1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/lglock.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 bool executed; /* actually executed? */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 }; 46 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 48 static bool stop_machine_initialized = false; 49 50 /* 51 * Avoids a race between stop_two_cpus and global stop_cpus, where 52 * the stoppers could get queued up in reverse order, leading to 53 * system deadlock. Using an lglock means stop_two_cpus remains 54 * relatively cheap. 55 */ 56 DEFINE_STATIC_LGLOCK(stop_cpus_lock); 57 58 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 59 { 60 memset(done, 0, sizeof(*done)); 61 atomic_set(&done->nr_todo, nr_todo); 62 init_completion(&done->completion); 63 } 64 65 /* signal completion unless @done is NULL */ 66 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) 67 { 68 if (done) { 69 if (executed) 70 done->executed = true; 71 if (atomic_dec_and_test(&done->nr_todo)) 72 complete(&done->completion); 73 } 74 } 75 76 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 77 struct cpu_stop_work *work) 78 { 79 list_add_tail(&work->list, &stopper->works); 80 wake_up_process(stopper->thread); 81 } 82 83 /* queue @work to @stopper. if offline, @work is completed immediately */ 84 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 85 { 86 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 87 unsigned long flags; 88 89 spin_lock_irqsave(&stopper->lock, flags); 90 if (stopper->enabled) 91 __cpu_stop_queue_work(stopper, work); 92 else 93 cpu_stop_signal_done(work->done, false); 94 spin_unlock_irqrestore(&stopper->lock, flags); 95 } 96 97 /** 98 * stop_one_cpu - stop a cpu 99 * @cpu: cpu to stop 100 * @fn: function to execute 101 * @arg: argument to @fn 102 * 103 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 104 * the highest priority preempting any task on the cpu and 105 * monopolizing it. This function returns after the execution is 106 * complete. 107 * 108 * This function doesn't guarantee @cpu stays online till @fn 109 * completes. If @cpu goes down in the middle, execution may happen 110 * partially or fully on different cpus. @fn should either be ready 111 * for that or the caller should ensure that @cpu stays online until 112 * this function completes. 113 * 114 * CONTEXT: 115 * Might sleep. 116 * 117 * RETURNS: 118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 119 * otherwise, the return value of @fn. 120 */ 121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 122 { 123 struct cpu_stop_done done; 124 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 125 126 cpu_stop_init_done(&done, 1); 127 cpu_stop_queue_work(cpu, &work); 128 wait_for_completion(&done.completion); 129 return done.executed ? done.ret : -ENOENT; 130 } 131 132 /* This controls the threads on each CPU. */ 133 enum multi_stop_state { 134 /* Dummy starting state for thread. */ 135 MULTI_STOP_NONE, 136 /* Awaiting everyone to be scheduled. */ 137 MULTI_STOP_PREPARE, 138 /* Disable interrupts. */ 139 MULTI_STOP_DISABLE_IRQ, 140 /* Run the function */ 141 MULTI_STOP_RUN, 142 /* Exit */ 143 MULTI_STOP_EXIT, 144 }; 145 146 struct multi_stop_data { 147 cpu_stop_fn_t fn; 148 void *data; 149 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 150 unsigned int num_threads; 151 const struct cpumask *active_cpus; 152 153 enum multi_stop_state state; 154 atomic_t thread_ack; 155 }; 156 157 static void set_state(struct multi_stop_data *msdata, 158 enum multi_stop_state newstate) 159 { 160 /* Reset ack counter. */ 161 atomic_set(&msdata->thread_ack, msdata->num_threads); 162 smp_wmb(); 163 msdata->state = newstate; 164 } 165 166 /* Last one to ack a state moves to the next state. */ 167 static void ack_state(struct multi_stop_data *msdata) 168 { 169 if (atomic_dec_and_test(&msdata->thread_ack)) 170 set_state(msdata, msdata->state + 1); 171 } 172 173 /* This is the cpu_stop function which stops the CPU. */ 174 static int multi_cpu_stop(void *data) 175 { 176 struct multi_stop_data *msdata = data; 177 enum multi_stop_state curstate = MULTI_STOP_NONE; 178 int cpu = smp_processor_id(), err = 0; 179 unsigned long flags; 180 bool is_active; 181 182 /* 183 * When called from stop_machine_from_inactive_cpu(), irq might 184 * already be disabled. Save the state and restore it on exit. 185 */ 186 local_save_flags(flags); 187 188 if (!msdata->active_cpus) 189 is_active = cpu == cpumask_first(cpu_online_mask); 190 else 191 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 192 193 /* Simple state machine */ 194 do { 195 /* Chill out and ensure we re-read multi_stop_state. */ 196 cpu_relax(); 197 if (msdata->state != curstate) { 198 curstate = msdata->state; 199 switch (curstate) { 200 case MULTI_STOP_DISABLE_IRQ: 201 local_irq_disable(); 202 hard_irq_disable(); 203 break; 204 case MULTI_STOP_RUN: 205 if (is_active) 206 err = msdata->fn(msdata->data); 207 break; 208 default: 209 break; 210 } 211 ack_state(msdata); 212 } 213 } while (curstate != MULTI_STOP_EXIT); 214 215 local_irq_restore(flags); 216 return err; 217 } 218 219 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 220 int cpu2, struct cpu_stop_work *work2) 221 { 222 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 223 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 224 int err; 225 226 lg_double_lock(&stop_cpus_lock, cpu1, cpu2); 227 spin_lock_irq(&stopper1->lock); 228 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 229 230 err = -ENOENT; 231 if (!stopper1->enabled || !stopper2->enabled) 232 goto unlock; 233 234 err = 0; 235 __cpu_stop_queue_work(stopper1, work1); 236 __cpu_stop_queue_work(stopper2, work2); 237 unlock: 238 spin_unlock(&stopper2->lock); 239 spin_unlock_irq(&stopper1->lock); 240 lg_double_unlock(&stop_cpus_lock, cpu1, cpu2); 241 242 return err; 243 } 244 /** 245 * stop_two_cpus - stops two cpus 246 * @cpu1: the cpu to stop 247 * @cpu2: the other cpu to stop 248 * @fn: function to execute 249 * @arg: argument to @fn 250 * 251 * Stops both the current and specified CPU and runs @fn on one of them. 252 * 253 * returns when both are completed. 254 */ 255 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 256 { 257 struct cpu_stop_done done; 258 struct cpu_stop_work work1, work2; 259 struct multi_stop_data msdata; 260 261 preempt_disable(); 262 msdata = (struct multi_stop_data){ 263 .fn = fn, 264 .data = arg, 265 .num_threads = 2, 266 .active_cpus = cpumask_of(cpu1), 267 }; 268 269 work1 = work2 = (struct cpu_stop_work){ 270 .fn = multi_cpu_stop, 271 .arg = &msdata, 272 .done = &done 273 }; 274 275 cpu_stop_init_done(&done, 2); 276 set_state(&msdata, MULTI_STOP_PREPARE); 277 278 if (cpu1 > cpu2) 279 swap(cpu1, cpu2); 280 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) { 281 preempt_enable(); 282 return -ENOENT; 283 } 284 285 preempt_enable(); 286 287 wait_for_completion(&done.completion); 288 289 return done.executed ? done.ret : -ENOENT; 290 } 291 292 /** 293 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 294 * @cpu: cpu to stop 295 * @fn: function to execute 296 * @arg: argument to @fn 297 * @work_buf: pointer to cpu_stop_work structure 298 * 299 * Similar to stop_one_cpu() but doesn't wait for completion. The 300 * caller is responsible for ensuring @work_buf is currently unused 301 * and will remain untouched until stopper starts executing @fn. 302 * 303 * CONTEXT: 304 * Don't care. 305 */ 306 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 307 struct cpu_stop_work *work_buf) 308 { 309 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 310 cpu_stop_queue_work(cpu, work_buf); 311 } 312 313 /* static data for stop_cpus */ 314 static DEFINE_MUTEX(stop_cpus_mutex); 315 316 static void queue_stop_cpus_work(const struct cpumask *cpumask, 317 cpu_stop_fn_t fn, void *arg, 318 struct cpu_stop_done *done) 319 { 320 struct cpu_stop_work *work; 321 unsigned int cpu; 322 323 /* 324 * Disable preemption while queueing to avoid getting 325 * preempted by a stopper which might wait for other stoppers 326 * to enter @fn which can lead to deadlock. 327 */ 328 lg_global_lock(&stop_cpus_lock); 329 for_each_cpu(cpu, cpumask) { 330 work = &per_cpu(cpu_stopper.stop_work, cpu); 331 work->fn = fn; 332 work->arg = arg; 333 work->done = done; 334 cpu_stop_queue_work(cpu, work); 335 } 336 lg_global_unlock(&stop_cpus_lock); 337 } 338 339 static int __stop_cpus(const struct cpumask *cpumask, 340 cpu_stop_fn_t fn, void *arg) 341 { 342 struct cpu_stop_done done; 343 344 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 345 queue_stop_cpus_work(cpumask, fn, arg, &done); 346 wait_for_completion(&done.completion); 347 return done.executed ? done.ret : -ENOENT; 348 } 349 350 /** 351 * stop_cpus - stop multiple cpus 352 * @cpumask: cpus to stop 353 * @fn: function to execute 354 * @arg: argument to @fn 355 * 356 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 357 * @fn is run in a process context with the highest priority 358 * preempting any task on the cpu and monopolizing it. This function 359 * returns after all executions are complete. 360 * 361 * This function doesn't guarantee the cpus in @cpumask stay online 362 * till @fn completes. If some cpus go down in the middle, execution 363 * on the cpu may happen partially or fully on different cpus. @fn 364 * should either be ready for that or the caller should ensure that 365 * the cpus stay online until this function completes. 366 * 367 * All stop_cpus() calls are serialized making it safe for @fn to wait 368 * for all cpus to start executing it. 369 * 370 * CONTEXT: 371 * Might sleep. 372 * 373 * RETURNS: 374 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 375 * @cpumask were offline; otherwise, 0 if all executions of @fn 376 * returned 0, any non zero return value if any returned non zero. 377 */ 378 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 379 { 380 int ret; 381 382 /* static works are used, process one request at a time */ 383 mutex_lock(&stop_cpus_mutex); 384 ret = __stop_cpus(cpumask, fn, arg); 385 mutex_unlock(&stop_cpus_mutex); 386 return ret; 387 } 388 389 /** 390 * try_stop_cpus - try to stop multiple cpus 391 * @cpumask: cpus to stop 392 * @fn: function to execute 393 * @arg: argument to @fn 394 * 395 * Identical to stop_cpus() except that it fails with -EAGAIN if 396 * someone else is already using the facility. 397 * 398 * CONTEXT: 399 * Might sleep. 400 * 401 * RETURNS: 402 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 403 * @fn(@arg) was not executed at all because all cpus in @cpumask were 404 * offline; otherwise, 0 if all executions of @fn returned 0, any non 405 * zero return value if any returned non zero. 406 */ 407 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 408 { 409 int ret; 410 411 /* static works are used, process one request at a time */ 412 if (!mutex_trylock(&stop_cpus_mutex)) 413 return -EAGAIN; 414 ret = __stop_cpus(cpumask, fn, arg); 415 mutex_unlock(&stop_cpus_mutex); 416 return ret; 417 } 418 419 static int cpu_stop_should_run(unsigned int cpu) 420 { 421 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 422 unsigned long flags; 423 int run; 424 425 spin_lock_irqsave(&stopper->lock, flags); 426 run = !list_empty(&stopper->works); 427 spin_unlock_irqrestore(&stopper->lock, flags); 428 return run; 429 } 430 431 static void cpu_stopper_thread(unsigned int cpu) 432 { 433 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 434 struct cpu_stop_work *work; 435 int ret; 436 437 repeat: 438 work = NULL; 439 spin_lock_irq(&stopper->lock); 440 if (!list_empty(&stopper->works)) { 441 work = list_first_entry(&stopper->works, 442 struct cpu_stop_work, list); 443 list_del_init(&work->list); 444 } 445 spin_unlock_irq(&stopper->lock); 446 447 if (work) { 448 cpu_stop_fn_t fn = work->fn; 449 void *arg = work->arg; 450 struct cpu_stop_done *done = work->done; 451 char ksym_buf[KSYM_NAME_LEN] __maybe_unused; 452 453 /* cpu stop callbacks are not allowed to sleep */ 454 preempt_disable(); 455 456 ret = fn(arg); 457 if (ret) 458 done->ret = ret; 459 460 /* restore preemption and check it's still balanced */ 461 preempt_enable(); 462 WARN_ONCE(preempt_count(), 463 "cpu_stop: %s(%p) leaked preempt count\n", 464 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, 465 ksym_buf), arg); 466 467 cpu_stop_signal_done(done, true); 468 goto repeat; 469 } 470 } 471 472 void stop_machine_park(int cpu) 473 { 474 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 475 /* 476 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 477 * the pending works before it parks, until then it is fine to queue 478 * the new works. 479 */ 480 stopper->enabled = false; 481 kthread_park(stopper->thread); 482 } 483 484 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 485 486 static void cpu_stop_create(unsigned int cpu) 487 { 488 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 489 } 490 491 static void cpu_stop_park(unsigned int cpu) 492 { 493 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 494 495 WARN_ON(!list_empty(&stopper->works)); 496 } 497 498 void stop_machine_unpark(int cpu) 499 { 500 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 501 502 stopper->enabled = true; 503 kthread_unpark(stopper->thread); 504 } 505 506 static struct smp_hotplug_thread cpu_stop_threads = { 507 .store = &cpu_stopper.thread, 508 .thread_should_run = cpu_stop_should_run, 509 .thread_fn = cpu_stopper_thread, 510 .thread_comm = "migration/%u", 511 .create = cpu_stop_create, 512 .park = cpu_stop_park, 513 .selfparking = true, 514 }; 515 516 static int __init cpu_stop_init(void) 517 { 518 unsigned int cpu; 519 520 for_each_possible_cpu(cpu) { 521 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 522 523 spin_lock_init(&stopper->lock); 524 INIT_LIST_HEAD(&stopper->works); 525 } 526 527 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 528 stop_machine_unpark(raw_smp_processor_id()); 529 stop_machine_initialized = true; 530 return 0; 531 } 532 early_initcall(cpu_stop_init); 533 534 #if defined(CONFIG_SMP) || defined(CONFIG_HOTPLUG_CPU) 535 536 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 537 { 538 struct multi_stop_data msdata = { 539 .fn = fn, 540 .data = data, 541 .num_threads = num_online_cpus(), 542 .active_cpus = cpus, 543 }; 544 545 if (!stop_machine_initialized) { 546 /* 547 * Handle the case where stop_machine() is called 548 * early in boot before stop_machine() has been 549 * initialized. 550 */ 551 unsigned long flags; 552 int ret; 553 554 WARN_ON_ONCE(msdata.num_threads != 1); 555 556 local_irq_save(flags); 557 hard_irq_disable(); 558 ret = (*fn)(data); 559 local_irq_restore(flags); 560 561 return ret; 562 } 563 564 /* Set the initial state and stop all online cpus. */ 565 set_state(&msdata, MULTI_STOP_PREPARE); 566 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 567 } 568 569 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 570 { 571 int ret; 572 573 /* No CPUs can come up or down during this. */ 574 get_online_cpus(); 575 ret = __stop_machine(fn, data, cpus); 576 put_online_cpus(); 577 return ret; 578 } 579 EXPORT_SYMBOL_GPL(stop_machine); 580 581 /** 582 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 583 * @fn: the function to run 584 * @data: the data ptr for the @fn() 585 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 586 * 587 * This is identical to stop_machine() but can be called from a CPU which 588 * is not active. The local CPU is in the process of hotplug (so no other 589 * CPU hotplug can start) and not marked active and doesn't have enough 590 * context to sleep. 591 * 592 * This function provides stop_machine() functionality for such state by 593 * using busy-wait for synchronization and executing @fn directly for local 594 * CPU. 595 * 596 * CONTEXT: 597 * Local CPU is inactive. Temporarily stops all active CPUs. 598 * 599 * RETURNS: 600 * 0 if all executions of @fn returned 0, any non zero return value if any 601 * returned non zero. 602 */ 603 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 604 const struct cpumask *cpus) 605 { 606 struct multi_stop_data msdata = { .fn = fn, .data = data, 607 .active_cpus = cpus }; 608 struct cpu_stop_done done; 609 int ret; 610 611 /* Local CPU must be inactive and CPU hotplug in progress. */ 612 BUG_ON(cpu_active(raw_smp_processor_id())); 613 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 614 615 /* No proper task established and can't sleep - busy wait for lock. */ 616 while (!mutex_trylock(&stop_cpus_mutex)) 617 cpu_relax(); 618 619 /* Schedule work on other CPUs and execute directly for local CPU */ 620 set_state(&msdata, MULTI_STOP_PREPARE); 621 cpu_stop_init_done(&done, num_active_cpus()); 622 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 623 &done); 624 ret = multi_cpu_stop(&msdata); 625 626 /* Busy wait for completion. */ 627 while (!completion_done(&done.completion)) 628 cpu_relax(); 629 630 mutex_unlock(&stop_cpus_mutex); 631 return ret ?: done.ret; 632 } 633 634 #endif /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */ 635