1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * kernel/stop_machine.c 4 * 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 25 26 /* 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 29 */ 30 struct cpu_stop_done { 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 raw_spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 }; 46 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 48 static bool stop_machine_initialized = false; 49 50 /* static data for stop_cpus */ 51 static DEFINE_MUTEX(stop_cpus_mutex); 52 static bool stop_cpus_in_progress; 53 54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 55 { 56 memset(done, 0, sizeof(*done)); 57 atomic_set(&done->nr_todo, nr_todo); 58 init_completion(&done->completion); 59 } 60 61 /* signal completion unless @done is NULL */ 62 static void cpu_stop_signal_done(struct cpu_stop_done *done) 63 { 64 if (atomic_dec_and_test(&done->nr_todo)) 65 complete(&done->completion); 66 } 67 68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 69 struct cpu_stop_work *work, 70 struct wake_q_head *wakeq) 71 { 72 list_add_tail(&work->list, &stopper->works); 73 wake_q_add(wakeq, stopper->thread); 74 } 75 76 /* queue @work to @stopper. if offline, @work is completed immediately */ 77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 78 { 79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 80 DEFINE_WAKE_Q(wakeq); 81 unsigned long flags; 82 bool enabled; 83 84 preempt_disable(); 85 raw_spin_lock_irqsave(&stopper->lock, flags); 86 enabled = stopper->enabled; 87 if (enabled) 88 __cpu_stop_queue_work(stopper, work, &wakeq); 89 else if (work->done) 90 cpu_stop_signal_done(work->done); 91 raw_spin_unlock_irqrestore(&stopper->lock, flags); 92 93 wake_up_q(&wakeq); 94 preempt_enable(); 95 96 return enabled; 97 } 98 99 /** 100 * stop_one_cpu - stop a cpu 101 * @cpu: cpu to stop 102 * @fn: function to execute 103 * @arg: argument to @fn 104 * 105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 106 * the highest priority preempting any task on the cpu and 107 * monopolizing it. This function returns after the execution is 108 * complete. 109 * 110 * This function doesn't guarantee @cpu stays online till @fn 111 * completes. If @cpu goes down in the middle, execution may happen 112 * partially or fully on different cpus. @fn should either be ready 113 * for that or the caller should ensure that @cpu stays online until 114 * this function completes. 115 * 116 * CONTEXT: 117 * Might sleep. 118 * 119 * RETURNS: 120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 121 * otherwise, the return value of @fn. 122 */ 123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 124 { 125 struct cpu_stop_done done; 126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 127 128 cpu_stop_init_done(&done, 1); 129 if (!cpu_stop_queue_work(cpu, &work)) 130 return -ENOENT; 131 /* 132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 133 * cycle by doing a preemption: 134 */ 135 cond_resched(); 136 wait_for_completion(&done.completion); 137 return done.ret; 138 } 139 140 /* This controls the threads on each CPU. */ 141 enum multi_stop_state { 142 /* Dummy starting state for thread. */ 143 MULTI_STOP_NONE, 144 /* Awaiting everyone to be scheduled. */ 145 MULTI_STOP_PREPARE, 146 /* Disable interrupts. */ 147 MULTI_STOP_DISABLE_IRQ, 148 /* Run the function */ 149 MULTI_STOP_RUN, 150 /* Exit */ 151 MULTI_STOP_EXIT, 152 }; 153 154 struct multi_stop_data { 155 cpu_stop_fn_t fn; 156 void *data; 157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 158 unsigned int num_threads; 159 const struct cpumask *active_cpus; 160 161 enum multi_stop_state state; 162 atomic_t thread_ack; 163 }; 164 165 static void set_state(struct multi_stop_data *msdata, 166 enum multi_stop_state newstate) 167 { 168 /* Reset ack counter. */ 169 atomic_set(&msdata->thread_ack, msdata->num_threads); 170 smp_wmb(); 171 WRITE_ONCE(msdata->state, newstate); 172 } 173 174 /* Last one to ack a state moves to the next state. */ 175 static void ack_state(struct multi_stop_data *msdata) 176 { 177 if (atomic_dec_and_test(&msdata->thread_ack)) 178 set_state(msdata, msdata->state + 1); 179 } 180 181 void __weak stop_machine_yield(const struct cpumask *cpumask) 182 { 183 cpu_relax(); 184 } 185 186 /* This is the cpu_stop function which stops the CPU. */ 187 static int multi_cpu_stop(void *data) 188 { 189 struct multi_stop_data *msdata = data; 190 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE; 191 int cpu = smp_processor_id(), err = 0; 192 const struct cpumask *cpumask; 193 unsigned long flags; 194 bool is_active; 195 196 /* 197 * When called from stop_machine_from_inactive_cpu(), irq might 198 * already be disabled. Save the state and restore it on exit. 199 */ 200 local_save_flags(flags); 201 202 if (!msdata->active_cpus) { 203 cpumask = cpu_online_mask; 204 is_active = cpu == cpumask_first(cpumask); 205 } else { 206 cpumask = msdata->active_cpus; 207 is_active = cpumask_test_cpu(cpu, cpumask); 208 } 209 210 /* Simple state machine */ 211 do { 212 /* Chill out and ensure we re-read multi_stop_state. */ 213 stop_machine_yield(cpumask); 214 newstate = READ_ONCE(msdata->state); 215 if (newstate != curstate) { 216 curstate = newstate; 217 switch (curstate) { 218 case MULTI_STOP_DISABLE_IRQ: 219 local_irq_disable(); 220 hard_irq_disable(); 221 break; 222 case MULTI_STOP_RUN: 223 if (is_active) 224 err = msdata->fn(msdata->data); 225 break; 226 default: 227 break; 228 } 229 ack_state(msdata); 230 } else if (curstate > MULTI_STOP_PREPARE) { 231 /* 232 * At this stage all other CPUs we depend on must spin 233 * in the same loop. Any reason for hard-lockup should 234 * be detected and reported on their side. 235 */ 236 touch_nmi_watchdog(); 237 } 238 } while (curstate != MULTI_STOP_EXIT); 239 240 local_irq_restore(flags); 241 return err; 242 } 243 244 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 245 int cpu2, struct cpu_stop_work *work2) 246 { 247 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 248 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 249 DEFINE_WAKE_Q(wakeq); 250 int err; 251 252 retry: 253 /* 254 * The waking up of stopper threads has to happen in the same 255 * scheduling context as the queueing. Otherwise, there is a 256 * possibility of one of the above stoppers being woken up by another 257 * CPU, and preempting us. This will cause us to not wake up the other 258 * stopper forever. 259 */ 260 preempt_disable(); 261 raw_spin_lock_irq(&stopper1->lock); 262 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 263 264 if (!stopper1->enabled || !stopper2->enabled) { 265 err = -ENOENT; 266 goto unlock; 267 } 268 269 /* 270 * Ensure that if we race with __stop_cpus() the stoppers won't get 271 * queued up in reverse order leading to system deadlock. 272 * 273 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 274 * queued a work on cpu1 but not on cpu2, we hold both locks. 275 * 276 * It can be falsely true but it is safe to spin until it is cleared, 277 * queue_stop_cpus_work() does everything under preempt_disable(). 278 */ 279 if (unlikely(stop_cpus_in_progress)) { 280 err = -EDEADLK; 281 goto unlock; 282 } 283 284 err = 0; 285 __cpu_stop_queue_work(stopper1, work1, &wakeq); 286 __cpu_stop_queue_work(stopper2, work2, &wakeq); 287 288 unlock: 289 raw_spin_unlock(&stopper2->lock); 290 raw_spin_unlock_irq(&stopper1->lock); 291 292 if (unlikely(err == -EDEADLK)) { 293 preempt_enable(); 294 295 while (stop_cpus_in_progress) 296 cpu_relax(); 297 298 goto retry; 299 } 300 301 wake_up_q(&wakeq); 302 preempt_enable(); 303 304 return err; 305 } 306 /** 307 * stop_two_cpus - stops two cpus 308 * @cpu1: the cpu to stop 309 * @cpu2: the other cpu to stop 310 * @fn: function to execute 311 * @arg: argument to @fn 312 * 313 * Stops both the current and specified CPU and runs @fn on one of them. 314 * 315 * returns when both are completed. 316 */ 317 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 318 { 319 struct cpu_stop_done done; 320 struct cpu_stop_work work1, work2; 321 struct multi_stop_data msdata; 322 323 msdata = (struct multi_stop_data){ 324 .fn = fn, 325 .data = arg, 326 .num_threads = 2, 327 .active_cpus = cpumask_of(cpu1), 328 }; 329 330 work1 = work2 = (struct cpu_stop_work){ 331 .fn = multi_cpu_stop, 332 .arg = &msdata, 333 .done = &done 334 }; 335 336 cpu_stop_init_done(&done, 2); 337 set_state(&msdata, MULTI_STOP_PREPARE); 338 339 if (cpu1 > cpu2) 340 swap(cpu1, cpu2); 341 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 342 return -ENOENT; 343 344 wait_for_completion(&done.completion); 345 return done.ret; 346 } 347 348 /** 349 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 350 * @cpu: cpu to stop 351 * @fn: function to execute 352 * @arg: argument to @fn 353 * @work_buf: pointer to cpu_stop_work structure 354 * 355 * Similar to stop_one_cpu() but doesn't wait for completion. The 356 * caller is responsible for ensuring @work_buf is currently unused 357 * and will remain untouched until stopper starts executing @fn. 358 * 359 * CONTEXT: 360 * Don't care. 361 * 362 * RETURNS: 363 * true if cpu_stop_work was queued successfully and @fn will be called, 364 * false otherwise. 365 */ 366 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 367 struct cpu_stop_work *work_buf) 368 { 369 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 370 return cpu_stop_queue_work(cpu, work_buf); 371 } 372 373 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 374 cpu_stop_fn_t fn, void *arg, 375 struct cpu_stop_done *done) 376 { 377 struct cpu_stop_work *work; 378 unsigned int cpu; 379 bool queued = false; 380 381 /* 382 * Disable preemption while queueing to avoid getting 383 * preempted by a stopper which might wait for other stoppers 384 * to enter @fn which can lead to deadlock. 385 */ 386 preempt_disable(); 387 stop_cpus_in_progress = true; 388 barrier(); 389 for_each_cpu(cpu, cpumask) { 390 work = &per_cpu(cpu_stopper.stop_work, cpu); 391 work->fn = fn; 392 work->arg = arg; 393 work->done = done; 394 if (cpu_stop_queue_work(cpu, work)) 395 queued = true; 396 } 397 barrier(); 398 stop_cpus_in_progress = false; 399 preempt_enable(); 400 401 return queued; 402 } 403 404 static int __stop_cpus(const struct cpumask *cpumask, 405 cpu_stop_fn_t fn, void *arg) 406 { 407 struct cpu_stop_done done; 408 409 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 410 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 411 return -ENOENT; 412 wait_for_completion(&done.completion); 413 return done.ret; 414 } 415 416 /** 417 * stop_cpus - stop multiple cpus 418 * @cpumask: cpus to stop 419 * @fn: function to execute 420 * @arg: argument to @fn 421 * 422 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 423 * @fn is run in a process context with the highest priority 424 * preempting any task on the cpu and monopolizing it. This function 425 * returns after all executions are complete. 426 * 427 * This function doesn't guarantee the cpus in @cpumask stay online 428 * till @fn completes. If some cpus go down in the middle, execution 429 * on the cpu may happen partially or fully on different cpus. @fn 430 * should either be ready for that or the caller should ensure that 431 * the cpus stay online until this function completes. 432 * 433 * All stop_cpus() calls are serialized making it safe for @fn to wait 434 * for all cpus to start executing it. 435 * 436 * CONTEXT: 437 * Might sleep. 438 * 439 * RETURNS: 440 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 441 * @cpumask were offline; otherwise, 0 if all executions of @fn 442 * returned 0, any non zero return value if any returned non zero. 443 */ 444 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 445 { 446 int ret; 447 448 /* static works are used, process one request at a time */ 449 mutex_lock(&stop_cpus_mutex); 450 ret = __stop_cpus(cpumask, fn, arg); 451 mutex_unlock(&stop_cpus_mutex); 452 return ret; 453 } 454 455 /** 456 * try_stop_cpus - try to stop multiple cpus 457 * @cpumask: cpus to stop 458 * @fn: function to execute 459 * @arg: argument to @fn 460 * 461 * Identical to stop_cpus() except that it fails with -EAGAIN if 462 * someone else is already using the facility. 463 * 464 * CONTEXT: 465 * Might sleep. 466 * 467 * RETURNS: 468 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 469 * @fn(@arg) was not executed at all because all cpus in @cpumask were 470 * offline; otherwise, 0 if all executions of @fn returned 0, any non 471 * zero return value if any returned non zero. 472 */ 473 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 474 { 475 int ret; 476 477 /* static works are used, process one request at a time */ 478 if (!mutex_trylock(&stop_cpus_mutex)) 479 return -EAGAIN; 480 ret = __stop_cpus(cpumask, fn, arg); 481 mutex_unlock(&stop_cpus_mutex); 482 return ret; 483 } 484 485 static int cpu_stop_should_run(unsigned int cpu) 486 { 487 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 488 unsigned long flags; 489 int run; 490 491 raw_spin_lock_irqsave(&stopper->lock, flags); 492 run = !list_empty(&stopper->works); 493 raw_spin_unlock_irqrestore(&stopper->lock, flags); 494 return run; 495 } 496 497 static void cpu_stopper_thread(unsigned int cpu) 498 { 499 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 500 struct cpu_stop_work *work; 501 502 repeat: 503 work = NULL; 504 raw_spin_lock_irq(&stopper->lock); 505 if (!list_empty(&stopper->works)) { 506 work = list_first_entry(&stopper->works, 507 struct cpu_stop_work, list); 508 list_del_init(&work->list); 509 } 510 raw_spin_unlock_irq(&stopper->lock); 511 512 if (work) { 513 cpu_stop_fn_t fn = work->fn; 514 void *arg = work->arg; 515 struct cpu_stop_done *done = work->done; 516 int ret; 517 518 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 519 preempt_count_inc(); 520 ret = fn(arg); 521 if (done) { 522 if (ret) 523 done->ret = ret; 524 cpu_stop_signal_done(done); 525 } 526 preempt_count_dec(); 527 WARN_ONCE(preempt_count(), 528 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 529 goto repeat; 530 } 531 } 532 533 void stop_machine_park(int cpu) 534 { 535 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 536 /* 537 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 538 * the pending works before it parks, until then it is fine to queue 539 * the new works. 540 */ 541 stopper->enabled = false; 542 kthread_park(stopper->thread); 543 } 544 545 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 546 547 static void cpu_stop_create(unsigned int cpu) 548 { 549 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 550 } 551 552 static void cpu_stop_park(unsigned int cpu) 553 { 554 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 555 556 WARN_ON(!list_empty(&stopper->works)); 557 } 558 559 void stop_machine_unpark(int cpu) 560 { 561 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 562 563 stopper->enabled = true; 564 kthread_unpark(stopper->thread); 565 } 566 567 static struct smp_hotplug_thread cpu_stop_threads = { 568 .store = &cpu_stopper.thread, 569 .thread_should_run = cpu_stop_should_run, 570 .thread_fn = cpu_stopper_thread, 571 .thread_comm = "migration/%u", 572 .create = cpu_stop_create, 573 .park = cpu_stop_park, 574 .selfparking = true, 575 }; 576 577 static int __init cpu_stop_init(void) 578 { 579 unsigned int cpu; 580 581 for_each_possible_cpu(cpu) { 582 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 583 584 raw_spin_lock_init(&stopper->lock); 585 INIT_LIST_HEAD(&stopper->works); 586 } 587 588 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 589 stop_machine_unpark(raw_smp_processor_id()); 590 stop_machine_initialized = true; 591 return 0; 592 } 593 early_initcall(cpu_stop_init); 594 595 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 596 const struct cpumask *cpus) 597 { 598 struct multi_stop_data msdata = { 599 .fn = fn, 600 .data = data, 601 .num_threads = num_online_cpus(), 602 .active_cpus = cpus, 603 }; 604 605 lockdep_assert_cpus_held(); 606 607 if (!stop_machine_initialized) { 608 /* 609 * Handle the case where stop_machine() is called 610 * early in boot before stop_machine() has been 611 * initialized. 612 */ 613 unsigned long flags; 614 int ret; 615 616 WARN_ON_ONCE(msdata.num_threads != 1); 617 618 local_irq_save(flags); 619 hard_irq_disable(); 620 ret = (*fn)(data); 621 local_irq_restore(flags); 622 623 return ret; 624 } 625 626 /* Set the initial state and stop all online cpus. */ 627 set_state(&msdata, MULTI_STOP_PREPARE); 628 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 629 } 630 631 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 632 { 633 int ret; 634 635 /* No CPUs can come up or down during this. */ 636 cpus_read_lock(); 637 ret = stop_machine_cpuslocked(fn, data, cpus); 638 cpus_read_unlock(); 639 return ret; 640 } 641 EXPORT_SYMBOL_GPL(stop_machine); 642 643 /** 644 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 645 * @fn: the function to run 646 * @data: the data ptr for the @fn() 647 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 648 * 649 * This is identical to stop_machine() but can be called from a CPU which 650 * is not active. The local CPU is in the process of hotplug (so no other 651 * CPU hotplug can start) and not marked active and doesn't have enough 652 * context to sleep. 653 * 654 * This function provides stop_machine() functionality for such state by 655 * using busy-wait for synchronization and executing @fn directly for local 656 * CPU. 657 * 658 * CONTEXT: 659 * Local CPU is inactive. Temporarily stops all active CPUs. 660 * 661 * RETURNS: 662 * 0 if all executions of @fn returned 0, any non zero return value if any 663 * returned non zero. 664 */ 665 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 666 const struct cpumask *cpus) 667 { 668 struct multi_stop_data msdata = { .fn = fn, .data = data, 669 .active_cpus = cpus }; 670 struct cpu_stop_done done; 671 int ret; 672 673 /* Local CPU must be inactive and CPU hotplug in progress. */ 674 BUG_ON(cpu_active(raw_smp_processor_id())); 675 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 676 677 /* No proper task established and can't sleep - busy wait for lock. */ 678 while (!mutex_trylock(&stop_cpus_mutex)) 679 cpu_relax(); 680 681 /* Schedule work on other CPUs and execute directly for local CPU */ 682 set_state(&msdata, MULTI_STOP_PREPARE); 683 cpu_stop_init_done(&done, num_active_cpus()); 684 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 685 &done); 686 ret = multi_cpu_stop(&msdata); 687 688 /* Busy wait for completion. */ 689 while (!completion_done(&done.completion)) 690 cpu_relax(); 691 692 mutex_unlock(&stop_cpus_mutex); 693 return ret ?: done.ret; 694 } 695