xref: /openbmc/linux/kernel/stop_machine.c (revision 80483c3a)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
24 #include <linux/nmi.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /*
51  * Avoids a race between stop_two_cpus and global stop_cpus, where
52  * the stoppers could get queued up in reverse order, leading to
53  * system deadlock. Using an lglock means stop_two_cpus remains
54  * relatively cheap.
55  */
56 DEFINE_STATIC_LGLOCK(stop_cpus_lock);
57 
58 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
59 {
60 	memset(done, 0, sizeof(*done));
61 	atomic_set(&done->nr_todo, nr_todo);
62 	init_completion(&done->completion);
63 }
64 
65 /* signal completion unless @done is NULL */
66 static void cpu_stop_signal_done(struct cpu_stop_done *done)
67 {
68 	if (atomic_dec_and_test(&done->nr_todo))
69 		complete(&done->completion);
70 }
71 
72 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
73 					struct cpu_stop_work *work)
74 {
75 	list_add_tail(&work->list, &stopper->works);
76 	wake_up_process(stopper->thread);
77 }
78 
79 /* queue @work to @stopper.  if offline, @work is completed immediately */
80 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
81 {
82 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
83 	unsigned long flags;
84 	bool enabled;
85 
86 	spin_lock_irqsave(&stopper->lock, flags);
87 	enabled = stopper->enabled;
88 	if (enabled)
89 		__cpu_stop_queue_work(stopper, work);
90 	else if (work->done)
91 		cpu_stop_signal_done(work->done);
92 	spin_unlock_irqrestore(&stopper->lock, flags);
93 
94 	return enabled;
95 }
96 
97 /**
98  * stop_one_cpu - stop a cpu
99  * @cpu: cpu to stop
100  * @fn: function to execute
101  * @arg: argument to @fn
102  *
103  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104  * the highest priority preempting any task on the cpu and
105  * monopolizing it.  This function returns after the execution is
106  * complete.
107  *
108  * This function doesn't guarantee @cpu stays online till @fn
109  * completes.  If @cpu goes down in the middle, execution may happen
110  * partially or fully on different cpus.  @fn should either be ready
111  * for that or the caller should ensure that @cpu stays online until
112  * this function completes.
113  *
114  * CONTEXT:
115  * Might sleep.
116  *
117  * RETURNS:
118  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119  * otherwise, the return value of @fn.
120  */
121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122 {
123 	struct cpu_stop_done done;
124 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125 
126 	cpu_stop_init_done(&done, 1);
127 	if (!cpu_stop_queue_work(cpu, &work))
128 		return -ENOENT;
129 	wait_for_completion(&done.completion);
130 	return done.ret;
131 }
132 
133 /* This controls the threads on each CPU. */
134 enum multi_stop_state {
135 	/* Dummy starting state for thread. */
136 	MULTI_STOP_NONE,
137 	/* Awaiting everyone to be scheduled. */
138 	MULTI_STOP_PREPARE,
139 	/* Disable interrupts. */
140 	MULTI_STOP_DISABLE_IRQ,
141 	/* Run the function */
142 	MULTI_STOP_RUN,
143 	/* Exit */
144 	MULTI_STOP_EXIT,
145 };
146 
147 struct multi_stop_data {
148 	cpu_stop_fn_t		fn;
149 	void			*data;
150 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
151 	unsigned int		num_threads;
152 	const struct cpumask	*active_cpus;
153 
154 	enum multi_stop_state	state;
155 	atomic_t		thread_ack;
156 };
157 
158 static void set_state(struct multi_stop_data *msdata,
159 		      enum multi_stop_state newstate)
160 {
161 	/* Reset ack counter. */
162 	atomic_set(&msdata->thread_ack, msdata->num_threads);
163 	smp_wmb();
164 	msdata->state = newstate;
165 }
166 
167 /* Last one to ack a state moves to the next state. */
168 static void ack_state(struct multi_stop_data *msdata)
169 {
170 	if (atomic_dec_and_test(&msdata->thread_ack))
171 		set_state(msdata, msdata->state + 1);
172 }
173 
174 /* This is the cpu_stop function which stops the CPU. */
175 static int multi_cpu_stop(void *data)
176 {
177 	struct multi_stop_data *msdata = data;
178 	enum multi_stop_state curstate = MULTI_STOP_NONE;
179 	int cpu = smp_processor_id(), err = 0;
180 	unsigned long flags;
181 	bool is_active;
182 
183 	/*
184 	 * When called from stop_machine_from_inactive_cpu(), irq might
185 	 * already be disabled.  Save the state and restore it on exit.
186 	 */
187 	local_save_flags(flags);
188 
189 	if (!msdata->active_cpus)
190 		is_active = cpu == cpumask_first(cpu_online_mask);
191 	else
192 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
193 
194 	/* Simple state machine */
195 	do {
196 		/* Chill out and ensure we re-read multi_stop_state. */
197 		cpu_relax();
198 		if (msdata->state != curstate) {
199 			curstate = msdata->state;
200 			switch (curstate) {
201 			case MULTI_STOP_DISABLE_IRQ:
202 				local_irq_disable();
203 				hard_irq_disable();
204 				break;
205 			case MULTI_STOP_RUN:
206 				if (is_active)
207 					err = msdata->fn(msdata->data);
208 				break;
209 			default:
210 				break;
211 			}
212 			ack_state(msdata);
213 		} else if (curstate > MULTI_STOP_PREPARE) {
214 			/*
215 			 * At this stage all other CPUs we depend on must spin
216 			 * in the same loop. Any reason for hard-lockup should
217 			 * be detected and reported on their side.
218 			 */
219 			touch_nmi_watchdog();
220 		}
221 	} while (curstate != MULTI_STOP_EXIT);
222 
223 	local_irq_restore(flags);
224 	return err;
225 }
226 
227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
228 				    int cpu2, struct cpu_stop_work *work2)
229 {
230 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
231 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
232 	int err;
233 
234 	lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
235 	spin_lock_irq(&stopper1->lock);
236 	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
237 
238 	err = -ENOENT;
239 	if (!stopper1->enabled || !stopper2->enabled)
240 		goto unlock;
241 
242 	err = 0;
243 	__cpu_stop_queue_work(stopper1, work1);
244 	__cpu_stop_queue_work(stopper2, work2);
245 unlock:
246 	spin_unlock(&stopper2->lock);
247 	spin_unlock_irq(&stopper1->lock);
248 	lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
249 
250 	return err;
251 }
252 /**
253  * stop_two_cpus - stops two cpus
254  * @cpu1: the cpu to stop
255  * @cpu2: the other cpu to stop
256  * @fn: function to execute
257  * @arg: argument to @fn
258  *
259  * Stops both the current and specified CPU and runs @fn on one of them.
260  *
261  * returns when both are completed.
262  */
263 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
264 {
265 	struct cpu_stop_done done;
266 	struct cpu_stop_work work1, work2;
267 	struct multi_stop_data msdata;
268 
269 	msdata = (struct multi_stop_data){
270 		.fn = fn,
271 		.data = arg,
272 		.num_threads = 2,
273 		.active_cpus = cpumask_of(cpu1),
274 	};
275 
276 	work1 = work2 = (struct cpu_stop_work){
277 		.fn = multi_cpu_stop,
278 		.arg = &msdata,
279 		.done = &done
280 	};
281 
282 	cpu_stop_init_done(&done, 2);
283 	set_state(&msdata, MULTI_STOP_PREPARE);
284 
285 	if (cpu1 > cpu2)
286 		swap(cpu1, cpu2);
287 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
288 		return -ENOENT;
289 
290 	wait_for_completion(&done.completion);
291 	return done.ret;
292 }
293 
294 /**
295  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
296  * @cpu: cpu to stop
297  * @fn: function to execute
298  * @arg: argument to @fn
299  * @work_buf: pointer to cpu_stop_work structure
300  *
301  * Similar to stop_one_cpu() but doesn't wait for completion.  The
302  * caller is responsible for ensuring @work_buf is currently unused
303  * and will remain untouched until stopper starts executing @fn.
304  *
305  * CONTEXT:
306  * Don't care.
307  *
308  * RETURNS:
309  * true if cpu_stop_work was queued successfully and @fn will be called,
310  * false otherwise.
311  */
312 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
313 			struct cpu_stop_work *work_buf)
314 {
315 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
316 	return cpu_stop_queue_work(cpu, work_buf);
317 }
318 
319 /* static data for stop_cpus */
320 static DEFINE_MUTEX(stop_cpus_mutex);
321 
322 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
323 				 cpu_stop_fn_t fn, void *arg,
324 				 struct cpu_stop_done *done)
325 {
326 	struct cpu_stop_work *work;
327 	unsigned int cpu;
328 	bool queued = false;
329 
330 	/*
331 	 * Disable preemption while queueing to avoid getting
332 	 * preempted by a stopper which might wait for other stoppers
333 	 * to enter @fn which can lead to deadlock.
334 	 */
335 	lg_global_lock(&stop_cpus_lock);
336 	for_each_cpu(cpu, cpumask) {
337 		work = &per_cpu(cpu_stopper.stop_work, cpu);
338 		work->fn = fn;
339 		work->arg = arg;
340 		work->done = done;
341 		if (cpu_stop_queue_work(cpu, work))
342 			queued = true;
343 	}
344 	lg_global_unlock(&stop_cpus_lock);
345 
346 	return queued;
347 }
348 
349 static int __stop_cpus(const struct cpumask *cpumask,
350 		       cpu_stop_fn_t fn, void *arg)
351 {
352 	struct cpu_stop_done done;
353 
354 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
355 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
356 		return -ENOENT;
357 	wait_for_completion(&done.completion);
358 	return done.ret;
359 }
360 
361 /**
362  * stop_cpus - stop multiple cpus
363  * @cpumask: cpus to stop
364  * @fn: function to execute
365  * @arg: argument to @fn
366  *
367  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
368  * @fn is run in a process context with the highest priority
369  * preempting any task on the cpu and monopolizing it.  This function
370  * returns after all executions are complete.
371  *
372  * This function doesn't guarantee the cpus in @cpumask stay online
373  * till @fn completes.  If some cpus go down in the middle, execution
374  * on the cpu may happen partially or fully on different cpus.  @fn
375  * should either be ready for that or the caller should ensure that
376  * the cpus stay online until this function completes.
377  *
378  * All stop_cpus() calls are serialized making it safe for @fn to wait
379  * for all cpus to start executing it.
380  *
381  * CONTEXT:
382  * Might sleep.
383  *
384  * RETURNS:
385  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
386  * @cpumask were offline; otherwise, 0 if all executions of @fn
387  * returned 0, any non zero return value if any returned non zero.
388  */
389 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
390 {
391 	int ret;
392 
393 	/* static works are used, process one request at a time */
394 	mutex_lock(&stop_cpus_mutex);
395 	ret = __stop_cpus(cpumask, fn, arg);
396 	mutex_unlock(&stop_cpus_mutex);
397 	return ret;
398 }
399 
400 /**
401  * try_stop_cpus - try to stop multiple cpus
402  * @cpumask: cpus to stop
403  * @fn: function to execute
404  * @arg: argument to @fn
405  *
406  * Identical to stop_cpus() except that it fails with -EAGAIN if
407  * someone else is already using the facility.
408  *
409  * CONTEXT:
410  * Might sleep.
411  *
412  * RETURNS:
413  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
414  * @fn(@arg) was not executed at all because all cpus in @cpumask were
415  * offline; otherwise, 0 if all executions of @fn returned 0, any non
416  * zero return value if any returned non zero.
417  */
418 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
419 {
420 	int ret;
421 
422 	/* static works are used, process one request at a time */
423 	if (!mutex_trylock(&stop_cpus_mutex))
424 		return -EAGAIN;
425 	ret = __stop_cpus(cpumask, fn, arg);
426 	mutex_unlock(&stop_cpus_mutex);
427 	return ret;
428 }
429 
430 static int cpu_stop_should_run(unsigned int cpu)
431 {
432 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
433 	unsigned long flags;
434 	int run;
435 
436 	spin_lock_irqsave(&stopper->lock, flags);
437 	run = !list_empty(&stopper->works);
438 	spin_unlock_irqrestore(&stopper->lock, flags);
439 	return run;
440 }
441 
442 static void cpu_stopper_thread(unsigned int cpu)
443 {
444 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
445 	struct cpu_stop_work *work;
446 
447 repeat:
448 	work = NULL;
449 	spin_lock_irq(&stopper->lock);
450 	if (!list_empty(&stopper->works)) {
451 		work = list_first_entry(&stopper->works,
452 					struct cpu_stop_work, list);
453 		list_del_init(&work->list);
454 	}
455 	spin_unlock_irq(&stopper->lock);
456 
457 	if (work) {
458 		cpu_stop_fn_t fn = work->fn;
459 		void *arg = work->arg;
460 		struct cpu_stop_done *done = work->done;
461 		int ret;
462 
463 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
464 		preempt_count_inc();
465 		ret = fn(arg);
466 		if (done) {
467 			if (ret)
468 				done->ret = ret;
469 			cpu_stop_signal_done(done);
470 		}
471 		preempt_count_dec();
472 		WARN_ONCE(preempt_count(),
473 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
474 		goto repeat;
475 	}
476 }
477 
478 void stop_machine_park(int cpu)
479 {
480 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
481 	/*
482 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
483 	 * the pending works before it parks, until then it is fine to queue
484 	 * the new works.
485 	 */
486 	stopper->enabled = false;
487 	kthread_park(stopper->thread);
488 }
489 
490 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
491 
492 static void cpu_stop_create(unsigned int cpu)
493 {
494 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
495 }
496 
497 static void cpu_stop_park(unsigned int cpu)
498 {
499 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
500 
501 	WARN_ON(!list_empty(&stopper->works));
502 }
503 
504 void stop_machine_unpark(int cpu)
505 {
506 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
507 
508 	stopper->enabled = true;
509 	kthread_unpark(stopper->thread);
510 }
511 
512 static struct smp_hotplug_thread cpu_stop_threads = {
513 	.store			= &cpu_stopper.thread,
514 	.thread_should_run	= cpu_stop_should_run,
515 	.thread_fn		= cpu_stopper_thread,
516 	.thread_comm		= "migration/%u",
517 	.create			= cpu_stop_create,
518 	.park			= cpu_stop_park,
519 	.selfparking		= true,
520 };
521 
522 static int __init cpu_stop_init(void)
523 {
524 	unsigned int cpu;
525 
526 	for_each_possible_cpu(cpu) {
527 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
528 
529 		spin_lock_init(&stopper->lock);
530 		INIT_LIST_HEAD(&stopper->works);
531 	}
532 
533 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
534 	stop_machine_unpark(raw_smp_processor_id());
535 	stop_machine_initialized = true;
536 	return 0;
537 }
538 early_initcall(cpu_stop_init);
539 
540 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
541 {
542 	struct multi_stop_data msdata = {
543 		.fn = fn,
544 		.data = data,
545 		.num_threads = num_online_cpus(),
546 		.active_cpus = cpus,
547 	};
548 
549 	if (!stop_machine_initialized) {
550 		/*
551 		 * Handle the case where stop_machine() is called
552 		 * early in boot before stop_machine() has been
553 		 * initialized.
554 		 */
555 		unsigned long flags;
556 		int ret;
557 
558 		WARN_ON_ONCE(msdata.num_threads != 1);
559 
560 		local_irq_save(flags);
561 		hard_irq_disable();
562 		ret = (*fn)(data);
563 		local_irq_restore(flags);
564 
565 		return ret;
566 	}
567 
568 	/* Set the initial state and stop all online cpus. */
569 	set_state(&msdata, MULTI_STOP_PREPARE);
570 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
571 }
572 
573 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
574 {
575 	int ret;
576 
577 	/* No CPUs can come up or down during this. */
578 	get_online_cpus();
579 	ret = __stop_machine(fn, data, cpus);
580 	put_online_cpus();
581 	return ret;
582 }
583 EXPORT_SYMBOL_GPL(stop_machine);
584 
585 /**
586  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
587  * @fn: the function to run
588  * @data: the data ptr for the @fn()
589  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
590  *
591  * This is identical to stop_machine() but can be called from a CPU which
592  * is not active.  The local CPU is in the process of hotplug (so no other
593  * CPU hotplug can start) and not marked active and doesn't have enough
594  * context to sleep.
595  *
596  * This function provides stop_machine() functionality for such state by
597  * using busy-wait for synchronization and executing @fn directly for local
598  * CPU.
599  *
600  * CONTEXT:
601  * Local CPU is inactive.  Temporarily stops all active CPUs.
602  *
603  * RETURNS:
604  * 0 if all executions of @fn returned 0, any non zero return value if any
605  * returned non zero.
606  */
607 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
608 				  const struct cpumask *cpus)
609 {
610 	struct multi_stop_data msdata = { .fn = fn, .data = data,
611 					    .active_cpus = cpus };
612 	struct cpu_stop_done done;
613 	int ret;
614 
615 	/* Local CPU must be inactive and CPU hotplug in progress. */
616 	BUG_ON(cpu_active(raw_smp_processor_id()));
617 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
618 
619 	/* No proper task established and can't sleep - busy wait for lock. */
620 	while (!mutex_trylock(&stop_cpus_mutex))
621 		cpu_relax();
622 
623 	/* Schedule work on other CPUs and execute directly for local CPU */
624 	set_state(&msdata, MULTI_STOP_PREPARE);
625 	cpu_stop_init_done(&done, num_active_cpus());
626 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
627 			     &done);
628 	ret = multi_cpu_stop(&msdata);
629 
630 	/* Busy wait for completion. */
631 	while (!completion_done(&done.completion))
632 		cpu_relax();
633 
634 	mutex_unlock(&stop_cpus_mutex);
635 	return ret ?: done.ret;
636 }
637