1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 int ret; /* collected return value */ 32 struct completion completion; /* fired if nr_todo reaches 0 */ 33 }; 34 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 36 struct cpu_stopper { 37 struct task_struct *thread; 38 39 spinlock_t lock; 40 bool enabled; /* is this stopper enabled? */ 41 struct list_head works; /* list of pending works */ 42 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 44 }; 45 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 47 static bool stop_machine_initialized = false; 48 49 /* static data for stop_cpus */ 50 static DEFINE_MUTEX(stop_cpus_mutex); 51 static bool stop_cpus_in_progress; 52 53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 54 { 55 memset(done, 0, sizeof(*done)); 56 atomic_set(&done->nr_todo, nr_todo); 57 init_completion(&done->completion); 58 } 59 60 /* signal completion unless @done is NULL */ 61 static void cpu_stop_signal_done(struct cpu_stop_done *done) 62 { 63 if (atomic_dec_and_test(&done->nr_todo)) 64 complete(&done->completion); 65 } 66 67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 68 struct cpu_stop_work *work) 69 { 70 list_add_tail(&work->list, &stopper->works); 71 wake_up_process(stopper->thread); 72 } 73 74 /* queue @work to @stopper. if offline, @work is completed immediately */ 75 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 76 { 77 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 78 unsigned long flags; 79 bool enabled; 80 81 spin_lock_irqsave(&stopper->lock, flags); 82 enabled = stopper->enabled; 83 if (enabled) 84 __cpu_stop_queue_work(stopper, work); 85 else if (work->done) 86 cpu_stop_signal_done(work->done); 87 spin_unlock_irqrestore(&stopper->lock, flags); 88 89 return enabled; 90 } 91 92 /** 93 * stop_one_cpu - stop a cpu 94 * @cpu: cpu to stop 95 * @fn: function to execute 96 * @arg: argument to @fn 97 * 98 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 99 * the highest priority preempting any task on the cpu and 100 * monopolizing it. This function returns after the execution is 101 * complete. 102 * 103 * This function doesn't guarantee @cpu stays online till @fn 104 * completes. If @cpu goes down in the middle, execution may happen 105 * partially or fully on different cpus. @fn should either be ready 106 * for that or the caller should ensure that @cpu stays online until 107 * this function completes. 108 * 109 * CONTEXT: 110 * Might sleep. 111 * 112 * RETURNS: 113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 114 * otherwise, the return value of @fn. 115 */ 116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 117 { 118 struct cpu_stop_done done; 119 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 120 121 cpu_stop_init_done(&done, 1); 122 if (!cpu_stop_queue_work(cpu, &work)) 123 return -ENOENT; 124 /* 125 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 126 * cycle by doing a preemption: 127 */ 128 cond_resched(); 129 wait_for_completion(&done.completion); 130 return done.ret; 131 } 132 133 /* This controls the threads on each CPU. */ 134 enum multi_stop_state { 135 /* Dummy starting state for thread. */ 136 MULTI_STOP_NONE, 137 /* Awaiting everyone to be scheduled. */ 138 MULTI_STOP_PREPARE, 139 /* Disable interrupts. */ 140 MULTI_STOP_DISABLE_IRQ, 141 /* Run the function */ 142 MULTI_STOP_RUN, 143 /* Exit */ 144 MULTI_STOP_EXIT, 145 }; 146 147 struct multi_stop_data { 148 cpu_stop_fn_t fn; 149 void *data; 150 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 151 unsigned int num_threads; 152 const struct cpumask *active_cpus; 153 154 enum multi_stop_state state; 155 atomic_t thread_ack; 156 }; 157 158 static void set_state(struct multi_stop_data *msdata, 159 enum multi_stop_state newstate) 160 { 161 /* Reset ack counter. */ 162 atomic_set(&msdata->thread_ack, msdata->num_threads); 163 smp_wmb(); 164 msdata->state = newstate; 165 } 166 167 /* Last one to ack a state moves to the next state. */ 168 static void ack_state(struct multi_stop_data *msdata) 169 { 170 if (atomic_dec_and_test(&msdata->thread_ack)) 171 set_state(msdata, msdata->state + 1); 172 } 173 174 /* This is the cpu_stop function which stops the CPU. */ 175 static int multi_cpu_stop(void *data) 176 { 177 struct multi_stop_data *msdata = data; 178 enum multi_stop_state curstate = MULTI_STOP_NONE; 179 int cpu = smp_processor_id(), err = 0; 180 unsigned long flags; 181 bool is_active; 182 183 /* 184 * When called from stop_machine_from_inactive_cpu(), irq might 185 * already be disabled. Save the state and restore it on exit. 186 */ 187 local_save_flags(flags); 188 189 if (!msdata->active_cpus) 190 is_active = cpu == cpumask_first(cpu_online_mask); 191 else 192 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 193 194 /* Simple state machine */ 195 do { 196 /* Chill out and ensure we re-read multi_stop_state. */ 197 cpu_relax(); 198 if (msdata->state != curstate) { 199 curstate = msdata->state; 200 switch (curstate) { 201 case MULTI_STOP_DISABLE_IRQ: 202 local_irq_disable(); 203 hard_irq_disable(); 204 break; 205 case MULTI_STOP_RUN: 206 if (is_active) 207 err = msdata->fn(msdata->data); 208 break; 209 default: 210 break; 211 } 212 ack_state(msdata); 213 } else if (curstate > MULTI_STOP_PREPARE) { 214 /* 215 * At this stage all other CPUs we depend on must spin 216 * in the same loop. Any reason for hard-lockup should 217 * be detected and reported on their side. 218 */ 219 touch_nmi_watchdog(); 220 } 221 } while (curstate != MULTI_STOP_EXIT); 222 223 local_irq_restore(flags); 224 return err; 225 } 226 227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 228 int cpu2, struct cpu_stop_work *work2) 229 { 230 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 231 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 232 int err; 233 retry: 234 spin_lock_irq(&stopper1->lock); 235 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 236 237 err = -ENOENT; 238 if (!stopper1->enabled || !stopper2->enabled) 239 goto unlock; 240 /* 241 * Ensure that if we race with __stop_cpus() the stoppers won't get 242 * queued up in reverse order leading to system deadlock. 243 * 244 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 245 * queued a work on cpu1 but not on cpu2, we hold both locks. 246 * 247 * It can be falsely true but it is safe to spin until it is cleared, 248 * queue_stop_cpus_work() does everything under preempt_disable(). 249 */ 250 err = -EDEADLK; 251 if (unlikely(stop_cpus_in_progress)) 252 goto unlock; 253 254 err = 0; 255 __cpu_stop_queue_work(stopper1, work1); 256 __cpu_stop_queue_work(stopper2, work2); 257 unlock: 258 spin_unlock(&stopper2->lock); 259 spin_unlock_irq(&stopper1->lock); 260 261 if (unlikely(err == -EDEADLK)) { 262 while (stop_cpus_in_progress) 263 cpu_relax(); 264 goto retry; 265 } 266 return err; 267 } 268 /** 269 * stop_two_cpus - stops two cpus 270 * @cpu1: the cpu to stop 271 * @cpu2: the other cpu to stop 272 * @fn: function to execute 273 * @arg: argument to @fn 274 * 275 * Stops both the current and specified CPU and runs @fn on one of them. 276 * 277 * returns when both are completed. 278 */ 279 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 280 { 281 struct cpu_stop_done done; 282 struct cpu_stop_work work1, work2; 283 struct multi_stop_data msdata; 284 285 msdata = (struct multi_stop_data){ 286 .fn = fn, 287 .data = arg, 288 .num_threads = 2, 289 .active_cpus = cpumask_of(cpu1), 290 }; 291 292 work1 = work2 = (struct cpu_stop_work){ 293 .fn = multi_cpu_stop, 294 .arg = &msdata, 295 .done = &done 296 }; 297 298 cpu_stop_init_done(&done, 2); 299 set_state(&msdata, MULTI_STOP_PREPARE); 300 301 if (cpu1 > cpu2) 302 swap(cpu1, cpu2); 303 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 304 return -ENOENT; 305 306 wait_for_completion(&done.completion); 307 return done.ret; 308 } 309 310 /** 311 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 312 * @cpu: cpu to stop 313 * @fn: function to execute 314 * @arg: argument to @fn 315 * @work_buf: pointer to cpu_stop_work structure 316 * 317 * Similar to stop_one_cpu() but doesn't wait for completion. The 318 * caller is responsible for ensuring @work_buf is currently unused 319 * and will remain untouched until stopper starts executing @fn. 320 * 321 * CONTEXT: 322 * Don't care. 323 * 324 * RETURNS: 325 * true if cpu_stop_work was queued successfully and @fn will be called, 326 * false otherwise. 327 */ 328 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 329 struct cpu_stop_work *work_buf) 330 { 331 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 332 return cpu_stop_queue_work(cpu, work_buf); 333 } 334 335 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 336 cpu_stop_fn_t fn, void *arg, 337 struct cpu_stop_done *done) 338 { 339 struct cpu_stop_work *work; 340 unsigned int cpu; 341 bool queued = false; 342 343 /* 344 * Disable preemption while queueing to avoid getting 345 * preempted by a stopper which might wait for other stoppers 346 * to enter @fn which can lead to deadlock. 347 */ 348 preempt_disable(); 349 stop_cpus_in_progress = true; 350 for_each_cpu(cpu, cpumask) { 351 work = &per_cpu(cpu_stopper.stop_work, cpu); 352 work->fn = fn; 353 work->arg = arg; 354 work->done = done; 355 if (cpu_stop_queue_work(cpu, work)) 356 queued = true; 357 } 358 stop_cpus_in_progress = false; 359 preempt_enable(); 360 361 return queued; 362 } 363 364 static int __stop_cpus(const struct cpumask *cpumask, 365 cpu_stop_fn_t fn, void *arg) 366 { 367 struct cpu_stop_done done; 368 369 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 370 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 371 return -ENOENT; 372 wait_for_completion(&done.completion); 373 return done.ret; 374 } 375 376 /** 377 * stop_cpus - stop multiple cpus 378 * @cpumask: cpus to stop 379 * @fn: function to execute 380 * @arg: argument to @fn 381 * 382 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 383 * @fn is run in a process context with the highest priority 384 * preempting any task on the cpu and monopolizing it. This function 385 * returns after all executions are complete. 386 * 387 * This function doesn't guarantee the cpus in @cpumask stay online 388 * till @fn completes. If some cpus go down in the middle, execution 389 * on the cpu may happen partially or fully on different cpus. @fn 390 * should either be ready for that or the caller should ensure that 391 * the cpus stay online until this function completes. 392 * 393 * All stop_cpus() calls are serialized making it safe for @fn to wait 394 * for all cpus to start executing it. 395 * 396 * CONTEXT: 397 * Might sleep. 398 * 399 * RETURNS: 400 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 401 * @cpumask were offline; otherwise, 0 if all executions of @fn 402 * returned 0, any non zero return value if any returned non zero. 403 */ 404 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 405 { 406 int ret; 407 408 /* static works are used, process one request at a time */ 409 mutex_lock(&stop_cpus_mutex); 410 ret = __stop_cpus(cpumask, fn, arg); 411 mutex_unlock(&stop_cpus_mutex); 412 return ret; 413 } 414 415 /** 416 * try_stop_cpus - try to stop multiple cpus 417 * @cpumask: cpus to stop 418 * @fn: function to execute 419 * @arg: argument to @fn 420 * 421 * Identical to stop_cpus() except that it fails with -EAGAIN if 422 * someone else is already using the facility. 423 * 424 * CONTEXT: 425 * Might sleep. 426 * 427 * RETURNS: 428 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 429 * @fn(@arg) was not executed at all because all cpus in @cpumask were 430 * offline; otherwise, 0 if all executions of @fn returned 0, any non 431 * zero return value if any returned non zero. 432 */ 433 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 434 { 435 int ret; 436 437 /* static works are used, process one request at a time */ 438 if (!mutex_trylock(&stop_cpus_mutex)) 439 return -EAGAIN; 440 ret = __stop_cpus(cpumask, fn, arg); 441 mutex_unlock(&stop_cpus_mutex); 442 return ret; 443 } 444 445 static int cpu_stop_should_run(unsigned int cpu) 446 { 447 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 448 unsigned long flags; 449 int run; 450 451 spin_lock_irqsave(&stopper->lock, flags); 452 run = !list_empty(&stopper->works); 453 spin_unlock_irqrestore(&stopper->lock, flags); 454 return run; 455 } 456 457 static void cpu_stopper_thread(unsigned int cpu) 458 { 459 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 460 struct cpu_stop_work *work; 461 462 repeat: 463 work = NULL; 464 spin_lock_irq(&stopper->lock); 465 if (!list_empty(&stopper->works)) { 466 work = list_first_entry(&stopper->works, 467 struct cpu_stop_work, list); 468 list_del_init(&work->list); 469 } 470 spin_unlock_irq(&stopper->lock); 471 472 if (work) { 473 cpu_stop_fn_t fn = work->fn; 474 void *arg = work->arg; 475 struct cpu_stop_done *done = work->done; 476 int ret; 477 478 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 479 preempt_count_inc(); 480 ret = fn(arg); 481 if (done) { 482 if (ret) 483 done->ret = ret; 484 cpu_stop_signal_done(done); 485 } 486 preempt_count_dec(); 487 WARN_ONCE(preempt_count(), 488 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 489 goto repeat; 490 } 491 } 492 493 void stop_machine_park(int cpu) 494 { 495 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 496 /* 497 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 498 * the pending works before it parks, until then it is fine to queue 499 * the new works. 500 */ 501 stopper->enabled = false; 502 kthread_park(stopper->thread); 503 } 504 505 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 506 507 static void cpu_stop_create(unsigned int cpu) 508 { 509 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 510 } 511 512 static void cpu_stop_park(unsigned int cpu) 513 { 514 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 515 516 WARN_ON(!list_empty(&stopper->works)); 517 } 518 519 void stop_machine_unpark(int cpu) 520 { 521 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 522 523 stopper->enabled = true; 524 kthread_unpark(stopper->thread); 525 } 526 527 static struct smp_hotplug_thread cpu_stop_threads = { 528 .store = &cpu_stopper.thread, 529 .thread_should_run = cpu_stop_should_run, 530 .thread_fn = cpu_stopper_thread, 531 .thread_comm = "migration/%u", 532 .create = cpu_stop_create, 533 .park = cpu_stop_park, 534 .selfparking = true, 535 }; 536 537 static int __init cpu_stop_init(void) 538 { 539 unsigned int cpu; 540 541 for_each_possible_cpu(cpu) { 542 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 543 544 spin_lock_init(&stopper->lock); 545 INIT_LIST_HEAD(&stopper->works); 546 } 547 548 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 549 stop_machine_unpark(raw_smp_processor_id()); 550 stop_machine_initialized = true; 551 return 0; 552 } 553 early_initcall(cpu_stop_init); 554 555 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 556 { 557 struct multi_stop_data msdata = { 558 .fn = fn, 559 .data = data, 560 .num_threads = num_online_cpus(), 561 .active_cpus = cpus, 562 }; 563 564 if (!stop_machine_initialized) { 565 /* 566 * Handle the case where stop_machine() is called 567 * early in boot before stop_machine() has been 568 * initialized. 569 */ 570 unsigned long flags; 571 int ret; 572 573 WARN_ON_ONCE(msdata.num_threads != 1); 574 575 local_irq_save(flags); 576 hard_irq_disable(); 577 ret = (*fn)(data); 578 local_irq_restore(flags); 579 580 return ret; 581 } 582 583 /* Set the initial state and stop all online cpus. */ 584 set_state(&msdata, MULTI_STOP_PREPARE); 585 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 586 } 587 588 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 589 { 590 int ret; 591 592 /* No CPUs can come up or down during this. */ 593 get_online_cpus(); 594 ret = __stop_machine(fn, data, cpus); 595 put_online_cpus(); 596 return ret; 597 } 598 EXPORT_SYMBOL_GPL(stop_machine); 599 600 /** 601 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 602 * @fn: the function to run 603 * @data: the data ptr for the @fn() 604 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 605 * 606 * This is identical to stop_machine() but can be called from a CPU which 607 * is not active. The local CPU is in the process of hotplug (so no other 608 * CPU hotplug can start) and not marked active and doesn't have enough 609 * context to sleep. 610 * 611 * This function provides stop_machine() functionality for such state by 612 * using busy-wait for synchronization and executing @fn directly for local 613 * CPU. 614 * 615 * CONTEXT: 616 * Local CPU is inactive. Temporarily stops all active CPUs. 617 * 618 * RETURNS: 619 * 0 if all executions of @fn returned 0, any non zero return value if any 620 * returned non zero. 621 */ 622 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 623 const struct cpumask *cpus) 624 { 625 struct multi_stop_data msdata = { .fn = fn, .data = data, 626 .active_cpus = cpus }; 627 struct cpu_stop_done done; 628 int ret; 629 630 /* Local CPU must be inactive and CPU hotplug in progress. */ 631 BUG_ON(cpu_active(raw_smp_processor_id())); 632 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 633 634 /* No proper task established and can't sleep - busy wait for lock. */ 635 while (!mutex_trylock(&stop_cpus_mutex)) 636 cpu_relax(); 637 638 /* Schedule work on other CPUs and execute directly for local CPU */ 639 set_state(&msdata, MULTI_STOP_PREPARE); 640 cpu_stop_init_done(&done, num_active_cpus()); 641 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 642 &done); 643 ret = multi_cpu_stop(&msdata); 644 645 /* Busy wait for completion. */ 646 while (!completion_done(&done.completion)) 647 cpu_relax(); 648 649 mutex_unlock(&stop_cpus_mutex); 650 return ret ?: done.ret; 651 } 652