xref: /openbmc/linux/kernel/stop_machine.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * kernel/stop_machine.c
4  *
5  * Copyright (C) 2008, 2005	IBM Corporation.
6  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
7  * Copyright (C) 2010		SUSE Linux Products GmbH
8  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 	unsigned long		caller;
46 	cpu_stop_fn_t		fn;
47 };
48 
49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
50 static bool stop_machine_initialized = false;
51 
52 void print_stop_info(const char *log_lvl, struct task_struct *task)
53 {
54 	/*
55 	 * If @task is a stopper task, it cannot migrate and task_cpu() is
56 	 * stable.
57 	 */
58 	struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
59 
60 	if (task != stopper->thread)
61 		return;
62 
63 	printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
64 }
65 
66 /* static data for stop_cpus */
67 static DEFINE_MUTEX(stop_cpus_mutex);
68 static bool stop_cpus_in_progress;
69 
70 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
71 {
72 	memset(done, 0, sizeof(*done));
73 	atomic_set(&done->nr_todo, nr_todo);
74 	init_completion(&done->completion);
75 }
76 
77 /* signal completion unless @done is NULL */
78 static void cpu_stop_signal_done(struct cpu_stop_done *done)
79 {
80 	if (atomic_dec_and_test(&done->nr_todo))
81 		complete(&done->completion);
82 }
83 
84 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
85 					struct cpu_stop_work *work,
86 					struct wake_q_head *wakeq)
87 {
88 	list_add_tail(&work->list, &stopper->works);
89 	wake_q_add(wakeq, stopper->thread);
90 }
91 
92 /* queue @work to @stopper.  if offline, @work is completed immediately */
93 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
94 {
95 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
96 	DEFINE_WAKE_Q(wakeq);
97 	unsigned long flags;
98 	bool enabled;
99 
100 	preempt_disable();
101 	raw_spin_lock_irqsave(&stopper->lock, flags);
102 	enabled = stopper->enabled;
103 	if (enabled)
104 		__cpu_stop_queue_work(stopper, work, &wakeq);
105 	else if (work->done)
106 		cpu_stop_signal_done(work->done);
107 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
108 
109 	wake_up_q(&wakeq);
110 	preempt_enable();
111 
112 	return enabled;
113 }
114 
115 /**
116  * stop_one_cpu - stop a cpu
117  * @cpu: cpu to stop
118  * @fn: function to execute
119  * @arg: argument to @fn
120  *
121  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
122  * the highest priority preempting any task on the cpu and
123  * monopolizing it.  This function returns after the execution is
124  * complete.
125  *
126  * This function doesn't guarantee @cpu stays online till @fn
127  * completes.  If @cpu goes down in the middle, execution may happen
128  * partially or fully on different cpus.  @fn should either be ready
129  * for that or the caller should ensure that @cpu stays online until
130  * this function completes.
131  *
132  * CONTEXT:
133  * Might sleep.
134  *
135  * RETURNS:
136  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
137  * otherwise, the return value of @fn.
138  */
139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
140 {
141 	struct cpu_stop_done done;
142 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
143 
144 	cpu_stop_init_done(&done, 1);
145 	if (!cpu_stop_queue_work(cpu, &work))
146 		return -ENOENT;
147 	/*
148 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
149 	 * cycle by doing a preemption:
150 	 */
151 	cond_resched();
152 	wait_for_completion(&done.completion);
153 	return done.ret;
154 }
155 
156 /* This controls the threads on each CPU. */
157 enum multi_stop_state {
158 	/* Dummy starting state for thread. */
159 	MULTI_STOP_NONE,
160 	/* Awaiting everyone to be scheduled. */
161 	MULTI_STOP_PREPARE,
162 	/* Disable interrupts. */
163 	MULTI_STOP_DISABLE_IRQ,
164 	/* Run the function */
165 	MULTI_STOP_RUN,
166 	/* Exit */
167 	MULTI_STOP_EXIT,
168 };
169 
170 struct multi_stop_data {
171 	cpu_stop_fn_t		fn;
172 	void			*data;
173 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
174 	unsigned int		num_threads;
175 	const struct cpumask	*active_cpus;
176 
177 	enum multi_stop_state	state;
178 	atomic_t		thread_ack;
179 };
180 
181 static void set_state(struct multi_stop_data *msdata,
182 		      enum multi_stop_state newstate)
183 {
184 	/* Reset ack counter. */
185 	atomic_set(&msdata->thread_ack, msdata->num_threads);
186 	smp_wmb();
187 	WRITE_ONCE(msdata->state, newstate);
188 }
189 
190 /* Last one to ack a state moves to the next state. */
191 static void ack_state(struct multi_stop_data *msdata)
192 {
193 	if (atomic_dec_and_test(&msdata->thread_ack))
194 		set_state(msdata, msdata->state + 1);
195 }
196 
197 notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
198 {
199 	cpu_relax();
200 }
201 
202 /* This is the cpu_stop function which stops the CPU. */
203 static int multi_cpu_stop(void *data)
204 {
205 	struct multi_stop_data *msdata = data;
206 	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
207 	int cpu = smp_processor_id(), err = 0;
208 	const struct cpumask *cpumask;
209 	unsigned long flags;
210 	bool is_active;
211 
212 	/*
213 	 * When called from stop_machine_from_inactive_cpu(), irq might
214 	 * already be disabled.  Save the state and restore it on exit.
215 	 */
216 	local_save_flags(flags);
217 
218 	if (!msdata->active_cpus) {
219 		cpumask = cpu_online_mask;
220 		is_active = cpu == cpumask_first(cpumask);
221 	} else {
222 		cpumask = msdata->active_cpus;
223 		is_active = cpumask_test_cpu(cpu, cpumask);
224 	}
225 
226 	/* Simple state machine */
227 	do {
228 		/* Chill out and ensure we re-read multi_stop_state. */
229 		stop_machine_yield(cpumask);
230 		newstate = READ_ONCE(msdata->state);
231 		if (newstate != curstate) {
232 			curstate = newstate;
233 			switch (curstate) {
234 			case MULTI_STOP_DISABLE_IRQ:
235 				local_irq_disable();
236 				hard_irq_disable();
237 				break;
238 			case MULTI_STOP_RUN:
239 				if (is_active)
240 					err = msdata->fn(msdata->data);
241 				break;
242 			default:
243 				break;
244 			}
245 			ack_state(msdata);
246 		} else if (curstate > MULTI_STOP_PREPARE) {
247 			/*
248 			 * At this stage all other CPUs we depend on must spin
249 			 * in the same loop. Any reason for hard-lockup should
250 			 * be detected and reported on their side.
251 			 */
252 			touch_nmi_watchdog();
253 		}
254 		rcu_momentary_dyntick_idle();
255 	} while (curstate != MULTI_STOP_EXIT);
256 
257 	local_irq_restore(flags);
258 	return err;
259 }
260 
261 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
262 				    int cpu2, struct cpu_stop_work *work2)
263 {
264 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
265 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
266 	DEFINE_WAKE_Q(wakeq);
267 	int err;
268 
269 retry:
270 	/*
271 	 * The waking up of stopper threads has to happen in the same
272 	 * scheduling context as the queueing.  Otherwise, there is a
273 	 * possibility of one of the above stoppers being woken up by another
274 	 * CPU, and preempting us. This will cause us to not wake up the other
275 	 * stopper forever.
276 	 */
277 	preempt_disable();
278 	raw_spin_lock_irq(&stopper1->lock);
279 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
280 
281 	if (!stopper1->enabled || !stopper2->enabled) {
282 		err = -ENOENT;
283 		goto unlock;
284 	}
285 
286 	/*
287 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
288 	 * queued up in reverse order leading to system deadlock.
289 	 *
290 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
291 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
292 	 *
293 	 * It can be falsely true but it is safe to spin until it is cleared,
294 	 * queue_stop_cpus_work() does everything under preempt_disable().
295 	 */
296 	if (unlikely(stop_cpus_in_progress)) {
297 		err = -EDEADLK;
298 		goto unlock;
299 	}
300 
301 	err = 0;
302 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
303 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
304 
305 unlock:
306 	raw_spin_unlock(&stopper2->lock);
307 	raw_spin_unlock_irq(&stopper1->lock);
308 
309 	if (unlikely(err == -EDEADLK)) {
310 		preempt_enable();
311 
312 		while (stop_cpus_in_progress)
313 			cpu_relax();
314 
315 		goto retry;
316 	}
317 
318 	wake_up_q(&wakeq);
319 	preempt_enable();
320 
321 	return err;
322 }
323 /**
324  * stop_two_cpus - stops two cpus
325  * @cpu1: the cpu to stop
326  * @cpu2: the other cpu to stop
327  * @fn: function to execute
328  * @arg: argument to @fn
329  *
330  * Stops both the current and specified CPU and runs @fn on one of them.
331  *
332  * returns when both are completed.
333  */
334 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
335 {
336 	struct cpu_stop_done done;
337 	struct cpu_stop_work work1, work2;
338 	struct multi_stop_data msdata;
339 
340 	msdata = (struct multi_stop_data){
341 		.fn = fn,
342 		.data = arg,
343 		.num_threads = 2,
344 		.active_cpus = cpumask_of(cpu1),
345 	};
346 
347 	work1 = work2 = (struct cpu_stop_work){
348 		.fn = multi_cpu_stop,
349 		.arg = &msdata,
350 		.done = &done,
351 		.caller = _RET_IP_,
352 	};
353 
354 	cpu_stop_init_done(&done, 2);
355 	set_state(&msdata, MULTI_STOP_PREPARE);
356 
357 	if (cpu1 > cpu2)
358 		swap(cpu1, cpu2);
359 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
360 		return -ENOENT;
361 
362 	wait_for_completion(&done.completion);
363 	return done.ret;
364 }
365 
366 /**
367  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
368  * @cpu: cpu to stop
369  * @fn: function to execute
370  * @arg: argument to @fn
371  * @work_buf: pointer to cpu_stop_work structure
372  *
373  * Similar to stop_one_cpu() but doesn't wait for completion.  The
374  * caller is responsible for ensuring @work_buf is currently unused
375  * and will remain untouched until stopper starts executing @fn.
376  *
377  * CONTEXT:
378  * Don't care.
379  *
380  * RETURNS:
381  * true if cpu_stop_work was queued successfully and @fn will be called,
382  * false otherwise.
383  */
384 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
385 			struct cpu_stop_work *work_buf)
386 {
387 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
388 	return cpu_stop_queue_work(cpu, work_buf);
389 }
390 
391 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
392 				 cpu_stop_fn_t fn, void *arg,
393 				 struct cpu_stop_done *done)
394 {
395 	struct cpu_stop_work *work;
396 	unsigned int cpu;
397 	bool queued = false;
398 
399 	/*
400 	 * Disable preemption while queueing to avoid getting
401 	 * preempted by a stopper which might wait for other stoppers
402 	 * to enter @fn which can lead to deadlock.
403 	 */
404 	preempt_disable();
405 	stop_cpus_in_progress = true;
406 	barrier();
407 	for_each_cpu(cpu, cpumask) {
408 		work = &per_cpu(cpu_stopper.stop_work, cpu);
409 		work->fn = fn;
410 		work->arg = arg;
411 		work->done = done;
412 		if (cpu_stop_queue_work(cpu, work))
413 			queued = true;
414 	}
415 	barrier();
416 	stop_cpus_in_progress = false;
417 	preempt_enable();
418 
419 	return queued;
420 }
421 
422 static int __stop_cpus(const struct cpumask *cpumask,
423 		       cpu_stop_fn_t fn, void *arg)
424 {
425 	struct cpu_stop_done done;
426 
427 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
428 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
429 		return -ENOENT;
430 	wait_for_completion(&done.completion);
431 	return done.ret;
432 }
433 
434 /**
435  * stop_cpus - stop multiple cpus
436  * @cpumask: cpus to stop
437  * @fn: function to execute
438  * @arg: argument to @fn
439  *
440  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
441  * @fn is run in a process context with the highest priority
442  * preempting any task on the cpu and monopolizing it.  This function
443  * returns after all executions are complete.
444  *
445  * This function doesn't guarantee the cpus in @cpumask stay online
446  * till @fn completes.  If some cpus go down in the middle, execution
447  * on the cpu may happen partially or fully on different cpus.  @fn
448  * should either be ready for that or the caller should ensure that
449  * the cpus stay online until this function completes.
450  *
451  * All stop_cpus() calls are serialized making it safe for @fn to wait
452  * for all cpus to start executing it.
453  *
454  * CONTEXT:
455  * Might sleep.
456  *
457  * RETURNS:
458  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
459  * @cpumask were offline; otherwise, 0 if all executions of @fn
460  * returned 0, any non zero return value if any returned non zero.
461  */
462 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
463 {
464 	int ret;
465 
466 	/* static works are used, process one request at a time */
467 	mutex_lock(&stop_cpus_mutex);
468 	ret = __stop_cpus(cpumask, fn, arg);
469 	mutex_unlock(&stop_cpus_mutex);
470 	return ret;
471 }
472 
473 static int cpu_stop_should_run(unsigned int cpu)
474 {
475 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
476 	unsigned long flags;
477 	int run;
478 
479 	raw_spin_lock_irqsave(&stopper->lock, flags);
480 	run = !list_empty(&stopper->works);
481 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
482 	return run;
483 }
484 
485 static void cpu_stopper_thread(unsigned int cpu)
486 {
487 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
488 	struct cpu_stop_work *work;
489 
490 repeat:
491 	work = NULL;
492 	raw_spin_lock_irq(&stopper->lock);
493 	if (!list_empty(&stopper->works)) {
494 		work = list_first_entry(&stopper->works,
495 					struct cpu_stop_work, list);
496 		list_del_init(&work->list);
497 	}
498 	raw_spin_unlock_irq(&stopper->lock);
499 
500 	if (work) {
501 		cpu_stop_fn_t fn = work->fn;
502 		void *arg = work->arg;
503 		struct cpu_stop_done *done = work->done;
504 		int ret;
505 
506 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
507 		stopper->caller = work->caller;
508 		stopper->fn = fn;
509 		preempt_count_inc();
510 		ret = fn(arg);
511 		if (done) {
512 			if (ret)
513 				done->ret = ret;
514 			cpu_stop_signal_done(done);
515 		}
516 		preempt_count_dec();
517 		stopper->fn = NULL;
518 		stopper->caller = 0;
519 		WARN_ONCE(preempt_count(),
520 			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
521 		goto repeat;
522 	}
523 }
524 
525 void stop_machine_park(int cpu)
526 {
527 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
528 	/*
529 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
530 	 * the pending works before it parks, until then it is fine to queue
531 	 * the new works.
532 	 */
533 	stopper->enabled = false;
534 	kthread_park(stopper->thread);
535 }
536 
537 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
538 
539 static void cpu_stop_create(unsigned int cpu)
540 {
541 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
542 }
543 
544 static void cpu_stop_park(unsigned int cpu)
545 {
546 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
547 
548 	WARN_ON(!list_empty(&stopper->works));
549 }
550 
551 void stop_machine_unpark(int cpu)
552 {
553 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
554 
555 	stopper->enabled = true;
556 	kthread_unpark(stopper->thread);
557 }
558 
559 static struct smp_hotplug_thread cpu_stop_threads = {
560 	.store			= &cpu_stopper.thread,
561 	.thread_should_run	= cpu_stop_should_run,
562 	.thread_fn		= cpu_stopper_thread,
563 	.thread_comm		= "migration/%u",
564 	.create			= cpu_stop_create,
565 	.park			= cpu_stop_park,
566 	.selfparking		= true,
567 };
568 
569 static int __init cpu_stop_init(void)
570 {
571 	unsigned int cpu;
572 
573 	for_each_possible_cpu(cpu) {
574 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
575 
576 		raw_spin_lock_init(&stopper->lock);
577 		INIT_LIST_HEAD(&stopper->works);
578 	}
579 
580 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
581 	stop_machine_unpark(raw_smp_processor_id());
582 	stop_machine_initialized = true;
583 	return 0;
584 }
585 early_initcall(cpu_stop_init);
586 
587 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
588 			    const struct cpumask *cpus)
589 {
590 	struct multi_stop_data msdata = {
591 		.fn = fn,
592 		.data = data,
593 		.num_threads = num_online_cpus(),
594 		.active_cpus = cpus,
595 	};
596 
597 	lockdep_assert_cpus_held();
598 
599 	if (!stop_machine_initialized) {
600 		/*
601 		 * Handle the case where stop_machine() is called
602 		 * early in boot before stop_machine() has been
603 		 * initialized.
604 		 */
605 		unsigned long flags;
606 		int ret;
607 
608 		WARN_ON_ONCE(msdata.num_threads != 1);
609 
610 		local_irq_save(flags);
611 		hard_irq_disable();
612 		ret = (*fn)(data);
613 		local_irq_restore(flags);
614 
615 		return ret;
616 	}
617 
618 	/* Set the initial state and stop all online cpus. */
619 	set_state(&msdata, MULTI_STOP_PREPARE);
620 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
621 }
622 
623 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
624 {
625 	int ret;
626 
627 	/* No CPUs can come up or down during this. */
628 	cpus_read_lock();
629 	ret = stop_machine_cpuslocked(fn, data, cpus);
630 	cpus_read_unlock();
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(stop_machine);
634 
635 /**
636  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
637  * @fn: the function to run
638  * @data: the data ptr for the @fn()
639  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
640  *
641  * This is identical to stop_machine() but can be called from a CPU which
642  * is not active.  The local CPU is in the process of hotplug (so no other
643  * CPU hotplug can start) and not marked active and doesn't have enough
644  * context to sleep.
645  *
646  * This function provides stop_machine() functionality for such state by
647  * using busy-wait for synchronization and executing @fn directly for local
648  * CPU.
649  *
650  * CONTEXT:
651  * Local CPU is inactive.  Temporarily stops all active CPUs.
652  *
653  * RETURNS:
654  * 0 if all executions of @fn returned 0, any non zero return value if any
655  * returned non zero.
656  */
657 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
658 				  const struct cpumask *cpus)
659 {
660 	struct multi_stop_data msdata = { .fn = fn, .data = data,
661 					    .active_cpus = cpus };
662 	struct cpu_stop_done done;
663 	int ret;
664 
665 	/* Local CPU must be inactive and CPU hotplug in progress. */
666 	BUG_ON(cpu_active(raw_smp_processor_id()));
667 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
668 
669 	/* No proper task established and can't sleep - busy wait for lock. */
670 	while (!mutex_trylock(&stop_cpus_mutex))
671 		cpu_relax();
672 
673 	/* Schedule work on other CPUs and execute directly for local CPU */
674 	set_state(&msdata, MULTI_STOP_PREPARE);
675 	cpu_stop_init_done(&done, num_active_cpus());
676 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
677 			     &done);
678 	ret = multi_cpu_stop(&msdata);
679 
680 	/* Busy wait for completion. */
681 	while (!completion_done(&done.completion))
682 		cpu_relax();
683 
684 	mutex_unlock(&stop_cpus_mutex);
685 	return ret ?: done.ret;
686 }
687