xref: /openbmc/linux/kernel/stop_machine.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	raw_spin_lock_irqsave(&stopper->lock, flags);
85 	enabled = stopper->enabled;
86 	if (enabled)
87 		__cpu_stop_queue_work(stopper, work, &wakeq);
88 	else if (work->done)
89 		cpu_stop_signal_done(work->done);
90 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
91 
92 	wake_up_q(&wakeq);
93 
94 	return enabled;
95 }
96 
97 /**
98  * stop_one_cpu - stop a cpu
99  * @cpu: cpu to stop
100  * @fn: function to execute
101  * @arg: argument to @fn
102  *
103  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104  * the highest priority preempting any task on the cpu and
105  * monopolizing it.  This function returns after the execution is
106  * complete.
107  *
108  * This function doesn't guarantee @cpu stays online till @fn
109  * completes.  If @cpu goes down in the middle, execution may happen
110  * partially or fully on different cpus.  @fn should either be ready
111  * for that or the caller should ensure that @cpu stays online until
112  * this function completes.
113  *
114  * CONTEXT:
115  * Might sleep.
116  *
117  * RETURNS:
118  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119  * otherwise, the return value of @fn.
120  */
121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122 {
123 	struct cpu_stop_done done;
124 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125 
126 	cpu_stop_init_done(&done, 1);
127 	if (!cpu_stop_queue_work(cpu, &work))
128 		return -ENOENT;
129 	/*
130 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131 	 * cycle by doing a preemption:
132 	 */
133 	cond_resched();
134 	wait_for_completion(&done.completion);
135 	return done.ret;
136 }
137 
138 /* This controls the threads on each CPU. */
139 enum multi_stop_state {
140 	/* Dummy starting state for thread. */
141 	MULTI_STOP_NONE,
142 	/* Awaiting everyone to be scheduled. */
143 	MULTI_STOP_PREPARE,
144 	/* Disable interrupts. */
145 	MULTI_STOP_DISABLE_IRQ,
146 	/* Run the function */
147 	MULTI_STOP_RUN,
148 	/* Exit */
149 	MULTI_STOP_EXIT,
150 };
151 
152 struct multi_stop_data {
153 	cpu_stop_fn_t		fn;
154 	void			*data;
155 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156 	unsigned int		num_threads;
157 	const struct cpumask	*active_cpus;
158 
159 	enum multi_stop_state	state;
160 	atomic_t		thread_ack;
161 };
162 
163 static void set_state(struct multi_stop_data *msdata,
164 		      enum multi_stop_state newstate)
165 {
166 	/* Reset ack counter. */
167 	atomic_set(&msdata->thread_ack, msdata->num_threads);
168 	smp_wmb();
169 	msdata->state = newstate;
170 }
171 
172 /* Last one to ack a state moves to the next state. */
173 static void ack_state(struct multi_stop_data *msdata)
174 {
175 	if (atomic_dec_and_test(&msdata->thread_ack))
176 		set_state(msdata, msdata->state + 1);
177 }
178 
179 /* This is the cpu_stop function which stops the CPU. */
180 static int multi_cpu_stop(void *data)
181 {
182 	struct multi_stop_data *msdata = data;
183 	enum multi_stop_state curstate = MULTI_STOP_NONE;
184 	int cpu = smp_processor_id(), err = 0;
185 	unsigned long flags;
186 	bool is_active;
187 
188 	/*
189 	 * When called from stop_machine_from_inactive_cpu(), irq might
190 	 * already be disabled.  Save the state and restore it on exit.
191 	 */
192 	local_save_flags(flags);
193 
194 	if (!msdata->active_cpus)
195 		is_active = cpu == cpumask_first(cpu_online_mask);
196 	else
197 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198 
199 	/* Simple state machine */
200 	do {
201 		/* Chill out and ensure we re-read multi_stop_state. */
202 		cpu_relax_yield();
203 		if (msdata->state != curstate) {
204 			curstate = msdata->state;
205 			switch (curstate) {
206 			case MULTI_STOP_DISABLE_IRQ:
207 				local_irq_disable();
208 				hard_irq_disable();
209 				break;
210 			case MULTI_STOP_RUN:
211 				if (is_active)
212 					err = msdata->fn(msdata->data);
213 				break;
214 			default:
215 				break;
216 			}
217 			ack_state(msdata);
218 		} else if (curstate > MULTI_STOP_PREPARE) {
219 			/*
220 			 * At this stage all other CPUs we depend on must spin
221 			 * in the same loop. Any reason for hard-lockup should
222 			 * be detected and reported on their side.
223 			 */
224 			touch_nmi_watchdog();
225 		}
226 	} while (curstate != MULTI_STOP_EXIT);
227 
228 	local_irq_restore(flags);
229 	return err;
230 }
231 
232 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233 				    int cpu2, struct cpu_stop_work *work2)
234 {
235 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237 	DEFINE_WAKE_Q(wakeq);
238 	int err;
239 retry:
240 	raw_spin_lock_irq(&stopper1->lock);
241 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
242 
243 	err = -ENOENT;
244 	if (!stopper1->enabled || !stopper2->enabled)
245 		goto unlock;
246 	/*
247 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
248 	 * queued up in reverse order leading to system deadlock.
249 	 *
250 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
251 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
252 	 *
253 	 * It can be falsely true but it is safe to spin until it is cleared,
254 	 * queue_stop_cpus_work() does everything under preempt_disable().
255 	 */
256 	err = -EDEADLK;
257 	if (unlikely(stop_cpus_in_progress))
258 			goto unlock;
259 
260 	err = 0;
261 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
262 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
263 unlock:
264 	raw_spin_unlock(&stopper2->lock);
265 	raw_spin_unlock_irq(&stopper1->lock);
266 
267 	if (unlikely(err == -EDEADLK)) {
268 		while (stop_cpus_in_progress)
269 			cpu_relax();
270 		goto retry;
271 	}
272 
273 	wake_up_q(&wakeq);
274 
275 	return err;
276 }
277 /**
278  * stop_two_cpus - stops two cpus
279  * @cpu1: the cpu to stop
280  * @cpu2: the other cpu to stop
281  * @fn: function to execute
282  * @arg: argument to @fn
283  *
284  * Stops both the current and specified CPU and runs @fn on one of them.
285  *
286  * returns when both are completed.
287  */
288 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
289 {
290 	struct cpu_stop_done done;
291 	struct cpu_stop_work work1, work2;
292 	struct multi_stop_data msdata;
293 
294 	msdata = (struct multi_stop_data){
295 		.fn = fn,
296 		.data = arg,
297 		.num_threads = 2,
298 		.active_cpus = cpumask_of(cpu1),
299 	};
300 
301 	work1 = work2 = (struct cpu_stop_work){
302 		.fn = multi_cpu_stop,
303 		.arg = &msdata,
304 		.done = &done
305 	};
306 
307 	cpu_stop_init_done(&done, 2);
308 	set_state(&msdata, MULTI_STOP_PREPARE);
309 
310 	if (cpu1 > cpu2)
311 		swap(cpu1, cpu2);
312 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
313 		return -ENOENT;
314 
315 	wait_for_completion(&done.completion);
316 	return done.ret;
317 }
318 
319 /**
320  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
321  * @cpu: cpu to stop
322  * @fn: function to execute
323  * @arg: argument to @fn
324  * @work_buf: pointer to cpu_stop_work structure
325  *
326  * Similar to stop_one_cpu() but doesn't wait for completion.  The
327  * caller is responsible for ensuring @work_buf is currently unused
328  * and will remain untouched until stopper starts executing @fn.
329  *
330  * CONTEXT:
331  * Don't care.
332  *
333  * RETURNS:
334  * true if cpu_stop_work was queued successfully and @fn will be called,
335  * false otherwise.
336  */
337 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
338 			struct cpu_stop_work *work_buf)
339 {
340 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
341 	return cpu_stop_queue_work(cpu, work_buf);
342 }
343 
344 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
345 				 cpu_stop_fn_t fn, void *arg,
346 				 struct cpu_stop_done *done)
347 {
348 	struct cpu_stop_work *work;
349 	unsigned int cpu;
350 	bool queued = false;
351 
352 	/*
353 	 * Disable preemption while queueing to avoid getting
354 	 * preempted by a stopper which might wait for other stoppers
355 	 * to enter @fn which can lead to deadlock.
356 	 */
357 	preempt_disable();
358 	stop_cpus_in_progress = true;
359 	for_each_cpu(cpu, cpumask) {
360 		work = &per_cpu(cpu_stopper.stop_work, cpu);
361 		work->fn = fn;
362 		work->arg = arg;
363 		work->done = done;
364 		if (cpu_stop_queue_work(cpu, work))
365 			queued = true;
366 	}
367 	stop_cpus_in_progress = false;
368 	preempt_enable();
369 
370 	return queued;
371 }
372 
373 static int __stop_cpus(const struct cpumask *cpumask,
374 		       cpu_stop_fn_t fn, void *arg)
375 {
376 	struct cpu_stop_done done;
377 
378 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
379 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
380 		return -ENOENT;
381 	wait_for_completion(&done.completion);
382 	return done.ret;
383 }
384 
385 /**
386  * stop_cpus - stop multiple cpus
387  * @cpumask: cpus to stop
388  * @fn: function to execute
389  * @arg: argument to @fn
390  *
391  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
392  * @fn is run in a process context with the highest priority
393  * preempting any task on the cpu and monopolizing it.  This function
394  * returns after all executions are complete.
395  *
396  * This function doesn't guarantee the cpus in @cpumask stay online
397  * till @fn completes.  If some cpus go down in the middle, execution
398  * on the cpu may happen partially or fully on different cpus.  @fn
399  * should either be ready for that or the caller should ensure that
400  * the cpus stay online until this function completes.
401  *
402  * All stop_cpus() calls are serialized making it safe for @fn to wait
403  * for all cpus to start executing it.
404  *
405  * CONTEXT:
406  * Might sleep.
407  *
408  * RETURNS:
409  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
410  * @cpumask were offline; otherwise, 0 if all executions of @fn
411  * returned 0, any non zero return value if any returned non zero.
412  */
413 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
414 {
415 	int ret;
416 
417 	/* static works are used, process one request at a time */
418 	mutex_lock(&stop_cpus_mutex);
419 	ret = __stop_cpus(cpumask, fn, arg);
420 	mutex_unlock(&stop_cpus_mutex);
421 	return ret;
422 }
423 
424 /**
425  * try_stop_cpus - try to stop multiple cpus
426  * @cpumask: cpus to stop
427  * @fn: function to execute
428  * @arg: argument to @fn
429  *
430  * Identical to stop_cpus() except that it fails with -EAGAIN if
431  * someone else is already using the facility.
432  *
433  * CONTEXT:
434  * Might sleep.
435  *
436  * RETURNS:
437  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
438  * @fn(@arg) was not executed at all because all cpus in @cpumask were
439  * offline; otherwise, 0 if all executions of @fn returned 0, any non
440  * zero return value if any returned non zero.
441  */
442 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
443 {
444 	int ret;
445 
446 	/* static works are used, process one request at a time */
447 	if (!mutex_trylock(&stop_cpus_mutex))
448 		return -EAGAIN;
449 	ret = __stop_cpus(cpumask, fn, arg);
450 	mutex_unlock(&stop_cpus_mutex);
451 	return ret;
452 }
453 
454 static int cpu_stop_should_run(unsigned int cpu)
455 {
456 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
457 	unsigned long flags;
458 	int run;
459 
460 	raw_spin_lock_irqsave(&stopper->lock, flags);
461 	run = !list_empty(&stopper->works);
462 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
463 	return run;
464 }
465 
466 static void cpu_stopper_thread(unsigned int cpu)
467 {
468 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
469 	struct cpu_stop_work *work;
470 
471 repeat:
472 	work = NULL;
473 	raw_spin_lock_irq(&stopper->lock);
474 	if (!list_empty(&stopper->works)) {
475 		work = list_first_entry(&stopper->works,
476 					struct cpu_stop_work, list);
477 		list_del_init(&work->list);
478 	}
479 	raw_spin_unlock_irq(&stopper->lock);
480 
481 	if (work) {
482 		cpu_stop_fn_t fn = work->fn;
483 		void *arg = work->arg;
484 		struct cpu_stop_done *done = work->done;
485 		int ret;
486 
487 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
488 		preempt_count_inc();
489 		ret = fn(arg);
490 		if (done) {
491 			if (ret)
492 				done->ret = ret;
493 			cpu_stop_signal_done(done);
494 		}
495 		preempt_count_dec();
496 		WARN_ONCE(preempt_count(),
497 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
498 		goto repeat;
499 	}
500 }
501 
502 void stop_machine_park(int cpu)
503 {
504 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
505 	/*
506 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
507 	 * the pending works before it parks, until then it is fine to queue
508 	 * the new works.
509 	 */
510 	stopper->enabled = false;
511 	kthread_park(stopper->thread);
512 }
513 
514 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
515 
516 static void cpu_stop_create(unsigned int cpu)
517 {
518 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
519 }
520 
521 static void cpu_stop_park(unsigned int cpu)
522 {
523 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
524 
525 	WARN_ON(!list_empty(&stopper->works));
526 }
527 
528 void stop_machine_unpark(int cpu)
529 {
530 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
531 
532 	stopper->enabled = true;
533 	kthread_unpark(stopper->thread);
534 }
535 
536 static struct smp_hotplug_thread cpu_stop_threads = {
537 	.store			= &cpu_stopper.thread,
538 	.thread_should_run	= cpu_stop_should_run,
539 	.thread_fn		= cpu_stopper_thread,
540 	.thread_comm		= "migration/%u",
541 	.create			= cpu_stop_create,
542 	.park			= cpu_stop_park,
543 	.selfparking		= true,
544 };
545 
546 static int __init cpu_stop_init(void)
547 {
548 	unsigned int cpu;
549 
550 	for_each_possible_cpu(cpu) {
551 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
552 
553 		raw_spin_lock_init(&stopper->lock);
554 		INIT_LIST_HEAD(&stopper->works);
555 	}
556 
557 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
558 	stop_machine_unpark(raw_smp_processor_id());
559 	stop_machine_initialized = true;
560 	return 0;
561 }
562 early_initcall(cpu_stop_init);
563 
564 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
565 			    const struct cpumask *cpus)
566 {
567 	struct multi_stop_data msdata = {
568 		.fn = fn,
569 		.data = data,
570 		.num_threads = num_online_cpus(),
571 		.active_cpus = cpus,
572 	};
573 
574 	lockdep_assert_cpus_held();
575 
576 	if (!stop_machine_initialized) {
577 		/*
578 		 * Handle the case where stop_machine() is called
579 		 * early in boot before stop_machine() has been
580 		 * initialized.
581 		 */
582 		unsigned long flags;
583 		int ret;
584 
585 		WARN_ON_ONCE(msdata.num_threads != 1);
586 
587 		local_irq_save(flags);
588 		hard_irq_disable();
589 		ret = (*fn)(data);
590 		local_irq_restore(flags);
591 
592 		return ret;
593 	}
594 
595 	/* Set the initial state and stop all online cpus. */
596 	set_state(&msdata, MULTI_STOP_PREPARE);
597 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
598 }
599 
600 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
601 {
602 	int ret;
603 
604 	/* No CPUs can come up or down during this. */
605 	cpus_read_lock();
606 	ret = stop_machine_cpuslocked(fn, data, cpus);
607 	cpus_read_unlock();
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(stop_machine);
611 
612 /**
613  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
614  * @fn: the function to run
615  * @data: the data ptr for the @fn()
616  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
617  *
618  * This is identical to stop_machine() but can be called from a CPU which
619  * is not active.  The local CPU is in the process of hotplug (so no other
620  * CPU hotplug can start) and not marked active and doesn't have enough
621  * context to sleep.
622  *
623  * This function provides stop_machine() functionality for such state by
624  * using busy-wait for synchronization and executing @fn directly for local
625  * CPU.
626  *
627  * CONTEXT:
628  * Local CPU is inactive.  Temporarily stops all active CPUs.
629  *
630  * RETURNS:
631  * 0 if all executions of @fn returned 0, any non zero return value if any
632  * returned non zero.
633  */
634 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
635 				  const struct cpumask *cpus)
636 {
637 	struct multi_stop_data msdata = { .fn = fn, .data = data,
638 					    .active_cpus = cpus };
639 	struct cpu_stop_done done;
640 	int ret;
641 
642 	/* Local CPU must be inactive and CPU hotplug in progress. */
643 	BUG_ON(cpu_active(raw_smp_processor_id()));
644 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
645 
646 	/* No proper task established and can't sleep - busy wait for lock. */
647 	while (!mutex_trylock(&stop_cpus_mutex))
648 		cpu_relax();
649 
650 	/* Schedule work on other CPUs and execute directly for local CPU */
651 	set_state(&msdata, MULTI_STOP_PREPARE);
652 	cpu_stop_init_done(&done, num_active_cpus());
653 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
654 			     &done);
655 	ret = multi_cpu_stop(&msdata);
656 
657 	/* Busy wait for completion. */
658 	while (!completion_done(&done.completion))
659 		cpu_relax();
660 
661 	mutex_unlock(&stop_cpus_mutex);
662 	return ret ?: done.ret;
663 }
664