1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/lglock.h> 24 #include <linux/nmi.h> 25 26 /* 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 29 */ 30 struct cpu_stop_done { 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 }; 46 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 48 static bool stop_machine_initialized = false; 49 50 /* 51 * Avoids a race between stop_two_cpus and global stop_cpus, where 52 * the stoppers could get queued up in reverse order, leading to 53 * system deadlock. Using an lglock means stop_two_cpus remains 54 * relatively cheap. 55 */ 56 DEFINE_STATIC_LGLOCK(stop_cpus_lock); 57 58 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 59 { 60 memset(done, 0, sizeof(*done)); 61 atomic_set(&done->nr_todo, nr_todo); 62 init_completion(&done->completion); 63 } 64 65 /* signal completion unless @done is NULL */ 66 static void cpu_stop_signal_done(struct cpu_stop_done *done) 67 { 68 if (atomic_dec_and_test(&done->nr_todo)) 69 complete(&done->completion); 70 } 71 72 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 73 struct cpu_stop_work *work) 74 { 75 list_add_tail(&work->list, &stopper->works); 76 wake_up_process(stopper->thread); 77 } 78 79 /* queue @work to @stopper. if offline, @work is completed immediately */ 80 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 81 { 82 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 83 unsigned long flags; 84 bool enabled; 85 86 spin_lock_irqsave(&stopper->lock, flags); 87 enabled = stopper->enabled; 88 if (enabled) 89 __cpu_stop_queue_work(stopper, work); 90 else if (work->done) 91 cpu_stop_signal_done(work->done); 92 spin_unlock_irqrestore(&stopper->lock, flags); 93 94 return enabled; 95 } 96 97 /** 98 * stop_one_cpu - stop a cpu 99 * @cpu: cpu to stop 100 * @fn: function to execute 101 * @arg: argument to @fn 102 * 103 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 104 * the highest priority preempting any task on the cpu and 105 * monopolizing it. This function returns after the execution is 106 * complete. 107 * 108 * This function doesn't guarantee @cpu stays online till @fn 109 * completes. If @cpu goes down in the middle, execution may happen 110 * partially or fully on different cpus. @fn should either be ready 111 * for that or the caller should ensure that @cpu stays online until 112 * this function completes. 113 * 114 * CONTEXT: 115 * Might sleep. 116 * 117 * RETURNS: 118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 119 * otherwise, the return value of @fn. 120 */ 121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 122 { 123 struct cpu_stop_done done; 124 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 125 126 cpu_stop_init_done(&done, 1); 127 if (!cpu_stop_queue_work(cpu, &work)) 128 return -ENOENT; 129 wait_for_completion(&done.completion); 130 return done.ret; 131 } 132 133 /* This controls the threads on each CPU. */ 134 enum multi_stop_state { 135 /* Dummy starting state for thread. */ 136 MULTI_STOP_NONE, 137 /* Awaiting everyone to be scheduled. */ 138 MULTI_STOP_PREPARE, 139 /* Disable interrupts. */ 140 MULTI_STOP_DISABLE_IRQ, 141 /* Run the function */ 142 MULTI_STOP_RUN, 143 /* Exit */ 144 MULTI_STOP_EXIT, 145 }; 146 147 struct multi_stop_data { 148 cpu_stop_fn_t fn; 149 void *data; 150 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 151 unsigned int num_threads; 152 const struct cpumask *active_cpus; 153 154 enum multi_stop_state state; 155 atomic_t thread_ack; 156 }; 157 158 static void set_state(struct multi_stop_data *msdata, 159 enum multi_stop_state newstate) 160 { 161 /* Reset ack counter. */ 162 atomic_set(&msdata->thread_ack, msdata->num_threads); 163 smp_wmb(); 164 msdata->state = newstate; 165 } 166 167 /* Last one to ack a state moves to the next state. */ 168 static void ack_state(struct multi_stop_data *msdata) 169 { 170 if (atomic_dec_and_test(&msdata->thread_ack)) 171 set_state(msdata, msdata->state + 1); 172 } 173 174 /* This is the cpu_stop function which stops the CPU. */ 175 static int multi_cpu_stop(void *data) 176 { 177 struct multi_stop_data *msdata = data; 178 enum multi_stop_state curstate = MULTI_STOP_NONE; 179 int cpu = smp_processor_id(), err = 0; 180 unsigned long flags; 181 bool is_active; 182 183 /* 184 * When called from stop_machine_from_inactive_cpu(), irq might 185 * already be disabled. Save the state and restore it on exit. 186 */ 187 local_save_flags(flags); 188 189 if (!msdata->active_cpus) 190 is_active = cpu == cpumask_first(cpu_online_mask); 191 else 192 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 193 194 /* Simple state machine */ 195 do { 196 /* Chill out and ensure we re-read multi_stop_state. */ 197 cpu_relax(); 198 if (msdata->state != curstate) { 199 curstate = msdata->state; 200 switch (curstate) { 201 case MULTI_STOP_DISABLE_IRQ: 202 local_irq_disable(); 203 hard_irq_disable(); 204 break; 205 case MULTI_STOP_RUN: 206 if (is_active) 207 err = msdata->fn(msdata->data); 208 break; 209 default: 210 break; 211 } 212 ack_state(msdata); 213 } else if (curstate > MULTI_STOP_PREPARE) { 214 /* 215 * At this stage all other CPUs we depend on must spin 216 * in the same loop. Any reason for hard-lockup should 217 * be detected and reported on their side. 218 */ 219 touch_nmi_watchdog(); 220 } 221 } while (curstate != MULTI_STOP_EXIT); 222 223 local_irq_restore(flags); 224 return err; 225 } 226 227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 228 int cpu2, struct cpu_stop_work *work2) 229 { 230 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 231 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 232 int err; 233 234 lg_double_lock(&stop_cpus_lock, cpu1, cpu2); 235 spin_lock_irq(&stopper1->lock); 236 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 237 238 err = -ENOENT; 239 if (!stopper1->enabled || !stopper2->enabled) 240 goto unlock; 241 242 err = 0; 243 __cpu_stop_queue_work(stopper1, work1); 244 __cpu_stop_queue_work(stopper2, work2); 245 unlock: 246 spin_unlock(&stopper2->lock); 247 spin_unlock_irq(&stopper1->lock); 248 lg_double_unlock(&stop_cpus_lock, cpu1, cpu2); 249 250 return err; 251 } 252 /** 253 * stop_two_cpus - stops two cpus 254 * @cpu1: the cpu to stop 255 * @cpu2: the other cpu to stop 256 * @fn: function to execute 257 * @arg: argument to @fn 258 * 259 * Stops both the current and specified CPU and runs @fn on one of them. 260 * 261 * returns when both are completed. 262 */ 263 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 264 { 265 struct cpu_stop_done done; 266 struct cpu_stop_work work1, work2; 267 struct multi_stop_data msdata; 268 269 msdata = (struct multi_stop_data){ 270 .fn = fn, 271 .data = arg, 272 .num_threads = 2, 273 .active_cpus = cpumask_of(cpu1), 274 }; 275 276 work1 = work2 = (struct cpu_stop_work){ 277 .fn = multi_cpu_stop, 278 .arg = &msdata, 279 .done = &done 280 }; 281 282 cpu_stop_init_done(&done, 2); 283 set_state(&msdata, MULTI_STOP_PREPARE); 284 285 if (cpu1 > cpu2) 286 swap(cpu1, cpu2); 287 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 288 return -ENOENT; 289 290 wait_for_completion(&done.completion); 291 return done.ret; 292 } 293 294 /** 295 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 296 * @cpu: cpu to stop 297 * @fn: function to execute 298 * @arg: argument to @fn 299 * @work_buf: pointer to cpu_stop_work structure 300 * 301 * Similar to stop_one_cpu() but doesn't wait for completion. The 302 * caller is responsible for ensuring @work_buf is currently unused 303 * and will remain untouched until stopper starts executing @fn. 304 * 305 * CONTEXT: 306 * Don't care. 307 * 308 * RETURNS: 309 * true if cpu_stop_work was queued successfully and @fn will be called, 310 * false otherwise. 311 */ 312 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 313 struct cpu_stop_work *work_buf) 314 { 315 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 316 return cpu_stop_queue_work(cpu, work_buf); 317 } 318 319 /* static data for stop_cpus */ 320 static DEFINE_MUTEX(stop_cpus_mutex); 321 322 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 323 cpu_stop_fn_t fn, void *arg, 324 struct cpu_stop_done *done) 325 { 326 struct cpu_stop_work *work; 327 unsigned int cpu; 328 bool queued = false; 329 330 /* 331 * Disable preemption while queueing to avoid getting 332 * preempted by a stopper which might wait for other stoppers 333 * to enter @fn which can lead to deadlock. 334 */ 335 lg_global_lock(&stop_cpus_lock); 336 for_each_cpu(cpu, cpumask) { 337 work = &per_cpu(cpu_stopper.stop_work, cpu); 338 work->fn = fn; 339 work->arg = arg; 340 work->done = done; 341 if (cpu_stop_queue_work(cpu, work)) 342 queued = true; 343 } 344 lg_global_unlock(&stop_cpus_lock); 345 346 return queued; 347 } 348 349 static int __stop_cpus(const struct cpumask *cpumask, 350 cpu_stop_fn_t fn, void *arg) 351 { 352 struct cpu_stop_done done; 353 354 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 355 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 356 return -ENOENT; 357 wait_for_completion(&done.completion); 358 return done.ret; 359 } 360 361 /** 362 * stop_cpus - stop multiple cpus 363 * @cpumask: cpus to stop 364 * @fn: function to execute 365 * @arg: argument to @fn 366 * 367 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 368 * @fn is run in a process context with the highest priority 369 * preempting any task on the cpu and monopolizing it. This function 370 * returns after all executions are complete. 371 * 372 * This function doesn't guarantee the cpus in @cpumask stay online 373 * till @fn completes. If some cpus go down in the middle, execution 374 * on the cpu may happen partially or fully on different cpus. @fn 375 * should either be ready for that or the caller should ensure that 376 * the cpus stay online until this function completes. 377 * 378 * All stop_cpus() calls are serialized making it safe for @fn to wait 379 * for all cpus to start executing it. 380 * 381 * CONTEXT: 382 * Might sleep. 383 * 384 * RETURNS: 385 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 386 * @cpumask were offline; otherwise, 0 if all executions of @fn 387 * returned 0, any non zero return value if any returned non zero. 388 */ 389 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 390 { 391 int ret; 392 393 /* static works are used, process one request at a time */ 394 mutex_lock(&stop_cpus_mutex); 395 ret = __stop_cpus(cpumask, fn, arg); 396 mutex_unlock(&stop_cpus_mutex); 397 return ret; 398 } 399 400 /** 401 * try_stop_cpus - try to stop multiple cpus 402 * @cpumask: cpus to stop 403 * @fn: function to execute 404 * @arg: argument to @fn 405 * 406 * Identical to stop_cpus() except that it fails with -EAGAIN if 407 * someone else is already using the facility. 408 * 409 * CONTEXT: 410 * Might sleep. 411 * 412 * RETURNS: 413 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 414 * @fn(@arg) was not executed at all because all cpus in @cpumask were 415 * offline; otherwise, 0 if all executions of @fn returned 0, any non 416 * zero return value if any returned non zero. 417 */ 418 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 419 { 420 int ret; 421 422 /* static works are used, process one request at a time */ 423 if (!mutex_trylock(&stop_cpus_mutex)) 424 return -EAGAIN; 425 ret = __stop_cpus(cpumask, fn, arg); 426 mutex_unlock(&stop_cpus_mutex); 427 return ret; 428 } 429 430 static int cpu_stop_should_run(unsigned int cpu) 431 { 432 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 433 unsigned long flags; 434 int run; 435 436 spin_lock_irqsave(&stopper->lock, flags); 437 run = !list_empty(&stopper->works); 438 spin_unlock_irqrestore(&stopper->lock, flags); 439 return run; 440 } 441 442 static void cpu_stopper_thread(unsigned int cpu) 443 { 444 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 445 struct cpu_stop_work *work; 446 447 repeat: 448 work = NULL; 449 spin_lock_irq(&stopper->lock); 450 if (!list_empty(&stopper->works)) { 451 work = list_first_entry(&stopper->works, 452 struct cpu_stop_work, list); 453 list_del_init(&work->list); 454 } 455 spin_unlock_irq(&stopper->lock); 456 457 if (work) { 458 cpu_stop_fn_t fn = work->fn; 459 void *arg = work->arg; 460 struct cpu_stop_done *done = work->done; 461 int ret; 462 463 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 464 preempt_count_inc(); 465 ret = fn(arg); 466 if (done) { 467 if (ret) 468 done->ret = ret; 469 cpu_stop_signal_done(done); 470 } 471 preempt_count_dec(); 472 WARN_ONCE(preempt_count(), 473 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 474 goto repeat; 475 } 476 } 477 478 void stop_machine_park(int cpu) 479 { 480 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 481 /* 482 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 483 * the pending works before it parks, until then it is fine to queue 484 * the new works. 485 */ 486 stopper->enabled = false; 487 kthread_park(stopper->thread); 488 } 489 490 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 491 492 static void cpu_stop_create(unsigned int cpu) 493 { 494 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 495 } 496 497 static void cpu_stop_park(unsigned int cpu) 498 { 499 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 500 501 WARN_ON(!list_empty(&stopper->works)); 502 } 503 504 void stop_machine_unpark(int cpu) 505 { 506 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 507 508 stopper->enabled = true; 509 kthread_unpark(stopper->thread); 510 } 511 512 static struct smp_hotplug_thread cpu_stop_threads = { 513 .store = &cpu_stopper.thread, 514 .thread_should_run = cpu_stop_should_run, 515 .thread_fn = cpu_stopper_thread, 516 .thread_comm = "migration/%u", 517 .create = cpu_stop_create, 518 .park = cpu_stop_park, 519 .selfparking = true, 520 }; 521 522 static int __init cpu_stop_init(void) 523 { 524 unsigned int cpu; 525 526 for_each_possible_cpu(cpu) { 527 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 528 529 spin_lock_init(&stopper->lock); 530 INIT_LIST_HEAD(&stopper->works); 531 } 532 533 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 534 stop_machine_unpark(raw_smp_processor_id()); 535 stop_machine_initialized = true; 536 return 0; 537 } 538 early_initcall(cpu_stop_init); 539 540 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 541 { 542 struct multi_stop_data msdata = { 543 .fn = fn, 544 .data = data, 545 .num_threads = num_online_cpus(), 546 .active_cpus = cpus, 547 }; 548 549 if (!stop_machine_initialized) { 550 /* 551 * Handle the case where stop_machine() is called 552 * early in boot before stop_machine() has been 553 * initialized. 554 */ 555 unsigned long flags; 556 int ret; 557 558 WARN_ON_ONCE(msdata.num_threads != 1); 559 560 local_irq_save(flags); 561 hard_irq_disable(); 562 ret = (*fn)(data); 563 local_irq_restore(flags); 564 565 return ret; 566 } 567 568 /* Set the initial state and stop all online cpus. */ 569 set_state(&msdata, MULTI_STOP_PREPARE); 570 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 571 } 572 573 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 574 { 575 int ret; 576 577 /* No CPUs can come up or down during this. */ 578 get_online_cpus(); 579 ret = __stop_machine(fn, data, cpus); 580 put_online_cpus(); 581 return ret; 582 } 583 EXPORT_SYMBOL_GPL(stop_machine); 584 585 /** 586 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 587 * @fn: the function to run 588 * @data: the data ptr for the @fn() 589 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 590 * 591 * This is identical to stop_machine() but can be called from a CPU which 592 * is not active. The local CPU is in the process of hotplug (so no other 593 * CPU hotplug can start) and not marked active and doesn't have enough 594 * context to sleep. 595 * 596 * This function provides stop_machine() functionality for such state by 597 * using busy-wait for synchronization and executing @fn directly for local 598 * CPU. 599 * 600 * CONTEXT: 601 * Local CPU is inactive. Temporarily stops all active CPUs. 602 * 603 * RETURNS: 604 * 0 if all executions of @fn returned 0, any non zero return value if any 605 * returned non zero. 606 */ 607 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 608 const struct cpumask *cpus) 609 { 610 struct multi_stop_data msdata = { .fn = fn, .data = data, 611 .active_cpus = cpus }; 612 struct cpu_stop_done done; 613 int ret; 614 615 /* Local CPU must be inactive and CPU hotplug in progress. */ 616 BUG_ON(cpu_active(raw_smp_processor_id())); 617 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 618 619 /* No proper task established and can't sleep - busy wait for lock. */ 620 while (!mutex_trylock(&stop_cpus_mutex)) 621 cpu_relax(); 622 623 /* Schedule work on other CPUs and execute directly for local CPU */ 624 set_state(&msdata, MULTI_STOP_PREPARE); 625 cpu_stop_init_done(&done, num_active_cpus()); 626 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 627 &done); 628 ret = multi_cpu_stop(&msdata); 629 630 /* Busy wait for completion. */ 631 while (!completion_done(&done.completion)) 632 cpu_relax(); 633 634 mutex_unlock(&stop_cpus_mutex); 635 return ret ?: done.ret; 636 } 637