xref: /openbmc/linux/kernel/stop_machine.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * kernel/stop_machine.c
4  *
5  * Copyright (C) 2008, 2005	IBM Corporation.
6  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
7  * Copyright (C) 2010		SUSE Linux Products GmbH
8  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
9  */
10 #include <linux/completion.h>
11 #include <linux/cpu.h>
12 #include <linux/init.h>
13 #include <linux/kthread.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/sched.h>
17 #include <linux/stop_machine.h>
18 #include <linux/interrupt.h>
19 #include <linux/kallsyms.h>
20 #include <linux/smpboot.h>
21 #include <linux/atomic.h>
22 #include <linux/nmi.h>
23 #include <linux/sched/wake_q.h>
24 
25 /*
26  * Structure to determine completion condition and record errors.  May
27  * be shared by works on different cpus.
28  */
29 struct cpu_stop_done {
30 	atomic_t		nr_todo;	/* nr left to execute */
31 	int			ret;		/* collected return value */
32 	struct completion	completion;	/* fired if nr_todo reaches 0 */
33 };
34 
35 /* the actual stopper, one per every possible cpu, enabled on online cpus */
36 struct cpu_stopper {
37 	struct task_struct	*thread;
38 
39 	raw_spinlock_t		lock;
40 	bool			enabled;	/* is this stopper enabled? */
41 	struct list_head	works;		/* list of pending works */
42 
43 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
44 };
45 
46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
47 static bool stop_machine_initialized = false;
48 
49 /* static data for stop_cpus */
50 static DEFINE_MUTEX(stop_cpus_mutex);
51 static bool stop_cpus_in_progress;
52 
53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
54 {
55 	memset(done, 0, sizeof(*done));
56 	atomic_set(&done->nr_todo, nr_todo);
57 	init_completion(&done->completion);
58 }
59 
60 /* signal completion unless @done is NULL */
61 static void cpu_stop_signal_done(struct cpu_stop_done *done)
62 {
63 	if (atomic_dec_and_test(&done->nr_todo))
64 		complete(&done->completion);
65 }
66 
67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
68 					struct cpu_stop_work *work,
69 					struct wake_q_head *wakeq)
70 {
71 	list_add_tail(&work->list, &stopper->works);
72 	wake_q_add(wakeq, stopper->thread);
73 }
74 
75 /* queue @work to @stopper.  if offline, @work is completed immediately */
76 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
77 {
78 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
79 	DEFINE_WAKE_Q(wakeq);
80 	unsigned long flags;
81 	bool enabled;
82 
83 	preempt_disable();
84 	raw_spin_lock_irqsave(&stopper->lock, flags);
85 	enabled = stopper->enabled;
86 	if (enabled)
87 		__cpu_stop_queue_work(stopper, work, &wakeq);
88 	else if (work->done)
89 		cpu_stop_signal_done(work->done);
90 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
91 
92 	wake_up_q(&wakeq);
93 	preempt_enable();
94 
95 	return enabled;
96 }
97 
98 /**
99  * stop_one_cpu - stop a cpu
100  * @cpu: cpu to stop
101  * @fn: function to execute
102  * @arg: argument to @fn
103  *
104  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
105  * the highest priority preempting any task on the cpu and
106  * monopolizing it.  This function returns after the execution is
107  * complete.
108  *
109  * This function doesn't guarantee @cpu stays online till @fn
110  * completes.  If @cpu goes down in the middle, execution may happen
111  * partially or fully on different cpus.  @fn should either be ready
112  * for that or the caller should ensure that @cpu stays online until
113  * this function completes.
114  *
115  * CONTEXT:
116  * Might sleep.
117  *
118  * RETURNS:
119  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
120  * otherwise, the return value of @fn.
121  */
122 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
123 {
124 	struct cpu_stop_done done;
125 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
126 
127 	cpu_stop_init_done(&done, 1);
128 	if (!cpu_stop_queue_work(cpu, &work))
129 		return -ENOENT;
130 	/*
131 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
132 	 * cycle by doing a preemption:
133 	 */
134 	cond_resched();
135 	wait_for_completion(&done.completion);
136 	return done.ret;
137 }
138 
139 /* This controls the threads on each CPU. */
140 enum multi_stop_state {
141 	/* Dummy starting state for thread. */
142 	MULTI_STOP_NONE,
143 	/* Awaiting everyone to be scheduled. */
144 	MULTI_STOP_PREPARE,
145 	/* Disable interrupts. */
146 	MULTI_STOP_DISABLE_IRQ,
147 	/* Run the function */
148 	MULTI_STOP_RUN,
149 	/* Exit */
150 	MULTI_STOP_EXIT,
151 };
152 
153 struct multi_stop_data {
154 	cpu_stop_fn_t		fn;
155 	void			*data;
156 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
157 	unsigned int		num_threads;
158 	const struct cpumask	*active_cpus;
159 
160 	enum multi_stop_state	state;
161 	atomic_t		thread_ack;
162 };
163 
164 static void set_state(struct multi_stop_data *msdata,
165 		      enum multi_stop_state newstate)
166 {
167 	/* Reset ack counter. */
168 	atomic_set(&msdata->thread_ack, msdata->num_threads);
169 	smp_wmb();
170 	msdata->state = newstate;
171 }
172 
173 /* Last one to ack a state moves to the next state. */
174 static void ack_state(struct multi_stop_data *msdata)
175 {
176 	if (atomic_dec_and_test(&msdata->thread_ack))
177 		set_state(msdata, msdata->state + 1);
178 }
179 
180 void __weak stop_machine_yield(const struct cpumask *cpumask)
181 {
182 	cpu_relax();
183 }
184 
185 /* This is the cpu_stop function which stops the CPU. */
186 static int multi_cpu_stop(void *data)
187 {
188 	struct multi_stop_data *msdata = data;
189 	enum multi_stop_state curstate = MULTI_STOP_NONE;
190 	int cpu = smp_processor_id(), err = 0;
191 	const struct cpumask *cpumask;
192 	unsigned long flags;
193 	bool is_active;
194 
195 	/*
196 	 * When called from stop_machine_from_inactive_cpu(), irq might
197 	 * already be disabled.  Save the state and restore it on exit.
198 	 */
199 	local_save_flags(flags);
200 
201 	if (!msdata->active_cpus) {
202 		cpumask = cpu_online_mask;
203 		is_active = cpu == cpumask_first(cpumask);
204 	} else {
205 		cpumask = msdata->active_cpus;
206 		is_active = cpumask_test_cpu(cpu, cpumask);
207 	}
208 
209 	/* Simple state machine */
210 	do {
211 		/* Chill out and ensure we re-read multi_stop_state. */
212 		stop_machine_yield(cpumask);
213 		if (msdata->state != curstate) {
214 			curstate = msdata->state;
215 			switch (curstate) {
216 			case MULTI_STOP_DISABLE_IRQ:
217 				local_irq_disable();
218 				hard_irq_disable();
219 				break;
220 			case MULTI_STOP_RUN:
221 				if (is_active)
222 					err = msdata->fn(msdata->data);
223 				break;
224 			default:
225 				break;
226 			}
227 			ack_state(msdata);
228 		} else if (curstate > MULTI_STOP_PREPARE) {
229 			/*
230 			 * At this stage all other CPUs we depend on must spin
231 			 * in the same loop. Any reason for hard-lockup should
232 			 * be detected and reported on their side.
233 			 */
234 			touch_nmi_watchdog();
235 		}
236 	} while (curstate != MULTI_STOP_EXIT);
237 
238 	local_irq_restore(flags);
239 	return err;
240 }
241 
242 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
243 				    int cpu2, struct cpu_stop_work *work2)
244 {
245 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
246 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
247 	DEFINE_WAKE_Q(wakeq);
248 	int err;
249 
250 retry:
251 	/*
252 	 * The waking up of stopper threads has to happen in the same
253 	 * scheduling context as the queueing.  Otherwise, there is a
254 	 * possibility of one of the above stoppers being woken up by another
255 	 * CPU, and preempting us. This will cause us to not wake up the other
256 	 * stopper forever.
257 	 */
258 	preempt_disable();
259 	raw_spin_lock_irq(&stopper1->lock);
260 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
261 
262 	if (!stopper1->enabled || !stopper2->enabled) {
263 		err = -ENOENT;
264 		goto unlock;
265 	}
266 
267 	/*
268 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
269 	 * queued up in reverse order leading to system deadlock.
270 	 *
271 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
272 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
273 	 *
274 	 * It can be falsely true but it is safe to spin until it is cleared,
275 	 * queue_stop_cpus_work() does everything under preempt_disable().
276 	 */
277 	if (unlikely(stop_cpus_in_progress)) {
278 		err = -EDEADLK;
279 		goto unlock;
280 	}
281 
282 	err = 0;
283 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
284 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
285 
286 unlock:
287 	raw_spin_unlock(&stopper2->lock);
288 	raw_spin_unlock_irq(&stopper1->lock);
289 
290 	if (unlikely(err == -EDEADLK)) {
291 		preempt_enable();
292 
293 		while (stop_cpus_in_progress)
294 			cpu_relax();
295 
296 		goto retry;
297 	}
298 
299 	wake_up_q(&wakeq);
300 	preempt_enable();
301 
302 	return err;
303 }
304 /**
305  * stop_two_cpus - stops two cpus
306  * @cpu1: the cpu to stop
307  * @cpu2: the other cpu to stop
308  * @fn: function to execute
309  * @arg: argument to @fn
310  *
311  * Stops both the current and specified CPU and runs @fn on one of them.
312  *
313  * returns when both are completed.
314  */
315 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
316 {
317 	struct cpu_stop_done done;
318 	struct cpu_stop_work work1, work2;
319 	struct multi_stop_data msdata;
320 
321 	msdata = (struct multi_stop_data){
322 		.fn = fn,
323 		.data = arg,
324 		.num_threads = 2,
325 		.active_cpus = cpumask_of(cpu1),
326 	};
327 
328 	work1 = work2 = (struct cpu_stop_work){
329 		.fn = multi_cpu_stop,
330 		.arg = &msdata,
331 		.done = &done
332 	};
333 
334 	cpu_stop_init_done(&done, 2);
335 	set_state(&msdata, MULTI_STOP_PREPARE);
336 
337 	if (cpu1 > cpu2)
338 		swap(cpu1, cpu2);
339 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
340 		return -ENOENT;
341 
342 	wait_for_completion(&done.completion);
343 	return done.ret;
344 }
345 
346 /**
347  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
348  * @cpu: cpu to stop
349  * @fn: function to execute
350  * @arg: argument to @fn
351  * @work_buf: pointer to cpu_stop_work structure
352  *
353  * Similar to stop_one_cpu() but doesn't wait for completion.  The
354  * caller is responsible for ensuring @work_buf is currently unused
355  * and will remain untouched until stopper starts executing @fn.
356  *
357  * CONTEXT:
358  * Don't care.
359  *
360  * RETURNS:
361  * true if cpu_stop_work was queued successfully and @fn will be called,
362  * false otherwise.
363  */
364 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
365 			struct cpu_stop_work *work_buf)
366 {
367 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
368 	return cpu_stop_queue_work(cpu, work_buf);
369 }
370 
371 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
372 				 cpu_stop_fn_t fn, void *arg,
373 				 struct cpu_stop_done *done)
374 {
375 	struct cpu_stop_work *work;
376 	unsigned int cpu;
377 	bool queued = false;
378 
379 	/*
380 	 * Disable preemption while queueing to avoid getting
381 	 * preempted by a stopper which might wait for other stoppers
382 	 * to enter @fn which can lead to deadlock.
383 	 */
384 	preempt_disable();
385 	stop_cpus_in_progress = true;
386 	for_each_cpu(cpu, cpumask) {
387 		work = &per_cpu(cpu_stopper.stop_work, cpu);
388 		work->fn = fn;
389 		work->arg = arg;
390 		work->done = done;
391 		if (cpu_stop_queue_work(cpu, work))
392 			queued = true;
393 	}
394 	stop_cpus_in_progress = false;
395 	preempt_enable();
396 
397 	return queued;
398 }
399 
400 static int __stop_cpus(const struct cpumask *cpumask,
401 		       cpu_stop_fn_t fn, void *arg)
402 {
403 	struct cpu_stop_done done;
404 
405 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
406 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
407 		return -ENOENT;
408 	wait_for_completion(&done.completion);
409 	return done.ret;
410 }
411 
412 /**
413  * stop_cpus - stop multiple cpus
414  * @cpumask: cpus to stop
415  * @fn: function to execute
416  * @arg: argument to @fn
417  *
418  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
419  * @fn is run in a process context with the highest priority
420  * preempting any task on the cpu and monopolizing it.  This function
421  * returns after all executions are complete.
422  *
423  * This function doesn't guarantee the cpus in @cpumask stay online
424  * till @fn completes.  If some cpus go down in the middle, execution
425  * on the cpu may happen partially or fully on different cpus.  @fn
426  * should either be ready for that or the caller should ensure that
427  * the cpus stay online until this function completes.
428  *
429  * All stop_cpus() calls are serialized making it safe for @fn to wait
430  * for all cpus to start executing it.
431  *
432  * CONTEXT:
433  * Might sleep.
434  *
435  * RETURNS:
436  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
437  * @cpumask were offline; otherwise, 0 if all executions of @fn
438  * returned 0, any non zero return value if any returned non zero.
439  */
440 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
441 {
442 	int ret;
443 
444 	/* static works are used, process one request at a time */
445 	mutex_lock(&stop_cpus_mutex);
446 	ret = __stop_cpus(cpumask, fn, arg);
447 	mutex_unlock(&stop_cpus_mutex);
448 	return ret;
449 }
450 
451 /**
452  * try_stop_cpus - try to stop multiple cpus
453  * @cpumask: cpus to stop
454  * @fn: function to execute
455  * @arg: argument to @fn
456  *
457  * Identical to stop_cpus() except that it fails with -EAGAIN if
458  * someone else is already using the facility.
459  *
460  * CONTEXT:
461  * Might sleep.
462  *
463  * RETURNS:
464  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
465  * @fn(@arg) was not executed at all because all cpus in @cpumask were
466  * offline; otherwise, 0 if all executions of @fn returned 0, any non
467  * zero return value if any returned non zero.
468  */
469 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
470 {
471 	int ret;
472 
473 	/* static works are used, process one request at a time */
474 	if (!mutex_trylock(&stop_cpus_mutex))
475 		return -EAGAIN;
476 	ret = __stop_cpus(cpumask, fn, arg);
477 	mutex_unlock(&stop_cpus_mutex);
478 	return ret;
479 }
480 
481 static int cpu_stop_should_run(unsigned int cpu)
482 {
483 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
484 	unsigned long flags;
485 	int run;
486 
487 	raw_spin_lock_irqsave(&stopper->lock, flags);
488 	run = !list_empty(&stopper->works);
489 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
490 	return run;
491 }
492 
493 static void cpu_stopper_thread(unsigned int cpu)
494 {
495 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
496 	struct cpu_stop_work *work;
497 
498 repeat:
499 	work = NULL;
500 	raw_spin_lock_irq(&stopper->lock);
501 	if (!list_empty(&stopper->works)) {
502 		work = list_first_entry(&stopper->works,
503 					struct cpu_stop_work, list);
504 		list_del_init(&work->list);
505 	}
506 	raw_spin_unlock_irq(&stopper->lock);
507 
508 	if (work) {
509 		cpu_stop_fn_t fn = work->fn;
510 		void *arg = work->arg;
511 		struct cpu_stop_done *done = work->done;
512 		int ret;
513 
514 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
515 		preempt_count_inc();
516 		ret = fn(arg);
517 		if (done) {
518 			if (ret)
519 				done->ret = ret;
520 			cpu_stop_signal_done(done);
521 		}
522 		preempt_count_dec();
523 		WARN_ONCE(preempt_count(),
524 			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
525 		goto repeat;
526 	}
527 }
528 
529 void stop_machine_park(int cpu)
530 {
531 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
532 	/*
533 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
534 	 * the pending works before it parks, until then it is fine to queue
535 	 * the new works.
536 	 */
537 	stopper->enabled = false;
538 	kthread_park(stopper->thread);
539 }
540 
541 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
542 
543 static void cpu_stop_create(unsigned int cpu)
544 {
545 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
546 }
547 
548 static void cpu_stop_park(unsigned int cpu)
549 {
550 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
551 
552 	WARN_ON(!list_empty(&stopper->works));
553 }
554 
555 void stop_machine_unpark(int cpu)
556 {
557 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
558 
559 	stopper->enabled = true;
560 	kthread_unpark(stopper->thread);
561 }
562 
563 static struct smp_hotplug_thread cpu_stop_threads = {
564 	.store			= &cpu_stopper.thread,
565 	.thread_should_run	= cpu_stop_should_run,
566 	.thread_fn		= cpu_stopper_thread,
567 	.thread_comm		= "migration/%u",
568 	.create			= cpu_stop_create,
569 	.park			= cpu_stop_park,
570 	.selfparking		= true,
571 };
572 
573 static int __init cpu_stop_init(void)
574 {
575 	unsigned int cpu;
576 
577 	for_each_possible_cpu(cpu) {
578 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
579 
580 		raw_spin_lock_init(&stopper->lock);
581 		INIT_LIST_HEAD(&stopper->works);
582 	}
583 
584 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
585 	stop_machine_unpark(raw_smp_processor_id());
586 	stop_machine_initialized = true;
587 	return 0;
588 }
589 early_initcall(cpu_stop_init);
590 
591 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
592 			    const struct cpumask *cpus)
593 {
594 	struct multi_stop_data msdata = {
595 		.fn = fn,
596 		.data = data,
597 		.num_threads = num_online_cpus(),
598 		.active_cpus = cpus,
599 	};
600 
601 	lockdep_assert_cpus_held();
602 
603 	if (!stop_machine_initialized) {
604 		/*
605 		 * Handle the case where stop_machine() is called
606 		 * early in boot before stop_machine() has been
607 		 * initialized.
608 		 */
609 		unsigned long flags;
610 		int ret;
611 
612 		WARN_ON_ONCE(msdata.num_threads != 1);
613 
614 		local_irq_save(flags);
615 		hard_irq_disable();
616 		ret = (*fn)(data);
617 		local_irq_restore(flags);
618 
619 		return ret;
620 	}
621 
622 	/* Set the initial state and stop all online cpus. */
623 	set_state(&msdata, MULTI_STOP_PREPARE);
624 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
625 }
626 
627 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
628 {
629 	int ret;
630 
631 	/* No CPUs can come up or down during this. */
632 	cpus_read_lock();
633 	ret = stop_machine_cpuslocked(fn, data, cpus);
634 	cpus_read_unlock();
635 	return ret;
636 }
637 EXPORT_SYMBOL_GPL(stop_machine);
638 
639 /**
640  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
641  * @fn: the function to run
642  * @data: the data ptr for the @fn()
643  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
644  *
645  * This is identical to stop_machine() but can be called from a CPU which
646  * is not active.  The local CPU is in the process of hotplug (so no other
647  * CPU hotplug can start) and not marked active and doesn't have enough
648  * context to sleep.
649  *
650  * This function provides stop_machine() functionality for such state by
651  * using busy-wait for synchronization and executing @fn directly for local
652  * CPU.
653  *
654  * CONTEXT:
655  * Local CPU is inactive.  Temporarily stops all active CPUs.
656  *
657  * RETURNS:
658  * 0 if all executions of @fn returned 0, any non zero return value if any
659  * returned non zero.
660  */
661 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
662 				  const struct cpumask *cpus)
663 {
664 	struct multi_stop_data msdata = { .fn = fn, .data = data,
665 					    .active_cpus = cpus };
666 	struct cpu_stop_done done;
667 	int ret;
668 
669 	/* Local CPU must be inactive and CPU hotplug in progress. */
670 	BUG_ON(cpu_active(raw_smp_processor_id()));
671 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
672 
673 	/* No proper task established and can't sleep - busy wait for lock. */
674 	while (!mutex_trylock(&stop_cpus_mutex))
675 		cpu_relax();
676 
677 	/* Schedule work on other CPUs and execute directly for local CPU */
678 	set_state(&msdata, MULTI_STOP_PREPARE);
679 	cpu_stop_init_done(&done, num_active_cpus());
680 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
681 			     &done);
682 	ret = multi_cpu_stop(&msdata);
683 
684 	/* Busy wait for completion. */
685 	while (!completion_done(&done.completion))
686 		cpu_relax();
687 
688 	mutex_unlock(&stop_cpus_mutex);
689 	return ret ?: done.ret;
690 }
691