1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * kernel/stop_machine.c 4 * 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 25 26 /* 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 29 */ 30 struct cpu_stop_done { 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 raw_spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 }; 46 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 48 static bool stop_machine_initialized = false; 49 50 /* static data for stop_cpus */ 51 static DEFINE_MUTEX(stop_cpus_mutex); 52 static bool stop_cpus_in_progress; 53 54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 55 { 56 memset(done, 0, sizeof(*done)); 57 atomic_set(&done->nr_todo, nr_todo); 58 init_completion(&done->completion); 59 } 60 61 /* signal completion unless @done is NULL */ 62 static void cpu_stop_signal_done(struct cpu_stop_done *done) 63 { 64 if (atomic_dec_and_test(&done->nr_todo)) 65 complete(&done->completion); 66 } 67 68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 69 struct cpu_stop_work *work, 70 struct wake_q_head *wakeq) 71 { 72 list_add_tail(&work->list, &stopper->works); 73 wake_q_add(wakeq, stopper->thread); 74 } 75 76 /* queue @work to @stopper. if offline, @work is completed immediately */ 77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 78 { 79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 80 DEFINE_WAKE_Q(wakeq); 81 unsigned long flags; 82 bool enabled; 83 84 preempt_disable(); 85 raw_spin_lock_irqsave(&stopper->lock, flags); 86 enabled = stopper->enabled; 87 if (enabled) 88 __cpu_stop_queue_work(stopper, work, &wakeq); 89 else if (work->done) 90 cpu_stop_signal_done(work->done); 91 raw_spin_unlock_irqrestore(&stopper->lock, flags); 92 93 wake_up_q(&wakeq); 94 preempt_enable(); 95 96 return enabled; 97 } 98 99 /** 100 * stop_one_cpu - stop a cpu 101 * @cpu: cpu to stop 102 * @fn: function to execute 103 * @arg: argument to @fn 104 * 105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 106 * the highest priority preempting any task on the cpu and 107 * monopolizing it. This function returns after the execution is 108 * complete. 109 * 110 * This function doesn't guarantee @cpu stays online till @fn 111 * completes. If @cpu goes down in the middle, execution may happen 112 * partially or fully on different cpus. @fn should either be ready 113 * for that or the caller should ensure that @cpu stays online until 114 * this function completes. 115 * 116 * CONTEXT: 117 * Might sleep. 118 * 119 * RETURNS: 120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 121 * otherwise, the return value of @fn. 122 */ 123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 124 { 125 struct cpu_stop_done done; 126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 127 128 cpu_stop_init_done(&done, 1); 129 if (!cpu_stop_queue_work(cpu, &work)) 130 return -ENOENT; 131 /* 132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 133 * cycle by doing a preemption: 134 */ 135 cond_resched(); 136 wait_for_completion(&done.completion); 137 return done.ret; 138 } 139 140 /* This controls the threads on each CPU. */ 141 enum multi_stop_state { 142 /* Dummy starting state for thread. */ 143 MULTI_STOP_NONE, 144 /* Awaiting everyone to be scheduled. */ 145 MULTI_STOP_PREPARE, 146 /* Disable interrupts. */ 147 MULTI_STOP_DISABLE_IRQ, 148 /* Run the function */ 149 MULTI_STOP_RUN, 150 /* Exit */ 151 MULTI_STOP_EXIT, 152 }; 153 154 struct multi_stop_data { 155 cpu_stop_fn_t fn; 156 void *data; 157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 158 unsigned int num_threads; 159 const struct cpumask *active_cpus; 160 161 enum multi_stop_state state; 162 atomic_t thread_ack; 163 }; 164 165 static void set_state(struct multi_stop_data *msdata, 166 enum multi_stop_state newstate) 167 { 168 /* Reset ack counter. */ 169 atomic_set(&msdata->thread_ack, msdata->num_threads); 170 smp_wmb(); 171 WRITE_ONCE(msdata->state, newstate); 172 } 173 174 /* Last one to ack a state moves to the next state. */ 175 static void ack_state(struct multi_stop_data *msdata) 176 { 177 if (atomic_dec_and_test(&msdata->thread_ack)) 178 set_state(msdata, msdata->state + 1); 179 } 180 181 void __weak stop_machine_yield(const struct cpumask *cpumask) 182 { 183 cpu_relax(); 184 } 185 186 /* This is the cpu_stop function which stops the CPU. */ 187 static int multi_cpu_stop(void *data) 188 { 189 struct multi_stop_data *msdata = data; 190 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE; 191 int cpu = smp_processor_id(), err = 0; 192 const struct cpumask *cpumask; 193 unsigned long flags; 194 bool is_active; 195 196 /* 197 * When called from stop_machine_from_inactive_cpu(), irq might 198 * already be disabled. Save the state and restore it on exit. 199 */ 200 local_save_flags(flags); 201 202 if (!msdata->active_cpus) { 203 cpumask = cpu_online_mask; 204 is_active = cpu == cpumask_first(cpumask); 205 } else { 206 cpumask = msdata->active_cpus; 207 is_active = cpumask_test_cpu(cpu, cpumask); 208 } 209 210 /* Simple state machine */ 211 do { 212 /* Chill out and ensure we re-read multi_stop_state. */ 213 stop_machine_yield(cpumask); 214 newstate = READ_ONCE(msdata->state); 215 if (newstate != curstate) { 216 curstate = newstate; 217 switch (curstate) { 218 case MULTI_STOP_DISABLE_IRQ: 219 local_irq_disable(); 220 hard_irq_disable(); 221 break; 222 case MULTI_STOP_RUN: 223 if (is_active) 224 err = msdata->fn(msdata->data); 225 break; 226 default: 227 break; 228 } 229 ack_state(msdata); 230 } else if (curstate > MULTI_STOP_PREPARE) { 231 /* 232 * At this stage all other CPUs we depend on must spin 233 * in the same loop. Any reason for hard-lockup should 234 * be detected and reported on their side. 235 */ 236 touch_nmi_watchdog(); 237 } 238 rcu_momentary_dyntick_idle(); 239 } while (curstate != MULTI_STOP_EXIT); 240 241 local_irq_restore(flags); 242 return err; 243 } 244 245 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 246 int cpu2, struct cpu_stop_work *work2) 247 { 248 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 249 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 250 DEFINE_WAKE_Q(wakeq); 251 int err; 252 253 retry: 254 /* 255 * The waking up of stopper threads has to happen in the same 256 * scheduling context as the queueing. Otherwise, there is a 257 * possibility of one of the above stoppers being woken up by another 258 * CPU, and preempting us. This will cause us to not wake up the other 259 * stopper forever. 260 */ 261 preempt_disable(); 262 raw_spin_lock_irq(&stopper1->lock); 263 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 264 265 if (!stopper1->enabled || !stopper2->enabled) { 266 err = -ENOENT; 267 goto unlock; 268 } 269 270 /* 271 * Ensure that if we race with __stop_cpus() the stoppers won't get 272 * queued up in reverse order leading to system deadlock. 273 * 274 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 275 * queued a work on cpu1 but not on cpu2, we hold both locks. 276 * 277 * It can be falsely true but it is safe to spin until it is cleared, 278 * queue_stop_cpus_work() does everything under preempt_disable(). 279 */ 280 if (unlikely(stop_cpus_in_progress)) { 281 err = -EDEADLK; 282 goto unlock; 283 } 284 285 err = 0; 286 __cpu_stop_queue_work(stopper1, work1, &wakeq); 287 __cpu_stop_queue_work(stopper2, work2, &wakeq); 288 289 unlock: 290 raw_spin_unlock(&stopper2->lock); 291 raw_spin_unlock_irq(&stopper1->lock); 292 293 if (unlikely(err == -EDEADLK)) { 294 preempt_enable(); 295 296 while (stop_cpus_in_progress) 297 cpu_relax(); 298 299 goto retry; 300 } 301 302 wake_up_q(&wakeq); 303 preempt_enable(); 304 305 return err; 306 } 307 /** 308 * stop_two_cpus - stops two cpus 309 * @cpu1: the cpu to stop 310 * @cpu2: the other cpu to stop 311 * @fn: function to execute 312 * @arg: argument to @fn 313 * 314 * Stops both the current and specified CPU and runs @fn on one of them. 315 * 316 * returns when both are completed. 317 */ 318 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 319 { 320 struct cpu_stop_done done; 321 struct cpu_stop_work work1, work2; 322 struct multi_stop_data msdata; 323 324 msdata = (struct multi_stop_data){ 325 .fn = fn, 326 .data = arg, 327 .num_threads = 2, 328 .active_cpus = cpumask_of(cpu1), 329 }; 330 331 work1 = work2 = (struct cpu_stop_work){ 332 .fn = multi_cpu_stop, 333 .arg = &msdata, 334 .done = &done 335 }; 336 337 cpu_stop_init_done(&done, 2); 338 set_state(&msdata, MULTI_STOP_PREPARE); 339 340 if (cpu1 > cpu2) 341 swap(cpu1, cpu2); 342 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 343 return -ENOENT; 344 345 wait_for_completion(&done.completion); 346 return done.ret; 347 } 348 349 /** 350 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 351 * @cpu: cpu to stop 352 * @fn: function to execute 353 * @arg: argument to @fn 354 * @work_buf: pointer to cpu_stop_work structure 355 * 356 * Similar to stop_one_cpu() but doesn't wait for completion. The 357 * caller is responsible for ensuring @work_buf is currently unused 358 * and will remain untouched until stopper starts executing @fn. 359 * 360 * CONTEXT: 361 * Don't care. 362 * 363 * RETURNS: 364 * true if cpu_stop_work was queued successfully and @fn will be called, 365 * false otherwise. 366 */ 367 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 368 struct cpu_stop_work *work_buf) 369 { 370 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 371 return cpu_stop_queue_work(cpu, work_buf); 372 } 373 374 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 375 cpu_stop_fn_t fn, void *arg, 376 struct cpu_stop_done *done) 377 { 378 struct cpu_stop_work *work; 379 unsigned int cpu; 380 bool queued = false; 381 382 /* 383 * Disable preemption while queueing to avoid getting 384 * preempted by a stopper which might wait for other stoppers 385 * to enter @fn which can lead to deadlock. 386 */ 387 preempt_disable(); 388 stop_cpus_in_progress = true; 389 barrier(); 390 for_each_cpu(cpu, cpumask) { 391 work = &per_cpu(cpu_stopper.stop_work, cpu); 392 work->fn = fn; 393 work->arg = arg; 394 work->done = done; 395 if (cpu_stop_queue_work(cpu, work)) 396 queued = true; 397 } 398 barrier(); 399 stop_cpus_in_progress = false; 400 preempt_enable(); 401 402 return queued; 403 } 404 405 static int __stop_cpus(const struct cpumask *cpumask, 406 cpu_stop_fn_t fn, void *arg) 407 { 408 struct cpu_stop_done done; 409 410 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 411 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 412 return -ENOENT; 413 wait_for_completion(&done.completion); 414 return done.ret; 415 } 416 417 /** 418 * stop_cpus - stop multiple cpus 419 * @cpumask: cpus to stop 420 * @fn: function to execute 421 * @arg: argument to @fn 422 * 423 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 424 * @fn is run in a process context with the highest priority 425 * preempting any task on the cpu and monopolizing it. This function 426 * returns after all executions are complete. 427 * 428 * This function doesn't guarantee the cpus in @cpumask stay online 429 * till @fn completes. If some cpus go down in the middle, execution 430 * on the cpu may happen partially or fully on different cpus. @fn 431 * should either be ready for that or the caller should ensure that 432 * the cpus stay online until this function completes. 433 * 434 * All stop_cpus() calls are serialized making it safe for @fn to wait 435 * for all cpus to start executing it. 436 * 437 * CONTEXT: 438 * Might sleep. 439 * 440 * RETURNS: 441 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 442 * @cpumask were offline; otherwise, 0 if all executions of @fn 443 * returned 0, any non zero return value if any returned non zero. 444 */ 445 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 446 { 447 int ret; 448 449 /* static works are used, process one request at a time */ 450 mutex_lock(&stop_cpus_mutex); 451 ret = __stop_cpus(cpumask, fn, arg); 452 mutex_unlock(&stop_cpus_mutex); 453 return ret; 454 } 455 456 /** 457 * try_stop_cpus - try to stop multiple cpus 458 * @cpumask: cpus to stop 459 * @fn: function to execute 460 * @arg: argument to @fn 461 * 462 * Identical to stop_cpus() except that it fails with -EAGAIN if 463 * someone else is already using the facility. 464 * 465 * CONTEXT: 466 * Might sleep. 467 * 468 * RETURNS: 469 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 470 * @fn(@arg) was not executed at all because all cpus in @cpumask were 471 * offline; otherwise, 0 if all executions of @fn returned 0, any non 472 * zero return value if any returned non zero. 473 */ 474 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 475 { 476 int ret; 477 478 /* static works are used, process one request at a time */ 479 if (!mutex_trylock(&stop_cpus_mutex)) 480 return -EAGAIN; 481 ret = __stop_cpus(cpumask, fn, arg); 482 mutex_unlock(&stop_cpus_mutex); 483 return ret; 484 } 485 486 static int cpu_stop_should_run(unsigned int cpu) 487 { 488 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 unsigned long flags; 490 int run; 491 492 raw_spin_lock_irqsave(&stopper->lock, flags); 493 run = !list_empty(&stopper->works); 494 raw_spin_unlock_irqrestore(&stopper->lock, flags); 495 return run; 496 } 497 498 static void cpu_stopper_thread(unsigned int cpu) 499 { 500 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 501 struct cpu_stop_work *work; 502 503 repeat: 504 work = NULL; 505 raw_spin_lock_irq(&stopper->lock); 506 if (!list_empty(&stopper->works)) { 507 work = list_first_entry(&stopper->works, 508 struct cpu_stop_work, list); 509 list_del_init(&work->list); 510 } 511 raw_spin_unlock_irq(&stopper->lock); 512 513 if (work) { 514 cpu_stop_fn_t fn = work->fn; 515 void *arg = work->arg; 516 struct cpu_stop_done *done = work->done; 517 int ret; 518 519 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 520 preempt_count_inc(); 521 ret = fn(arg); 522 if (done) { 523 if (ret) 524 done->ret = ret; 525 cpu_stop_signal_done(done); 526 } 527 preempt_count_dec(); 528 WARN_ONCE(preempt_count(), 529 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 530 goto repeat; 531 } 532 } 533 534 void stop_machine_park(int cpu) 535 { 536 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 537 /* 538 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 539 * the pending works before it parks, until then it is fine to queue 540 * the new works. 541 */ 542 stopper->enabled = false; 543 kthread_park(stopper->thread); 544 } 545 546 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 547 548 static void cpu_stop_create(unsigned int cpu) 549 { 550 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 551 } 552 553 static void cpu_stop_park(unsigned int cpu) 554 { 555 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 556 557 WARN_ON(!list_empty(&stopper->works)); 558 } 559 560 void stop_machine_unpark(int cpu) 561 { 562 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 563 564 stopper->enabled = true; 565 kthread_unpark(stopper->thread); 566 } 567 568 static struct smp_hotplug_thread cpu_stop_threads = { 569 .store = &cpu_stopper.thread, 570 .thread_should_run = cpu_stop_should_run, 571 .thread_fn = cpu_stopper_thread, 572 .thread_comm = "migration/%u", 573 .create = cpu_stop_create, 574 .park = cpu_stop_park, 575 .selfparking = true, 576 }; 577 578 static int __init cpu_stop_init(void) 579 { 580 unsigned int cpu; 581 582 for_each_possible_cpu(cpu) { 583 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 584 585 raw_spin_lock_init(&stopper->lock); 586 INIT_LIST_HEAD(&stopper->works); 587 } 588 589 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 590 stop_machine_unpark(raw_smp_processor_id()); 591 stop_machine_initialized = true; 592 return 0; 593 } 594 early_initcall(cpu_stop_init); 595 596 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 597 const struct cpumask *cpus) 598 { 599 struct multi_stop_data msdata = { 600 .fn = fn, 601 .data = data, 602 .num_threads = num_online_cpus(), 603 .active_cpus = cpus, 604 }; 605 606 lockdep_assert_cpus_held(); 607 608 if (!stop_machine_initialized) { 609 /* 610 * Handle the case where stop_machine() is called 611 * early in boot before stop_machine() has been 612 * initialized. 613 */ 614 unsigned long flags; 615 int ret; 616 617 WARN_ON_ONCE(msdata.num_threads != 1); 618 619 local_irq_save(flags); 620 hard_irq_disable(); 621 ret = (*fn)(data); 622 local_irq_restore(flags); 623 624 return ret; 625 } 626 627 /* Set the initial state and stop all online cpus. */ 628 set_state(&msdata, MULTI_STOP_PREPARE); 629 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 630 } 631 632 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 633 { 634 int ret; 635 636 /* No CPUs can come up or down during this. */ 637 cpus_read_lock(); 638 ret = stop_machine_cpuslocked(fn, data, cpus); 639 cpus_read_unlock(); 640 return ret; 641 } 642 EXPORT_SYMBOL_GPL(stop_machine); 643 644 /** 645 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 646 * @fn: the function to run 647 * @data: the data ptr for the @fn() 648 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 649 * 650 * This is identical to stop_machine() but can be called from a CPU which 651 * is not active. The local CPU is in the process of hotplug (so no other 652 * CPU hotplug can start) and not marked active and doesn't have enough 653 * context to sleep. 654 * 655 * This function provides stop_machine() functionality for such state by 656 * using busy-wait for synchronization and executing @fn directly for local 657 * CPU. 658 * 659 * CONTEXT: 660 * Local CPU is inactive. Temporarily stops all active CPUs. 661 * 662 * RETURNS: 663 * 0 if all executions of @fn returned 0, any non zero return value if any 664 * returned non zero. 665 */ 666 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 667 const struct cpumask *cpus) 668 { 669 struct multi_stop_data msdata = { .fn = fn, .data = data, 670 .active_cpus = cpus }; 671 struct cpu_stop_done done; 672 int ret; 673 674 /* Local CPU must be inactive and CPU hotplug in progress. */ 675 BUG_ON(cpu_active(raw_smp_processor_id())); 676 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 677 678 /* No proper task established and can't sleep - busy wait for lock. */ 679 while (!mutex_trylock(&stop_cpus_mutex)) 680 cpu_relax(); 681 682 /* Schedule work on other CPUs and execute directly for local CPU */ 683 set_state(&msdata, MULTI_STOP_PREPARE); 684 cpu_stop_init_done(&done, num_active_cpus()); 685 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 686 &done); 687 ret = multi_cpu_stop(&msdata); 688 689 /* Busy wait for completion. */ 690 while (!completion_done(&done.completion)) 691 cpu_relax(); 692 693 mutex_unlock(&stop_cpus_mutex); 694 return ret ?: done.ret; 695 } 696