1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * kernel/stop_machine.c 4 * 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 10 #include <linux/completion.h> 11 #include <linux/cpu.h> 12 #include <linux/init.h> 13 #include <linux/kthread.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 16 #include <linux/sched.h> 17 #include <linux/stop_machine.h> 18 #include <linux/interrupt.h> 19 #include <linux/kallsyms.h> 20 #include <linux/smpboot.h> 21 #include <linux/atomic.h> 22 #include <linux/nmi.h> 23 #include <linux/sched/wake_q.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 int ret; /* collected return value */ 32 struct completion completion; /* fired if nr_todo reaches 0 */ 33 }; 34 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 36 struct cpu_stopper { 37 struct task_struct *thread; 38 39 raw_spinlock_t lock; 40 bool enabled; /* is this stopper enabled? */ 41 struct list_head works; /* list of pending works */ 42 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 44 }; 45 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 47 static bool stop_machine_initialized = false; 48 49 /* static data for stop_cpus */ 50 static DEFINE_MUTEX(stop_cpus_mutex); 51 static bool stop_cpus_in_progress; 52 53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 54 { 55 memset(done, 0, sizeof(*done)); 56 atomic_set(&done->nr_todo, nr_todo); 57 init_completion(&done->completion); 58 } 59 60 /* signal completion unless @done is NULL */ 61 static void cpu_stop_signal_done(struct cpu_stop_done *done) 62 { 63 if (atomic_dec_and_test(&done->nr_todo)) 64 complete(&done->completion); 65 } 66 67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 68 struct cpu_stop_work *work, 69 struct wake_q_head *wakeq) 70 { 71 list_add_tail(&work->list, &stopper->works); 72 wake_q_add(wakeq, stopper->thread); 73 } 74 75 /* queue @work to @stopper. if offline, @work is completed immediately */ 76 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 77 { 78 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 79 DEFINE_WAKE_Q(wakeq); 80 unsigned long flags; 81 bool enabled; 82 83 preempt_disable(); 84 raw_spin_lock_irqsave(&stopper->lock, flags); 85 enabled = stopper->enabled; 86 if (enabled) 87 __cpu_stop_queue_work(stopper, work, &wakeq); 88 else if (work->done) 89 cpu_stop_signal_done(work->done); 90 raw_spin_unlock_irqrestore(&stopper->lock, flags); 91 92 wake_up_q(&wakeq); 93 preempt_enable(); 94 95 return enabled; 96 } 97 98 /** 99 * stop_one_cpu - stop a cpu 100 * @cpu: cpu to stop 101 * @fn: function to execute 102 * @arg: argument to @fn 103 * 104 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 105 * the highest priority preempting any task on the cpu and 106 * monopolizing it. This function returns after the execution is 107 * complete. 108 * 109 * This function doesn't guarantee @cpu stays online till @fn 110 * completes. If @cpu goes down in the middle, execution may happen 111 * partially or fully on different cpus. @fn should either be ready 112 * for that or the caller should ensure that @cpu stays online until 113 * this function completes. 114 * 115 * CONTEXT: 116 * Might sleep. 117 * 118 * RETURNS: 119 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 120 * otherwise, the return value of @fn. 121 */ 122 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 123 { 124 struct cpu_stop_done done; 125 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 126 127 cpu_stop_init_done(&done, 1); 128 if (!cpu_stop_queue_work(cpu, &work)) 129 return -ENOENT; 130 /* 131 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 132 * cycle by doing a preemption: 133 */ 134 cond_resched(); 135 wait_for_completion(&done.completion); 136 return done.ret; 137 } 138 139 /* This controls the threads on each CPU. */ 140 enum multi_stop_state { 141 /* Dummy starting state for thread. */ 142 MULTI_STOP_NONE, 143 /* Awaiting everyone to be scheduled. */ 144 MULTI_STOP_PREPARE, 145 /* Disable interrupts. */ 146 MULTI_STOP_DISABLE_IRQ, 147 /* Run the function */ 148 MULTI_STOP_RUN, 149 /* Exit */ 150 MULTI_STOP_EXIT, 151 }; 152 153 struct multi_stop_data { 154 cpu_stop_fn_t fn; 155 void *data; 156 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 157 unsigned int num_threads; 158 const struct cpumask *active_cpus; 159 160 enum multi_stop_state state; 161 atomic_t thread_ack; 162 }; 163 164 static void set_state(struct multi_stop_data *msdata, 165 enum multi_stop_state newstate) 166 { 167 /* Reset ack counter. */ 168 atomic_set(&msdata->thread_ack, msdata->num_threads); 169 smp_wmb(); 170 msdata->state = newstate; 171 } 172 173 /* Last one to ack a state moves to the next state. */ 174 static void ack_state(struct multi_stop_data *msdata) 175 { 176 if (atomic_dec_and_test(&msdata->thread_ack)) 177 set_state(msdata, msdata->state + 1); 178 } 179 180 void __weak stop_machine_yield(const struct cpumask *cpumask) 181 { 182 cpu_relax(); 183 } 184 185 /* This is the cpu_stop function which stops the CPU. */ 186 static int multi_cpu_stop(void *data) 187 { 188 struct multi_stop_data *msdata = data; 189 enum multi_stop_state curstate = MULTI_STOP_NONE; 190 int cpu = smp_processor_id(), err = 0; 191 const struct cpumask *cpumask; 192 unsigned long flags; 193 bool is_active; 194 195 /* 196 * When called from stop_machine_from_inactive_cpu(), irq might 197 * already be disabled. Save the state and restore it on exit. 198 */ 199 local_save_flags(flags); 200 201 if (!msdata->active_cpus) { 202 cpumask = cpu_online_mask; 203 is_active = cpu == cpumask_first(cpumask); 204 } else { 205 cpumask = msdata->active_cpus; 206 is_active = cpumask_test_cpu(cpu, cpumask); 207 } 208 209 /* Simple state machine */ 210 do { 211 /* Chill out and ensure we re-read multi_stop_state. */ 212 stop_machine_yield(cpumask); 213 if (msdata->state != curstate) { 214 curstate = msdata->state; 215 switch (curstate) { 216 case MULTI_STOP_DISABLE_IRQ: 217 local_irq_disable(); 218 hard_irq_disable(); 219 break; 220 case MULTI_STOP_RUN: 221 if (is_active) 222 err = msdata->fn(msdata->data); 223 break; 224 default: 225 break; 226 } 227 ack_state(msdata); 228 } else if (curstate > MULTI_STOP_PREPARE) { 229 /* 230 * At this stage all other CPUs we depend on must spin 231 * in the same loop. Any reason for hard-lockup should 232 * be detected and reported on their side. 233 */ 234 touch_nmi_watchdog(); 235 } 236 } while (curstate != MULTI_STOP_EXIT); 237 238 local_irq_restore(flags); 239 return err; 240 } 241 242 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 243 int cpu2, struct cpu_stop_work *work2) 244 { 245 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 246 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 247 DEFINE_WAKE_Q(wakeq); 248 int err; 249 250 retry: 251 /* 252 * The waking up of stopper threads has to happen in the same 253 * scheduling context as the queueing. Otherwise, there is a 254 * possibility of one of the above stoppers being woken up by another 255 * CPU, and preempting us. This will cause us to not wake up the other 256 * stopper forever. 257 */ 258 preempt_disable(); 259 raw_spin_lock_irq(&stopper1->lock); 260 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 261 262 if (!stopper1->enabled || !stopper2->enabled) { 263 err = -ENOENT; 264 goto unlock; 265 } 266 267 /* 268 * Ensure that if we race with __stop_cpus() the stoppers won't get 269 * queued up in reverse order leading to system deadlock. 270 * 271 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 272 * queued a work on cpu1 but not on cpu2, we hold both locks. 273 * 274 * It can be falsely true but it is safe to spin until it is cleared, 275 * queue_stop_cpus_work() does everything under preempt_disable(). 276 */ 277 if (unlikely(stop_cpus_in_progress)) { 278 err = -EDEADLK; 279 goto unlock; 280 } 281 282 err = 0; 283 __cpu_stop_queue_work(stopper1, work1, &wakeq); 284 __cpu_stop_queue_work(stopper2, work2, &wakeq); 285 286 unlock: 287 raw_spin_unlock(&stopper2->lock); 288 raw_spin_unlock_irq(&stopper1->lock); 289 290 if (unlikely(err == -EDEADLK)) { 291 preempt_enable(); 292 293 while (stop_cpus_in_progress) 294 cpu_relax(); 295 296 goto retry; 297 } 298 299 wake_up_q(&wakeq); 300 preempt_enable(); 301 302 return err; 303 } 304 /** 305 * stop_two_cpus - stops two cpus 306 * @cpu1: the cpu to stop 307 * @cpu2: the other cpu to stop 308 * @fn: function to execute 309 * @arg: argument to @fn 310 * 311 * Stops both the current and specified CPU and runs @fn on one of them. 312 * 313 * returns when both are completed. 314 */ 315 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 316 { 317 struct cpu_stop_done done; 318 struct cpu_stop_work work1, work2; 319 struct multi_stop_data msdata; 320 321 msdata = (struct multi_stop_data){ 322 .fn = fn, 323 .data = arg, 324 .num_threads = 2, 325 .active_cpus = cpumask_of(cpu1), 326 }; 327 328 work1 = work2 = (struct cpu_stop_work){ 329 .fn = multi_cpu_stop, 330 .arg = &msdata, 331 .done = &done 332 }; 333 334 cpu_stop_init_done(&done, 2); 335 set_state(&msdata, MULTI_STOP_PREPARE); 336 337 if (cpu1 > cpu2) 338 swap(cpu1, cpu2); 339 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 340 return -ENOENT; 341 342 wait_for_completion(&done.completion); 343 return done.ret; 344 } 345 346 /** 347 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 348 * @cpu: cpu to stop 349 * @fn: function to execute 350 * @arg: argument to @fn 351 * @work_buf: pointer to cpu_stop_work structure 352 * 353 * Similar to stop_one_cpu() but doesn't wait for completion. The 354 * caller is responsible for ensuring @work_buf is currently unused 355 * and will remain untouched until stopper starts executing @fn. 356 * 357 * CONTEXT: 358 * Don't care. 359 * 360 * RETURNS: 361 * true if cpu_stop_work was queued successfully and @fn will be called, 362 * false otherwise. 363 */ 364 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 365 struct cpu_stop_work *work_buf) 366 { 367 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 368 return cpu_stop_queue_work(cpu, work_buf); 369 } 370 371 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 372 cpu_stop_fn_t fn, void *arg, 373 struct cpu_stop_done *done) 374 { 375 struct cpu_stop_work *work; 376 unsigned int cpu; 377 bool queued = false; 378 379 /* 380 * Disable preemption while queueing to avoid getting 381 * preempted by a stopper which might wait for other stoppers 382 * to enter @fn which can lead to deadlock. 383 */ 384 preempt_disable(); 385 stop_cpus_in_progress = true; 386 barrier(); 387 for_each_cpu(cpu, cpumask) { 388 work = &per_cpu(cpu_stopper.stop_work, cpu); 389 work->fn = fn; 390 work->arg = arg; 391 work->done = done; 392 if (cpu_stop_queue_work(cpu, work)) 393 queued = true; 394 } 395 barrier(); 396 stop_cpus_in_progress = false; 397 preempt_enable(); 398 399 return queued; 400 } 401 402 static int __stop_cpus(const struct cpumask *cpumask, 403 cpu_stop_fn_t fn, void *arg) 404 { 405 struct cpu_stop_done done; 406 407 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 408 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 409 return -ENOENT; 410 wait_for_completion(&done.completion); 411 return done.ret; 412 } 413 414 /** 415 * stop_cpus - stop multiple cpus 416 * @cpumask: cpus to stop 417 * @fn: function to execute 418 * @arg: argument to @fn 419 * 420 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 421 * @fn is run in a process context with the highest priority 422 * preempting any task on the cpu and monopolizing it. This function 423 * returns after all executions are complete. 424 * 425 * This function doesn't guarantee the cpus in @cpumask stay online 426 * till @fn completes. If some cpus go down in the middle, execution 427 * on the cpu may happen partially or fully on different cpus. @fn 428 * should either be ready for that or the caller should ensure that 429 * the cpus stay online until this function completes. 430 * 431 * All stop_cpus() calls are serialized making it safe for @fn to wait 432 * for all cpus to start executing it. 433 * 434 * CONTEXT: 435 * Might sleep. 436 * 437 * RETURNS: 438 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 439 * @cpumask were offline; otherwise, 0 if all executions of @fn 440 * returned 0, any non zero return value if any returned non zero. 441 */ 442 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 443 { 444 int ret; 445 446 /* static works are used, process one request at a time */ 447 mutex_lock(&stop_cpus_mutex); 448 ret = __stop_cpus(cpumask, fn, arg); 449 mutex_unlock(&stop_cpus_mutex); 450 return ret; 451 } 452 453 /** 454 * try_stop_cpus - try to stop multiple cpus 455 * @cpumask: cpus to stop 456 * @fn: function to execute 457 * @arg: argument to @fn 458 * 459 * Identical to stop_cpus() except that it fails with -EAGAIN if 460 * someone else is already using the facility. 461 * 462 * CONTEXT: 463 * Might sleep. 464 * 465 * RETURNS: 466 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 467 * @fn(@arg) was not executed at all because all cpus in @cpumask were 468 * offline; otherwise, 0 if all executions of @fn returned 0, any non 469 * zero return value if any returned non zero. 470 */ 471 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 472 { 473 int ret; 474 475 /* static works are used, process one request at a time */ 476 if (!mutex_trylock(&stop_cpus_mutex)) 477 return -EAGAIN; 478 ret = __stop_cpus(cpumask, fn, arg); 479 mutex_unlock(&stop_cpus_mutex); 480 return ret; 481 } 482 483 static int cpu_stop_should_run(unsigned int cpu) 484 { 485 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 486 unsigned long flags; 487 int run; 488 489 raw_spin_lock_irqsave(&stopper->lock, flags); 490 run = !list_empty(&stopper->works); 491 raw_spin_unlock_irqrestore(&stopper->lock, flags); 492 return run; 493 } 494 495 static void cpu_stopper_thread(unsigned int cpu) 496 { 497 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 498 struct cpu_stop_work *work; 499 500 repeat: 501 work = NULL; 502 raw_spin_lock_irq(&stopper->lock); 503 if (!list_empty(&stopper->works)) { 504 work = list_first_entry(&stopper->works, 505 struct cpu_stop_work, list); 506 list_del_init(&work->list); 507 } 508 raw_spin_unlock_irq(&stopper->lock); 509 510 if (work) { 511 cpu_stop_fn_t fn = work->fn; 512 void *arg = work->arg; 513 struct cpu_stop_done *done = work->done; 514 int ret; 515 516 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 517 preempt_count_inc(); 518 ret = fn(arg); 519 if (done) { 520 if (ret) 521 done->ret = ret; 522 cpu_stop_signal_done(done); 523 } 524 preempt_count_dec(); 525 WARN_ONCE(preempt_count(), 526 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 527 goto repeat; 528 } 529 } 530 531 void stop_machine_park(int cpu) 532 { 533 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 534 /* 535 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 536 * the pending works before it parks, until then it is fine to queue 537 * the new works. 538 */ 539 stopper->enabled = false; 540 kthread_park(stopper->thread); 541 } 542 543 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 544 545 static void cpu_stop_create(unsigned int cpu) 546 { 547 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 548 } 549 550 static void cpu_stop_park(unsigned int cpu) 551 { 552 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 554 WARN_ON(!list_empty(&stopper->works)); 555 } 556 557 void stop_machine_unpark(int cpu) 558 { 559 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 560 561 stopper->enabled = true; 562 kthread_unpark(stopper->thread); 563 } 564 565 static struct smp_hotplug_thread cpu_stop_threads = { 566 .store = &cpu_stopper.thread, 567 .thread_should_run = cpu_stop_should_run, 568 .thread_fn = cpu_stopper_thread, 569 .thread_comm = "migration/%u", 570 .create = cpu_stop_create, 571 .park = cpu_stop_park, 572 .selfparking = true, 573 }; 574 575 static int __init cpu_stop_init(void) 576 { 577 unsigned int cpu; 578 579 for_each_possible_cpu(cpu) { 580 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 581 582 raw_spin_lock_init(&stopper->lock); 583 INIT_LIST_HEAD(&stopper->works); 584 } 585 586 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 587 stop_machine_unpark(raw_smp_processor_id()); 588 stop_machine_initialized = true; 589 return 0; 590 } 591 early_initcall(cpu_stop_init); 592 593 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 594 const struct cpumask *cpus) 595 { 596 struct multi_stop_data msdata = { 597 .fn = fn, 598 .data = data, 599 .num_threads = num_online_cpus(), 600 .active_cpus = cpus, 601 }; 602 603 lockdep_assert_cpus_held(); 604 605 if (!stop_machine_initialized) { 606 /* 607 * Handle the case where stop_machine() is called 608 * early in boot before stop_machine() has been 609 * initialized. 610 */ 611 unsigned long flags; 612 int ret; 613 614 WARN_ON_ONCE(msdata.num_threads != 1); 615 616 local_irq_save(flags); 617 hard_irq_disable(); 618 ret = (*fn)(data); 619 local_irq_restore(flags); 620 621 return ret; 622 } 623 624 /* Set the initial state and stop all online cpus. */ 625 set_state(&msdata, MULTI_STOP_PREPARE); 626 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 627 } 628 629 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 630 { 631 int ret; 632 633 /* No CPUs can come up or down during this. */ 634 cpus_read_lock(); 635 ret = stop_machine_cpuslocked(fn, data, cpus); 636 cpus_read_unlock(); 637 return ret; 638 } 639 EXPORT_SYMBOL_GPL(stop_machine); 640 641 /** 642 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 643 * @fn: the function to run 644 * @data: the data ptr for the @fn() 645 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 646 * 647 * This is identical to stop_machine() but can be called from a CPU which 648 * is not active. The local CPU is in the process of hotplug (so no other 649 * CPU hotplug can start) and not marked active and doesn't have enough 650 * context to sleep. 651 * 652 * This function provides stop_machine() functionality for such state by 653 * using busy-wait for synchronization and executing @fn directly for local 654 * CPU. 655 * 656 * CONTEXT: 657 * Local CPU is inactive. Temporarily stops all active CPUs. 658 * 659 * RETURNS: 660 * 0 if all executions of @fn returned 0, any non zero return value if any 661 * returned non zero. 662 */ 663 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 664 const struct cpumask *cpus) 665 { 666 struct multi_stop_data msdata = { .fn = fn, .data = data, 667 .active_cpus = cpus }; 668 struct cpu_stop_done done; 669 int ret; 670 671 /* Local CPU must be inactive and CPU hotplug in progress. */ 672 BUG_ON(cpu_active(raw_smp_processor_id())); 673 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 674 675 /* No proper task established and can't sleep - busy wait for lock. */ 676 while (!mutex_trylock(&stop_cpus_mutex)) 677 cpu_relax(); 678 679 /* Schedule work on other CPUs and execute directly for local CPU */ 680 set_state(&msdata, MULTI_STOP_PREPARE); 681 cpu_stop_init_done(&done, num_active_cpus()); 682 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 683 &done); 684 ret = multi_cpu_stop(&msdata); 685 686 /* Busy wait for completion. */ 687 while (!completion_done(&done.completion)) 688 cpu_relax(); 689 690 mutex_unlock(&stop_cpus_mutex); 691 return ret ?: done.ret; 692 } 693