xref: /openbmc/linux/kernel/stop_machine.c (revision e2f1cf25)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
24 
25 /*
26  * Structure to determine completion condition and record errors.  May
27  * be shared by works on different cpus.
28  */
29 struct cpu_stop_done {
30 	atomic_t		nr_todo;	/* nr left to execute */
31 	bool			executed;	/* actually executed? */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	spinlock_t		lock;
39 	bool			enabled;	/* is this stopper enabled? */
40 	struct list_head	works;		/* list of pending works */
41 };
42 
43 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
44 static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
45 static bool stop_machine_initialized = false;
46 
47 /*
48  * Avoids a race between stop_two_cpus and global stop_cpus, where
49  * the stoppers could get queued up in reverse order, leading to
50  * system deadlock. Using an lglock means stop_two_cpus remains
51  * relatively cheap.
52  */
53 DEFINE_STATIC_LGLOCK(stop_cpus_lock);
54 
55 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
56 {
57 	memset(done, 0, sizeof(*done));
58 	atomic_set(&done->nr_todo, nr_todo);
59 	init_completion(&done->completion);
60 }
61 
62 /* signal completion unless @done is NULL */
63 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
64 {
65 	if (done) {
66 		if (executed)
67 			done->executed = true;
68 		if (atomic_dec_and_test(&done->nr_todo))
69 			complete(&done->completion);
70 	}
71 }
72 
73 /* queue @work to @stopper.  if offline, @work is completed immediately */
74 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
75 {
76 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
77 	struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
78 
79 	unsigned long flags;
80 
81 	spin_lock_irqsave(&stopper->lock, flags);
82 
83 	if (stopper->enabled) {
84 		list_add_tail(&work->list, &stopper->works);
85 		wake_up_process(p);
86 	} else
87 		cpu_stop_signal_done(work->done, false);
88 
89 	spin_unlock_irqrestore(&stopper->lock, flags);
90 }
91 
92 /**
93  * stop_one_cpu - stop a cpu
94  * @cpu: cpu to stop
95  * @fn: function to execute
96  * @arg: argument to @fn
97  *
98  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
99  * the highest priority preempting any task on the cpu and
100  * monopolizing it.  This function returns after the execution is
101  * complete.
102  *
103  * This function doesn't guarantee @cpu stays online till @fn
104  * completes.  If @cpu goes down in the middle, execution may happen
105  * partially or fully on different cpus.  @fn should either be ready
106  * for that or the caller should ensure that @cpu stays online until
107  * this function completes.
108  *
109  * CONTEXT:
110  * Might sleep.
111  *
112  * RETURNS:
113  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114  * otherwise, the return value of @fn.
115  */
116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117 {
118 	struct cpu_stop_done done;
119 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120 
121 	cpu_stop_init_done(&done, 1);
122 	cpu_stop_queue_work(cpu, &work);
123 	wait_for_completion(&done.completion);
124 	return done.executed ? done.ret : -ENOENT;
125 }
126 
127 /* This controls the threads on each CPU. */
128 enum multi_stop_state {
129 	/* Dummy starting state for thread. */
130 	MULTI_STOP_NONE,
131 	/* Awaiting everyone to be scheduled. */
132 	MULTI_STOP_PREPARE,
133 	/* Disable interrupts. */
134 	MULTI_STOP_DISABLE_IRQ,
135 	/* Run the function */
136 	MULTI_STOP_RUN,
137 	/* Exit */
138 	MULTI_STOP_EXIT,
139 };
140 
141 struct multi_stop_data {
142 	int			(*fn)(void *);
143 	void			*data;
144 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145 	unsigned int		num_threads;
146 	const struct cpumask	*active_cpus;
147 
148 	enum multi_stop_state	state;
149 	atomic_t		thread_ack;
150 };
151 
152 static void set_state(struct multi_stop_data *msdata,
153 		      enum multi_stop_state newstate)
154 {
155 	/* Reset ack counter. */
156 	atomic_set(&msdata->thread_ack, msdata->num_threads);
157 	smp_wmb();
158 	msdata->state = newstate;
159 }
160 
161 /* Last one to ack a state moves to the next state. */
162 static void ack_state(struct multi_stop_data *msdata)
163 {
164 	if (atomic_dec_and_test(&msdata->thread_ack))
165 		set_state(msdata, msdata->state + 1);
166 }
167 
168 /* This is the cpu_stop function which stops the CPU. */
169 static int multi_cpu_stop(void *data)
170 {
171 	struct multi_stop_data *msdata = data;
172 	enum multi_stop_state curstate = MULTI_STOP_NONE;
173 	int cpu = smp_processor_id(), err = 0;
174 	unsigned long flags;
175 	bool is_active;
176 
177 	/*
178 	 * When called from stop_machine_from_inactive_cpu(), irq might
179 	 * already be disabled.  Save the state and restore it on exit.
180 	 */
181 	local_save_flags(flags);
182 
183 	if (!msdata->active_cpus)
184 		is_active = cpu == cpumask_first(cpu_online_mask);
185 	else
186 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
187 
188 	/* Simple state machine */
189 	do {
190 		/* Chill out and ensure we re-read multi_stop_state. */
191 		cpu_relax();
192 		if (msdata->state != curstate) {
193 			curstate = msdata->state;
194 			switch (curstate) {
195 			case MULTI_STOP_DISABLE_IRQ:
196 				local_irq_disable();
197 				hard_irq_disable();
198 				break;
199 			case MULTI_STOP_RUN:
200 				if (is_active)
201 					err = msdata->fn(msdata->data);
202 				break;
203 			default:
204 				break;
205 			}
206 			ack_state(msdata);
207 		}
208 	} while (curstate != MULTI_STOP_EXIT);
209 
210 	local_irq_restore(flags);
211 	return err;
212 }
213 
214 /**
215  * stop_two_cpus - stops two cpus
216  * @cpu1: the cpu to stop
217  * @cpu2: the other cpu to stop
218  * @fn: function to execute
219  * @arg: argument to @fn
220  *
221  * Stops both the current and specified CPU and runs @fn on one of them.
222  *
223  * returns when both are completed.
224  */
225 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
226 {
227 	struct cpu_stop_done done;
228 	struct cpu_stop_work work1, work2;
229 	struct multi_stop_data msdata;
230 
231 	preempt_disable();
232 	msdata = (struct multi_stop_data){
233 		.fn = fn,
234 		.data = arg,
235 		.num_threads = 2,
236 		.active_cpus = cpumask_of(cpu1),
237 	};
238 
239 	work1 = work2 = (struct cpu_stop_work){
240 		.fn = multi_cpu_stop,
241 		.arg = &msdata,
242 		.done = &done
243 	};
244 
245 	cpu_stop_init_done(&done, 2);
246 	set_state(&msdata, MULTI_STOP_PREPARE);
247 
248 	/*
249 	 * If we observe both CPUs active we know _cpu_down() cannot yet have
250 	 * queued its stop_machine works and therefore ours will get executed
251 	 * first. Or its not either one of our CPUs that's getting unplugged,
252 	 * in which case we don't care.
253 	 *
254 	 * This relies on the stopper workqueues to be FIFO.
255 	 */
256 	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
257 		preempt_enable();
258 		return -ENOENT;
259 	}
260 
261 	lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
262 	cpu_stop_queue_work(cpu1, &work1);
263 	cpu_stop_queue_work(cpu2, &work2);
264 	lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
265 
266 	preempt_enable();
267 
268 	wait_for_completion(&done.completion);
269 
270 	return done.executed ? done.ret : -ENOENT;
271 }
272 
273 /**
274  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
275  * @cpu: cpu to stop
276  * @fn: function to execute
277  * @arg: argument to @fn
278  * @work_buf: pointer to cpu_stop_work structure
279  *
280  * Similar to stop_one_cpu() but doesn't wait for completion.  The
281  * caller is responsible for ensuring @work_buf is currently unused
282  * and will remain untouched until stopper starts executing @fn.
283  *
284  * CONTEXT:
285  * Don't care.
286  */
287 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
288 			struct cpu_stop_work *work_buf)
289 {
290 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
291 	cpu_stop_queue_work(cpu, work_buf);
292 }
293 
294 /* static data for stop_cpus */
295 static DEFINE_MUTEX(stop_cpus_mutex);
296 static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
297 
298 static void queue_stop_cpus_work(const struct cpumask *cpumask,
299 				 cpu_stop_fn_t fn, void *arg,
300 				 struct cpu_stop_done *done)
301 {
302 	struct cpu_stop_work *work;
303 	unsigned int cpu;
304 
305 	/* initialize works and done */
306 	for_each_cpu(cpu, cpumask) {
307 		work = &per_cpu(stop_cpus_work, cpu);
308 		work->fn = fn;
309 		work->arg = arg;
310 		work->done = done;
311 	}
312 
313 	/*
314 	 * Disable preemption while queueing to avoid getting
315 	 * preempted by a stopper which might wait for other stoppers
316 	 * to enter @fn which can lead to deadlock.
317 	 */
318 	lg_global_lock(&stop_cpus_lock);
319 	for_each_cpu(cpu, cpumask)
320 		cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
321 	lg_global_unlock(&stop_cpus_lock);
322 }
323 
324 static int __stop_cpus(const struct cpumask *cpumask,
325 		       cpu_stop_fn_t fn, void *arg)
326 {
327 	struct cpu_stop_done done;
328 
329 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
330 	queue_stop_cpus_work(cpumask, fn, arg, &done);
331 	wait_for_completion(&done.completion);
332 	return done.executed ? done.ret : -ENOENT;
333 }
334 
335 /**
336  * stop_cpus - stop multiple cpus
337  * @cpumask: cpus to stop
338  * @fn: function to execute
339  * @arg: argument to @fn
340  *
341  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
342  * @fn is run in a process context with the highest priority
343  * preempting any task on the cpu and monopolizing it.  This function
344  * returns after all executions are complete.
345  *
346  * This function doesn't guarantee the cpus in @cpumask stay online
347  * till @fn completes.  If some cpus go down in the middle, execution
348  * on the cpu may happen partially or fully on different cpus.  @fn
349  * should either be ready for that or the caller should ensure that
350  * the cpus stay online until this function completes.
351  *
352  * All stop_cpus() calls are serialized making it safe for @fn to wait
353  * for all cpus to start executing it.
354  *
355  * CONTEXT:
356  * Might sleep.
357  *
358  * RETURNS:
359  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
360  * @cpumask were offline; otherwise, 0 if all executions of @fn
361  * returned 0, any non zero return value if any returned non zero.
362  */
363 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
364 {
365 	int ret;
366 
367 	/* static works are used, process one request at a time */
368 	mutex_lock(&stop_cpus_mutex);
369 	ret = __stop_cpus(cpumask, fn, arg);
370 	mutex_unlock(&stop_cpus_mutex);
371 	return ret;
372 }
373 
374 /**
375  * try_stop_cpus - try to stop multiple cpus
376  * @cpumask: cpus to stop
377  * @fn: function to execute
378  * @arg: argument to @fn
379  *
380  * Identical to stop_cpus() except that it fails with -EAGAIN if
381  * someone else is already using the facility.
382  *
383  * CONTEXT:
384  * Might sleep.
385  *
386  * RETURNS:
387  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
388  * @fn(@arg) was not executed at all because all cpus in @cpumask were
389  * offline; otherwise, 0 if all executions of @fn returned 0, any non
390  * zero return value if any returned non zero.
391  */
392 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
393 {
394 	int ret;
395 
396 	/* static works are used, process one request at a time */
397 	if (!mutex_trylock(&stop_cpus_mutex))
398 		return -EAGAIN;
399 	ret = __stop_cpus(cpumask, fn, arg);
400 	mutex_unlock(&stop_cpus_mutex);
401 	return ret;
402 }
403 
404 static int cpu_stop_should_run(unsigned int cpu)
405 {
406 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
407 	unsigned long flags;
408 	int run;
409 
410 	spin_lock_irqsave(&stopper->lock, flags);
411 	run = !list_empty(&stopper->works);
412 	spin_unlock_irqrestore(&stopper->lock, flags);
413 	return run;
414 }
415 
416 static void cpu_stopper_thread(unsigned int cpu)
417 {
418 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
419 	struct cpu_stop_work *work;
420 	int ret;
421 
422 repeat:
423 	work = NULL;
424 	spin_lock_irq(&stopper->lock);
425 	if (!list_empty(&stopper->works)) {
426 		work = list_first_entry(&stopper->works,
427 					struct cpu_stop_work, list);
428 		list_del_init(&work->list);
429 	}
430 	spin_unlock_irq(&stopper->lock);
431 
432 	if (work) {
433 		cpu_stop_fn_t fn = work->fn;
434 		void *arg = work->arg;
435 		struct cpu_stop_done *done = work->done;
436 		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
437 
438 		/* cpu stop callbacks are not allowed to sleep */
439 		preempt_disable();
440 
441 		ret = fn(arg);
442 		if (ret)
443 			done->ret = ret;
444 
445 		/* restore preemption and check it's still balanced */
446 		preempt_enable();
447 		WARN_ONCE(preempt_count(),
448 			  "cpu_stop: %s(%p) leaked preempt count\n",
449 			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
450 					  ksym_buf), arg);
451 
452 		cpu_stop_signal_done(done, true);
453 		goto repeat;
454 	}
455 }
456 
457 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
458 
459 static void cpu_stop_create(unsigned int cpu)
460 {
461 	sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
462 }
463 
464 static void cpu_stop_park(unsigned int cpu)
465 {
466 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
467 	struct cpu_stop_work *work;
468 	unsigned long flags;
469 
470 	/* drain remaining works */
471 	spin_lock_irqsave(&stopper->lock, flags);
472 	list_for_each_entry(work, &stopper->works, list)
473 		cpu_stop_signal_done(work->done, false);
474 	stopper->enabled = false;
475 	spin_unlock_irqrestore(&stopper->lock, flags);
476 }
477 
478 static void cpu_stop_unpark(unsigned int cpu)
479 {
480 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
481 
482 	spin_lock_irq(&stopper->lock);
483 	stopper->enabled = true;
484 	spin_unlock_irq(&stopper->lock);
485 }
486 
487 static struct smp_hotplug_thread cpu_stop_threads = {
488 	.store			= &cpu_stopper_task,
489 	.thread_should_run	= cpu_stop_should_run,
490 	.thread_fn		= cpu_stopper_thread,
491 	.thread_comm		= "migration/%u",
492 	.create			= cpu_stop_create,
493 	.setup			= cpu_stop_unpark,
494 	.park			= cpu_stop_park,
495 	.pre_unpark		= cpu_stop_unpark,
496 	.selfparking		= true,
497 };
498 
499 static int __init cpu_stop_init(void)
500 {
501 	unsigned int cpu;
502 
503 	for_each_possible_cpu(cpu) {
504 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
505 
506 		spin_lock_init(&stopper->lock);
507 		INIT_LIST_HEAD(&stopper->works);
508 	}
509 
510 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
511 	stop_machine_initialized = true;
512 	return 0;
513 }
514 early_initcall(cpu_stop_init);
515 
516 #ifdef CONFIG_STOP_MACHINE
517 
518 int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
519 {
520 	struct multi_stop_data msdata = {
521 		.fn = fn,
522 		.data = data,
523 		.num_threads = num_online_cpus(),
524 		.active_cpus = cpus,
525 	};
526 
527 	if (!stop_machine_initialized) {
528 		/*
529 		 * Handle the case where stop_machine() is called
530 		 * early in boot before stop_machine() has been
531 		 * initialized.
532 		 */
533 		unsigned long flags;
534 		int ret;
535 
536 		WARN_ON_ONCE(msdata.num_threads != 1);
537 
538 		local_irq_save(flags);
539 		hard_irq_disable();
540 		ret = (*fn)(data);
541 		local_irq_restore(flags);
542 
543 		return ret;
544 	}
545 
546 	/* Set the initial state and stop all online cpus. */
547 	set_state(&msdata, MULTI_STOP_PREPARE);
548 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
549 }
550 
551 int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
552 {
553 	int ret;
554 
555 	/* No CPUs can come up or down during this. */
556 	get_online_cpus();
557 	ret = __stop_machine(fn, data, cpus);
558 	put_online_cpus();
559 	return ret;
560 }
561 EXPORT_SYMBOL_GPL(stop_machine);
562 
563 /**
564  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
565  * @fn: the function to run
566  * @data: the data ptr for the @fn()
567  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
568  *
569  * This is identical to stop_machine() but can be called from a CPU which
570  * is not active.  The local CPU is in the process of hotplug (so no other
571  * CPU hotplug can start) and not marked active and doesn't have enough
572  * context to sleep.
573  *
574  * This function provides stop_machine() functionality for such state by
575  * using busy-wait for synchronization and executing @fn directly for local
576  * CPU.
577  *
578  * CONTEXT:
579  * Local CPU is inactive.  Temporarily stops all active CPUs.
580  *
581  * RETURNS:
582  * 0 if all executions of @fn returned 0, any non zero return value if any
583  * returned non zero.
584  */
585 int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
586 				  const struct cpumask *cpus)
587 {
588 	struct multi_stop_data msdata = { .fn = fn, .data = data,
589 					    .active_cpus = cpus };
590 	struct cpu_stop_done done;
591 	int ret;
592 
593 	/* Local CPU must be inactive and CPU hotplug in progress. */
594 	BUG_ON(cpu_active(raw_smp_processor_id()));
595 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
596 
597 	/* No proper task established and can't sleep - busy wait for lock. */
598 	while (!mutex_trylock(&stop_cpus_mutex))
599 		cpu_relax();
600 
601 	/* Schedule work on other CPUs and execute directly for local CPU */
602 	set_state(&msdata, MULTI_STOP_PREPARE);
603 	cpu_stop_init_done(&done, num_active_cpus());
604 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
605 			     &done);
606 	ret = multi_cpu_stop(&msdata);
607 
608 	/* Busy wait for completion. */
609 	while (!completion_done(&done.completion))
610 		cpu_relax();
611 
612 	mutex_unlock(&stop_cpus_mutex);
613 	return ret ?: done.ret;
614 }
615 
616 #endif	/* CONFIG_STOP_MACHINE */
617