xref: /openbmc/linux/kernel/stop_machine.c (revision f42b3800)
1 /* Copyright 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
2  * GPL v2 and any later version.
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/kthread.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/stop_machine.h>
10 #include <linux/syscalls.h>
11 #include <linux/interrupt.h>
12 
13 #include <asm/atomic.h>
14 #include <asm/uaccess.h>
15 
16 /* Since we effect priority and affinity (both of which are visible
17  * to, and settable by outside processes) we do indirection via a
18  * kthread. */
19 
20 /* Thread to stop each CPU in user context. */
21 enum stopmachine_state {
22 	STOPMACHINE_WAIT,
23 	STOPMACHINE_PREPARE,
24 	STOPMACHINE_DISABLE_IRQ,
25 	STOPMACHINE_EXIT,
26 };
27 
28 static enum stopmachine_state stopmachine_state;
29 static unsigned int stopmachine_num_threads;
30 static atomic_t stopmachine_thread_ack;
31 
32 static int stopmachine(void *cpu)
33 {
34 	int irqs_disabled = 0;
35 	int prepared = 0;
36 
37 	set_cpus_allowed(current, cpumask_of_cpu((int)(long)cpu));
38 
39 	/* Ack: we are alive */
40 	smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
41 	atomic_inc(&stopmachine_thread_ack);
42 
43 	/* Simple state machine */
44 	while (stopmachine_state != STOPMACHINE_EXIT) {
45 		if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
46 		    && !irqs_disabled) {
47 			local_irq_disable();
48 			hard_irq_disable();
49 			irqs_disabled = 1;
50 			/* Ack: irqs disabled. */
51 			smp_mb(); /* Must read state first. */
52 			atomic_inc(&stopmachine_thread_ack);
53 		} else if (stopmachine_state == STOPMACHINE_PREPARE
54 			   && !prepared) {
55 			/* Everyone is in place, hold CPU. */
56 			preempt_disable();
57 			prepared = 1;
58 			smp_mb(); /* Must read state first. */
59 			atomic_inc(&stopmachine_thread_ack);
60 		}
61 		/* Yield in first stage: migration threads need to
62 		 * help our sisters onto their CPUs. */
63 		if (!prepared && !irqs_disabled)
64 			yield();
65 		else
66 			cpu_relax();
67 	}
68 
69 	/* Ack: we are exiting. */
70 	smp_mb(); /* Must read state first. */
71 	atomic_inc(&stopmachine_thread_ack);
72 
73 	if (irqs_disabled)
74 		local_irq_enable();
75 	if (prepared)
76 		preempt_enable();
77 
78 	return 0;
79 }
80 
81 /* Change the thread state */
82 static void stopmachine_set_state(enum stopmachine_state state)
83 {
84 	atomic_set(&stopmachine_thread_ack, 0);
85 	smp_wmb();
86 	stopmachine_state = state;
87 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
88 		cpu_relax();
89 }
90 
91 static int stop_machine(void)
92 {
93 	int i, ret = 0;
94 
95 	atomic_set(&stopmachine_thread_ack, 0);
96 	stopmachine_num_threads = 0;
97 	stopmachine_state = STOPMACHINE_WAIT;
98 
99 	for_each_online_cpu(i) {
100 		if (i == raw_smp_processor_id())
101 			continue;
102 		ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
103 		if (ret < 0)
104 			break;
105 		stopmachine_num_threads++;
106 	}
107 
108 	/* Wait for them all to come to life. */
109 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
110 		yield();
111 
112 	/* If some failed, kill them all. */
113 	if (ret < 0) {
114 		stopmachine_set_state(STOPMACHINE_EXIT);
115 		return ret;
116 	}
117 
118 	/* Now they are all started, make them hold the CPUs, ready. */
119 	preempt_disable();
120 	stopmachine_set_state(STOPMACHINE_PREPARE);
121 
122 	/* Make them disable irqs. */
123 	local_irq_disable();
124 	hard_irq_disable();
125 	stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
126 
127 	return 0;
128 }
129 
130 static void restart_machine(void)
131 {
132 	stopmachine_set_state(STOPMACHINE_EXIT);
133 	local_irq_enable();
134 	preempt_enable_no_resched();
135 }
136 
137 struct stop_machine_data
138 {
139 	int (*fn)(void *);
140 	void *data;
141 	struct completion done;
142 };
143 
144 static int do_stop(void *_smdata)
145 {
146 	struct stop_machine_data *smdata = _smdata;
147 	int ret;
148 
149 	ret = stop_machine();
150 	if (ret == 0) {
151 		ret = smdata->fn(smdata->data);
152 		restart_machine();
153 	}
154 
155 	/* We're done: you can kthread_stop us now */
156 	complete(&smdata->done);
157 
158 	/* Wait for kthread_stop */
159 	set_current_state(TASK_INTERRUPTIBLE);
160 	while (!kthread_should_stop()) {
161 		schedule();
162 		set_current_state(TASK_INTERRUPTIBLE);
163 	}
164 	__set_current_state(TASK_RUNNING);
165 	return ret;
166 }
167 
168 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
169 				       unsigned int cpu)
170 {
171 	static DEFINE_MUTEX(stopmachine_mutex);
172 	struct stop_machine_data smdata;
173 	struct task_struct *p;
174 
175 	smdata.fn = fn;
176 	smdata.data = data;
177 	init_completion(&smdata.done);
178 
179 	mutex_lock(&stopmachine_mutex);
180 
181 	/* If they don't care which CPU fn runs on, bind to any online one. */
182 	if (cpu == NR_CPUS)
183 		cpu = raw_smp_processor_id();
184 
185 	p = kthread_create(do_stop, &smdata, "kstopmachine");
186 	if (!IS_ERR(p)) {
187 		struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
188 
189 		/* One high-prio thread per cpu.  We'll do this one. */
190 		sched_setscheduler(p, SCHED_FIFO, &param);
191 		kthread_bind(p, cpu);
192 		wake_up_process(p);
193 		wait_for_completion(&smdata.done);
194 	}
195 	mutex_unlock(&stopmachine_mutex);
196 	return p;
197 }
198 
199 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
200 {
201 	struct task_struct *p;
202 	int ret;
203 
204 	/* No CPUs can come up or down during this. */
205 	get_online_cpus();
206 	p = __stop_machine_run(fn, data, cpu);
207 	if (!IS_ERR(p))
208 		ret = kthread_stop(p);
209 	else
210 		ret = PTR_ERR(p);
211 	put_online_cpus();
212 
213 	return ret;
214 }
215 EXPORT_SYMBOL_GPL(stop_machine_run);
216