struct inode *inode;
1833 	int err;
1834 
1835 	exe = fdget(fd);
1836 	if (!exe.file)
1837 		return -EBADF;
1838 
1839 	inode = file_inode(exe.file);
1840 
1841 	/*
1842 	 * Because the original mm->exe_file points to executable file, make
1843 	 * sure that this one is executable as well, to avoid breaking an
1844 	 * overall picture.
1845 	 */
1846 	err = -EACCES;
1847 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1848 		goto exit;
1849 
1850 	err = inode_permission(inode, MAY_EXEC);
1851 	if (err)
1852 		goto exit;
1853 
1854 	/*
1855 	 * Forbid mm->exe_file change if old file still mapped.
1856 	 */
1857 	exe_file = get_mm_exe_file(mm);
1858 	err = -EBUSY;
1859 	if (exe_file) {
1860 		struct vm_area_struct *vma;
1861 
1862 		mmap_read_lock(mm);
1863 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1864 			if (!vma->vm_file)
1865 				continue;
1866 			if (path_equal(&vma->vm_file->f_path,
1867 				       &exe_file->f_path))
1868 				goto exit_err;
1869 		}
1870 
1871 		mmap_read_unlock(mm);
1872 		fput(exe_file);
1873 	}
1874 
1875 	err = 0;
1876 	/* set the new file, lockless */
1877 	get_file(exe.file);
1878 	old_exe = xchg(&mm->exe_file, exe.file);
1879 	if (old_exe)
1880 		fput(old_exe);
1881 exit:
1882 	fdput(exe);
1883 	return err;
1884 exit_err:
1885 	mmap_read_unlock(mm);
1886 	fput(exe_file);
1887 	goto exit;
1888 }
1889 
1890 /*
1891  * Check arithmetic relations of passed addresses.
1892  *
1893  * WARNING: we don't require any capability here so be very careful
1894  * in what is allowed for modification from userspace.
1895  */
1896 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1897 {
1898 	unsigned long mmap_max_addr = TASK_SIZE;
1899 	int error = -EINVAL, i;
1900 
1901 	static const unsigned char offsets[] = {
1902 		offsetof(struct prctl_mm_map, start_code),
1903 		offsetof(struct prctl_mm_map, end_code),
1904 		offsetof(struct prctl_mm_map, start_data),
1905 		offsetof(struct prctl_mm_map, end_data),
1906 		offsetof(struct prctl_mm_map, start_brk),
1907 		offsetof(struct prctl_mm_map, brk),
1908 		offsetof(struct prctl_mm_map, start_stack),
1909 		offsetof(struct prctl_mm_map, arg_start),
1910 		offsetof(struct prctl_mm_map, arg_end),
1911 		offsetof(struct prctl_mm_map, env_start),
1912 		offsetof(struct prctl_mm_map, env_end),
1913 	};
1914 
1915 	/*
1916 	 * Make sure the members are not somewhere outside
1917 	 * of allowed address space.
1918 	 */
1919 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1920 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1921 
1922 		if ((unsigned long)val >= mmap_max_addr ||
1923 		    (unsigned long)val < mmap_min_addr)
1924 			goto out;
1925 	}
1926 
1927 	/*
1928 	 * Make sure the pairs are ordered.
1929 	 */
1930 #define __prctl_check_order(__m1, __op, __m2)				\
1931 	((unsigned long)prctl_map->__m1 __op				\
1932 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1933 	error  = __prctl_check_order(start_code, <, end_code);
1934 	error |= __prctl_check_order(start_data,<=, end_data);
1935 	error |= __prctl_check_order(start_brk, <=, brk);
1936 	error |= __prctl_check_order(arg_start, <=, arg_end);
1937 	error |= __prctl_check_order(env_start, <=, env_end);
1938 	if (error)
1939 		goto out;
1940 #undef __prctl_check_order
1941 
1942 	error = -EINVAL;
1943 
1944 	/*
1945 	 * @brk should be after @end_data in traditional maps.
1946 	 */
1947 	if (prctl_map->start_brk <= prctl_map->end_data ||
1948 	    prctl_map->brk <= prctl_map->end_data)
1949 		goto out;
1950 
1951 	/*
1952 	 * Neither we should allow to override limits if they set.
1953 	 */
1954 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1955 			      prctl_map->start_brk, prctl_map->end_data,
1956 			      prctl_map->start_data))
1957 			goto out;
1958 
1959 	error = 0;
1960 out:
1961 	return error;
1962 }
1963 
1964 #ifdef CONFIG_CHECKPOINT_RESTORE
1965 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1966 {
1967 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1968 	unsigned long user_auxv[AT_VECTOR_SIZE];
1969 	struct mm_struct *mm = current->mm;
1970 	int error;
1971 
1972 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1973 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1974 
1975 	if (opt == PR_SET_MM_MAP_SIZE)
1976 		return put_user((unsigned int)sizeof(prctl_map),
1977 				(unsigned int __user *)addr);
1978 
1979 	if (data_size != sizeof(prctl_map))
1980 		return -EINVAL;
1981 
1982 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1983 		return -EFAULT;
1984 
1985 	error = validate_prctl_map_addr(&prctl_map);
1986 	if (error)
1987 		return error;
1988 
1989 	if (prctl_map.auxv_size) {
1990 		/*
1991 		 * Someone is trying to cheat the auxv vector.
1992 		 */
1993 		if (!prctl_map.auxv ||
1994 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
1995 			return -EINVAL;
1996 
1997 		memset(user_auxv, 0, sizeof(user_auxv));
1998 		if (copy_from_user(user_auxv,
1999 				   (const void __user *)prctl_map.auxv,
2000 				   prctl_map.auxv_size))
2001 			return -EFAULT;
2002 
2003 		/* Last entry must be AT_NULL as specification requires */
2004 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2005 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2006 	}
2007 
2008 	if (prctl_map.exe_fd != (u32)-1) {
2009 		/*
2010 		 * Check if the current user is checkpoint/restore capable.
2011 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2012 		 * or CAP_CHECKPOINT_RESTORE.
2013 		 * Note that a user with access to ptrace can masquerade an
2014 		 * arbitrary program as any executable, even setuid ones.
2015 		 * This may have implications in the tomoyo subsystem.
2016 		 */
2017 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2018 			return -EPERM;
2019 
2020 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2021 		if (error)
2022 			return error;
2023 	}
2024 
2025 	/*
2026 	 * arg_lock protects concurent updates but we still need mmap_lock for
2027 	 * read to exclude races with sys_brk.
2028 	 */
2029 	mmap_read_lock(mm);
2030 
2031 	/*
2032 	 * We don't validate if these members are pointing to
2033 	 * real present VMAs because application may have correspond
2034 	 * VMAs already unmapped and kernel uses these members for statistics
2035 	 * output in procfs mostly, except
2036 	 *
2037 	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
2038 	 *    for VMAs when updating these memvers so anything wrong written
2039 	 *    here cause kernel to swear at userspace program but won't lead
2040 	 *    to any problem in kernel itself
2041 	 */
2042 
2043 	spin_lock(&mm->arg_lock);
2044 	mm->start_code	= prctl_map.start_code;
2045 	mm->end_code	= prctl_map.end_code;
2046 	mm->start_data	= prctl_map.start_data;
2047 	mm->end_data	= prctl_map.end_data;
2048 	mm->start_brk	= prctl_map.start_brk;
2049 	mm->brk		= prctl_map.brk;
2050 	mm->start_stack	= prctl_map.start_stack;
2051 	mm->arg_start	= prctl_map.arg_start;
2052 	mm->arg_end	= prctl_map.arg_end;
2053 	mm->env_start	= prctl_map.env_start;
2054 	mm->env_end	= prctl_map.env_end;
2055 	spin_unlock(&mm->arg_lock);
2056 
2057 	/*
2058 	 * Note this update of @saved_auxv is lockless thus
2059 	 * if someone reads this member in procfs while we're
2060 	 * updating -- it may get partly updated results. It's
2061 	 * known and acceptable trade off: we leave it as is to
2062 	 * not introduce additional locks here making the kernel
2063 	 * more complex.
2064 	 */
2065 	if (prctl_map.auxv_size)
2066 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2067 
2068 	mmap_read_unlock(mm);
2069 	return 0;
2070 }
2071 #endif /* CONFIG_CHECKPOINT_RESTORE */
2072 
2073 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2074 			  unsigned long len)
2075 {
2076 	/*
2077 	 * This doesn't move the auxiliary vector itself since it's pinned to
2078 	 * mm_struct, but it permits filling the vector with new values.  It's
2079 	 * up to the caller to provide sane values here, otherwise userspace
2080 	 * tools which use this vector might be unhappy.
2081 	 */
2082 	unsigned long user_auxv[AT_VECTOR_SIZE];
2083 
2084 	if (len > sizeof(user_auxv))
2085 		return -EINVAL;
2086 
2087 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2088 		return -EFAULT;
2089 
2090 	/* Make sure the last entry is always AT_NULL */
2091 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2092 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2093 
2094 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2095 
2096 	task_lock(current);
2097 	memcpy(mm->saved_auxv, user_auxv, len);
2098 	task_unlock(current);
2099 
2100 	return 0;
2101 }
2102 
2103 static int prctl_set_mm(int opt, unsigned long addr,
2104 			unsigned long arg4, unsigned long arg5)
2105 {
2106 	struct mm_struct *mm = current->mm;
2107 	struct prctl_mm_map prctl_map = {
2108 		.auxv = NULL,
2109 		.auxv_size = 0,
2110 		.exe_fd = -1,
2111 	};
2112 	struct vm_area_struct *vma;
2113 	int error;
2114 
2115 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2116 			      opt != PR_SET_MM_MAP &&
2117 			      opt != PR_SET_MM_MAP_SIZE)))
2118 		return -EINVAL;
2119 
2120 #ifdef CONFIG_CHECKPOINT_RESTORE
2121 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2122 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2123 #endif
2124 
2125 	if (!capable(CAP_SYS_RESOURCE))
2126 		return -EPERM;
2127 
2128 	if (opt == PR_SET_MM_EXE_FILE)
2129 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2130 
2131 	if (opt == PR_SET_MM_AUXV)
2132 		return prctl_set_auxv(mm, addr, arg4);
2133 
2134 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2135 		return -EINVAL;
2136 
2137 	error = -EINVAL;
2138 
2139 	/*
2140 	 * arg_lock protects concurent updates of arg boundaries, we need
2141 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2142 	 * validation.
2143 	 */
2144 	mmap_read_lock(mm);
2145 	vma = find_vma(mm, addr);
2146 
2147 	spin_lock(&mm->arg_lock);
2148 	prctl_map.start_code	= mm->start_code;
2149 	prctl_map.end_code	= mm->end_code;
2150 	prctl_map.start_data	= mm->start_data;
2151 	prctl_map.end_data	= mm->end_data;
2152 	prctl_map.start_brk	= mm->start_brk;
2153 	prctl_map.brk		= mm->brk;
2154 	prctl_map.start_stack	= mm->start_stack;
2155 	prctl_map.arg_start	= mm->arg_start;
2156 	prctl_map.arg_end	= mm->arg_end;
2157 	prctl_map.env_start	= mm->env_start;
2158 	prctl_map.env_end	= mm->env_end;
2159 
2160 	switch (opt) {
2161 	case PR_SET_MM_START_CODE:
2162 		prctl_map.start_code = addr;
2163 		break;
2164 	case PR_SET_MM_END_CODE:
2165 		prctl_map.end_code = addr;
2166 		break;
2167 	case PR_SET_MM_START_DATA:
2168 		prctl_map.start_data = addr;
2169 		break;
2170 	case PR_SET_MM_END_DATA:
2171 		prctl_map.end_data = addr;
2172 		break;
2173 	case PR_SET_MM_START_STACK:
2174 		prctl_map.start_stack = addr;
2175 		break;
2176 	case PR_SET_MM_START_BRK:
2177 		prctl_map.start_brk = addr;
2178 		break;
2179 	case PR_SET_MM_BRK:
2180 		prctl_map.brk = addr;
2181 		break;
2182 	case PR_SET_MM_ARG_START:
2183 		prctl_map.arg_start = addr;
2184 		break;
2185 	case PR_SET_MM_ARG_END:
2186 		prctl_map.arg_end = addr;
2187 		break;
2188 	case PR_SET_MM_ENV_START:
2189 		prctl_map.env_start = addr;
2190 		break;
2191 	case PR_SET_MM_ENV_END:
2192 		prctl_map.env_end = addr;
2193 		break;
2194 	default:
2195 		goto out;
2196 	}
2197 
2198 	error = validate_prctl_map_addr(&prctl_map);
2199 	if (error)
2200 		goto out;
2201 
2202 	switch (opt) {
2203 	/*
2204 	 * If command line arguments and environment
2205 	 * are placed somewhere else on stack, we can
2206 	 * set them up here, ARG_START/END to setup
2207 	 * command line argumets and ENV_START/END
2208 	 * for environment.
2209 	 */
2210 	case PR_SET_MM_START_STACK:
2211 	case PR_SET_MM_ARG_START:
2212 	case PR_SET_MM_ARG_END:
2213 	case PR_SET_MM_ENV_START:
2214 	case PR_SET_MM_ENV_END:
2215 		if (!vma) {
2216 			error = -EFAULT;
2217 			goto out;
2218 		}
2219 	}
2220 
2221 	mm->start_code	= prctl_map.start_code;
2222 	mm->end_code	= prctl_map.end_code;
2223 	mm->start_data	= prctl_map.start_data;
2224 	mm->end_data	= prctl_map.end_data;
2225 	mm->start_brk	= prctl_map.start_brk;
2226 	mm->brk		= prctl_map.brk;
2227 	mm->start_stack	= prctl_map.start_stack;
2228 	mm->arg_start	= prctl_map.arg_start;
2229 	mm->arg_end	= prctl_map.arg_end;
2230 	mm->env_start	= prctl_map.env_start;
2231 	mm->env_end	= prctl_map.env_end;
2232 
2233 	error = 0;
2234 out:
2235 	spin_unlock(&mm->arg_lock);
2236 	mmap_read_unlock(mm);
2237 	return error;
2238 }
2239 
2240 #ifdef CONFIG_CHECKPOINT_RESTORE
2241 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2242 {
2243 	return put_user(me->clear_child_tid, tid_addr);
2244 }
2245 #else
2246 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2247 {
2248 	return -EINVAL;
2249 }
2250 #endif
2251 
2252 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2253 {
2254 	/*
2255 	 * If task has has_child_subreaper - all its decendants
2256 	 * already have these flag too and new decendants will
2257 	 * inherit it on fork, skip them.
2258 	 *
2259 	 * If we've found child_reaper - skip descendants in
2260 	 * it's subtree as they will never get out pidns.
2261 	 */
2262 	if (p->signal->has_child_subreaper ||
2263 	    is_child_reaper(task_pid(p)))
2264 		return 0;
2265 
2266 	p->signal->has_child_subreaper = 1;
2267 	return 1;
2268 }
2269 
2270 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2271 {
2272 	return -EINVAL;
2273 }
2274 
2275 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2276 				    unsigned long ctrl)
2277 {
2278 	return -EINVAL;
2279 }
2280 
2281 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2282 
2283 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2284 		unsigned long, arg4, unsigned long, arg5)
2285 {
2286 	struct task_struct *me = current;
2287 	unsigned char comm[sizeof(me->comm)];
2288 	long error;
2289 
2290 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2291 	if (error != -ENOSYS)
2292 		return error;
2293 
2294 	error = 0;
2295 	switch (option) {
2296 	case PR_SET_PDEATHSIG:
2297 		if (!valid_signal(arg2)) {
2298 			error = -EINVAL;
2299 			break;
2300 		}
2301 		me->pdeath_signal = arg2;
2302 		break;
2303 	case PR_GET_PDEATHSIG:
2304 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2305 		break;
2306 	case PR_GET_DUMPABLE:
2307 		error = get_dumpable(me->mm);
2308 		break;
2309 	case PR_SET_DUMPABLE:
2310 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2311 			error = -EINVAL;
2312 			break;
2313 		}
2314 		set_dumpable(me->mm, arg2);
2315 		break;
2316 
2317 	case PR_SET_UNALIGN:
2318 		error = SET_UNALIGN_CTL(me, arg2);
2319 		break;
2320 	case PR_GET_UNALIGN:
2321 		error = GET_UNALIGN_CTL(me, arg2);
2322 		break;
2323 	case PR_SET_FPEMU:
2324 		error = SET_FPEMU_CTL(me, arg2);
2325 		break;
2326 	case PR_GET_FPEMU:
2327 		error = GET_FPEMU_CTL(me, arg2);
2328 		break;
2329 	case PR_SET_FPEXC:
2330 		error = SET_FPEXC_CTL(me, arg2);
2331 		break;
2332 	case PR_GET_FPEXC:
2333 		error = GET_FPEXC_CTL(me, arg2);
2334 		break;
2335 	case PR_GET_TIMING:
2336 		error = PR_TIMING_STATISTICAL;
2337 		break;
2338 	case PR_SET_TIMING:
2339 		if (arg2 != PR_TIMING_STATISTICAL)
2340 			error = -EINVAL;
2341 		break;
2342 	case PR_SET_NAME:
2343 		comm[sizeof(me->comm) - 1] = 0;
2344 		if (strncpy_from_user(comm, (char __user *)arg2,
2345 				      sizeof(me->comm) - 1) < 0)
2346 			return -EFAULT;
2347 		set_task_comm(me, comm);
2348 		proc_comm_connector(me);
2349 		break;
2350 	case PR_GET_NAME:
2351 		get_task_comm(comm, me);
2352 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2353 			return -EFAULT;
2354 		break;
2355 	case PR_GET_ENDIAN:
2356 		error = GET_ENDIAN(me, arg2);
2357 		break;
2358 	case PR_SET_ENDIAN:
2359 		error = SET_ENDIAN(me, arg2);
2360 		break;
2361 	case PR_GET_SECCOMP:
2362 		error = prctl_get_seccomp();
2363 		break;
2364 	case PR_SET_SECCOMP:
2365 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2366 		break;
2367 	case PR_GET_TSC:
2368 		error = GET_TSC_CTL(arg2);
2369 		break;
2370 	case PR_SET_TSC:
2371 		error = SET_TSC_CTL(arg2);
2372 		break;
2373 	case PR_TASK_PERF_EVENTS_DISABLE:
2374 		error = perf_event_task_disable();
2375 		break;
2376 	case PR_TASK_PERF_EVENTS_ENABLE:
2377 		error = perf_event_task_enable();
2378 		break;
2379 	case PR_GET_TIMERSLACK:
2380 		if (current->timer_slack_ns > ULONG_MAX)
2381 			error = ULONG_MAX;
2382 		else
2383 			error = current->timer_slack_ns;
2384 		break;
2385 	case PR_SET_TIMERSLACK:
2386 		if (arg2 <= 0)
2387 			current->timer_slack_ns =
2388 					current->default_timer_slack_ns;
2389 		else
2390 			current->timer_slack_ns = arg2;
2391 		break;
2392 	case PR_MCE_KILL:
2393 		if (arg4 | arg5)
2394 			return -EINVAL;
2395 		switch (arg2) {
2396 		case PR_MCE_KILL_CLEAR:
2397 			if (arg3 != 0)
2398 				return -EINVAL;
2399 			current->flags &= ~PF_MCE_PROCESS;
2400 			break;
2401 		case PR_MCE_KILL_SET:
2402 			current->flags |= PF_MCE_PROCESS;
2403 			if (arg3 == PR_MCE_KILL_EARLY)
2404 				current->flags |= PF_MCE_EARLY;
2405 			else if (arg3 == PR_MCE_KILL_LATE)
2406 				current->flags &= ~PF_MCE_EARLY;
2407 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2408 				current->flags &=
2409 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2410 			else
2411 				return -EINVAL;
2412 			break;
2413 		default:
2414 			return -EINVAL;
2415 		}
2416 		break;
2417 	case PR_MCE_KILL_GET:
2418 		if (arg2 | arg3 | arg4 | arg5)
2419 			return -EINVAL;
2420 		if (current->flags & PF_MCE_PROCESS)
2421 			error = (current->flags & PF_MCE_EARLY) ?
2422 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2423 		else
2424 			error = PR_MCE_KILL_DEFAULT;
2425 		break;
2426 	case PR_SET_MM:
2427 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2428 		break;
2429 	case PR_GET_TID_ADDRESS:
2430 		error = prctl_get_tid_address(me, (int __user **)arg2);
2431 		break;
2432 	case PR_SET_CHILD_SUBREAPER:
2433 		me->signal->is_child_subreaper = !!arg2;
2434 		if (!arg2)
2435 			break;
2436 
2437 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2438 		break;
2439 	case PR_GET_CHILD_SUBREAPER:
2440 		error = put_user(me->signal->is_child_subreaper,
2441 				 (int __user *)arg2);
2442 		break;
2443 	case PR_SET_NO_NEW_PRIVS:
2444 		if (arg2 != 1 || arg3 || arg4 || arg5)
2445 			return -EINVAL;
2446 
2447 		task_set_no_new_privs(current);
2448 		break;
2449 	case PR_GET_NO_NEW_PRIVS:
2450 		if (arg2 || arg3 || arg4 || arg5)
2451 			return -EINVAL;
2452 		return task_no_new_privs(current) ? 1 : 0;
2453 	case PR_GET_THP_DISABLE:
2454 		if (arg2 || arg3 || arg4 || arg5)
2455 			return -EINVAL;
2456 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2457 		break;
2458 	case PR_SET_THP_DISABLE:
2459 		if (arg3 || arg4 || arg5)
2460 			return -EINVAL;
2461 		if (mmap_write_lock_killable(me->mm))
2462 			return -EINTR;
2463 		if (arg2)
2464 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2465 		else
2466 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2467 		mmap_write_unlock(me->mm);
2468 		break;
2469 	case PR_MPX_ENABLE_MANAGEMENT:
2470 	case PR_MPX_DISABLE_MANAGEMENT:
2471 		/* No longer implemented: */
2472 		return -EINVAL;
2473 	case PR_SET_FP_MODE:
2474 		error = SET_FP_MODE(me, arg2);
2475 		break;
2476 	case PR_GET_FP_MODE:
2477 		error = GET_FP_MODE(me);
2478 		break;
2479 	case PR_SVE_SET_VL:
2480 		error = SVE_SET_VL(arg2);
2481 		break;
2482 	case PR_SVE_GET_VL:
2483 		error = SVE_GET_VL();
2484 		break;
2485 	case PR_GET_SPECULATION_CTRL:
2486 		if (arg3 || arg4 || arg5)
2487 			return -EINVAL;
2488 		error = arch_prctl_spec_ctrl_get(me, arg2);
2489 		break;
2490 	case PR_SET_SPECULATION_CTRL:
2491 		if (arg4 || arg5)
2492 			return -EINVAL;
2493 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2494 		break;
2495 	case PR_PAC_RESET_KEYS:
2496 		if (arg3 || arg4 || arg5)
2497 			return -EINVAL;
2498 		error = PAC_RESET_KEYS(me, arg2);
2499 		break;
2500 	case PR_SET_TAGGED_ADDR_CTRL:
2501 		if (arg3 || arg4 || arg5)
2502 			return -EINVAL;
2503 		error = SET_TAGGED_ADDR_CTRL(arg2);
2504 		break;
2505 	case PR_GET_TAGGED_ADDR_CTRL:
2506 		if (arg2 || arg3 || arg4 || arg5)
2507 			return -EINVAL;
2508 		error = GET_TAGGED_ADDR_CTRL();
2509 		break;
2510 	case PR_SET_IO_FLUSHER:
2511 		if (!capable(CAP_SYS_RESOURCE))
2512 			return -EPERM;
2513 
2514 		if (arg3 || arg4 || arg5)
2515 			return -EINVAL;
2516 
2517 		if (arg2 == 1)
2518 			current->flags |= PR_IO_FLUSHER;
2519 		else if (!arg2)
2520 			current->flags &= ~PR_IO_FLUSHER;
2521 		else
2522 			return -EINVAL;
2523 		break;
2524 	case PR_GET_IO_FLUSHER:
2525 		if (!capable(CAP_SYS_RESOURCE))
2526 			return -EPERM;
2527 
2528 		if (arg2 || arg3 || arg4 || arg5)
2529 			return -EINVAL;
2530 
2531 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2532 		break;
2533 	default:
2534 		error = -EINVAL;
2535 		break;
2536 	}
2537 	return error;
2538 }
2539 
2540 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2541 		struct getcpu_cache __user *, unused)
2542 {
2543 	int err = 0;
2544 	int cpu = raw_smp_processor_id();
2545 
2546 	if (cpup)
2547 		err |= put_user(cpu, cpup);
2548 	if (nodep)
2549 		err |= put_user(cpu_to_node(cpu), nodep);
2550 	return err ? -EFAULT : 0;
2551 }
2552 
2553 /**
2554  * do_sysinfo - fill in sysinfo struct
2555  * @info: pointer to buffer to fill
2556  */
2557 static int do_sysinfo(struct sysinfo *info)
2558 {
2559 	unsigned long mem_total, sav_total;
2560 	unsigned int mem_unit, bitcount;
2561 	struct timespec64 tp;
2562 
2563 	memset(info, 0, sizeof(struct sysinfo));
2564 
2565 	ktime_get_boottime_ts64(&tp);
2566 	timens_add_boottime(&tp);
2567 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2568 
2569 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2570 
2571 	info->procs = nr_threads;
2572 
2573 	si_meminfo(info);
2574 	si_swapinfo(info);
2575 
2576 	/*
2577 	 * If the sum of all the available memory (i.e. ram + swap)
2578 	 * is less than can be stored in a 32 bit unsigned long then
2579 	 * we can be binary compatible with 2.2.x kernels.  If not,
2580 	 * well, in that case 2.2.x was broken anyways...
2581 	 *
2582 	 *  -Erik Andersen <andersee@debian.org>
2583 	 */
2584 
2585 	mem_total = info->totalram + info->totalswap;
2586 	if (mem_total < info->totalram || mem_total < info->totalswap)
2587 		goto out;
2588 	bitcount = 0;
2589 	mem_unit = info->mem_unit;
2590 	while (mem_unit > 1) {
2591 		bitcount++;
2592 		mem_unit >>= 1;
2593 		sav_total = mem_total;
2594 		mem_total <<= 1;
2595 		if (mem_total < sav_total)
2596 			goto out;
2597 	}
2598 
2599 	/*
2600 	 * If mem_total did not overflow, multiply all memory values by
2601 	 * info->mem_unit and set it to 1.  This leaves things compatible
2602 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2603 	 * kernels...
2604 	 */
2605 
2606 	info->mem_unit = 1;
2607 	info->totalram <<= bitcount;
2608 	info->freeram <<= bitcount;
2609 	info->sharedram <<= bitcount;
2610 	info->bufferram <<= bitcount;
2611 	info->totalswap <<= bitcount;
2612 	info->freeswap <<= bitcount;
2613 	info->totalhigh <<= bitcount;
2614 	info->freehigh <<= bitcount;
2615 
2616 out:
2617 	return 0;
2618 }
2619 
2620 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2621 {
2622 	struct sysinfo val;
2623 
2624 	do_sysinfo(&val);
2625 
2626 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2627 		return -EFAULT;
2628 
2629 	return 0;
2630 }
2631 
2632 #ifdef CONFIG_COMPAT
2633 struct compat_sysinfo {
2634 	s32 uptime;
2635 	u32 loads[3];
2636 	u32 totalram;
2637 	u32 freeram;
2638 	u32 sharedram;
2639 	u32 bufferram;
2640 	u32 totalswap;
2641 	u32 freeswap;
2642 	u16 procs;
2643 	u16 pad;
2644 	u32 totalhigh;
2645 	u32 freehigh;
2646 	u32 mem_unit;
2647 	char _f[20-2*sizeof(u32)-sizeof(int)];
2648 };
2649 
2650 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2651 {
2652 	struct sysinfo s;
2653 	struct compat_sysinfo s_32;
2654 
2655 	do_sysinfo(&s);
2656 
2657 	/* Check to see if any memory value is too large for 32-bit and scale
2658 	 *  down if needed
2659 	 */
2660 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2661 		int bitcount = 0;
2662 
2663 		while (s.mem_unit < PAGE_SIZE) {
2664 			s.mem_unit <<= 1;
2665 			bitcount++;
2666 		}
2667 
2668 		s.totalram >>= bitcount;
2669 		s.freeram >>= bitcount;
2670 		s.sharedram >>= bitcount;
2671 		s.bufferram >>= bitcount;
2672 		s.totalswap >>= bitcount;
2673 		s.freeswap >>= bitcount;
2674 		s.totalhigh >>= bitcount;
2675 		s.freehigh >>= bitcount;
2676 	}
2677 
2678 	memset(&s_32, 0, sizeof(s_32));
2679 	s_32.uptime = s.uptime;
2680 	s_32.loads[0] = s.loads[0];
2681 	s_32.loads[1] = s.loads[1];
2682 	s_32.loads[2] = s.loads[2];
2683 	s_32.totalram = s.totalram;
2684 	s_32.freeram = s.freeram;
2685 	s_32.sharedram = s.sharedram;
2686 	s_32.bufferram = s.bufferram;
2687 	s_32.totalswap = s.totalswap;
2688 	s_32.freeswap = s.freeswap;
2689 	s_32.procs = s.procs;
2690 	s_32.totalhigh = s.totalhigh;
2691 	s_32.freehigh = s.freehigh;
2692 	s_32.mem_unit = s.mem_unit;
2693 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2694 		return -EFAULT;
2695 	return 0;
2696 }
2697 #endif /* CONFIG_COMPAT */
2698