1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * kernel/stop_machine.c 4 * 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 10 #include <linux/completion.h> 11 #include <linux/cpu.h> 12 #include <linux/init.h> 13 #include <linux/kthread.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 16 #include <linux/sched.h> 17 #include <linux/stop_machine.h> 18 #include <linux/interrupt.h> 19 #include <linux/kallsyms.h> 20 #include <linux/smpboot.h> 21 #include <linux/atomic.h> 22 #include <linux/nmi.h> 23 #include <linux/sched/wake_q.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 int ret; /* collected return value */ 32 struct completion completion; /* fired if nr_todo reaches 0 */ 33 }; 34 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 36 struct cpu_stopper { 37 struct task_struct *thread; 38 39 raw_spinlock_t lock; 40 bool enabled; /* is this stopper enabled? */ 41 struct list_head works; /* list of pending works */ 42 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 44 }; 45 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 47 static bool stop_machine_initialized = false; 48 49 /* static data for stop_cpus */ 50 static DEFINE_MUTEX(stop_cpus_mutex); 51 static bool stop_cpus_in_progress; 52 53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 54 { 55 memset(done, 0, sizeof(*done)); 56 atomic_set(&done->nr_todo, nr_todo); 57 init_completion(&done->completion); 58 } 59 60 /* signal completion unless @done is NULL */ 61 static void cpu_stop_signal_done(struct cpu_stop_done *done) 62 { 63 if (atomic_dec_and_test(&done->nr_todo)) 64 complete(&done->completion); 65 } 66 67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 68 struct cpu_stop_work *work, 69 struct wake_q_head *wakeq) 70 { 71 list_add_tail(&work->list, &stopper->works); 72 wake_q_add(wakeq, stopper->thread); 73 } 74 75 /* queue @work to @stopper. if offline, @work is completed immediately */ 76 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 77 { 78 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 79 DEFINE_WAKE_Q(wakeq); 80 unsigned long flags; 81 bool enabled; 82 83 preempt_disable(); 84 raw_spin_lock_irqsave(&stopper->lock, flags); 85 enabled = stopper->enabled; 86 if (enabled) 87 __cpu_stop_queue_work(stopper, work, &wakeq); 88 else if (work->done) 89 cpu_stop_signal_done(work->done); 90 raw_spin_unlock_irqrestore(&stopper->lock, flags); 91 92 wake_up_q(&wakeq); 93 preempt_enable(); 94 95 return enabled; 96 } 97 98 /** 99 * stop_one_cpu - stop a cpu 100 * @cpu: cpu to stop 101 * @fn: function to execute 102 * @arg: argument to @fn 103 * 104 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 105 * the highest priority preempting any task on the cpu and 106 * monopolizing it. This function returns after the execution is 107 * complete. 108 * 109 * This function doesn't guarantee @cpu stays online till @fn 110 * completes. If @cpu goes down in the middle, execution may happen 111 * partially or fully on different cpus. @fn should either be ready 112 * for that or the caller should ensure that @cpu stays online until 113 * this function completes. 114 * 115 * CONTEXT: 116 * Might sleep. 117 * 118 * RETURNS: 119 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 120 * otherwise, the return value of @fn. 121 */ 122 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 123 { 124 struct cpu_stop_done done; 125 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 126 127 cpu_stop_init_done(&done, 1); 128 if (!cpu_stop_queue_work(cpu, &work)) 129 return -ENOENT; 130 /* 131 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 132 * cycle by doing a preemption: 133 */ 134 cond_resched(); 135 wait_for_completion(&done.completion); 136 return done.ret; 137 } 138 139 /* This controls the threads on each CPU. */ 140 enum multi_stop_state { 141 /* Dummy starting state for thread. */ 142 MULTI_STOP_NONE, 143 /* Awaiting everyone to be scheduled. */ 144 MULTI_STOP_PREPARE, 145 /* Disable interrupts. */ 146 MULTI_STOP_DISABLE_IRQ, 147 /* Run the function */ 148 MULTI_STOP_RUN, 149 /* Exit */ 150 MULTI_STOP_EXIT, 151 }; 152 153 struct multi_stop_data { 154 cpu_stop_fn_t fn; 155 void *data; 156 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 157 unsigned int num_threads; 158 const struct cpumask *active_cpus; 159 160 enum multi_stop_state state; 161 atomic_t thread_ack; 162 }; 163 164 static void set_state(struct multi_stop_data *msdata, 165 enum multi_stop_state newstate) 166 { 167 /* Reset ack counter. */ 168 atomic_set(&msdata->thread_ack, msdata->num_threads); 169 smp_wmb(); 170 msdata->state = newstate; 171 } 172 173 /* Last one to ack a state moves to the next state. */ 174 static void ack_state(struct multi_stop_data *msdata) 175 { 176 if (atomic_dec_and_test(&msdata->thread_ack)) 177 set_state(msdata, msdata->state + 1); 178 } 179 180 /* This is the cpu_stop function which stops the CPU. */ 181 static int multi_cpu_stop(void *data) 182 { 183 struct multi_stop_data *msdata = data; 184 enum multi_stop_state curstate = MULTI_STOP_NONE; 185 int cpu = smp_processor_id(), err = 0; 186 unsigned long flags; 187 bool is_active; 188 189 /* 190 * When called from stop_machine_from_inactive_cpu(), irq might 191 * already be disabled. Save the state and restore it on exit. 192 */ 193 local_save_flags(flags); 194 195 if (!msdata->active_cpus) 196 is_active = cpu == cpumask_first(cpu_online_mask); 197 else 198 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 199 200 /* Simple state machine */ 201 do { 202 /* Chill out and ensure we re-read multi_stop_state. */ 203 cpu_relax_yield(); 204 if (msdata->state != curstate) { 205 curstate = msdata->state; 206 switch (curstate) { 207 case MULTI_STOP_DISABLE_IRQ: 208 local_irq_disable(); 209 hard_irq_disable(); 210 break; 211 case MULTI_STOP_RUN: 212 if (is_active) 213 err = msdata->fn(msdata->data); 214 break; 215 default: 216 break; 217 } 218 ack_state(msdata); 219 } else if (curstate > MULTI_STOP_PREPARE) { 220 /* 221 * At this stage all other CPUs we depend on must spin 222 * in the same loop. Any reason for hard-lockup should 223 * be detected and reported on their side. 224 */ 225 touch_nmi_watchdog(); 226 } 227 } while (curstate != MULTI_STOP_EXIT); 228 229 local_irq_restore(flags); 230 return err; 231 } 232 233 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 234 int cpu2, struct cpu_stop_work *work2) 235 { 236 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 237 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 238 DEFINE_WAKE_Q(wakeq); 239 int err; 240 241 retry: 242 /* 243 * The waking up of stopper threads has to happen in the same 244 * scheduling context as the queueing. Otherwise, there is a 245 * possibility of one of the above stoppers being woken up by another 246 * CPU, and preempting us. This will cause us to not wake up the other 247 * stopper forever. 248 */ 249 preempt_disable(); 250 raw_spin_lock_irq(&stopper1->lock); 251 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 252 253 if (!stopper1->enabled || !stopper2->enabled) { 254 err = -ENOENT; 255 goto unlock; 256 } 257 258 /* 259 * Ensure that if we race with __stop_cpus() the stoppers won't get 260 * queued up in reverse order leading to system deadlock. 261 * 262 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 263 * queued a work on cpu1 but not on cpu2, we hold both locks. 264 * 265 * It can be falsely true but it is safe to spin until it is cleared, 266 * queue_stop_cpus_work() does everything under preempt_disable(). 267 */ 268 if (unlikely(stop_cpus_in_progress)) { 269 err = -EDEADLK; 270 goto unlock; 271 } 272 273 err = 0; 274 __cpu_stop_queue_work(stopper1, work1, &wakeq); 275 __cpu_stop_queue_work(stopper2, work2, &wakeq); 276 277 unlock: 278 raw_spin_unlock(&stopper2->lock); 279 raw_spin_unlock_irq(&stopper1->lock); 280 281 if (unlikely(err == -EDEADLK)) { 282 preempt_enable(); 283 284 while (stop_cpus_in_progress) 285 cpu_relax(); 286 287 goto retry; 288 } 289 290 wake_up_q(&wakeq); 291 preempt_enable(); 292 293 return err; 294 } 295 /** 296 * stop_two_cpus - stops two cpus 297 * @cpu1: the cpu to stop 298 * @cpu2: the other cpu to stop 299 * @fn: function to execute 300 * @arg: argument to @fn 301 * 302 * Stops both the current and specified CPU and runs @fn on one of them. 303 * 304 * returns when both are completed. 305 */ 306 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 307 { 308 struct cpu_stop_done done; 309 struct cpu_stop_work work1, work2; 310 struct multi_stop_data msdata; 311 312 msdata = (struct multi_stop_data){ 313 .fn = fn, 314 .data = arg, 315 .num_threads = 2, 316 .active_cpus = cpumask_of(cpu1), 317 }; 318 319 work1 = work2 = (struct cpu_stop_work){ 320 .fn = multi_cpu_stop, 321 .arg = &msdata, 322 .done = &done 323 }; 324 325 cpu_stop_init_done(&done, 2); 326 set_state(&msdata, MULTI_STOP_PREPARE); 327 328 if (cpu1 > cpu2) 329 swap(cpu1, cpu2); 330 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 331 return -ENOENT; 332 333 wait_for_completion(&done.completion); 334 return done.ret; 335 } 336 337 /** 338 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 339 * @cpu: cpu to stop 340 * @fn: function to execute 341 * @arg: argument to @fn 342 * @work_buf: pointer to cpu_stop_work structure 343 * 344 * Similar to stop_one_cpu() but doesn't wait for completion. The 345 * caller is responsible for ensuring @work_buf is currently unused 346 * and will remain untouched until stopper starts executing @fn. 347 * 348 * CONTEXT: 349 * Don't care. 350 * 351 * RETURNS: 352 * true if cpu_stop_work was queued successfully and @fn will be called, 353 * false otherwise. 354 */ 355 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 356 struct cpu_stop_work *work_buf) 357 { 358 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 359 return cpu_stop_queue_work(cpu, work_buf); 360 } 361 362 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 363 cpu_stop_fn_t fn, void *arg, 364 struct cpu_stop_done *done) 365 { 366 struct cpu_stop_work *work; 367 unsigned int cpu; 368 bool queued = false; 369 370 /* 371 * Disable preemption while queueing to avoid getting 372 * preempted by a stopper which might wait for other stoppers 373 * to enter @fn which can lead to deadlock. 374 */ 375 preempt_disable(); 376 stop_cpus_in_progress = true; 377 for_each_cpu(cpu, cpumask) { 378 work = &per_cpu(cpu_stopper.stop_work, cpu); 379 work->fn = fn; 380 work->arg = arg; 381 work->done = done; 382 if (cpu_stop_queue_work(cpu, work)) 383 queued = true; 384 } 385 stop_cpus_in_progress = false; 386 preempt_enable(); 387 388 return queued; 389 } 390 391 static int __stop_cpus(const struct cpumask *cpumask, 392 cpu_stop_fn_t fn, void *arg) 393 { 394 struct cpu_stop_done done; 395 396 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 397 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 398 return -ENOENT; 399 wait_for_completion(&done.completion); 400 return done.ret; 401 } 402 403 /** 404 * stop_cpus - stop multiple cpus 405 * @cpumask: cpus to stop 406 * @fn: function to execute 407 * @arg: argument to @fn 408 * 409 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 410 * @fn is run in a process context with the highest priority 411 * preempting any task on the cpu and monopolizing it. This function 412 * returns after all executions are complete. 413 * 414 * This function doesn't guarantee the cpus in @cpumask stay online 415 * till @fn completes. If some cpus go down in the middle, execution 416 * on the cpu may happen partially or fully on different cpus. @fn 417 * should either be ready for that or the caller should ensure that 418 * the cpus stay online until this function completes. 419 * 420 * All stop_cpus() calls are serialized making it safe for @fn to wait 421 * for all cpus to start executing it. 422 * 423 * CONTEXT: 424 * Might sleep. 425 * 426 * RETURNS: 427 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 428 * @cpumask were offline; otherwise, 0 if all executions of @fn 429 * returned 0, any non zero return value if any returned non zero. 430 */ 431 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 432 { 433 int ret; 434 435 /* static works are used, process one request at a time */ 436 mutex_lock(&stop_cpus_mutex); 437 ret = __stop_cpus(cpumask, fn, arg); 438 mutex_unlock(&stop_cpus_mutex); 439 return ret; 440 } 441 442 /** 443 * try_stop_cpus - try to stop multiple cpus 444 * @cpumask: cpus to stop 445 * @fn: function to execute 446 * @arg: argument to @fn 447 * 448 * Identical to stop_cpus() except that it fails with -EAGAIN if 449 * someone else is already using the facility. 450 * 451 * CONTEXT: 452 * Might sleep. 453 * 454 * RETURNS: 455 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 456 * @fn(@arg) was not executed at all because all cpus in @cpumask were 457 * offline; otherwise, 0 if all executions of @fn returned 0, any non 458 * zero return value if any returned non zero. 459 */ 460 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 461 { 462 int ret; 463 464 /* static works are used, process one request at a time */ 465 if (!mutex_trylock(&stop_cpus_mutex)) 466 return -EAGAIN; 467 ret = __stop_cpus(cpumask, fn, arg); 468 mutex_unlock(&stop_cpus_mutex); 469 return ret; 470 } 471 472 static int cpu_stop_should_run(unsigned int cpu) 473 { 474 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 475 unsigned long flags; 476 int run; 477 478 raw_spin_lock_irqsave(&stopper->lock, flags); 479 run = !list_empty(&stopper->works); 480 raw_spin_unlock_irqrestore(&stopper->lock, flags); 481 return run; 482 } 483 484 static void cpu_stopper_thread(unsigned int cpu) 485 { 486 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 487 struct cpu_stop_work *work; 488 489 repeat: 490 work = NULL; 491 raw_spin_lock_irq(&stopper->lock); 492 if (!list_empty(&stopper->works)) { 493 work = list_first_entry(&stopper->works, 494 struct cpu_stop_work, list); 495 list_del_init(&work->list); 496 } 497 raw_spin_unlock_irq(&stopper->lock); 498 499 if (work) { 500 cpu_stop_fn_t fn = work->fn; 501 void *arg = work->arg; 502 struct cpu_stop_done *done = work->done; 503 int ret; 504 505 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 506 preempt_count_inc(); 507 ret = fn(arg); 508 if (done) { 509 if (ret) 510 done->ret = ret; 511 cpu_stop_signal_done(done); 512 } 513 preempt_count_dec(); 514 WARN_ONCE(preempt_count(), 515 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 516 goto repeat; 517 } 518 } 519 520 void stop_machine_park(int cpu) 521 { 522 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 523 /* 524 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 525 * the pending works before it parks, until then it is fine to queue 526 * the new works. 527 */ 528 stopper->enabled = false; 529 kthread_park(stopper->thread); 530 } 531 532 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 533 534 static void cpu_stop_create(unsigned int cpu) 535 { 536 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 537 } 538 539 static void cpu_stop_park(unsigned int cpu) 540 { 541 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 542 543 WARN_ON(!list_empty(&stopper->works)); 544 } 545 546 void stop_machine_unpark(int cpu) 547 { 548 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 549 550 stopper->enabled = true; 551 kthread_unpark(stopper->thread); 552 } 553 554 static struct smp_hotplug_thread cpu_stop_threads = { 555 .store = &cpu_stopper.thread, 556 .thread_should_run = cpu_stop_should_run, 557 .thread_fn = cpu_stopper_thread, 558 .thread_comm = "migration/%u", 559 .create = cpu_stop_create, 560 .park = cpu_stop_park, 561 .selfparking = true, 562 }; 563 564 static int __init cpu_stop_init(void) 565 { 566 unsigned int cpu; 567 568 for_each_possible_cpu(cpu) { 569 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 570 571 raw_spin_lock_init(&stopper->lock); 572 INIT_LIST_HEAD(&stopper->works); 573 } 574 575 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 576 stop_machine_unpark(raw_smp_processor_id()); 577 stop_machine_initialized = true; 578 return 0; 579 } 580 early_initcall(cpu_stop_init); 581 582 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 583 const struct cpumask *cpus) 584 { 585 struct multi_stop_data msdata = { 586 .fn = fn, 587 .data = data, 588 .num_threads = num_online_cpus(), 589 .active_cpus = cpus, 590 }; 591 592 lockdep_assert_cpus_held(); 593 594 if (!stop_machine_initialized) { 595 /* 596 * Handle the case where stop_machine() is called 597 * early in boot before stop_machine() has been 598 * initialized. 599 */ 600 unsigned long flags; 601 int ret; 602 603 WARN_ON_ONCE(msdata.num_threads != 1); 604 605 local_irq_save(flags); 606 hard_irq_disable(); 607 ret = (*fn)(data); 608 local_irq_restore(flags); 609 610 return ret; 611 } 612 613 /* Set the initial state and stop all online cpus. */ 614 set_state(&msdata, MULTI_STOP_PREPARE); 615 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 616 } 617 618 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 619 { 620 int ret; 621 622 /* No CPUs can come up or down during this. */ 623 cpus_read_lock(); 624 ret = stop_machine_cpuslocked(fn, data, cpus); 625 cpus_read_unlock(); 626 return ret; 627 } 628 EXPORT_SYMBOL_GPL(stop_machine); 629 630 /** 631 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 632 * @fn: the function to run 633 * @data: the data ptr for the @fn() 634 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 635 * 636 * This is identical to stop_machine() but can be called from a CPU which 637 * is not active. The local CPU is in the process of hotplug (so no other 638 * CPU hotplug can start) and not marked active and doesn't have enough 639 * context to sleep. 640 * 641 * This function provides stop_machine() functionality for such state by 642 * using busy-wait for synchronization and executing @fn directly for local 643 * CPU. 644 * 645 * CONTEXT: 646 * Local CPU is inactive. Temporarily stops all active CPUs. 647 * 648 * RETURNS: 649 * 0 if all executions of @fn returned 0, any non zero return value if any 650 * returned non zero. 651 */ 652 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 653 const struct cpumask *cpus) 654 { 655 struct multi_stop_data msdata = { .fn = fn, .data = data, 656 .active_cpus = cpus }; 657 struct cpu_stop_done done; 658 int ret; 659 660 /* Local CPU must be inactive and CPU hotplug in progress. */ 661 BUG_ON(cpu_active(raw_smp_processor_id())); 662 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 663 664 /* No proper task established and can't sleep - busy wait for lock. */ 665 while (!mutex_trylock(&stop_cpus_mutex)) 666 cpu_relax(); 667 668 /* Schedule work on other CPUs and execute directly for local CPU */ 669 set_state(&msdata, MULTI_STOP_PREPARE); 670 cpu_stop_init_done(&done, num_active_cpus()); 671 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 672 &done); 673 ret = multi_cpu_stop(&msdata); 674 675 /* Busy wait for completion. */ 676 while (!completion_done(&done.completion)) 677 cpu_relax(); 678 679 mutex_unlock(&stop_cpus_mutex); 680 return ret ?: done.ret; 681 } 682