xref: /openbmc/linux/kernel/stop_machine.c (revision 8bd1369b)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	raw_spin_lock_irqsave(&stopper->lock, flags);
85 	enabled = stopper->enabled;
86 	if (enabled)
87 		__cpu_stop_queue_work(stopper, work, &wakeq);
88 	else if (work->done)
89 		cpu_stop_signal_done(work->done);
90 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
91 
92 	wake_up_q(&wakeq);
93 
94 	return enabled;
95 }
96 
97 /**
98  * stop_one_cpu - stop a cpu
99  * @cpu: cpu to stop
100  * @fn: function to execute
101  * @arg: argument to @fn
102  *
103  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104  * the highest priority preempting any task on the cpu and
105  * monopolizing it.  This function returns after the execution is
106  * complete.
107  *
108  * This function doesn't guarantee @cpu stays online till @fn
109  * completes.  If @cpu goes down in the middle, execution may happen
110  * partially or fully on different cpus.  @fn should either be ready
111  * for that or the caller should ensure that @cpu stays online until
112  * this function completes.
113  *
114  * CONTEXT:
115  * Might sleep.
116  *
117  * RETURNS:
118  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119  * otherwise, the return value of @fn.
120  */
121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122 {
123 	struct cpu_stop_done done;
124 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125 
126 	cpu_stop_init_done(&done, 1);
127 	if (!cpu_stop_queue_work(cpu, &work))
128 		return -ENOENT;
129 	/*
130 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131 	 * cycle by doing a preemption:
132 	 */
133 	cond_resched();
134 	wait_for_completion(&done.completion);
135 	return done.ret;
136 }
137 
138 /* This controls the threads on each CPU. */
139 enum multi_stop_state {
140 	/* Dummy starting state for thread. */
141 	MULTI_STOP_NONE,
142 	/* Awaiting everyone to be scheduled. */
143 	MULTI_STOP_PREPARE,
144 	/* Disable interrupts. */
145 	MULTI_STOP_DISABLE_IRQ,
146 	/* Run the function */
147 	MULTI_STOP_RUN,
148 	/* Exit */
149 	MULTI_STOP_EXIT,
150 };
151 
152 struct multi_stop_data {
153 	cpu_stop_fn_t		fn;
154 	void			*data;
155 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156 	unsigned int		num_threads;
157 	const struct cpumask	*active_cpus;
158 
159 	enum multi_stop_state	state;
160 	atomic_t		thread_ack;
161 };
162 
163 static void set_state(struct multi_stop_data *msdata,
164 		      enum multi_stop_state newstate)
165 {
166 	/* Reset ack counter. */
167 	atomic_set(&msdata->thread_ack, msdata->num_threads);
168 	smp_wmb();
169 	msdata->state = newstate;
170 }
171 
172 /* Last one to ack a state moves to the next state. */
173 static void ack_state(struct multi_stop_data *msdata)
174 {
175 	if (atomic_dec_and_test(&msdata->thread_ack))
176 		set_state(msdata, msdata->state + 1);
177 }
178 
179 /* This is the cpu_stop function which stops the CPU. */
180 static int multi_cpu_stop(void *data)
181 {
182 	struct multi_stop_data *msdata = data;
183 	enum multi_stop_state curstate = MULTI_STOP_NONE;
184 	int cpu = smp_processor_id(), err = 0;
185 	unsigned long flags;
186 	bool is_active;
187 
188 	/*
189 	 * When called from stop_machine_from_inactive_cpu(), irq might
190 	 * already be disabled.  Save the state and restore it on exit.
191 	 */
192 	local_save_flags(flags);
193 
194 	if (!msdata->active_cpus)
195 		is_active = cpu == cpumask_first(cpu_online_mask);
196 	else
197 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198 
199 	/* Simple state machine */
200 	do {
201 		/* Chill out and ensure we re-read multi_stop_state. */
202 		cpu_relax_yield();
203 		if (msdata->state != curstate) {
204 			curstate = msdata->state;
205 			switch (curstate) {
206 			case MULTI_STOP_DISABLE_IRQ:
207 				local_irq_disable();
208 				hard_irq_disable();
209 				break;
210 			case MULTI_STOP_RUN:
211 				if (is_active)
212 					err = msdata->fn(msdata->data);
213 				break;
214 			default:
215 				break;
216 			}
217 			ack_state(msdata);
218 		} else if (curstate > MULTI_STOP_PREPARE) {
219 			/*
220 			 * At this stage all other CPUs we depend on must spin
221 			 * in the same loop. Any reason for hard-lockup should
222 			 * be detected and reported on their side.
223 			 */
224 			touch_nmi_watchdog();
225 		}
226 	} while (curstate != MULTI_STOP_EXIT);
227 
228 	local_irq_restore(flags);
229 	return err;
230 }
231 
232 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233 				    int cpu2, struct cpu_stop_work *work2)
234 {
235 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237 	DEFINE_WAKE_Q(wakeq);
238 	int err;
239 retry:
240 	raw_spin_lock_irq(&stopper1->lock);
241 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
242 
243 	err = -ENOENT;
244 	if (!stopper1->enabled || !stopper2->enabled)
245 		goto unlock;
246 	/*
247 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
248 	 * queued up in reverse order leading to system deadlock.
249 	 *
250 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
251 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
252 	 *
253 	 * It can be falsely true but it is safe to spin until it is cleared,
254 	 * queue_stop_cpus_work() does everything under preempt_disable().
255 	 */
256 	err = -EDEADLK;
257 	if (unlikely(stop_cpus_in_progress))
258 			goto unlock;
259 
260 	err = 0;
261 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
262 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
263 unlock:
264 	raw_spin_unlock(&stopper2->lock);
265 	raw_spin_unlock_irq(&stopper1->lock);
266 
267 	if (unlikely(err == -EDEADLK)) {
268 		while (stop_cpus_in_progress)
269 			cpu_relax();
270 		goto retry;
271 	}
272 
273 	if (!err) {
274 		preempt_disable();
275 		wake_up_q(&wakeq);
276 		preempt_enable();
277 	}
278 
279 	return err;
280 }
281 /**
282  * stop_two_cpus - stops two cpus
283  * @cpu1: the cpu to stop
284  * @cpu2: the other cpu to stop
285  * @fn: function to execute
286  * @arg: argument to @fn
287  *
288  * Stops both the current and specified CPU and runs @fn on one of them.
289  *
290  * returns when both are completed.
291  */
292 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
293 {
294 	struct cpu_stop_done done;
295 	struct cpu_stop_work work1, work2;
296 	struct multi_stop_data msdata;
297 
298 	msdata = (struct multi_stop_data){
299 		.fn = fn,
300 		.data = arg,
301 		.num_threads = 2,
302 		.active_cpus = cpumask_of(cpu1),
303 	};
304 
305 	work1 = work2 = (struct cpu_stop_work){
306 		.fn = multi_cpu_stop,
307 		.arg = &msdata,
308 		.done = &done
309 	};
310 
311 	cpu_stop_init_done(&done, 2);
312 	set_state(&msdata, MULTI_STOP_PREPARE);
313 
314 	if (cpu1 > cpu2)
315 		swap(cpu1, cpu2);
316 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
317 		return -ENOENT;
318 
319 	wait_for_completion(&done.completion);
320 	return done.ret;
321 }
322 
323 /**
324  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
325  * @cpu: cpu to stop
326  * @fn: function to execute
327  * @arg: argument to @fn
328  * @work_buf: pointer to cpu_stop_work structure
329  *
330  * Similar to stop_one_cpu() but doesn't wait for completion.  The
331  * caller is responsible for ensuring @work_buf is currently unused
332  * and will remain untouched until stopper starts executing @fn.
333  *
334  * CONTEXT:
335  * Don't care.
336  *
337  * RETURNS:
338  * true if cpu_stop_work was queued successfully and @fn will be called,
339  * false otherwise.
340  */
341 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
342 			struct cpu_stop_work *work_buf)
343 {
344 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
345 	return cpu_stop_queue_work(cpu, work_buf);
346 }
347 
348 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
349 				 cpu_stop_fn_t fn, void *arg,
350 				 struct cpu_stop_done *done)
351 {
352 	struct cpu_stop_work *work;
353 	unsigned int cpu;
354 	bool queued = false;
355 
356 	/*
357 	 * Disable preemption while queueing to avoid getting
358 	 * preempted by a stopper which might wait for other stoppers
359 	 * to enter @fn which can lead to deadlock.
360 	 */
361 	preempt_disable();
362 	stop_cpus_in_progress = true;
363 	for_each_cpu(cpu, cpumask) {
364 		work = &per_cpu(cpu_stopper.stop_work, cpu);
365 		work->fn = fn;
366 		work->arg = arg;
367 		work->done = done;
368 		if (cpu_stop_queue_work(cpu, work))
369 			queued = true;
370 	}
371 	stop_cpus_in_progress = false;
372 	preempt_enable();
373 
374 	return queued;
375 }
376 
377 static int __stop_cpus(const struct cpumask *cpumask,
378 		       cpu_stop_fn_t fn, void *arg)
379 {
380 	struct cpu_stop_done done;
381 
382 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
383 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
384 		return -ENOENT;
385 	wait_for_completion(&done.completion);
386 	return done.ret;
387 }
388 
389 /**
390  * stop_cpus - stop multiple cpus
391  * @cpumask: cpus to stop
392  * @fn: function to execute
393  * @arg: argument to @fn
394  *
395  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
396  * @fn is run in a process context with the highest priority
397  * preempting any task on the cpu and monopolizing it.  This function
398  * returns after all executions are complete.
399  *
400  * This function doesn't guarantee the cpus in @cpumask stay online
401  * till @fn completes.  If some cpus go down in the middle, execution
402  * on the cpu may happen partially or fully on different cpus.  @fn
403  * should either be ready for that or the caller should ensure that
404  * the cpus stay online until this function completes.
405  *
406  * All stop_cpus() calls are serialized making it safe for @fn to wait
407  * for all cpus to start executing it.
408  *
409  * CONTEXT:
410  * Might sleep.
411  *
412  * RETURNS:
413  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
414  * @cpumask were offline; otherwise, 0 if all executions of @fn
415  * returned 0, any non zero return value if any returned non zero.
416  */
417 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
418 {
419 	int ret;
420 
421 	/* static works are used, process one request at a time */
422 	mutex_lock(&stop_cpus_mutex);
423 	ret = __stop_cpus(cpumask, fn, arg);
424 	mutex_unlock(&stop_cpus_mutex);
425 	return ret;
426 }
427 
428 /**
429  * try_stop_cpus - try to stop multiple cpus
430  * @cpumask: cpus to stop
431  * @fn: function to execute
432  * @arg: argument to @fn
433  *
434  * Identical to stop_cpus() except that it fails with -EAGAIN if
435  * someone else is already using the facility.
436  *
437  * CONTEXT:
438  * Might sleep.
439  *
440  * RETURNS:
441  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
442  * @fn(@arg) was not executed at all because all cpus in @cpumask were
443  * offline; otherwise, 0 if all executions of @fn returned 0, any non
444  * zero return value if any returned non zero.
445  */
446 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
447 {
448 	int ret;
449 
450 	/* static works are used, process one request at a time */
451 	if (!mutex_trylock(&stop_cpus_mutex))
452 		return -EAGAIN;
453 	ret = __stop_cpus(cpumask, fn, arg);
454 	mutex_unlock(&stop_cpus_mutex);
455 	return ret;
456 }
457 
458 static int cpu_stop_should_run(unsigned int cpu)
459 {
460 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
461 	unsigned long flags;
462 	int run;
463 
464 	raw_spin_lock_irqsave(&stopper->lock, flags);
465 	run = !list_empty(&stopper->works);
466 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
467 	return run;
468 }
469 
470 static void cpu_stopper_thread(unsigned int cpu)
471 {
472 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
473 	struct cpu_stop_work *work;
474 
475 repeat:
476 	work = NULL;
477 	raw_spin_lock_irq(&stopper->lock);
478 	if (!list_empty(&stopper->works)) {
479 		work = list_first_entry(&stopper->works,
480 					struct cpu_stop_work, list);
481 		list_del_init(&work->list);
482 	}
483 	raw_spin_unlock_irq(&stopper->lock);
484 
485 	if (work) {
486 		cpu_stop_fn_t fn = work->fn;
487 		void *arg = work->arg;
488 		struct cpu_stop_done *done = work->done;
489 		int ret;
490 
491 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
492 		preempt_count_inc();
493 		ret = fn(arg);
494 		if (done) {
495 			if (ret)
496 				done->ret = ret;
497 			cpu_stop_signal_done(done);
498 		}
499 		preempt_count_dec();
500 		WARN_ONCE(preempt_count(),
501 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
502 		goto repeat;
503 	}
504 }
505 
506 void stop_machine_park(int cpu)
507 {
508 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
509 	/*
510 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
511 	 * the pending works before it parks, until then it is fine to queue
512 	 * the new works.
513 	 */
514 	stopper->enabled = false;
515 	kthread_park(stopper->thread);
516 }
517 
518 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
519 
520 static void cpu_stop_create(unsigned int cpu)
521 {
522 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
523 }
524 
525 static void cpu_stop_park(unsigned int cpu)
526 {
527 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
528 
529 	WARN_ON(!list_empty(&stopper->works));
530 }
531 
532 void stop_machine_unpark(int cpu)
533 {
534 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
535 
536 	stopper->enabled = true;
537 	kthread_unpark(stopper->thread);
538 }
539 
540 static struct smp_hotplug_thread cpu_stop_threads = {
541 	.store			= &cpu_stopper.thread,
542 	.thread_should_run	= cpu_stop_should_run,
543 	.thread_fn		= cpu_stopper_thread,
544 	.thread_comm		= "migration/%u",
545 	.create			= cpu_stop_create,
546 	.park			= cpu_stop_park,
547 	.selfparking		= true,
548 };
549 
550 static int __init cpu_stop_init(void)
551 {
552 	unsigned int cpu;
553 
554 	for_each_possible_cpu(cpu) {
555 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
556 
557 		raw_spin_lock_init(&stopper->lock);
558 		INIT_LIST_HEAD(&stopper->works);
559 	}
560 
561 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
562 	stop_machine_unpark(raw_smp_processor_id());
563 	stop_machine_initialized = true;
564 	return 0;
565 }
566 early_initcall(cpu_stop_init);
567 
568 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
569 			    const struct cpumask *cpus)
570 {
571 	struct multi_stop_data msdata = {
572 		.fn = fn,
573 		.data = data,
574 		.num_threads = num_online_cpus(),
575 		.active_cpus = cpus,
576 	};
577 
578 	lockdep_assert_cpus_held();
579 
580 	if (!stop_machine_initialized) {
581 		/*
582 		 * Handle the case where stop_machine() is called
583 		 * early in boot before stop_machine() has been
584 		 * initialized.
585 		 */
586 		unsigned long flags;
587 		int ret;
588 
589 		WARN_ON_ONCE(msdata.num_threads != 1);
590 
591 		local_irq_save(flags);
592 		hard_irq_disable();
593 		ret = (*fn)(data);
594 		local_irq_restore(flags);
595 
596 		return ret;
597 	}
598 
599 	/* Set the initial state and stop all online cpus. */
600 	set_state(&msdata, MULTI_STOP_PREPARE);
601 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
602 }
603 
604 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
605 {
606 	int ret;
607 
608 	/* No CPUs can come up or down during this. */
609 	cpus_read_lock();
610 	ret = stop_machine_cpuslocked(fn, data, cpus);
611 	cpus_read_unlock();
612 	return ret;
613 }
614 EXPORT_SYMBOL_GPL(stop_machine);
615 
616 /**
617  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
618  * @fn: the function to run
619  * @data: the data ptr for the @fn()
620  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
621  *
622  * This is identical to stop_machine() but can be called from a CPU which
623  * is not active.  The local CPU is in the process of hotplug (so no other
624  * CPU hotplug can start) and not marked active and doesn't have enough
625  * context to sleep.
626  *
627  * This function provides stop_machine() functionality for such state by
628  * using busy-wait for synchronization and executing @fn directly for local
629  * CPU.
630  *
631  * CONTEXT:
632  * Local CPU is inactive.  Temporarily stops all active CPUs.
633  *
634  * RETURNS:
635  * 0 if all executions of @fn returned 0, any non zero return value if any
636  * returned non zero.
637  */
638 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
639 				  const struct cpumask *cpus)
640 {
641 	struct multi_stop_data msdata = { .fn = fn, .data = data,
642 					    .active_cpus = cpus };
643 	struct cpu_stop_done done;
644 	int ret;
645 
646 	/* Local CPU must be inactive and CPU hotplug in progress. */
647 	BUG_ON(cpu_active(raw_smp_processor_id()));
648 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
649 
650 	/* No proper task established and can't sleep - busy wait for lock. */
651 	while (!mutex_trylock(&stop_cpus_mutex))
652 		cpu_relax();
653 
654 	/* Schedule work on other CPUs and execute directly for local CPU */
655 	set_state(&msdata, MULTI_STOP_PREPARE);
656 	cpu_stop_init_done(&done, num_active_cpus());
657 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
658 			     &done);
659 	ret = multi_cpu_stop(&msdata);
660 
661 	/* Busy wait for completion. */
662 	while (!completion_done(&done.completion))
663 		cpu_relax();
664 
665 	mutex_unlock(&stop_cpus_mutex);
666 	return ret ?: done.ret;
667 }
668