xref: /openbmc/linux/kernel/sys.c (revision 1ab142d4)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
43 
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
48 
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/unistd.h>
56 
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef SET_FPEMU_CTL
64 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_FPEMU_CTL
67 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_FPEXC_CTL
70 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_FPEXC_CTL
73 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
74 #endif
75 #ifndef GET_ENDIAN
76 # define GET_ENDIAN(a,b)	(-EINVAL)
77 #endif
78 #ifndef SET_ENDIAN
79 # define SET_ENDIAN(a,b)	(-EINVAL)
80 #endif
81 #ifndef GET_TSC_CTL
82 # define GET_TSC_CTL(a)		(-EINVAL)
83 #endif
84 #ifndef SET_TSC_CTL
85 # define SET_TSC_CTL(a)		(-EINVAL)
86 #endif
87 
88 /*
89  * this is where the system-wide overflow UID and GID are defined, for
90  * architectures that now have 32-bit UID/GID but didn't in the past
91  */
92 
93 int overflowuid = DEFAULT_OVERFLOWUID;
94 int overflowgid = DEFAULT_OVERFLOWGID;
95 
96 #ifdef CONFIG_UID16
97 EXPORT_SYMBOL(overflowuid);
98 EXPORT_SYMBOL(overflowgid);
99 #endif
100 
101 /*
102  * the same as above, but for filesystems which can only store a 16-bit
103  * UID and GID. as such, this is needed on all architectures
104  */
105 
106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108 
109 EXPORT_SYMBOL(fs_overflowuid);
110 EXPORT_SYMBOL(fs_overflowgid);
111 
112 /*
113  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114  */
115 
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119 
120 /*
121  * If set, this is used for preparing the system to power off.
122  */
123 
124 void (*pm_power_off_prepare)(void);
125 
126 /*
127  * Returns true if current's euid is same as p's uid or euid,
128  * or has CAP_SYS_NICE to p's user_ns.
129  *
130  * Called with rcu_read_lock, creds are safe
131  */
132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135 
136 	if (pcred->user->user_ns == cred->user->user_ns &&
137 	    (pcred->uid  == cred->euid ||
138 	     pcred->euid == cred->euid))
139 		return true;
140 	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
141 		return true;
142 	return false;
143 }
144 
145 /*
146  * set the priority of a task
147  * - the caller must hold the RCU read lock
148  */
149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151 	int no_nice;
152 
153 	if (!set_one_prio_perm(p)) {
154 		error = -EPERM;
155 		goto out;
156 	}
157 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158 		error = -EACCES;
159 		goto out;
160 	}
161 	no_nice = security_task_setnice(p, niceval);
162 	if (no_nice) {
163 		error = no_nice;
164 		goto out;
165 	}
166 	if (error == -ESRCH)
167 		error = 0;
168 	set_user_nice(p, niceval);
169 out:
170 	return error;
171 }
172 
173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175 	struct task_struct *g, *p;
176 	struct user_struct *user;
177 	const struct cred *cred = current_cred();
178 	int error = -EINVAL;
179 	struct pid *pgrp;
180 
181 	if (which > PRIO_USER || which < PRIO_PROCESS)
182 		goto out;
183 
184 	/* normalize: avoid signed division (rounding problems) */
185 	error = -ESRCH;
186 	if (niceval < -20)
187 		niceval = -20;
188 	if (niceval > 19)
189 		niceval = 19;
190 
191 	rcu_read_lock();
192 	read_lock(&tasklist_lock);
193 	switch (which) {
194 		case PRIO_PROCESS:
195 			if (who)
196 				p = find_task_by_vpid(who);
197 			else
198 				p = current;
199 			if (p)
200 				error = set_one_prio(p, niceval, error);
201 			break;
202 		case PRIO_PGRP:
203 			if (who)
204 				pgrp = find_vpid(who);
205 			else
206 				pgrp = task_pgrp(current);
207 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208 				error = set_one_prio(p, niceval, error);
209 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210 			break;
211 		case PRIO_USER:
212 			user = (struct user_struct *) cred->user;
213 			if (!who)
214 				who = cred->uid;
215 			else if ((who != cred->uid) &&
216 				 !(user = find_user(who)))
217 				goto out_unlock;	/* No processes for this user */
218 
219 			do_each_thread(g, p) {
220 				if (__task_cred(p)->uid == who)
221 					error = set_one_prio(p, niceval, error);
222 			} while_each_thread(g, p);
223 			if (who != cred->uid)
224 				free_uid(user);		/* For find_user() */
225 			break;
226 	}
227 out_unlock:
228 	read_unlock(&tasklist_lock);
229 	rcu_read_unlock();
230 out:
231 	return error;
232 }
233 
234 /*
235  * Ugh. To avoid negative return values, "getpriority()" will
236  * not return the normal nice-value, but a negated value that
237  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238  * to stay compatible.
239  */
240 SYSCALL_DEFINE2(getpriority, int, which, int, who)
241 {
242 	struct task_struct *g, *p;
243 	struct user_struct *user;
244 	const struct cred *cred = current_cred();
245 	long niceval, retval = -ESRCH;
246 	struct pid *pgrp;
247 
248 	if (which > PRIO_USER || which < PRIO_PROCESS)
249 		return -EINVAL;
250 
251 	rcu_read_lock();
252 	read_lock(&tasklist_lock);
253 	switch (which) {
254 		case PRIO_PROCESS:
255 			if (who)
256 				p = find_task_by_vpid(who);
257 			else
258 				p = current;
259 			if (p) {
260 				niceval = 20 - task_nice(p);
261 				if (niceval > retval)
262 					retval = niceval;
263 			}
264 			break;
265 		case PRIO_PGRP:
266 			if (who)
267 				pgrp = find_vpid(who);
268 			else
269 				pgrp = task_pgrp(current);
270 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
271 				niceval = 20 - task_nice(p);
272 				if (niceval > retval)
273 					retval = niceval;
274 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
275 			break;
276 		case PRIO_USER:
277 			user = (struct user_struct *) cred->user;
278 			if (!who)
279 				who = cred->uid;
280 			else if ((who != cred->uid) &&
281 				 !(user = find_user(who)))
282 				goto out_unlock;	/* No processes for this user */
283 
284 			do_each_thread(g, p) {
285 				if (__task_cred(p)->uid == who) {
286 					niceval = 20 - task_nice(p);
287 					if (niceval > retval)
288 						retval = niceval;
289 				}
290 			} while_each_thread(g, p);
291 			if (who != cred->uid)
292 				free_uid(user);		/* for find_user() */
293 			break;
294 	}
295 out_unlock:
296 	read_unlock(&tasklist_lock);
297 	rcu_read_unlock();
298 
299 	return retval;
300 }
301 
302 /**
303  *	emergency_restart - reboot the system
304  *
305  *	Without shutting down any hardware or taking any locks
306  *	reboot the system.  This is called when we know we are in
307  *	trouble so this is our best effort to reboot.  This is
308  *	safe to call in interrupt context.
309  */
310 void emergency_restart(void)
311 {
312 	kmsg_dump(KMSG_DUMP_EMERG);
313 	machine_emergency_restart();
314 }
315 EXPORT_SYMBOL_GPL(emergency_restart);
316 
317 void kernel_restart_prepare(char *cmd)
318 {
319 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
320 	system_state = SYSTEM_RESTART;
321 	usermodehelper_disable();
322 	device_shutdown();
323 	syscore_shutdown();
324 }
325 
326 /**
327  *	register_reboot_notifier - Register function to be called at reboot time
328  *	@nb: Info about notifier function to be called
329  *
330  *	Registers a function with the list of functions
331  *	to be called at reboot time.
332  *
333  *	Currently always returns zero, as blocking_notifier_chain_register()
334  *	always returns zero.
335  */
336 int register_reboot_notifier(struct notifier_block *nb)
337 {
338 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
339 }
340 EXPORT_SYMBOL(register_reboot_notifier);
341 
342 /**
343  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
344  *	@nb: Hook to be unregistered
345  *
346  *	Unregisters a previously registered reboot
347  *	notifier function.
348  *
349  *	Returns zero on success, or %-ENOENT on failure.
350  */
351 int unregister_reboot_notifier(struct notifier_block *nb)
352 {
353 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
354 }
355 EXPORT_SYMBOL(unregister_reboot_notifier);
356 
357 /**
358  *	kernel_restart - reboot the system
359  *	@cmd: pointer to buffer containing command to execute for restart
360  *		or %NULL
361  *
362  *	Shutdown everything and perform a clean reboot.
363  *	This is not safe to call in interrupt context.
364  */
365 void kernel_restart(char *cmd)
366 {
367 	kernel_restart_prepare(cmd);
368 	if (!cmd)
369 		printk(KERN_EMERG "Restarting system.\n");
370 	else
371 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
372 	kmsg_dump(KMSG_DUMP_RESTART);
373 	machine_restart(cmd);
374 }
375 EXPORT_SYMBOL_GPL(kernel_restart);
376 
377 static void kernel_shutdown_prepare(enum system_states state)
378 {
379 	blocking_notifier_call_chain(&reboot_notifier_list,
380 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
381 	system_state = state;
382 	usermodehelper_disable();
383 	device_shutdown();
384 }
385 /**
386  *	kernel_halt - halt the system
387  *
388  *	Shutdown everything and perform a clean system halt.
389  */
390 void kernel_halt(void)
391 {
392 	kernel_shutdown_prepare(SYSTEM_HALT);
393 	syscore_shutdown();
394 	printk(KERN_EMERG "System halted.\n");
395 	kmsg_dump(KMSG_DUMP_HALT);
396 	machine_halt();
397 }
398 
399 EXPORT_SYMBOL_GPL(kernel_halt);
400 
401 /**
402  *	kernel_power_off - power_off the system
403  *
404  *	Shutdown everything and perform a clean system power_off.
405  */
406 void kernel_power_off(void)
407 {
408 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
409 	if (pm_power_off_prepare)
410 		pm_power_off_prepare();
411 	disable_nonboot_cpus();
412 	syscore_shutdown();
413 	printk(KERN_EMERG "Power down.\n");
414 	kmsg_dump(KMSG_DUMP_POWEROFF);
415 	machine_power_off();
416 }
417 EXPORT_SYMBOL_GPL(kernel_power_off);
418 
419 static DEFINE_MUTEX(reboot_mutex);
420 
421 /*
422  * Reboot system call: for obvious reasons only root may call it,
423  * and even root needs to set up some magic numbers in the registers
424  * so that some mistake won't make this reboot the whole machine.
425  * You can also set the meaning of the ctrl-alt-del-key here.
426  *
427  * reboot doesn't sync: do that yourself before calling this.
428  */
429 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
430 		void __user *, arg)
431 {
432 	char buffer[256];
433 	int ret = 0;
434 
435 	/* We only trust the superuser with rebooting the system. */
436 	if (!capable(CAP_SYS_BOOT))
437 		return -EPERM;
438 
439 	/* For safety, we require "magic" arguments. */
440 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
441 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
442 	                magic2 != LINUX_REBOOT_MAGIC2A &&
443 			magic2 != LINUX_REBOOT_MAGIC2B &&
444 	                magic2 != LINUX_REBOOT_MAGIC2C))
445 		return -EINVAL;
446 
447 	/* Instead of trying to make the power_off code look like
448 	 * halt when pm_power_off is not set do it the easy way.
449 	 */
450 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
451 		cmd = LINUX_REBOOT_CMD_HALT;
452 
453 	mutex_lock(&reboot_mutex);
454 	switch (cmd) {
455 	case LINUX_REBOOT_CMD_RESTART:
456 		kernel_restart(NULL);
457 		break;
458 
459 	case LINUX_REBOOT_CMD_CAD_ON:
460 		C_A_D = 1;
461 		break;
462 
463 	case LINUX_REBOOT_CMD_CAD_OFF:
464 		C_A_D = 0;
465 		break;
466 
467 	case LINUX_REBOOT_CMD_HALT:
468 		kernel_halt();
469 		do_exit(0);
470 		panic("cannot halt");
471 
472 	case LINUX_REBOOT_CMD_POWER_OFF:
473 		kernel_power_off();
474 		do_exit(0);
475 		break;
476 
477 	case LINUX_REBOOT_CMD_RESTART2:
478 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
479 			ret = -EFAULT;
480 			break;
481 		}
482 		buffer[sizeof(buffer) - 1] = '\0';
483 
484 		kernel_restart(buffer);
485 		break;
486 
487 #ifdef CONFIG_KEXEC
488 	case LINUX_REBOOT_CMD_KEXEC:
489 		ret = kernel_kexec();
490 		break;
491 #endif
492 
493 #ifdef CONFIG_HIBERNATION
494 	case LINUX_REBOOT_CMD_SW_SUSPEND:
495 		ret = hibernate();
496 		break;
497 #endif
498 
499 	default:
500 		ret = -EINVAL;
501 		break;
502 	}
503 	mutex_unlock(&reboot_mutex);
504 	return ret;
505 }
506 
507 static void deferred_cad(struct work_struct *dummy)
508 {
509 	kernel_restart(NULL);
510 }
511 
512 /*
513  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
514  * As it's called within an interrupt, it may NOT sync: the only choice
515  * is whether to reboot at once, or just ignore the ctrl-alt-del.
516  */
517 void ctrl_alt_del(void)
518 {
519 	static DECLARE_WORK(cad_work, deferred_cad);
520 
521 	if (C_A_D)
522 		schedule_work(&cad_work);
523 	else
524 		kill_cad_pid(SIGINT, 1);
525 }
526 
527 /*
528  * Unprivileged users may change the real gid to the effective gid
529  * or vice versa.  (BSD-style)
530  *
531  * If you set the real gid at all, or set the effective gid to a value not
532  * equal to the real gid, then the saved gid is set to the new effective gid.
533  *
534  * This makes it possible for a setgid program to completely drop its
535  * privileges, which is often a useful assertion to make when you are doing
536  * a security audit over a program.
537  *
538  * The general idea is that a program which uses just setregid() will be
539  * 100% compatible with BSD.  A program which uses just setgid() will be
540  * 100% compatible with POSIX with saved IDs.
541  *
542  * SMP: There are not races, the GIDs are checked only by filesystem
543  *      operations (as far as semantic preservation is concerned).
544  */
545 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
546 {
547 	const struct cred *old;
548 	struct cred *new;
549 	int retval;
550 
551 	new = prepare_creds();
552 	if (!new)
553 		return -ENOMEM;
554 	old = current_cred();
555 
556 	retval = -EPERM;
557 	if (rgid != (gid_t) -1) {
558 		if (old->gid == rgid ||
559 		    old->egid == rgid ||
560 		    nsown_capable(CAP_SETGID))
561 			new->gid = rgid;
562 		else
563 			goto error;
564 	}
565 	if (egid != (gid_t) -1) {
566 		if (old->gid == egid ||
567 		    old->egid == egid ||
568 		    old->sgid == egid ||
569 		    nsown_capable(CAP_SETGID))
570 			new->egid = egid;
571 		else
572 			goto error;
573 	}
574 
575 	if (rgid != (gid_t) -1 ||
576 	    (egid != (gid_t) -1 && egid != old->gid))
577 		new->sgid = new->egid;
578 	new->fsgid = new->egid;
579 
580 	return commit_creds(new);
581 
582 error:
583 	abort_creds(new);
584 	return retval;
585 }
586 
587 /*
588  * setgid() is implemented like SysV w/ SAVED_IDS
589  *
590  * SMP: Same implicit races as above.
591  */
592 SYSCALL_DEFINE1(setgid, gid_t, gid)
593 {
594 	const struct cred *old;
595 	struct cred *new;
596 	int retval;
597 
598 	new = prepare_creds();
599 	if (!new)
600 		return -ENOMEM;
601 	old = current_cred();
602 
603 	retval = -EPERM;
604 	if (nsown_capable(CAP_SETGID))
605 		new->gid = new->egid = new->sgid = new->fsgid = gid;
606 	else if (gid == old->gid || gid == old->sgid)
607 		new->egid = new->fsgid = gid;
608 	else
609 		goto error;
610 
611 	return commit_creds(new);
612 
613 error:
614 	abort_creds(new);
615 	return retval;
616 }
617 
618 /*
619  * change the user struct in a credentials set to match the new UID
620  */
621 static int set_user(struct cred *new)
622 {
623 	struct user_struct *new_user;
624 
625 	new_user = alloc_uid(current_user_ns(), new->uid);
626 	if (!new_user)
627 		return -EAGAIN;
628 
629 	/*
630 	 * We don't fail in case of NPROC limit excess here because too many
631 	 * poorly written programs don't check set*uid() return code, assuming
632 	 * it never fails if called by root.  We may still enforce NPROC limit
633 	 * for programs doing set*uid()+execve() by harmlessly deferring the
634 	 * failure to the execve() stage.
635 	 */
636 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
637 			new_user != INIT_USER)
638 		current->flags |= PF_NPROC_EXCEEDED;
639 	else
640 		current->flags &= ~PF_NPROC_EXCEEDED;
641 
642 	free_uid(new->user);
643 	new->user = new_user;
644 	return 0;
645 }
646 
647 /*
648  * Unprivileged users may change the real uid to the effective uid
649  * or vice versa.  (BSD-style)
650  *
651  * If you set the real uid at all, or set the effective uid to a value not
652  * equal to the real uid, then the saved uid is set to the new effective uid.
653  *
654  * This makes it possible for a setuid program to completely drop its
655  * privileges, which is often a useful assertion to make when you are doing
656  * a security audit over a program.
657  *
658  * The general idea is that a program which uses just setreuid() will be
659  * 100% compatible with BSD.  A program which uses just setuid() will be
660  * 100% compatible with POSIX with saved IDs.
661  */
662 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
663 {
664 	const struct cred *old;
665 	struct cred *new;
666 	int retval;
667 
668 	new = prepare_creds();
669 	if (!new)
670 		return -ENOMEM;
671 	old = current_cred();
672 
673 	retval = -EPERM;
674 	if (ruid != (uid_t) -1) {
675 		new->uid = ruid;
676 		if (old->uid != ruid &&
677 		    old->euid != ruid &&
678 		    !nsown_capable(CAP_SETUID))
679 			goto error;
680 	}
681 
682 	if (euid != (uid_t) -1) {
683 		new->euid = euid;
684 		if (old->uid != euid &&
685 		    old->euid != euid &&
686 		    old->suid != euid &&
687 		    !nsown_capable(CAP_SETUID))
688 			goto error;
689 	}
690 
691 	if (new->uid != old->uid) {
692 		retval = set_user(new);
693 		if (retval < 0)
694 			goto error;
695 	}
696 	if (ruid != (uid_t) -1 ||
697 	    (euid != (uid_t) -1 && euid != old->uid))
698 		new->suid = new->euid;
699 	new->fsuid = new->euid;
700 
701 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
702 	if (retval < 0)
703 		goto error;
704 
705 	return commit_creds(new);
706 
707 error:
708 	abort_creds(new);
709 	return retval;
710 }
711 
712 /*
713  * setuid() is implemented like SysV with SAVED_IDS
714  *
715  * Note that SAVED_ID's is deficient in that a setuid root program
716  * like sendmail, for example, cannot set its uid to be a normal
717  * user and then switch back, because if you're root, setuid() sets
718  * the saved uid too.  If you don't like this, blame the bright people
719  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
720  * will allow a root program to temporarily drop privileges and be able to
721  * regain them by swapping the real and effective uid.
722  */
723 SYSCALL_DEFINE1(setuid, uid_t, uid)
724 {
725 	const struct cred *old;
726 	struct cred *new;
727 	int retval;
728 
729 	new = prepare_creds();
730 	if (!new)
731 		return -ENOMEM;
732 	old = current_cred();
733 
734 	retval = -EPERM;
735 	if (nsown_capable(CAP_SETUID)) {
736 		new->suid = new->uid = uid;
737 		if (uid != old->uid) {
738 			retval = set_user(new);
739 			if (retval < 0)
740 				goto error;
741 		}
742 	} else if (uid != old->uid && uid != new->suid) {
743 		goto error;
744 	}
745 
746 	new->fsuid = new->euid = uid;
747 
748 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
749 	if (retval < 0)
750 		goto error;
751 
752 	return commit_creds(new);
753 
754 error:
755 	abort_creds(new);
756 	return retval;
757 }
758 
759 
760 /*
761  * This function implements a generic ability to update ruid, euid,
762  * and suid.  This allows you to implement the 4.4 compatible seteuid().
763  */
764 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
765 {
766 	const struct cred *old;
767 	struct cred *new;
768 	int retval;
769 
770 	new = prepare_creds();
771 	if (!new)
772 		return -ENOMEM;
773 
774 	old = current_cred();
775 
776 	retval = -EPERM;
777 	if (!nsown_capable(CAP_SETUID)) {
778 		if (ruid != (uid_t) -1 && ruid != old->uid &&
779 		    ruid != old->euid  && ruid != old->suid)
780 			goto error;
781 		if (euid != (uid_t) -1 && euid != old->uid &&
782 		    euid != old->euid  && euid != old->suid)
783 			goto error;
784 		if (suid != (uid_t) -1 && suid != old->uid &&
785 		    suid != old->euid  && suid != old->suid)
786 			goto error;
787 	}
788 
789 	if (ruid != (uid_t) -1) {
790 		new->uid = ruid;
791 		if (ruid != old->uid) {
792 			retval = set_user(new);
793 			if (retval < 0)
794 				goto error;
795 		}
796 	}
797 	if (euid != (uid_t) -1)
798 		new->euid = euid;
799 	if (suid != (uid_t) -1)
800 		new->suid = suid;
801 	new->fsuid = new->euid;
802 
803 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
804 	if (retval < 0)
805 		goto error;
806 
807 	return commit_creds(new);
808 
809 error:
810 	abort_creds(new);
811 	return retval;
812 }
813 
814 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
815 {
816 	const struct cred *cred = current_cred();
817 	int retval;
818 
819 	if (!(retval   = put_user(cred->uid,  ruid)) &&
820 	    !(retval   = put_user(cred->euid, euid)))
821 		retval = put_user(cred->suid, suid);
822 
823 	return retval;
824 }
825 
826 /*
827  * Same as above, but for rgid, egid, sgid.
828  */
829 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
830 {
831 	const struct cred *old;
832 	struct cred *new;
833 	int retval;
834 
835 	new = prepare_creds();
836 	if (!new)
837 		return -ENOMEM;
838 	old = current_cred();
839 
840 	retval = -EPERM;
841 	if (!nsown_capable(CAP_SETGID)) {
842 		if (rgid != (gid_t) -1 && rgid != old->gid &&
843 		    rgid != old->egid  && rgid != old->sgid)
844 			goto error;
845 		if (egid != (gid_t) -1 && egid != old->gid &&
846 		    egid != old->egid  && egid != old->sgid)
847 			goto error;
848 		if (sgid != (gid_t) -1 && sgid != old->gid &&
849 		    sgid != old->egid  && sgid != old->sgid)
850 			goto error;
851 	}
852 
853 	if (rgid != (gid_t) -1)
854 		new->gid = rgid;
855 	if (egid != (gid_t) -1)
856 		new->egid = egid;
857 	if (sgid != (gid_t) -1)
858 		new->sgid = sgid;
859 	new->fsgid = new->egid;
860 
861 	return commit_creds(new);
862 
863 error:
864 	abort_creds(new);
865 	return retval;
866 }
867 
868 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
869 {
870 	const struct cred *cred = current_cred();
871 	int retval;
872 
873 	if (!(retval   = put_user(cred->gid,  rgid)) &&
874 	    !(retval   = put_user(cred->egid, egid)))
875 		retval = put_user(cred->sgid, sgid);
876 
877 	return retval;
878 }
879 
880 
881 /*
882  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
883  * is used for "access()" and for the NFS daemon (letting nfsd stay at
884  * whatever uid it wants to). It normally shadows "euid", except when
885  * explicitly set by setfsuid() or for access..
886  */
887 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
888 {
889 	const struct cred *old;
890 	struct cred *new;
891 	uid_t old_fsuid;
892 
893 	new = prepare_creds();
894 	if (!new)
895 		return current_fsuid();
896 	old = current_cred();
897 	old_fsuid = old->fsuid;
898 
899 	if (uid == old->uid  || uid == old->euid  ||
900 	    uid == old->suid || uid == old->fsuid ||
901 	    nsown_capable(CAP_SETUID)) {
902 		if (uid != old_fsuid) {
903 			new->fsuid = uid;
904 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
905 				goto change_okay;
906 		}
907 	}
908 
909 	abort_creds(new);
910 	return old_fsuid;
911 
912 change_okay:
913 	commit_creds(new);
914 	return old_fsuid;
915 }
916 
917 /*
918  * Samma på svenska..
919  */
920 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
921 {
922 	const struct cred *old;
923 	struct cred *new;
924 	gid_t old_fsgid;
925 
926 	new = prepare_creds();
927 	if (!new)
928 		return current_fsgid();
929 	old = current_cred();
930 	old_fsgid = old->fsgid;
931 
932 	if (gid == old->gid  || gid == old->egid  ||
933 	    gid == old->sgid || gid == old->fsgid ||
934 	    nsown_capable(CAP_SETGID)) {
935 		if (gid != old_fsgid) {
936 			new->fsgid = gid;
937 			goto change_okay;
938 		}
939 	}
940 
941 	abort_creds(new);
942 	return old_fsgid;
943 
944 change_okay:
945 	commit_creds(new);
946 	return old_fsgid;
947 }
948 
949 void do_sys_times(struct tms *tms)
950 {
951 	cputime_t tgutime, tgstime, cutime, cstime;
952 
953 	spin_lock_irq(&current->sighand->siglock);
954 	thread_group_times(current, &tgutime, &tgstime);
955 	cutime = current->signal->cutime;
956 	cstime = current->signal->cstime;
957 	spin_unlock_irq(&current->sighand->siglock);
958 	tms->tms_utime = cputime_to_clock_t(tgutime);
959 	tms->tms_stime = cputime_to_clock_t(tgstime);
960 	tms->tms_cutime = cputime_to_clock_t(cutime);
961 	tms->tms_cstime = cputime_to_clock_t(cstime);
962 }
963 
964 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
965 {
966 	if (tbuf) {
967 		struct tms tmp;
968 
969 		do_sys_times(&tmp);
970 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
971 			return -EFAULT;
972 	}
973 	force_successful_syscall_return();
974 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
975 }
976 
977 /*
978  * This needs some heavy checking ...
979  * I just haven't the stomach for it. I also don't fully
980  * understand sessions/pgrp etc. Let somebody who does explain it.
981  *
982  * OK, I think I have the protection semantics right.... this is really
983  * only important on a multi-user system anyway, to make sure one user
984  * can't send a signal to a process owned by another.  -TYT, 12/12/91
985  *
986  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
987  * LBT 04.03.94
988  */
989 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
990 {
991 	struct task_struct *p;
992 	struct task_struct *group_leader = current->group_leader;
993 	struct pid *pgrp;
994 	int err;
995 
996 	if (!pid)
997 		pid = task_pid_vnr(group_leader);
998 	if (!pgid)
999 		pgid = pid;
1000 	if (pgid < 0)
1001 		return -EINVAL;
1002 	rcu_read_lock();
1003 
1004 	/* From this point forward we keep holding onto the tasklist lock
1005 	 * so that our parent does not change from under us. -DaveM
1006 	 */
1007 	write_lock_irq(&tasklist_lock);
1008 
1009 	err = -ESRCH;
1010 	p = find_task_by_vpid(pid);
1011 	if (!p)
1012 		goto out;
1013 
1014 	err = -EINVAL;
1015 	if (!thread_group_leader(p))
1016 		goto out;
1017 
1018 	if (same_thread_group(p->real_parent, group_leader)) {
1019 		err = -EPERM;
1020 		if (task_session(p) != task_session(group_leader))
1021 			goto out;
1022 		err = -EACCES;
1023 		if (p->did_exec)
1024 			goto out;
1025 	} else {
1026 		err = -ESRCH;
1027 		if (p != group_leader)
1028 			goto out;
1029 	}
1030 
1031 	err = -EPERM;
1032 	if (p->signal->leader)
1033 		goto out;
1034 
1035 	pgrp = task_pid(p);
1036 	if (pgid != pid) {
1037 		struct task_struct *g;
1038 
1039 		pgrp = find_vpid(pgid);
1040 		g = pid_task(pgrp, PIDTYPE_PGID);
1041 		if (!g || task_session(g) != task_session(group_leader))
1042 			goto out;
1043 	}
1044 
1045 	err = security_task_setpgid(p, pgid);
1046 	if (err)
1047 		goto out;
1048 
1049 	if (task_pgrp(p) != pgrp)
1050 		change_pid(p, PIDTYPE_PGID, pgrp);
1051 
1052 	err = 0;
1053 out:
1054 	/* All paths lead to here, thus we are safe. -DaveM */
1055 	write_unlock_irq(&tasklist_lock);
1056 	rcu_read_unlock();
1057 	return err;
1058 }
1059 
1060 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1061 {
1062 	struct task_struct *p;
1063 	struct pid *grp;
1064 	int retval;
1065 
1066 	rcu_read_lock();
1067 	if (!pid)
1068 		grp = task_pgrp(current);
1069 	else {
1070 		retval = -ESRCH;
1071 		p = find_task_by_vpid(pid);
1072 		if (!p)
1073 			goto out;
1074 		grp = task_pgrp(p);
1075 		if (!grp)
1076 			goto out;
1077 
1078 		retval = security_task_getpgid(p);
1079 		if (retval)
1080 			goto out;
1081 	}
1082 	retval = pid_vnr(grp);
1083 out:
1084 	rcu_read_unlock();
1085 	return retval;
1086 }
1087 
1088 #ifdef __ARCH_WANT_SYS_GETPGRP
1089 
1090 SYSCALL_DEFINE0(getpgrp)
1091 {
1092 	return sys_getpgid(0);
1093 }
1094 
1095 #endif
1096 
1097 SYSCALL_DEFINE1(getsid, pid_t, pid)
1098 {
1099 	struct task_struct *p;
1100 	struct pid *sid;
1101 	int retval;
1102 
1103 	rcu_read_lock();
1104 	if (!pid)
1105 		sid = task_session(current);
1106 	else {
1107 		retval = -ESRCH;
1108 		p = find_task_by_vpid(pid);
1109 		if (!p)
1110 			goto out;
1111 		sid = task_session(p);
1112 		if (!sid)
1113 			goto out;
1114 
1115 		retval = security_task_getsid(p);
1116 		if (retval)
1117 			goto out;
1118 	}
1119 	retval = pid_vnr(sid);
1120 out:
1121 	rcu_read_unlock();
1122 	return retval;
1123 }
1124 
1125 SYSCALL_DEFINE0(setsid)
1126 {
1127 	struct task_struct *group_leader = current->group_leader;
1128 	struct pid *sid = task_pid(group_leader);
1129 	pid_t session = pid_vnr(sid);
1130 	int err = -EPERM;
1131 
1132 	write_lock_irq(&tasklist_lock);
1133 	/* Fail if I am already a session leader */
1134 	if (group_leader->signal->leader)
1135 		goto out;
1136 
1137 	/* Fail if a process group id already exists that equals the
1138 	 * proposed session id.
1139 	 */
1140 	if (pid_task(sid, PIDTYPE_PGID))
1141 		goto out;
1142 
1143 	group_leader->signal->leader = 1;
1144 	__set_special_pids(sid);
1145 
1146 	proc_clear_tty(group_leader);
1147 
1148 	err = session;
1149 out:
1150 	write_unlock_irq(&tasklist_lock);
1151 	if (err > 0) {
1152 		proc_sid_connector(group_leader);
1153 		sched_autogroup_create_attach(group_leader);
1154 	}
1155 	return err;
1156 }
1157 
1158 DECLARE_RWSEM(uts_sem);
1159 
1160 #ifdef COMPAT_UTS_MACHINE
1161 #define override_architecture(name) \
1162 	(personality(current->personality) == PER_LINUX32 && \
1163 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1164 		      sizeof(COMPAT_UTS_MACHINE)))
1165 #else
1166 #define override_architecture(name)	0
1167 #endif
1168 
1169 /*
1170  * Work around broken programs that cannot handle "Linux 3.0".
1171  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1172  */
1173 static int override_release(char __user *release, int len)
1174 {
1175 	int ret = 0;
1176 	char buf[65];
1177 
1178 	if (current->personality & UNAME26) {
1179 		char *rest = UTS_RELEASE;
1180 		int ndots = 0;
1181 		unsigned v;
1182 
1183 		while (*rest) {
1184 			if (*rest == '.' && ++ndots >= 3)
1185 				break;
1186 			if (!isdigit(*rest) && *rest != '.')
1187 				break;
1188 			rest++;
1189 		}
1190 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1191 		snprintf(buf, len, "2.6.%u%s", v, rest);
1192 		ret = copy_to_user(release, buf, len);
1193 	}
1194 	return ret;
1195 }
1196 
1197 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1198 {
1199 	int errno = 0;
1200 
1201 	down_read(&uts_sem);
1202 	if (copy_to_user(name, utsname(), sizeof *name))
1203 		errno = -EFAULT;
1204 	up_read(&uts_sem);
1205 
1206 	if (!errno && override_release(name->release, sizeof(name->release)))
1207 		errno = -EFAULT;
1208 	if (!errno && override_architecture(name))
1209 		errno = -EFAULT;
1210 	return errno;
1211 }
1212 
1213 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1214 /*
1215  * Old cruft
1216  */
1217 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1218 {
1219 	int error = 0;
1220 
1221 	if (!name)
1222 		return -EFAULT;
1223 
1224 	down_read(&uts_sem);
1225 	if (copy_to_user(name, utsname(), sizeof(*name)))
1226 		error = -EFAULT;
1227 	up_read(&uts_sem);
1228 
1229 	if (!error && override_release(name->release, sizeof(name->release)))
1230 		error = -EFAULT;
1231 	if (!error && override_architecture(name))
1232 		error = -EFAULT;
1233 	return error;
1234 }
1235 
1236 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1237 {
1238 	int error;
1239 
1240 	if (!name)
1241 		return -EFAULT;
1242 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1243 		return -EFAULT;
1244 
1245 	down_read(&uts_sem);
1246 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1247 			       __OLD_UTS_LEN);
1248 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1249 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1250 				__OLD_UTS_LEN);
1251 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1252 	error |= __copy_to_user(&name->release, &utsname()->release,
1253 				__OLD_UTS_LEN);
1254 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1255 	error |= __copy_to_user(&name->version, &utsname()->version,
1256 				__OLD_UTS_LEN);
1257 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1258 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1259 				__OLD_UTS_LEN);
1260 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1261 	up_read(&uts_sem);
1262 
1263 	if (!error && override_architecture(name))
1264 		error = -EFAULT;
1265 	if (!error && override_release(name->release, sizeof(name->release)))
1266 		error = -EFAULT;
1267 	return error ? -EFAULT : 0;
1268 }
1269 #endif
1270 
1271 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1272 {
1273 	int errno;
1274 	char tmp[__NEW_UTS_LEN];
1275 
1276 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1277 		return -EPERM;
1278 
1279 	if (len < 0 || len > __NEW_UTS_LEN)
1280 		return -EINVAL;
1281 	down_write(&uts_sem);
1282 	errno = -EFAULT;
1283 	if (!copy_from_user(tmp, name, len)) {
1284 		struct new_utsname *u = utsname();
1285 
1286 		memcpy(u->nodename, tmp, len);
1287 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1288 		errno = 0;
1289 	}
1290 	uts_proc_notify(UTS_PROC_HOSTNAME);
1291 	up_write(&uts_sem);
1292 	return errno;
1293 }
1294 
1295 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1296 
1297 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1298 {
1299 	int i, errno;
1300 	struct new_utsname *u;
1301 
1302 	if (len < 0)
1303 		return -EINVAL;
1304 	down_read(&uts_sem);
1305 	u = utsname();
1306 	i = 1 + strlen(u->nodename);
1307 	if (i > len)
1308 		i = len;
1309 	errno = 0;
1310 	if (copy_to_user(name, u->nodename, i))
1311 		errno = -EFAULT;
1312 	up_read(&uts_sem);
1313 	return errno;
1314 }
1315 
1316 #endif
1317 
1318 /*
1319  * Only setdomainname; getdomainname can be implemented by calling
1320  * uname()
1321  */
1322 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1323 {
1324 	int errno;
1325 	char tmp[__NEW_UTS_LEN];
1326 
1327 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1328 		return -EPERM;
1329 	if (len < 0 || len > __NEW_UTS_LEN)
1330 		return -EINVAL;
1331 
1332 	down_write(&uts_sem);
1333 	errno = -EFAULT;
1334 	if (!copy_from_user(tmp, name, len)) {
1335 		struct new_utsname *u = utsname();
1336 
1337 		memcpy(u->domainname, tmp, len);
1338 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1339 		errno = 0;
1340 	}
1341 	uts_proc_notify(UTS_PROC_DOMAINNAME);
1342 	up_write(&uts_sem);
1343 	return errno;
1344 }
1345 
1346 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1347 {
1348 	struct rlimit value;
1349 	int ret;
1350 
1351 	ret = do_prlimit(current, resource, NULL, &value);
1352 	if (!ret)
1353 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1354 
1355 	return ret;
1356 }
1357 
1358 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1359 
1360 /*
1361  *	Back compatibility for getrlimit. Needed for some apps.
1362  */
1363 
1364 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1365 		struct rlimit __user *, rlim)
1366 {
1367 	struct rlimit x;
1368 	if (resource >= RLIM_NLIMITS)
1369 		return -EINVAL;
1370 
1371 	task_lock(current->group_leader);
1372 	x = current->signal->rlim[resource];
1373 	task_unlock(current->group_leader);
1374 	if (x.rlim_cur > 0x7FFFFFFF)
1375 		x.rlim_cur = 0x7FFFFFFF;
1376 	if (x.rlim_max > 0x7FFFFFFF)
1377 		x.rlim_max = 0x7FFFFFFF;
1378 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1379 }
1380 
1381 #endif
1382 
1383 static inline bool rlim64_is_infinity(__u64 rlim64)
1384 {
1385 #if BITS_PER_LONG < 64
1386 	return rlim64 >= ULONG_MAX;
1387 #else
1388 	return rlim64 == RLIM64_INFINITY;
1389 #endif
1390 }
1391 
1392 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1393 {
1394 	if (rlim->rlim_cur == RLIM_INFINITY)
1395 		rlim64->rlim_cur = RLIM64_INFINITY;
1396 	else
1397 		rlim64->rlim_cur = rlim->rlim_cur;
1398 	if (rlim->rlim_max == RLIM_INFINITY)
1399 		rlim64->rlim_max = RLIM64_INFINITY;
1400 	else
1401 		rlim64->rlim_max = rlim->rlim_max;
1402 }
1403 
1404 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1405 {
1406 	if (rlim64_is_infinity(rlim64->rlim_cur))
1407 		rlim->rlim_cur = RLIM_INFINITY;
1408 	else
1409 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1410 	if (rlim64_is_infinity(rlim64->rlim_max))
1411 		rlim->rlim_max = RLIM_INFINITY;
1412 	else
1413 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1414 }
1415 
1416 /* make sure you are allowed to change @tsk limits before calling this */
1417 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1418 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1419 {
1420 	struct rlimit *rlim;
1421 	int retval = 0;
1422 
1423 	if (resource >= RLIM_NLIMITS)
1424 		return -EINVAL;
1425 	if (new_rlim) {
1426 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1427 			return -EINVAL;
1428 		if (resource == RLIMIT_NOFILE &&
1429 				new_rlim->rlim_max > sysctl_nr_open)
1430 			return -EPERM;
1431 	}
1432 
1433 	/* protect tsk->signal and tsk->sighand from disappearing */
1434 	read_lock(&tasklist_lock);
1435 	if (!tsk->sighand) {
1436 		retval = -ESRCH;
1437 		goto out;
1438 	}
1439 
1440 	rlim = tsk->signal->rlim + resource;
1441 	task_lock(tsk->group_leader);
1442 	if (new_rlim) {
1443 		/* Keep the capable check against init_user_ns until
1444 		   cgroups can contain all limits */
1445 		if (new_rlim->rlim_max > rlim->rlim_max &&
1446 				!capable(CAP_SYS_RESOURCE))
1447 			retval = -EPERM;
1448 		if (!retval)
1449 			retval = security_task_setrlimit(tsk->group_leader,
1450 					resource, new_rlim);
1451 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1452 			/*
1453 			 * The caller is asking for an immediate RLIMIT_CPU
1454 			 * expiry.  But we use the zero value to mean "it was
1455 			 * never set".  So let's cheat and make it one second
1456 			 * instead
1457 			 */
1458 			new_rlim->rlim_cur = 1;
1459 		}
1460 	}
1461 	if (!retval) {
1462 		if (old_rlim)
1463 			*old_rlim = *rlim;
1464 		if (new_rlim)
1465 			*rlim = *new_rlim;
1466 	}
1467 	task_unlock(tsk->group_leader);
1468 
1469 	/*
1470 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1471 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1472 	 * very long-standing error, and fixing it now risks breakage of
1473 	 * applications, so we live with it
1474 	 */
1475 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1476 			 new_rlim->rlim_cur != RLIM_INFINITY)
1477 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1478 out:
1479 	read_unlock(&tasklist_lock);
1480 	return retval;
1481 }
1482 
1483 /* rcu lock must be held */
1484 static int check_prlimit_permission(struct task_struct *task)
1485 {
1486 	const struct cred *cred = current_cred(), *tcred;
1487 
1488 	if (current == task)
1489 		return 0;
1490 
1491 	tcred = __task_cred(task);
1492 	if (cred->user->user_ns == tcred->user->user_ns &&
1493 	    (cred->uid == tcred->euid &&
1494 	     cred->uid == tcred->suid &&
1495 	     cred->uid == tcred->uid  &&
1496 	     cred->gid == tcred->egid &&
1497 	     cred->gid == tcred->sgid &&
1498 	     cred->gid == tcred->gid))
1499 		return 0;
1500 	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1501 		return 0;
1502 
1503 	return -EPERM;
1504 }
1505 
1506 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1507 		const struct rlimit64 __user *, new_rlim,
1508 		struct rlimit64 __user *, old_rlim)
1509 {
1510 	struct rlimit64 old64, new64;
1511 	struct rlimit old, new;
1512 	struct task_struct *tsk;
1513 	int ret;
1514 
1515 	if (new_rlim) {
1516 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1517 			return -EFAULT;
1518 		rlim64_to_rlim(&new64, &new);
1519 	}
1520 
1521 	rcu_read_lock();
1522 	tsk = pid ? find_task_by_vpid(pid) : current;
1523 	if (!tsk) {
1524 		rcu_read_unlock();
1525 		return -ESRCH;
1526 	}
1527 	ret = check_prlimit_permission(tsk);
1528 	if (ret) {
1529 		rcu_read_unlock();
1530 		return ret;
1531 	}
1532 	get_task_struct(tsk);
1533 	rcu_read_unlock();
1534 
1535 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1536 			old_rlim ? &old : NULL);
1537 
1538 	if (!ret && old_rlim) {
1539 		rlim_to_rlim64(&old, &old64);
1540 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1541 			ret = -EFAULT;
1542 	}
1543 
1544 	put_task_struct(tsk);
1545 	return ret;
1546 }
1547 
1548 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1549 {
1550 	struct rlimit new_rlim;
1551 
1552 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1553 		return -EFAULT;
1554 	return do_prlimit(current, resource, &new_rlim, NULL);
1555 }
1556 
1557 /*
1558  * It would make sense to put struct rusage in the task_struct,
1559  * except that would make the task_struct be *really big*.  After
1560  * task_struct gets moved into malloc'ed memory, it would
1561  * make sense to do this.  It will make moving the rest of the information
1562  * a lot simpler!  (Which we're not doing right now because we're not
1563  * measuring them yet).
1564  *
1565  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1566  * races with threads incrementing their own counters.  But since word
1567  * reads are atomic, we either get new values or old values and we don't
1568  * care which for the sums.  We always take the siglock to protect reading
1569  * the c* fields from p->signal from races with exit.c updating those
1570  * fields when reaping, so a sample either gets all the additions of a
1571  * given child after it's reaped, or none so this sample is before reaping.
1572  *
1573  * Locking:
1574  * We need to take the siglock for CHILDEREN, SELF and BOTH
1575  * for  the cases current multithreaded, non-current single threaded
1576  * non-current multithreaded.  Thread traversal is now safe with
1577  * the siglock held.
1578  * Strictly speaking, we donot need to take the siglock if we are current and
1579  * single threaded,  as no one else can take our signal_struct away, no one
1580  * else can  reap the  children to update signal->c* counters, and no one else
1581  * can race with the signal-> fields. If we do not take any lock, the
1582  * signal-> fields could be read out of order while another thread was just
1583  * exiting. So we should  place a read memory barrier when we avoid the lock.
1584  * On the writer side,  write memory barrier is implied in  __exit_signal
1585  * as __exit_signal releases  the siglock spinlock after updating the signal->
1586  * fields. But we don't do this yet to keep things simple.
1587  *
1588  */
1589 
1590 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1591 {
1592 	r->ru_nvcsw += t->nvcsw;
1593 	r->ru_nivcsw += t->nivcsw;
1594 	r->ru_minflt += t->min_flt;
1595 	r->ru_majflt += t->maj_flt;
1596 	r->ru_inblock += task_io_get_inblock(t);
1597 	r->ru_oublock += task_io_get_oublock(t);
1598 }
1599 
1600 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1601 {
1602 	struct task_struct *t;
1603 	unsigned long flags;
1604 	cputime_t tgutime, tgstime, utime, stime;
1605 	unsigned long maxrss = 0;
1606 
1607 	memset((char *) r, 0, sizeof *r);
1608 	utime = stime = 0;
1609 
1610 	if (who == RUSAGE_THREAD) {
1611 		task_times(current, &utime, &stime);
1612 		accumulate_thread_rusage(p, r);
1613 		maxrss = p->signal->maxrss;
1614 		goto out;
1615 	}
1616 
1617 	if (!lock_task_sighand(p, &flags))
1618 		return;
1619 
1620 	switch (who) {
1621 		case RUSAGE_BOTH:
1622 		case RUSAGE_CHILDREN:
1623 			utime = p->signal->cutime;
1624 			stime = p->signal->cstime;
1625 			r->ru_nvcsw = p->signal->cnvcsw;
1626 			r->ru_nivcsw = p->signal->cnivcsw;
1627 			r->ru_minflt = p->signal->cmin_flt;
1628 			r->ru_majflt = p->signal->cmaj_flt;
1629 			r->ru_inblock = p->signal->cinblock;
1630 			r->ru_oublock = p->signal->coublock;
1631 			maxrss = p->signal->cmaxrss;
1632 
1633 			if (who == RUSAGE_CHILDREN)
1634 				break;
1635 
1636 		case RUSAGE_SELF:
1637 			thread_group_times(p, &tgutime, &tgstime);
1638 			utime += tgutime;
1639 			stime += tgstime;
1640 			r->ru_nvcsw += p->signal->nvcsw;
1641 			r->ru_nivcsw += p->signal->nivcsw;
1642 			r->ru_minflt += p->signal->min_flt;
1643 			r->ru_majflt += p->signal->maj_flt;
1644 			r->ru_inblock += p->signal->inblock;
1645 			r->ru_oublock += p->signal->oublock;
1646 			if (maxrss < p->signal->maxrss)
1647 				maxrss = p->signal->maxrss;
1648 			t = p;
1649 			do {
1650 				accumulate_thread_rusage(t, r);
1651 				t = next_thread(t);
1652 			} while (t != p);
1653 			break;
1654 
1655 		default:
1656 			BUG();
1657 	}
1658 	unlock_task_sighand(p, &flags);
1659 
1660 out:
1661 	cputime_to_timeval(utime, &r->ru_utime);
1662 	cputime_to_timeval(stime, &r->ru_stime);
1663 
1664 	if (who != RUSAGE_CHILDREN) {
1665 		struct mm_struct *mm = get_task_mm(p);
1666 		if (mm) {
1667 			setmax_mm_hiwater_rss(&maxrss, mm);
1668 			mmput(mm);
1669 		}
1670 	}
1671 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1672 }
1673 
1674 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1675 {
1676 	struct rusage r;
1677 	k_getrusage(p, who, &r);
1678 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1679 }
1680 
1681 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1682 {
1683 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1684 	    who != RUSAGE_THREAD)
1685 		return -EINVAL;
1686 	return getrusage(current, who, ru);
1687 }
1688 
1689 SYSCALL_DEFINE1(umask, int, mask)
1690 {
1691 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1692 	return mask;
1693 }
1694 
1695 #ifdef CONFIG_CHECKPOINT_RESTORE
1696 static int prctl_set_mm(int opt, unsigned long addr,
1697 			unsigned long arg4, unsigned long arg5)
1698 {
1699 	unsigned long rlim = rlimit(RLIMIT_DATA);
1700 	unsigned long vm_req_flags;
1701 	unsigned long vm_bad_flags;
1702 	struct vm_area_struct *vma;
1703 	int error = 0;
1704 	struct mm_struct *mm = current->mm;
1705 
1706 	if (arg4 | arg5)
1707 		return -EINVAL;
1708 
1709 	if (!capable(CAP_SYS_RESOURCE))
1710 		return -EPERM;
1711 
1712 	if (addr >= TASK_SIZE)
1713 		return -EINVAL;
1714 
1715 	down_read(&mm->mmap_sem);
1716 	vma = find_vma(mm, addr);
1717 
1718 	if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1719 		/* It must be existing VMA */
1720 		if (!vma || vma->vm_start > addr)
1721 			goto out;
1722 	}
1723 
1724 	error = -EINVAL;
1725 	switch (opt) {
1726 	case PR_SET_MM_START_CODE:
1727 	case PR_SET_MM_END_CODE:
1728 		vm_req_flags = VM_READ | VM_EXEC;
1729 		vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1730 
1731 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1732 		    (vma->vm_flags & vm_bad_flags))
1733 			goto out;
1734 
1735 		if (opt == PR_SET_MM_START_CODE)
1736 			mm->start_code = addr;
1737 		else
1738 			mm->end_code = addr;
1739 		break;
1740 
1741 	case PR_SET_MM_START_DATA:
1742 	case PR_SET_MM_END_DATA:
1743 		vm_req_flags = VM_READ | VM_WRITE;
1744 		vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1745 
1746 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1747 		    (vma->vm_flags & vm_bad_flags))
1748 			goto out;
1749 
1750 		if (opt == PR_SET_MM_START_DATA)
1751 			mm->start_data = addr;
1752 		else
1753 			mm->end_data = addr;
1754 		break;
1755 
1756 	case PR_SET_MM_START_STACK:
1757 
1758 #ifdef CONFIG_STACK_GROWSUP
1759 		vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1760 #else
1761 		vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1762 #endif
1763 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1764 			goto out;
1765 
1766 		mm->start_stack = addr;
1767 		break;
1768 
1769 	case PR_SET_MM_START_BRK:
1770 		if (addr <= mm->end_data)
1771 			goto out;
1772 
1773 		if (rlim < RLIM_INFINITY &&
1774 		    (mm->brk - addr) +
1775 		    (mm->end_data - mm->start_data) > rlim)
1776 			goto out;
1777 
1778 		mm->start_brk = addr;
1779 		break;
1780 
1781 	case PR_SET_MM_BRK:
1782 		if (addr <= mm->end_data)
1783 			goto out;
1784 
1785 		if (rlim < RLIM_INFINITY &&
1786 		    (addr - mm->start_brk) +
1787 		    (mm->end_data - mm->start_data) > rlim)
1788 			goto out;
1789 
1790 		mm->brk = addr;
1791 		break;
1792 
1793 	default:
1794 		error = -EINVAL;
1795 		goto out;
1796 	}
1797 
1798 	error = 0;
1799 
1800 out:
1801 	up_read(&mm->mmap_sem);
1802 
1803 	return error;
1804 }
1805 #else /* CONFIG_CHECKPOINT_RESTORE */
1806 static int prctl_set_mm(int opt, unsigned long addr,
1807 			unsigned long arg4, unsigned long arg5)
1808 {
1809 	return -EINVAL;
1810 }
1811 #endif
1812 
1813 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1814 		unsigned long, arg4, unsigned long, arg5)
1815 {
1816 	struct task_struct *me = current;
1817 	unsigned char comm[sizeof(me->comm)];
1818 	long error;
1819 
1820 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1821 	if (error != -ENOSYS)
1822 		return error;
1823 
1824 	error = 0;
1825 	switch (option) {
1826 		case PR_SET_PDEATHSIG:
1827 			if (!valid_signal(arg2)) {
1828 				error = -EINVAL;
1829 				break;
1830 			}
1831 			me->pdeath_signal = arg2;
1832 			error = 0;
1833 			break;
1834 		case PR_GET_PDEATHSIG:
1835 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1836 			break;
1837 		case PR_GET_DUMPABLE:
1838 			error = get_dumpable(me->mm);
1839 			break;
1840 		case PR_SET_DUMPABLE:
1841 			if (arg2 < 0 || arg2 > 1) {
1842 				error = -EINVAL;
1843 				break;
1844 			}
1845 			set_dumpable(me->mm, arg2);
1846 			error = 0;
1847 			break;
1848 
1849 		case PR_SET_UNALIGN:
1850 			error = SET_UNALIGN_CTL(me, arg2);
1851 			break;
1852 		case PR_GET_UNALIGN:
1853 			error = GET_UNALIGN_CTL(me, arg2);
1854 			break;
1855 		case PR_SET_FPEMU:
1856 			error = SET_FPEMU_CTL(me, arg2);
1857 			break;
1858 		case PR_GET_FPEMU:
1859 			error = GET_FPEMU_CTL(me, arg2);
1860 			break;
1861 		case PR_SET_FPEXC:
1862 			error = SET_FPEXC_CTL(me, arg2);
1863 			break;
1864 		case PR_GET_FPEXC:
1865 			error = GET_FPEXC_CTL(me, arg2);
1866 			break;
1867 		case PR_GET_TIMING:
1868 			error = PR_TIMING_STATISTICAL;
1869 			break;
1870 		case PR_SET_TIMING:
1871 			if (arg2 != PR_TIMING_STATISTICAL)
1872 				error = -EINVAL;
1873 			else
1874 				error = 0;
1875 			break;
1876 
1877 		case PR_SET_NAME:
1878 			comm[sizeof(me->comm)-1] = 0;
1879 			if (strncpy_from_user(comm, (char __user *)arg2,
1880 					      sizeof(me->comm) - 1) < 0)
1881 				return -EFAULT;
1882 			set_task_comm(me, comm);
1883 			proc_comm_connector(me);
1884 			return 0;
1885 		case PR_GET_NAME:
1886 			get_task_comm(comm, me);
1887 			if (copy_to_user((char __user *)arg2, comm,
1888 					 sizeof(comm)))
1889 				return -EFAULT;
1890 			return 0;
1891 		case PR_GET_ENDIAN:
1892 			error = GET_ENDIAN(me, arg2);
1893 			break;
1894 		case PR_SET_ENDIAN:
1895 			error = SET_ENDIAN(me, arg2);
1896 			break;
1897 
1898 		case PR_GET_SECCOMP:
1899 			error = prctl_get_seccomp();
1900 			break;
1901 		case PR_SET_SECCOMP:
1902 			error = prctl_set_seccomp(arg2);
1903 			break;
1904 		case PR_GET_TSC:
1905 			error = GET_TSC_CTL(arg2);
1906 			break;
1907 		case PR_SET_TSC:
1908 			error = SET_TSC_CTL(arg2);
1909 			break;
1910 		case PR_TASK_PERF_EVENTS_DISABLE:
1911 			error = perf_event_task_disable();
1912 			break;
1913 		case PR_TASK_PERF_EVENTS_ENABLE:
1914 			error = perf_event_task_enable();
1915 			break;
1916 		case PR_GET_TIMERSLACK:
1917 			error = current->timer_slack_ns;
1918 			break;
1919 		case PR_SET_TIMERSLACK:
1920 			if (arg2 <= 0)
1921 				current->timer_slack_ns =
1922 					current->default_timer_slack_ns;
1923 			else
1924 				current->timer_slack_ns = arg2;
1925 			error = 0;
1926 			break;
1927 		case PR_MCE_KILL:
1928 			if (arg4 | arg5)
1929 				return -EINVAL;
1930 			switch (arg2) {
1931 			case PR_MCE_KILL_CLEAR:
1932 				if (arg3 != 0)
1933 					return -EINVAL;
1934 				current->flags &= ~PF_MCE_PROCESS;
1935 				break;
1936 			case PR_MCE_KILL_SET:
1937 				current->flags |= PF_MCE_PROCESS;
1938 				if (arg3 == PR_MCE_KILL_EARLY)
1939 					current->flags |= PF_MCE_EARLY;
1940 				else if (arg3 == PR_MCE_KILL_LATE)
1941 					current->flags &= ~PF_MCE_EARLY;
1942 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1943 					current->flags &=
1944 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1945 				else
1946 					return -EINVAL;
1947 				break;
1948 			default:
1949 				return -EINVAL;
1950 			}
1951 			error = 0;
1952 			break;
1953 		case PR_MCE_KILL_GET:
1954 			if (arg2 | arg3 | arg4 | arg5)
1955 				return -EINVAL;
1956 			if (current->flags & PF_MCE_PROCESS)
1957 				error = (current->flags & PF_MCE_EARLY) ?
1958 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1959 			else
1960 				error = PR_MCE_KILL_DEFAULT;
1961 			break;
1962 		case PR_SET_MM:
1963 			error = prctl_set_mm(arg2, arg3, arg4, arg5);
1964 			break;
1965 		default:
1966 			error = -EINVAL;
1967 			break;
1968 	}
1969 	return error;
1970 }
1971 
1972 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1973 		struct getcpu_cache __user *, unused)
1974 {
1975 	int err = 0;
1976 	int cpu = raw_smp_processor_id();
1977 	if (cpup)
1978 		err |= put_user(cpu, cpup);
1979 	if (nodep)
1980 		err |= put_user(cpu_to_node(cpu), nodep);
1981 	return err ? -EFAULT : 0;
1982 }
1983 
1984 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1985 
1986 static void argv_cleanup(struct subprocess_info *info)
1987 {
1988 	argv_free(info->argv);
1989 }
1990 
1991 /**
1992  * orderly_poweroff - Trigger an orderly system poweroff
1993  * @force: force poweroff if command execution fails
1994  *
1995  * This may be called from any context to trigger a system shutdown.
1996  * If the orderly shutdown fails, it will force an immediate shutdown.
1997  */
1998 int orderly_poweroff(bool force)
1999 {
2000 	int argc;
2001 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2002 	static char *envp[] = {
2003 		"HOME=/",
2004 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2005 		NULL
2006 	};
2007 	int ret = -ENOMEM;
2008 	struct subprocess_info *info;
2009 
2010 	if (argv == NULL) {
2011 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2012 		       __func__, poweroff_cmd);
2013 		goto out;
2014 	}
2015 
2016 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
2017 	if (info == NULL) {
2018 		argv_free(argv);
2019 		goto out;
2020 	}
2021 
2022 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
2023 
2024 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
2025 
2026   out:
2027 	if (ret && force) {
2028 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2029 		       "forcing the issue\n");
2030 
2031 		/* I guess this should try to kick off some daemon to
2032 		   sync and poweroff asap.  Or not even bother syncing
2033 		   if we're doing an emergency shutdown? */
2034 		emergency_sync();
2035 		kernel_power_off();
2036 	}
2037 
2038 	return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(orderly_poweroff);
2041