xref: /openbmc/linux/kernel/stop_machine.c (revision e1a3e724)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
24 
25 /*
26  * Structure to determine completion condition and record errors.  May
27  * be shared by works on different cpus.
28  */
29 struct cpu_stop_done {
30 	atomic_t		nr_todo;	/* nr left to execute */
31 	bool			executed;	/* actually executed? */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /*
51  * Avoids a race between stop_two_cpus and global stop_cpus, where
52  * the stoppers could get queued up in reverse order, leading to
53  * system deadlock. Using an lglock means stop_two_cpus remains
54  * relatively cheap.
55  */
56 DEFINE_STATIC_LGLOCK(stop_cpus_lock);
57 
58 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
59 {
60 	memset(done, 0, sizeof(*done));
61 	atomic_set(&done->nr_todo, nr_todo);
62 	init_completion(&done->completion);
63 }
64 
65 /* signal completion unless @done is NULL */
66 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
67 {
68 	if (done) {
69 		if (executed)
70 			done->executed = true;
71 		if (atomic_dec_and_test(&done->nr_todo))
72 			complete(&done->completion);
73 	}
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(&stopper->lock, flags);
84 
85 	if (stopper->enabled) {
86 		list_add_tail(&work->list, &stopper->works);
87 		wake_up_process(stopper->thread);
88 	} else
89 		cpu_stop_signal_done(work->done, false);
90 
91 	spin_unlock_irqrestore(&stopper->lock, flags);
92 }
93 
94 /**
95  * stop_one_cpu - stop a cpu
96  * @cpu: cpu to stop
97  * @fn: function to execute
98  * @arg: argument to @fn
99  *
100  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
101  * the highest priority preempting any task on the cpu and
102  * monopolizing it.  This function returns after the execution is
103  * complete.
104  *
105  * This function doesn't guarantee @cpu stays online till @fn
106  * completes.  If @cpu goes down in the middle, execution may happen
107  * partially or fully on different cpus.  @fn should either be ready
108  * for that or the caller should ensure that @cpu stays online until
109  * this function completes.
110  *
111  * CONTEXT:
112  * Might sleep.
113  *
114  * RETURNS:
115  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
116  * otherwise, the return value of @fn.
117  */
118 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
119 {
120 	struct cpu_stop_done done;
121 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
122 
123 	cpu_stop_init_done(&done, 1);
124 	cpu_stop_queue_work(cpu, &work);
125 	wait_for_completion(&done.completion);
126 	return done.executed ? done.ret : -ENOENT;
127 }
128 
129 /* This controls the threads on each CPU. */
130 enum multi_stop_state {
131 	/* Dummy starting state for thread. */
132 	MULTI_STOP_NONE,
133 	/* Awaiting everyone to be scheduled. */
134 	MULTI_STOP_PREPARE,
135 	/* Disable interrupts. */
136 	MULTI_STOP_DISABLE_IRQ,
137 	/* Run the function */
138 	MULTI_STOP_RUN,
139 	/* Exit */
140 	MULTI_STOP_EXIT,
141 };
142 
143 struct multi_stop_data {
144 	cpu_stop_fn_t		fn;
145 	void			*data;
146 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
147 	unsigned int		num_threads;
148 	const struct cpumask	*active_cpus;
149 
150 	enum multi_stop_state	state;
151 	atomic_t		thread_ack;
152 };
153 
154 static void set_state(struct multi_stop_data *msdata,
155 		      enum multi_stop_state newstate)
156 {
157 	/* Reset ack counter. */
158 	atomic_set(&msdata->thread_ack, msdata->num_threads);
159 	smp_wmb();
160 	msdata->state = newstate;
161 }
162 
163 /* Last one to ack a state moves to the next state. */
164 static void ack_state(struct multi_stop_data *msdata)
165 {
166 	if (atomic_dec_and_test(&msdata->thread_ack))
167 		set_state(msdata, msdata->state + 1);
168 }
169 
170 /* This is the cpu_stop function which stops the CPU. */
171 static int multi_cpu_stop(void *data)
172 {
173 	struct multi_stop_data *msdata = data;
174 	enum multi_stop_state curstate = MULTI_STOP_NONE;
175 	int cpu = smp_processor_id(), err = 0;
176 	unsigned long flags;
177 	bool is_active;
178 
179 	/*
180 	 * When called from stop_machine_from_inactive_cpu(), irq might
181 	 * already be disabled.  Save the state and restore it on exit.
182 	 */
183 	local_save_flags(flags);
184 
185 	if (!msdata->active_cpus)
186 		is_active = cpu == cpumask_first(cpu_online_mask);
187 	else
188 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
189 
190 	/* Simple state machine */
191 	do {
192 		/* Chill out and ensure we re-read multi_stop_state. */
193 		cpu_relax();
194 		if (msdata->state != curstate) {
195 			curstate = msdata->state;
196 			switch (curstate) {
197 			case MULTI_STOP_DISABLE_IRQ:
198 				local_irq_disable();
199 				hard_irq_disable();
200 				break;
201 			case MULTI_STOP_RUN:
202 				if (is_active)
203 					err = msdata->fn(msdata->data);
204 				break;
205 			default:
206 				break;
207 			}
208 			ack_state(msdata);
209 		}
210 	} while (curstate != MULTI_STOP_EXIT);
211 
212 	local_irq_restore(flags);
213 	return err;
214 }
215 
216 /**
217  * stop_two_cpus - stops two cpus
218  * @cpu1: the cpu to stop
219  * @cpu2: the other cpu to stop
220  * @fn: function to execute
221  * @arg: argument to @fn
222  *
223  * Stops both the current and specified CPU and runs @fn on one of them.
224  *
225  * returns when both are completed.
226  */
227 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
228 {
229 	struct cpu_stop_done done;
230 	struct cpu_stop_work work1, work2;
231 	struct multi_stop_data msdata;
232 
233 	preempt_disable();
234 	msdata = (struct multi_stop_data){
235 		.fn = fn,
236 		.data = arg,
237 		.num_threads = 2,
238 		.active_cpus = cpumask_of(cpu1),
239 	};
240 
241 	work1 = work2 = (struct cpu_stop_work){
242 		.fn = multi_cpu_stop,
243 		.arg = &msdata,
244 		.done = &done
245 	};
246 
247 	cpu_stop_init_done(&done, 2);
248 	set_state(&msdata, MULTI_STOP_PREPARE);
249 
250 	/*
251 	 * If we observe both CPUs active we know _cpu_down() cannot yet have
252 	 * queued its stop_machine works and therefore ours will get executed
253 	 * first. Or its not either one of our CPUs that's getting unplugged,
254 	 * in which case we don't care.
255 	 *
256 	 * This relies on the stopper workqueues to be FIFO.
257 	 */
258 	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
259 		preempt_enable();
260 		return -ENOENT;
261 	}
262 
263 	lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
264 	cpu_stop_queue_work(cpu1, &work1);
265 	cpu_stop_queue_work(cpu2, &work2);
266 	lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
267 
268 	preempt_enable();
269 
270 	wait_for_completion(&done.completion);
271 
272 	return done.executed ? done.ret : -ENOENT;
273 }
274 
275 /**
276  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
277  * @cpu: cpu to stop
278  * @fn: function to execute
279  * @arg: argument to @fn
280  * @work_buf: pointer to cpu_stop_work structure
281  *
282  * Similar to stop_one_cpu() but doesn't wait for completion.  The
283  * caller is responsible for ensuring @work_buf is currently unused
284  * and will remain untouched until stopper starts executing @fn.
285  *
286  * CONTEXT:
287  * Don't care.
288  */
289 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
290 			struct cpu_stop_work *work_buf)
291 {
292 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
293 	cpu_stop_queue_work(cpu, work_buf);
294 }
295 
296 /* static data for stop_cpus */
297 static DEFINE_MUTEX(stop_cpus_mutex);
298 
299 static void queue_stop_cpus_work(const struct cpumask *cpumask,
300 				 cpu_stop_fn_t fn, void *arg,
301 				 struct cpu_stop_done *done)
302 {
303 	struct cpu_stop_work *work;
304 	unsigned int cpu;
305 
306 	/*
307 	 * Disable preemption while queueing to avoid getting
308 	 * preempted by a stopper which might wait for other stoppers
309 	 * to enter @fn which can lead to deadlock.
310 	 */
311 	lg_global_lock(&stop_cpus_lock);
312 	for_each_cpu(cpu, cpumask) {
313 		work = &per_cpu(cpu_stopper.stop_work, cpu);
314 		work->fn = fn;
315 		work->arg = arg;
316 		work->done = done;
317 		cpu_stop_queue_work(cpu, work);
318 	}
319 	lg_global_unlock(&stop_cpus_lock);
320 }
321 
322 static int __stop_cpus(const struct cpumask *cpumask,
323 		       cpu_stop_fn_t fn, void *arg)
324 {
325 	struct cpu_stop_done done;
326 
327 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
328 	queue_stop_cpus_work(cpumask, fn, arg, &done);
329 	wait_for_completion(&done.completion);
330 	return done.executed ? done.ret : -ENOENT;
331 }
332 
333 /**
334  * stop_cpus - stop multiple cpus
335  * @cpumask: cpus to stop
336  * @fn: function to execute
337  * @arg: argument to @fn
338  *
339  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
340  * @fn is run in a process context with the highest priority
341  * preempting any task on the cpu and monopolizing it.  This function
342  * returns after all executions are complete.
343  *
344  * This function doesn't guarantee the cpus in @cpumask stay online
345  * till @fn completes.  If some cpus go down in the middle, execution
346  * on the cpu may happen partially or fully on different cpus.  @fn
347  * should either be ready for that or the caller should ensure that
348  * the cpus stay online until this function completes.
349  *
350  * All stop_cpus() calls are serialized making it safe for @fn to wait
351  * for all cpus to start executing it.
352  *
353  * CONTEXT:
354  * Might sleep.
355  *
356  * RETURNS:
357  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
358  * @cpumask were offline; otherwise, 0 if all executions of @fn
359  * returned 0, any non zero return value if any returned non zero.
360  */
361 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
362 {
363 	int ret;
364 
365 	/* static works are used, process one request at a time */
366 	mutex_lock(&stop_cpus_mutex);
367 	ret = __stop_cpus(cpumask, fn, arg);
368 	mutex_unlock(&stop_cpus_mutex);
369 	return ret;
370 }
371 
372 /**
373  * try_stop_cpus - try to stop multiple cpus
374  * @cpumask: cpus to stop
375  * @fn: function to execute
376  * @arg: argument to @fn
377  *
378  * Identical to stop_cpus() except that it fails with -EAGAIN if
379  * someone else is already using the facility.
380  *
381  * CONTEXT:
382  * Might sleep.
383  *
384  * RETURNS:
385  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
386  * @fn(@arg) was not executed at all because all cpus in @cpumask were
387  * offline; otherwise, 0 if all executions of @fn returned 0, any non
388  * zero return value if any returned non zero.
389  */
390 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
391 {
392 	int ret;
393 
394 	/* static works are used, process one request at a time */
395 	if (!mutex_trylock(&stop_cpus_mutex))
396 		return -EAGAIN;
397 	ret = __stop_cpus(cpumask, fn, arg);
398 	mutex_unlock(&stop_cpus_mutex);
399 	return ret;
400 }
401 
402 static int cpu_stop_should_run(unsigned int cpu)
403 {
404 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
405 	unsigned long flags;
406 	int run;
407 
408 	spin_lock_irqsave(&stopper->lock, flags);
409 	run = !list_empty(&stopper->works);
410 	spin_unlock_irqrestore(&stopper->lock, flags);
411 	return run;
412 }
413 
414 static void cpu_stopper_thread(unsigned int cpu)
415 {
416 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
417 	struct cpu_stop_work *work;
418 	int ret;
419 
420 repeat:
421 	work = NULL;
422 	spin_lock_irq(&stopper->lock);
423 	if (!list_empty(&stopper->works)) {
424 		work = list_first_entry(&stopper->works,
425 					struct cpu_stop_work, list);
426 		list_del_init(&work->list);
427 	}
428 	spin_unlock_irq(&stopper->lock);
429 
430 	if (work) {
431 		cpu_stop_fn_t fn = work->fn;
432 		void *arg = work->arg;
433 		struct cpu_stop_done *done = work->done;
434 		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
435 
436 		/* cpu stop callbacks are not allowed to sleep */
437 		preempt_disable();
438 
439 		ret = fn(arg);
440 		if (ret)
441 			done->ret = ret;
442 
443 		/* restore preemption and check it's still balanced */
444 		preempt_enable();
445 		WARN_ONCE(preempt_count(),
446 			  "cpu_stop: %s(%p) leaked preempt count\n",
447 			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
448 					  ksym_buf), arg);
449 
450 		cpu_stop_signal_done(done, true);
451 		goto repeat;
452 	}
453 }
454 
455 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
456 
457 static void cpu_stop_create(unsigned int cpu)
458 {
459 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
460 }
461 
462 static void cpu_stop_park(unsigned int cpu)
463 {
464 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
465 	struct cpu_stop_work *work, *tmp;
466 	unsigned long flags;
467 
468 	/* drain remaining works */
469 	spin_lock_irqsave(&stopper->lock, flags);
470 	list_for_each_entry_safe(work, tmp, &stopper->works, list) {
471 		list_del_init(&work->list);
472 		cpu_stop_signal_done(work->done, false);
473 	}
474 	stopper->enabled = false;
475 	spin_unlock_irqrestore(&stopper->lock, flags);
476 }
477 
478 static void cpu_stop_unpark(unsigned int cpu)
479 {
480 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
481 
482 	spin_lock_irq(&stopper->lock);
483 	stopper->enabled = true;
484 	spin_unlock_irq(&stopper->lock);
485 }
486 
487 static struct smp_hotplug_thread cpu_stop_threads = {
488 	.store			= &cpu_stopper.thread,
489 	.thread_should_run	= cpu_stop_should_run,
490 	.thread_fn		= cpu_stopper_thread,
491 	.thread_comm		= "migration/%u",
492 	.create			= cpu_stop_create,
493 	.setup			= cpu_stop_unpark,
494 	.park			= cpu_stop_park,
495 	.pre_unpark		= cpu_stop_unpark,
496 	.selfparking		= true,
497 };
498 
499 static int __init cpu_stop_init(void)
500 {
501 	unsigned int cpu;
502 
503 	for_each_possible_cpu(cpu) {
504 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
505 
506 		spin_lock_init(&stopper->lock);
507 		INIT_LIST_HEAD(&stopper->works);
508 	}
509 
510 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
511 	stop_machine_initialized = true;
512 	return 0;
513 }
514 early_initcall(cpu_stop_init);
515 
516 #ifdef CONFIG_STOP_MACHINE
517 
518 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
519 {
520 	struct multi_stop_data msdata = {
521 		.fn = fn,
522 		.data = data,
523 		.num_threads = num_online_cpus(),
524 		.active_cpus = cpus,
525 	};
526 
527 	if (!stop_machine_initialized) {
528 		/*
529 		 * Handle the case where stop_machine() is called
530 		 * early in boot before stop_machine() has been
531 		 * initialized.
532 		 */
533 		unsigned long flags;
534 		int ret;
535 
536 		WARN_ON_ONCE(msdata.num_threads != 1);
537 
538 		local_irq_save(flags);
539 		hard_irq_disable();
540 		ret = (*fn)(data);
541 		local_irq_restore(flags);
542 
543 		return ret;
544 	}
545 
546 	/* Set the initial state and stop all online cpus. */
547 	set_state(&msdata, MULTI_STOP_PREPARE);
548 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
549 }
550 
551 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
552 {
553 	int ret;
554 
555 	/* No CPUs can come up or down during this. */
556 	get_online_cpus();
557 	ret = __stop_machine(fn, data, cpus);
558 	put_online_cpus();
559 	return ret;
560 }
561 EXPORT_SYMBOL_GPL(stop_machine);
562 
563 /**
564  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
565  * @fn: the function to run
566  * @data: the data ptr for the @fn()
567  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
568  *
569  * This is identical to stop_machine() but can be called from a CPU which
570  * is not active.  The local CPU is in the process of hotplug (so no other
571  * CPU hotplug can start) and not marked active and doesn't have enough
572  * context to sleep.
573  *
574  * This function provides stop_machine() functionality for such state by
575  * using busy-wait for synchronization and executing @fn directly for local
576  * CPU.
577  *
578  * CONTEXT:
579  * Local CPU is inactive.  Temporarily stops all active CPUs.
580  *
581  * RETURNS:
582  * 0 if all executions of @fn returned 0, any non zero return value if any
583  * returned non zero.
584  */
585 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
586 				  const struct cpumask *cpus)
587 {
588 	struct multi_stop_data msdata = { .fn = fn, .data = data,
589 					    .active_cpus = cpus };
590 	struct cpu_stop_done done;
591 	int ret;
592 
593 	/* Local CPU must be inactive and CPU hotplug in progress. */
594 	BUG_ON(cpu_active(raw_smp_processor_id()));
595 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
596 
597 	/* No proper task established and can't sleep - busy wait for lock. */
598 	while (!mutex_trylock(&stop_cpus_mutex))
599 		cpu_relax();
600 
601 	/* Schedule work on other CPUs and execute directly for local CPU */
602 	set_state(&msdata, MULTI_STOP_PREPARE);
603 	cpu_stop_init_done(&done, num_active_cpus());
604 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
605 			     &done);
606 	ret = multi_cpu_stop(&msdata);
607 
608 	/* Busy wait for completion. */
609 	while (!completion_done(&done.completion))
610 		cpu_relax();
611 
612 	mutex_unlock(&stop_cpus_mutex);
613 	return ret ?: done.ret;
614 }
615 
616 #endif	/* CONFIG_STOP_MACHINE */
617